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Abstract

The task of classification is of paramount
importance and extensive research has been
aimed at developing general purpose classi-
fiers that can be used effectively in a variety
of domains. Network-based classifiers, such
as the tree augmented naive Bayes model, are
appealing since they are easily interpretable,
can naturally handle missing data, and are of-
ten quite effective. Yet, for complex domains
with continuous explanatory variables, prac-
tical performance is often sub-optimal. To
overcome this limitation, we introduce Cop-
ula Network Classifiers (CNCs), a model that
combines the flexibility of a graph based rep-
resentation with the modeling power of cop-
ulas. As we demonstrate on ten varied con-
tinuous real-life datasets, CNCs offer better
overall performance than linear and nonlin-
ear standard generative models, as well as
discriminative RBF and polynomial kernel
SVMs. In addition, since no parameter tun-
ing is required, CNCs can be trained dramat-
ically faster than SVMs.

1 Introduction

Learning general purpose classifiers that can make ac-
curate predictions in varied complex domains is one
of the core goals of machine learning. Continuous do-
mains abound in real-life and in this work we address
the problem of learning effective classifiers in domains
with continuous explanatory variables.

Generative networks-based classifiers such as the
widely used naive Bayes (NB) model (e.g., [Duda and
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Hart, 1973]) are appealing as they are easily inter-
pretable and can naturally handle missing data. As
demonstrated by Ng and Jordan [2002] (via a com-
parison to the logistic regression model), such classi-
fiers can also compete with discriminative approaches,
depending on the number of training instances, and
the particular characteristics of the domain. Using
the framework of Bayesian networks (BNs) [Pearl,
1988], the tree-augmented naive Bayes (TAN) model
relaxes the independence assumption of the NB model
by allowing for a tree structure over the explanatory
features [Friedman et al., 1997]. The TAN model
can be learned efficiently and, in some domains, can
lead to substantial gains in predictive performance.
More generally, complex dependency structures in
BN based classifiers sometimes offer additional advan-
tages, though at the cost of computational efficiency
(e.g., [Grossman and Domingos, 2004]).

In continuous domains, due to practical considera-
tions, network-based classifiers typically rely on sim-
ple parametric forms (e.g., linear Gaussian, sigmoid
Gaussian), and their predictive accuracy can be sub-
optimal. Our goal in this work is to overcome this limi-
tation and develop network-based classifiers for contin-
uous domains that are competitive, and even superior
to state-of-the-art discriminative approaches such as
the SVM model [Cortes and Vapnik, 1995].

In an unconditional setting, a copula function [Nelsen,
2007] links any univariate marginals (e.g. nonpara-
metric) into a coherent multivariate distribution. This
can result in a model that is easier to estimate and
less prone to over-fitting than a fully nonparamet-
ric one, while at the same time avoiding the limita-
tions of a fully parameterized distribution. In prac-
tice, copula constructions often lead to significant im-
provement in density estimation. Indeed, there has
been a dramatic growth of academic and practical
interest in copulas in recent years, with applications
ranging from mainstream economics (e.g., Embrechts
et al. [2003]) to hydrologic flood analysis [Zhang and
Singh, 2007]. Recently, Elidan [2010] introduced Cop-
ula (Bayesian) Networks (CNs) that integrate the cop-
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ula and Bayesian network frameworks. CNs allow for
the construction of high-dimensional graph-based dis-
tributions while taking advantage of the flexibility of
copulas. In the context of multivariate density esti-
mation, the construction has led to appealing gains in
terms of generalization performance. In this work we
show that an adaptation of this model results in an
effective general purpose classifier.

We present Copula Network Classifiers (CNCs) for
classification in domains with continuous explanatory
variables. Our building block is the conditional copula
function (e.g., [Patton, 2006, Hotta and Palaro, 2006])
that allows us to seamlessly construct context specific
copulas which depend on the value of the class vari-
able. Similarly to the construction of Elidan [2010], we
then build a multivariate classifier by combining such
conditional copulas. While conditional copulas have
been used in a fully continuous context (e.g., [Hotta
and Palaro, 2006, Patton, 2006]), and copulas have
been used (though indirectly) in specific discriminative
applications (e.g., [Stitou et al., 2009, Krylov et al.,
2011]), to the best of our knowledge conditional copu-
las have not been used to construct high-dimensional
classifiers based on continuous explanatory variables.

Theoretically, after replacing the univariate marginals
with their conditional counterparts, the validity of our
global decomposable construction follows easily along
lines similar to the work of Elidan [2010]. The central
contribution of the model is in the practical merit of
the proposed classifier. Although applicable to general
network structures, for concreteness we restrict our at-
tention to the popular TAN structure, and examine ten
varied real-life continuous domains. Even with this
simple structure, our model offers performance that
is superior to standard network-based classifiers, as
well as a cross validated SVM model using radial ba-
sis function or polynomial kernels. At the same time,
our model does not require any tuning of parameters,
and can be trained dramatically faster (by orders of
magnitude) than an SVM model.

2 Background

In this section we briefly review copulas and the re-
cently introduced Copula Network (CN) model [Eli-
dan, 2010]. We start with the necessary notation. Let
X = {Xi1,...,Xn} be a finite set of real-valued ran-
dom variables and let Fy(x) = P(X; < z1,..., X, <
~) be a (cumulative) distribution over X', with lower
case letters denoting assignment to variables. For
compactness, we use Fj(x;) = Fx,(z;) = P(X; <
ri, Xx/x, = 00) and fi(z;) = fx,(z;). When there
is no ambiguity we sometimes use F'(z;) = Fx,(x;),
and similarly for densities and for sets of variables.
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2.1 Copulas

A copula function [Sklar, 1959] links marginal distri-
butions to form a multivariate one. Formally,

Definition 2.1: Let Uy, ..., Uy be real random vari-
ables marginally uniformly distributed on [0, 1]. A cop-
ula function C': [0,1]Y — [0, 1] with parameter(s) 6 is
a joint distribution function

C@(u1,...,u1\/) ZP(Ul <uy,...,Un SUN),

where 6 are the parameters of the copula function. NI

Sklar’s seminal theorem states that any joint distri-
bution Fy(x) can be represented as a copula func-
tion C' of its univariate marginals. Further, when the
marginals are continuous, C' is unique. The construc-
tive converse, which is of central interest from a mod-
eling perspective, is also true: any copula function
taking any marginal distributions {F;(x;)} as its argu-
ments, defines a valid joint distribution with marginals
{Fi(z;)}. Thus, copulas are “distribution generating”
functions that allow us to separate the choice of the
univariate marginals and that of the dependence struc-
ture expressed in C. This flexibility often results in a
real-valued construction that is beneficial in practice.

Assuming C has Nth order partial derivatives (true
almost everywhere when the distribution is continu-
ous), we can derive the joint density from the copula
function via the derivative chain rule:

- 8NCg {F .’L‘l
f(X) o 6F1(:171) 8FN SCN Hfz

Hfz ), 1)

where co({F;i(z;)}) is called the copula density. See
Nelsen [2007], Joe [1997] for further details on copulas.

co({F;(x;)}

Example 2.2: A simple widely used copula (partic-
ularly in the financial community) is the Gaussian cop-
ula, which is constructed directly by inverting Sklar’s
theorem [Embrechts et al., 2003]:

Co({Fi(2:)}) = @ (2~ (Fi(21)), ..., @ (Fn(2n)))

where @ is the standard normal distribution, and ®s;
is the zero mean normal distribution with correlation
matrix X. To get a sense of the power of copulas,
Figure 1 shows samples generated from this copula us-
ing two different families of univariate marginals. As
can be seen, even with a simple elliptical copula, a va-
riety of markedly different and multi-modal distribu-
tions can be constructed. More generally, and without
any added computational difficulty, we can use differ-
ent marginals for each variable, and mix and match
marginals of different forms with any copula function.
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Figure 1: Samples from the bivari-
ate Gaussian copula with correlation
0 = 0.25. (left) with unit variance
Gaussian marginals; (right) with a
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mixture of Gaussians marginals.
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Normal marginals

2.2 Copula Networks

Elidan [2010] defines a multivariate density with an
explicit univariate representation using a construc-
tion that fuses the copula and Bayesian networks
(BNs)[Pearl, 1988] formalisms:

Let G be a directed acyclic graph whose nodes cor-
respond to the random variables X = {X3,..., Xy},
and let Pa; = {Pa;1,...,Pa;, } be the parents of X
in G. As for standard BNs, we use G to encode the
independence statements I(G) = {(X; L ND; | Pa;)},
where 1 denotes the independence relationship and
ND; are nodes that are not descendants of X; in G.

Definition 2.3 : A Copula Network (CN) is a
triplet C = (G,0¢,©y) that encodes a joint den-
sity fx(x). G encodes the independence statements
(X; L ND; | Pa;), that are assumed to hold
in fx(x); ©¢ is a set of local copula functions
Ci(F(z;), F(pa;;), ..., F(pay,)) that are associated
with the nodes of G that have at least one parent;
Oy is the set of parameters representing the marginal
densities f;(z;) (and distributions F;(z;)). The joint
density fx(x) is then takes the form

N

=1

where, if X; has at least one parent in the graph G,
the term R., is defined as

ci(F(xi), F(pay), ..., F(pay,))
6KCi(laF(Pan)v---vF(Paiki)) ’
OF(paL'l)"'aF(paiki)

When X; has no parents, R, (F(z;),0) = 1. |

The term RCi (F('ri)aF(pail)7 (pazk ))fz(xz) is
simply a conditional density f (xl | pa;), and can be
easily computed. Specifically, whenever the copula
density cg(-) has an explicit form, so does this term.

F(pay),. (Pazk ) fi(wi),

Rcz() =

Elidan [2010] shows that a CN defines a coherent joint
density, and further that the product of local ratio
terms R, defines a joint copula over X. Thus, like
other probabilistic graphical models, a CN takes ad-
vantage of the independence assumptions encoded in
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G to represent fx(x) compactly via a product of local
terms. Differently from a regular BN, a CN has an
explicit marginal representation leading to practical
advantages (see Elidan [2010] for more details).

3 Copula Network Classifiers

While the CN construction of Elidan [2010] offers a
general tool for constructing effective multivariate con-
tinuous distributions, it cannot be used directly for
the important task of classification. This is because
copula distributions cannot be defined over categori-
cal variables. To overcome this difficulty, we propose a
construction that resembles that of Elidan [2010], but
that relies on conditional copulas. As in the case of
CNs, the building block of our construction is a copula-
based parameterization of a variable in the graph G
given its parents. Differently, each continuous variable
is also allowed to have one or more discrete class vari-
ables as parents, thereby defining a distribution that
can be used for classification. After some preliminar-
ies, we describe the local conditional copula building
block, and then show how it can be used to define our
copula-based multivariate classifier network.

3.1 Conditional Copulas

We start by defining the conditional copula construc-
tion. For any continuous random variable X and a set
of random variables W, Fx(z|w) = P(X < z|w) is
distributed uniformly on [0, 1]. Thus, a standard cop-
ula function C : [0,1]N — [0,1], if given conditional
univariate marginals { F;(x;|w)} as arguments, defines
a distribution conditioned on W = w. As in the un-
conditional case, a parallel to Sklar’s theorem allows us
to represent any continuous multivariate conditional
distribution as a copula function of its conditional uni-
variate marginals:

Co({Fi(xilw)})

Note that the arguments of the copula function are
the conditional univariate marginals, and that the pa-
rameters of copula function itself may also depend on
W = w. The conditional joint density is derived from

:P(Xlgaﬁl,...,XNSl‘NlW).
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the conditional copula function using the derivative
chain rule

fQy, o mn | W) = co({Fi(i|w)} | W)Hfi(xi | w)

where, similarly to the unconditional case, the condi-
tional copula density is defined as

_ ONCy({Fi(zilw)} | w)
co({Fi(zilw)} [ w) = 55 (3310|W) - OFy(znlw)’

3.2 A Copula-based Conditional
Representation

The conditional copula has been used in a continuous
context to facilitate modeling of dynamics (e.g., [Hotta
and Palaro, 2006, Patton, 2006]), or to facilitate
multivariate constructions inspired by the chain rule
(e.g., [Bedford and Cooke, 2002]). In both cases W
are continuous and, in general, copulas are not used
to define distributions that include categorical vari-
ables. However, the above definition can also easily
be used when W defines discrete events. This allows
us to parameterize a conditional density f(x |y, w),
where Y are continuous random variables and W are
discrete as follows:

Lemma 3.1 : Let X, Y be continuous random
variables and let W be a set of discrete ran-
dom wvariables.  There exists a conditional copula
Co(F(z|w), Fi(y1|w), ..., Fx(yx|w) | w) such that

flaly,w)=
Repw (Flz|w), Fi(ya|w), ..., Fr (yx |w)) f (z|w)
where Ry s the ratio

co(F(z|w), Fi(y|w), .., Fr(yx|w) [ w)
0K Co(1,F1 (y1|W),.... Fr (yrc [W)|wW) ’
OFy (y1lw)...0Fk (yx [w)

Rc|w(') =

and where R, is defined to be 1 when Y =
0. The converse is also true: for any con-
ditional copula function Cy(-) and any univari-
ate marginals conditioned on w, the expression
Rejw(F(z|w), F1(y1|w), ..., Fx(yx|w)) f(x | w) de-
fines a valid conditional density f(x |y, w).

Note that the Kth order derivative in the denominator
of R.w is actually simpler to compute than the cop-
ula density itself (a (K+1)th order derivative). Thus,
computation of this term does not require the costly
integration that we would expect in a normalization
term. The proof of the above result is similar to the
unconditional parallel in Elidan [2010].
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3.3 A Multivariate Network Classifier

We can now define our copula-based network classifier,
aimed at predicting one or more discrete class variables
W given continuous explanatory variables X. For sim-
plicity of notation, below we use pa;;, to denote the
assignment of the k’th continuous parent of X; in the
graph G, and use w; to denote the value of the set of
discrete class variables that are parents of X; in G.

Definition 3.2: A Copula Network Classifier (CNC)
probabilistic graphical model encodes a joint density
fxw(x,w) using four components:

e G is a directed acyclic graph over X and W that
encodes I(G). The graph is constrained so that
each class variable W € W is not a descendant of
any continuous variables X € X.

e O¢ is a set of local conditional copula functions
Ci(F;(x;|w;),{ Fpa,, (Pa;,|wi)} | w;) that are as-
sociated with the nodes of G that have at least
one continuous parent.

e Oy parameterize the univariate marginal densi-
ties. These include f;(z; | w;) of each variable
given its discrete class parents in G. In addi-
tion, for each child Y of X; in G, the univariate
marginal of X; given the discrete parents of its
child Y is also explicitly represented.

e Oy is a discrete parameterization P(w | pa,)
(e.g., table) of each W € W given its (possibly
empty) set of discrete class variable parents.

The joint density fx w(x,w) is defined as

Jewbew) = [[ Pl | pay,) [T filaidws)

lew ieX
1 Beuw. (Filwilws), {Fpa,, (Pay[wi)})
ieX

Theorem 3.3: Let C be a Copula Network Classifier
(CNCQC) as defined above. Then:

1. The product of conditional copula ratios R, |w,
(last term in Eq. (2)) defines a valid joint condi-
tional copula of X' given W.

2. fxw(x,w) as defined in Eq. (2) is a valid joint
density over X and W.

Proof: The proof of the first claim is similar to the
parallel unconditional case in Elidan [2010]. The sec-
ond claim follows directly from the first claim by ap-
plying Eq. (2) to the joint density. |
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We note that a converse decomposition theorem also
holds: If I(G) hold in fx v (x,w), then the joint den-
sity decomposes as in Eq. (2).

To summarize, a CNC defines a coherent joint distri-
bution over the explanatory variables X and the class
variables W, while allowing for an explicit parame-
terization of the univariate marginals. Similarly to
the unconditional CN model, this allows us to flexibly
compose any local copulas with any univariate forms.
We can then easily use Bayes’ rule to infer the most
likely label(s) given an assignment to the explanatory
variables. Importantly, as we demonstrate in our ex-
perimental evaluation on real-life data, this results in
consistently competitive predictive performance.

4 Learning

Our Copula Network Classifier (CNC) model falls into
the broad category of probabilistic graphical models
and as such facilitates the use of available estimation
and structure learning techniques. For lack of space,
we describe these standard techniques briefly.

Univariate Marginal Estimation

To estimate f;(z;|w) we use a standard kernel-based
approach [Parzen, 1962]. Given z[1],...,z[M] i.i.d.
samples of a random variable X in the context W = w,
the density estimate

M

fulelw) = Mhl(w);K (5)

where K is a kernel function and h is the bandwidth
parameter. Qualitatively, the method approximates
the distribution by placing small “bumps” (determined
by the kernel) at each data point. We use the standard
Gaussian kernel and the common heuristic of choos-
ing h that is optimal under normality assumptions
(e.g., [Bowman and Azzalini, 1997]).

Parameter Estimation

Given a dataset D of M instances where all of the vari-
ables are observed in each instance, the log-likelihood
of the m’th instance given a CNC model C is

(D :C)m) = (log fi(wi[m]w[m]) + log Re,jw, [m])
X
+ 3" logP(w[m]|pa,,[m])], 3)

where R.,|w,[m] is a shorthand for the value that the
conditional copula ratio R.,|w, takes in the m’th in-
stance. While the log-likelihood objective (the sum of
Eq. (3) over instances) appears to fully decompose ac-
cording to the structure of the graph G, each marginal
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distribution F;(z;|w) actually appears in several cop-
ula terms. A solution commonly used in the copula
community is the Inference Functions for Margins ap-
proach [Joe and Xu, 1996], where the marginals are es-
timated first. Given {F;(z;|w)}, we can estimate the
parameters of each local copula independently, e.g., us-
ing a standard conjugate gradient approach.

Structure Learning and Model Selection

To learn the structure G of a CN, we rely on a model se-
lection score that balances the likelihood of the model
with its complexity, such as the Bayesian Information
Criterion (BIC) of Schwarz [1978]:

score(G : D) =D :6,G) — %log(M)\G)g|7 (4)

where 6 are the maximum likelihood parameters, and
|Og| is the number of free parameters associated with
the model. The learning task is then to find the struc-
ture that maximizes the score.

In the case of a TAN model (used in our evaluation),
the optimal tree over the explanatory variables can be
learned efficiently via a maximum spanning tree algo-
rithm (see Friedman et al. [1997] for details in the con-
text of standard BNs). More generally, a greedy search
procedure that is based on local modifications to the
graph (e.g., add/delete/reverse and edge) is commonly
used (see Koller and Friedman [2009] for more details).

Finally, the BIC score of Eq. (4) (or any similar model
selection criteria) can also be used to perform auto-
mated selection between the different copula families
that parameterize the CNC model.

5 Experimental Results

Experimental Setup

To assess the merit of our (CNC) model, we consider
the prevalent scenario where W is a single class vari-
able, and learn a tree augmented naive Bayes (TAN)
structure. We compare our copula based model to
two network-based classifiers: a TAN with a stan-
dard linear Gaussian conditional distribution where
X;|W = w ~ N(Bo + pzj;,0), where X; is the par-
ent of X; in the structure; a sigmoid nonlinear TAN
with X;|W = w ~ N(ag + a1m,0). Note that
in both cases, though not made explicit for readabil-
ity, the parameters depend on w. When learning the
optimal structure over the explanatory variables in all
of these models, we use the BIC score of Eq. (4). We
consider two copula-based TAN variants: one that uses
only the Gaussian copula and one that, based only on
training data, used the BIC score to select between the
Gaussian and Clayton copula (a representative of an
Archimedean copula [Nelsen, 2007]).
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Table 1: The ten datasets from the UCI and Statlog machine learning repositories

Name | Attr | Classes | Instances | Prediction Goal

Heart 13 2 270 presence or absence of heart disease

Iris 4 3 150 the classic Iris sub-type identification task
Pima 8 2 768 presence of diabetes in Pima indians

Cardio 36 3 2126 heart pathology level from fetal cardiograms
Magic 10 2 19020 distinguish gamma from hadron particles
Wine 11 6 1599 quality based on chemical characteristics
Parkin 22 2 195 presence of Parkinson’s based on speech signal
Mini 50 2 2500 distinguish electron from muon neutrinos
Glass 9 6 214 glass identification based on chemical components
Shuttle 9 7 4506 one of seven shuttle status characterization

We also compare to a strong discriminative model: an
SVM trained using the SVMLight package [Thorsten,
1999]. To estimate both the cost parameter /3 that
balances training error and margin and the kernel pa-
rameter, we use 5-fold cross-validation on the training
set. Following the widely cited protocol of Hsu and
Lin [2002], we consider 3 € {2712 271 272} For
the width parameter v of the RBF kernel, we allow
v o€ {2%,2222 .. 2710} for a total of 225 parame-
ter combinations. For the polynomial kernel, we con-
sider degrees d € {2,3,...,10} for a total of 135 set-
tings. We note that in the experiments below, the full
range of the parameter settings was selected for dif-
ferent repetitions of different domains. Thus, without
a-priori knowledge, the space of parameters considered
cannot be substantially smaller. Further, for some set-
tings in four domains (Cardio, Wine, Glass, Shuttle),
the SVM optimization was hopelessly slow, with a sin-
gle run taking more than 10* times longer than the
network-based learning. Thus, to facilitate learning of
the SVM model for all domains, for each parameter
setting, each of the 5 cross-validation evaluations was
limited to 10 minutes on an Intel Xeon X5550 Pro-
cessor (in partial, one fold, experiments, results were
essentially the same with a 30 minute limit).

We evaluate all methods on ten varied datasets from
the UCI and Statlog machine learning repository
[Frank and Asuncion, 2010] that include continuous
explanatory variables. The properties of the different
datasets are summarized in Table 1. For each dataset,
we use a 5-fold random train/test split and report av-
erage and range test results over these folds.

Prediction Accuracy

Figure 2 summarizes the test prediction accuracy of
the different methods. The graph shows the average
accuracy on a 5-fold random train/test partitioning
relative to the linear Gaussian BN baseline. The table
below provides more details where for each model and
dataset, the minimum (across random folds), average
and maximum performance is shown.
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We start by assessing the merit of our CNC model
when compared to the two network-based competitors.
The nonlinear sigmoid Gaussian BN (gray fill bar) is
better than the baseline in 5/10 domains but can also
fail miserably (Mini and Shuttle domains) and should
generally be used with caution. In contrast, our Gaus-
sian CNC model (grid red bar) is always superior to
the sigmoid Gaussian model, is better than the base-
line in 8/10 domains, and is only slightly inferior than
the baseline in the other 2 domains. For 5/10 domains
the advantage of the Gaussian CNC model relative to
the baseline is substantial with an improvement in ac-
curacy from 5% to 25%. If we also allow automated
selection between the Gaussian and Clayton copulas
(solid black bar), the performance of the CNC model
further improves. In this case our model is slightly in-
ferior to the baseline only in a single domain, and is
superior to the baseline in 9/10 domains.

Next, we compare our CNC network-based model to
the discriminative cross-validated SVM model with a
radial basis function kernel (performance with a poly-
nomial kernel was almost always worse and is not re-
ported). When compared to the linear Gaussian BN
baseline, performance of the SVM model (green no-fill
bar) is mixed: it is better in 7/10 domains but can
also fail miserably (Heart and Cardio domains). This
is consistent with the comparative evaluation of Ng
and Jordan [2002], where simpler generative and dis-
criminative models were evaluated against each other.
When compared to our CNC model, the SVM classi-
fier is clearly inferior: our Gaussian CNC model dom-
inates the SVM model on average and significantly so
in 4/10 domains. In addition, our stronger selected
CNC model is equal or better than the SVM model in
9/10 domains, loses to the SVM model only in a single
domain, and is better than the SVM model by more
than 5% in 4/10 domains. In summary, the selected
CNC model clearly dominates the baseline network-
based classifiers, as well as the discriminative SVM
competitor, and is overall best in 8/10 domains.
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Model Heart | Iris | Pima | Cardio | Magic | Wine | Parkin | Mini | Glass | Shuttle
Linear Min | 0.72 0.90 | 0.66 0.93 0.76 0.52 0.64 0.68 | 0.43 0.64
Gaussian | Avg | 0.84 | 0.96 | 0.74 0.96 0.77 0.54 0.70 0.70 | 0.52 0.71
BN Max | 0.94 1.00 | 0.78 0.98 0.77 0.57 0.82 0.71 | 0.67 0.79
Sigmoid Min | 0.76 0.90 | 0.70 0.93 0.76 0.50 0.69 0.28 | 0.48 0.36
Gaussian | Avg | 083 | 0.97 | 0.74 0.96 0.77 0.53 0.77 0.30 | 0.58 0.63
BN Max | 0.94 1.00 | 0.77 0.97 0.78 0.55 0.85 0.33 | 0.67 0.81
Min | 0.59 0.93 | 0.66 0.79 0.80 0.50 0.69 0.71 | 0.57 1.00
SVM Avg | 0.66 | 0.97 | 0.71 0.81 0.81 0.57 0.82 0.72 | 0.70 1.00
Max | 0.74 1.00 | 0.74 0.84 0.81 0.61 0.87 0.74 | 0.86 1.00
Gaussian | Min | 0.78 0.93 | 0.71 0.92 0.80 0.56 0.74 0.80 | 0.52 0.95
CNC Avg | 0.83 0.97 | 0.75 0.95 0.81 0.59 0.81 0.86 | 0.68 0.95
Max | 0.89 1.00 | 0.79 0.97 0.81 0.61 0.90 0.90 | 0.81 0.96
Gauss/ Min | 0.78 0.93 | 0.73 0.97 0.80 0.56 0.79 0.86 | 0.52 0.96
Clayton Avg | 0.83 | 0.97 | 0.76 0.98 0.81 | 0.59 0.85 0.88 | 0.70 0.96
CNC Max | 0.89 1.00 | 0.79 0.99 0.82 0.61 0.95 0.90 | 0.86 0.96

Figure 2: 5-fold test class prediction accuracy of the different models for the 10 datasets. The graph shows the
average improvement relative to the linear Gaussian BN. The table shows the minimum, average and maximum
prediction performance over the 5 test folds. The best result on average for each dataset appears in bold.

Running Time

The obvious question is whether the performance of
our CNC model comes with a computational price. In
fact, the opposite is true. Learning a Gaussian CNC
can be carried out in closed form and requires no tun-
ing of any parameters. Learning a selected CNC also
requires learning of the parameters of the Clayton cop-
ula via estimation of the Kendall’s 7 statistics [Nelsen,
2007], but still involves no parameter tuning. In con-
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trast, SVM learning always involves some form of pa-
rameter tuning using cross-validation. As noted, the
full range of the parameter settings described above
was selected for different repetitions of different do-
mains so that without a-priori knowledge, the space of
parameters considered cannot be substantially smaller.

Figure 3 shows the average learning time of the dif-
ferent models as a factor of the running time of the
Gaussian CNC model on a logarithmic scale . A single
run of the SVM model for a given value of the cost and
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Figure 3: Learning time as a factor of the learning time of a Gaussian CNC model averaged over the 5 random
folds. Shown is the learning time factor of: a single SVM run given specific width and cost parameter values
(red grid bar); a cross-validated SVM (green no-fill bar); a selected CNC model (solid black bar).

width parameters (grid red bar) is faster (below the
black line at 10°) for 5/10 domains and slower for the
other 5/10 domains. Learning a cross-validated SVM
(green no-fill bar), however, requires significantly more
time than a Gaussian CNC or a selected CNC (solid
black bar), often by several orders of magnitude. In
fact, learning the SVM model took (slightly) less time
than the selected CNC model only in a single domain
(Mini). The performance of the SVM model in this
case was significantly worse (by 16%). In 8/10 other
domains the CNC model performed better while re-
quiring significantly less running time. In the single
domain where the SVM performed better by almost
4% (Shuttle), this came at a cost of an increased learn-
ing time by a factor of over 1000.

6 Conclusions and Future Work

We have presented the Copula Network Classifier
(CNC) model for performing classification given con-
tinuous explanatory variables with non-Gaussian in-
teractions. Based on a fusion of the conditional cop-
ula and the Bayesian networks frameworks, our model
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allows for the incorporation of categorical target vari-
ables within a copula-based model. We demonstrated
the consistent predictive effectiveness of our model rel-
ative to baseline network-based classifiers, as well as a
strong discriminative SVM model. At the same time,
since no parameter tuning is needed, our model can be
trained significantly faster than an SVM model.

While our experimental evaluation was focused on a
TAN structure due to the simplicity and popularity
of this model, our construction can accomodate more
complex dependency structures. In addition, one of
the important benefits of a copula-based model is that
a large number of copula families and univariate pa-
rameterizations could be considered for different vari-
ables in the graph, without significantly increasing the
computational requirements. We expect that both
of these extensions will improve performance in suf-
ficiently challenging domains. More importantly, our
formal construction also allows for multiple categori-
cal class variables, so that high-dimensional structured
prediction could naturally be incorporated. We plan
to explore these possibilities in future work.
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