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Abstract

We give a non-trivial, non-asymptotic upper
bound on the classification error of the pop-
ular Kernel Fisher Linear Discriminant clas-
sifier under the assumption that the kernel-
induced space is a Gaussian Hilbert space.

1 Introduction

The performance of Fisher Linear Discriminant (FLD)
in finite-dimensional data space has been well-studied
in the asymptotic regime; for example, in the two class
setting under the assumption of Gaussian classes the
exact error is given in [1, 2]. However, Kernel FLD
(KFLD) [3] presents specific technical challenges to
deriving generalization bounds that are not present
in the data space setting. In particular, the kernel in-
duced space in which the classification is carried out
need not be finite-dimensional, and even if it is finite
dimensional the sample covariance matrix is always
singular. Furthermore, since the dimensionality of the
feature space in the finite sample setting is of the order
of the number of training examples it seems that any
bound which accurately reflects the behaviour of the
classifier should be dimension-free.

Previous attempts [3] have approached the analysis of
KFLD from the starting point of the KFLD objective
function and its algorithmic solution as an eigenprob-
lem, and try to quantify the error of the eigenvector
estimates. Unfortunately this leaves open the ques-
tion of the generalization error of the KFLD classifier.
In [4] a generalization error bound is developed for a
sparse version of KFLD, however with the weight vec-
tor and bias term taken to be fixed across different
training sets. In a different vein, the theoretical anal-
ysis of [5], which draws on the work of [6], focuses on
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justifying an interesting empirical observation, namely
that data mapped in the feature space tend to have
a Gaussian distribution. KFLD is a well-performing
and popular classifier, yet very little is known about
its generalization guarantees.

Here we derive a bound on the generalization error of
KFLD which under mild assumptions holds with high
probability for any training set of a given size. Our
bound is always non-trivial (less than 1), and is given
in terms of quantities in the full Hilbert space. A key
term in the bound turns out to be the distance be-
tween the class mean functions scaled by the largest
eigenvalue of the covariance operator. Since with a
suitable kernel choice (any universal kernel, e.g. the
radial basis kernel) there is a one-to-one mapping be-
tween a data density function in the input space and a
mean function in the feature space [7], it follows that
the classes are always separated and good generaliza-
tion can be achieved unless the densities of the two
classes coincide in the input space.

Furthermore, although given in the context of func-
tional data, our bound also applies to FLD in finite
fixed dimensional settings as a special case, and ex-
hibits the natural properties that it becomes tighter
(i) as the number of training examples increases, (ii)
when the classes are balanced, (iii) when the sample
covariance is a good estimate of the true covariance,
and (iv) as the separation of the classes increases.

The structure of the remainder of the paper is as fol-
lows: We briefly describe the classification problem,
the KFLD classifier, and the problem setting. We
then give the generalization error of KFLD when the
training set is fixed under the assumption of Gaussian
classes in the feature space. Next we give high proba-
bility guarantees on the generalization error of KFLD
for any training set of size N . Finally we discuss our
findings and indicate some possible future directions
for this work.
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1.1 The classification problem

In classification we observe N examples of labelled

training data TN = {(zi, yi)}Ni=1 where zi
i.i.d∼ Dz and

each zi has an associated label yi ∈ {0, 1}. For a given
class of functions F , our goal is to learn from TN the
function f̂ ∈ F with the lowest possible generalization
error in terms of some loss function L. That is, find
f̂ such that L(f̂) = arg min

f∈F
Ezq [L(f)], where zq ∼ Dz

is a query point. Here we use the (0, 1)-loss, L(0,1), as
our measure of performance.
In the setting we consider here, the class of functions F
consists of instantiations of KFLD learned from points
in a feature space. That is, the training observations
are functions of the original data mapped to a feature
space HN ⊆ H, where H is a separable Hilbert space,
via a kernel mapping φ:

φ : Dz −→ H (1.1)

z 7−→ φ(z) (1.2)

1.2 Notation

To keep our notation compact, we will write xi for
φ(zi) from now on and, since H is separable, without
loss of generality we will work in `2. The feature space
HN is the N -dimensional subspace of `2 spanned by
the observations xi and, as a consequence of the repre-
senter theorem, this is where the algorithm operates.
We denote by µy the true mean element in H of the
class y, and by Σ = Σ0 = Σ1 the (shared) true co-
variance of the classes, where Σ is a positive-definite
trace-class covariance operator (i.e. such that the pro-
jection of Σ to any subspace of H is invertible and
Tr(Σ) <∞). These properties are a technical require-
ment if D is to be a non-degenerate probability distri-
bution over H. We indicate estimated quantities by
adding a hat: µ̂y, Σ̂.
For convenience we assume that the xi are linearly in-
dependent since otherwise very similar arguments to
those we present still go through when dim(〈xi〉Ni=1) <
N . Consequently [8] we always have ‖µ̂1 − µ̂0‖ > 0 in
our setting.
We use the subscript N to indicate when an object of
interest is restricted to HN ; in particular we will de-
note by xN the projection of the vector x ∈ H onto
the subspace HN spanned by the observations, i.e if
X ∈M∞×N is the matrix with the xi as columns and
P = (XTX)−

1
2XT then xN = Px, ΣN = PΣPT , and

so on.
We assume, as the KFLD model implicitly does, that a
probability distribution exists over the xi and we con-
sider the two-class setting only, since an extension to
multi-class is relatively straightforward (e.g. [2],[9]).
The set of training observations for KFLD as treated

here is therefore: TN = {(xi, yi) : xi ∼ Dx, y ∈
{0, 1}}Ni=1, and we bound the probability that a pre-
viously unseen query point xq with its true class label
yq unknown is misclassified by the learned classifier.
Specifically, with high probability we upper bound
the classification error of KFLD under the assumption
that Dx ≡

∑
y∈{0,1} πyN (µy,Σ) in a separable Hilbert

space, H, (here taken to be `2 equipped with Gaussian
probability measure over Borel sets) where πy is the
prior probability that xq belongs to class y. We further
denote by N0 and N1 the number of training observa-
tions in the two classes. We will assume throughout
this paper that in TN we have N0 and N1 both greater
than 0, which is the case of practical interest for the
classification task.

1.3 Kernel Fisher Linear Discriminant

KFLD, first proposed by [3], is a generalization to fea-
ture space of the popular FLD classifier.
The canonical FLD is a generative classifier that seeks
to model, given a set of training observations TN , the
optimal decision boundary between classes. In the
two-class setting, if Σ = Σ0 = Σ1 and µ0 and µ1 are
known, the optimal classifier is given by Bayes’ rule
[1, 10]:

h(xq) = 1

{
log

f1(xq)

f0(xq)
> 0

}

= 1

{
(µ1 − µ0)TΣ−1

(
xq −

µ0 + µ1

2

)
> 0

}

where 1(P ) is the indicator function that returns one
if P is true and zero otherwise, and fy is the Gaus-
sian densityN (µy,Σ) with mean function µy and trace
class covariance operator Σ. When the training obser-
vations used to construct the classifier are points in a
feature space, then the resulting classifier is KFLD [3].

2 Results

We assume functional data [11], namely that the origi-
nal data observations have been mapped into a feature
space by some (linear or non-linear) function φ, and
that this mapping imposes a Gaussian distribution on
the features in each class. There are several reasons
why we might consider that this assumption is not too
restrictive.

Firstly, in [5] it is shown that most low-dimensional
projections, i.e. from H onto HN , are approximately
Gaussian when the mapping to the feature space is a
proper kernel. This phenomenon is a consequence of
central limit like behaviour and is very general.
Furthermore, our assumption allows us to potentially
extend our work to a more general setting than is often
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considered in theoretical treatments of kernel learning,
where boundedness of random variables is frequently
assumed.
In order to bound the generalization error of KFLD
we work with the decision function, assuming access
to the feature space. We find this a more convenient
formalism in which to derive generalization guarantees
than the formulation of this classifier as an optimiza-
tion problem (the representation via the kernel trick
required for algorithmic implementation).

Without loss of generality we consider the infinite-
dimensional Hilbert space `2 and we work in the fea-
ture space, namely the space spanned by the features
from the training set or, equivalently, the orthogonal
projection of `2 on to the span of the training features
which we denote HN . For convenience we will assume
the features span the first N dimensions of `2 (since
otherwise we can rotate `2 so that this is the case).
Our starting point is the decision function for KFLD
which is [12]:

1

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq −

(µ̂0 + µ̂1)

2

)

N

> 0

}

where µ̂y = 1
Ny

∑Ny
i=1 xi and the training observations

xi in the summation all have label y, and Σ̂N is a
(regularized) sample covariance matrix with its precise
form depending on the choice of regularization scheme.
Recall that the subscript N indicates that these quan-
tities are orthogonally mapped from H in HN . Then
the generalization error w.r.t L(0,1) is given by:

Exq

[
1

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq −

(µ̂0 + µ̂1)

2

)

N

> 0

}]
(2.1)

= Pr
xq

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq −

(µ̂0 + µ̂1)

2

)

N

> 0

}

where the estimates are obtained from a training set
of size N and we upper bound this probability. To
achieve this, we first develop a very general bound on
sub-exponential random variables that will be one of
our main tools, and may also be of independent inter-
est.

2.1 Dimension-free bound on (sub)-
exponential random variables

Lemma 1 Let X = (X1, X2, X3, . . .) be a sequence
of Gaussian random variables in the Hilbert space H
with mean vector E[X] = µ and covariance operator
Σ, such that the `2 norm: ‖E[X]‖ = ‖µ‖ < +∞ and
Σ is trace-class: Tr(Σ) < +∞. Let ε > 0. Then:

Pr
{
‖X‖2 > (1 + ε)

(
Tr (Σ) + ‖µ‖2

)}

6 exp

(
−Tr(Σ) + ‖µ‖2

2λmax(Σ)

(√
1 + ε− 1

)2)
(2.2)

Furthermore, if ε ∈ (0, 1):

Pr
{
‖X‖2 6 (1− ε)

(
Tr (Σ) + ‖µ‖2

)}

6 exp

(
−Tr(Σ) + ‖µ‖2

2λmax(Σ)

(√
1− ε− 1

)2)
(2.3)

Lemma 1 is an extension to Hilbert space of classical
finite dimensional results e.g. [13, 14]. The proof of
Lemma 1 uses a combination of elementary techniques
and is given in the Appendix.
The proof makes use of the moment generating func-
tion (m.g.f.) of (non-central) χ2 variables, hence the
obtained bounds hold for distributions whose m.g.f. is
dominated by that of the χ2 – these are called sub-
exponential distributions.

We note that the Bernstein-type bounds we give in
lemma 1 are able to exploit variance information and
hence avoid the worst-case approach commonly em-
ployed in conjunction with bounded random variables.
The latter would lead to the data diameter appearing
in the bound, e.g. as in [4, 15, 16]. In particular, our
bounds have

√
Tr(Σ) in this role, which can be con-

siderably smaller than the data diameter, and do not
require the boundedness assumption.

2.2 Bound on generalization error of KFLD
when the training set is fixed

We will use the following bound on the generalization
error of KFLD in the feature space HN .

In the KFLD setting, Σ̂−1 (and Σ) are operators, so
the notation Σ̂−1 will mean the operator inverse, i.e.
inverse on its range. For KFLD it is always the case
that the estimated covariance without regularization
is singular (it has rank at most N − 2) and so if we
choose to regularize Σ̂ on the subspace HN , as is usual
in practice, then this regularization ensures that Σ̂N
has rank N and Σ̂−1

N denotes the usual matrix inverse.

Lemma 2 Let xi ∼
∑1
y=0 πyN (µy,Σ), and assume

that some suitable regularization scheme ensures that
the rank of Σ̂N is N, then the error of KFLD in
eq.(2.1) is given by:

π0Φ


−1

2

(µ̂1 − µ̂0)TN Σ̂−1
N (µ̂0 + µ̂1 − 2µ0)N√

(µ̂1 − µ̂0)TN Σ̂−1
N ΣN Σ̂−1

N (µ̂1 − µ̂0)N


+

π1Φ


−1

2

(µ̂0 − µ̂1)TN Σ̂−1
N (µ̂0 + µ̂1 − 2µ1)N√

(µ̂0 − µ̂1)TN Σ̂−1
N ΣN Σ̂−1

N (µ̂0 − µ̂1)N




(2.4)

Where Φ is the c.d.f of the standard Gaussian distri-
bution.
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The proof of lemma 2 is much the same as that given
in [1]; for completeness we give it in the Appendix.

In what follows, we bound the deviation of the quan-
tities appearing in (2.4) from their expectations with
high probability with respect to the training set, TN =
{(xi, yi)}Ni=1.

2.3 Main Result: Tail bound on
generalization error of KFLD

We will now estimate the various quantities in (2.4)
with high probability over all training sets of size
N = N0 + N1. This will ultimately enable us, with
confidence 1−δ (where δ(Σ, ε1, ε2, ε3, N0, N1) is an ex-
ponentially small quantity), to bound the effect of the
parameter estimates with quantities depending on the
true parameters and the sample size. We will assume
for concreteness that the query point xq should be as-
signed the label 0, which entails no loss of generality
as similar arguments apply when the label should be
1.
We begin by decomposing the bilinear form β =
(µ̂1 − µ̂0)

T
N Σ̂−1

N (µ̂1 + µ̂0 − 2µ0)N in the numerator of
(2.4) as follows:

β = (µ̂1 − µ̂0)
T
N Σ̂−1

N (µ̂1 − µ̂0)N

. . . +2 (µ̂0 − µ0)
T
N Σ̂−1

N (µ̂1 − µ̂0)N (2.5)

Using the decomposition (2.5) we can rewrite the first
term of lemma 2 in the following form:

Φ

(
−1

2
(A−B)

)

Where:

A =
(µ̂1 − µ̂0)

T
N Σ̂−1

N (µ̂1 − µ̂0)N√
(µ̂1 − µ̂0)TN Σ̂−1

N ΣN Σ̂−1
N (µ̂1 − µ̂0)N

(2.6)

is the term responsible for the estimated error, and:

B =
2 (µ0 − µ̂0)

T
N Σ̂−1

N (µ̂1 − µ̂0)N√
(µ̂1 − µ̂0)TN Σ̂−1

N ΣN Σ̂−1
N (µ̂1 − µ̂0)N

(2.7)

is the term responsible for the estimation error. We
will lower bound A and upper bound B to bound the
whole term from above.

2.3.1 Lower-bounding the term A

We will make use of the Kantorovich inequality:

Lemma 3 Kantorovich Inequality. ([17], The-
orem 7.4.41 Pg 444) Let Q be a symmetric posi-
tive definite matrix Q ∈ MN with eigenvalues 0 <

λmin(Q) 6 . . . 6 λmax(Q). Then, for all v ∈ HN :

(vTv)2

(vTQv)(vTQ−1v)
> 4 · λmin(Q)λmax(Q)

(λmin(Q) + λmax(Q))2

With equality holding for some unit vector v.

Applying Kantorovich inequality with the choice of

positive definite Q = Σ̂
− 1

2

N ΣN Σ̂
− 1

2

N we can lower bound
A with:

√
(µ̂1 − µ̂0)TN Σ−1

N (µ̂1 − µ̂0)N ·
2

√
λmin(Σ̂

− 1
2

N ΣN Σ̂
− 1

2
N )λmax(Σ̂

− 1
2

N ΣN Σ̂
− 1

2
N )

λmin(Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N ) + λmax(Σ̂
− 1

2
N ΣN Σ̂

− 1
2

N )
(2.8)

Note that by positive definiteness of Σ̂N ,ΣN and the
arithmetic-geometric mean inequality we have:

1 >
2

√
λmin(Σ̂

− 1
2

N ΣN Σ̂
− 1

2

N )λmax(Σ̂
− 1

2

N ΣN Σ̂
− 1

2

N )

λmin(Σ̂
− 1

2

N ΣN Σ̂
− 1

2

N ) + λmax(Σ̂
− 1

2

N ΣN Σ̂
− 1

2

N )
> 0

For convenience we now rewrite (2.8) in terms of the

condition number, κ, of Σ
− 1

2

N Σ̂NΣ
− 1

2

N using the iden-

tity for square invertible matrices κ(A) = λmax(A)
λmin(A) =

κ(A−1) to give:

‖Σ−
1
2

N (µ̂1 − µ̂0)N ‖
2

√
κ(Σ

− 1
2

N Σ̂NΣ
− 1

2

N )

1 + κ(Σ
− 1

2

N Σ̂NΣ
− 1

2

N )
(2.9)

Now, applying Rayleigh quotient to the norm above
we see:

‖Σ−
1
2

N (µ̂1 − µ̂0)N ‖ > ‖ (µ̂1 − µ̂0)N ‖√
λmax(ΣN )

=
‖µ̂1 − µ̂0‖√
λmax(ΣN )

> ‖µ̂1 − µ̂0‖√
λmax(Σ)

(2.10)

where the equality in the chain (2.10) follows because
the mean estimates lie in the span of the observations
HN , and the final inequality follows from the fact
that λmax(ΣN ) = λmax(PΣPT ) = λmax(PTPΣ) 6
λmax(PTP )λmax(Σ) = 1 · λmax(Σ) with this last
equality holding since PTP is a projection operator.

Next, since µ̂1 and µ̂0 are independent with µ̂y ∼
N (µy,Σ/Ny) we have (µ̂1− µ̂0) ∼ N (µ1−µ0,Σ/N1 +
Σ/N0) = N (µ1 − µ0, (N0 + N1)Σ/N0N1) = N (µ1 −
µ0, NΣ/N0N1). Applying lemma 1 (2.3) to ‖µ̂1 − µ̂0‖
we lower bound this as:

‖µ̂1 − µ̂0‖ >
√

(1− ε)
(

N

N0N1
Tr (Σ) + ‖µ1 − µ0‖2

)

(2.11)
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with probability at least:

1− exp

(
−Tr(Σ) + ‖µ1 − µ0‖2N0N1

N

2λmax(Σ)

(√
1− ε− 1

)2
)

(2.12)

To complete the bounding of the term A, we denote

g(a) :=
√
a

1+a , and observe that this is a monotonic
decreasing function on [1,∞). So, replacing a with

the condition number κ(Σ
− 1

2

N Σ̂NΣ
− 1

2

N ) ∈ [1,∞) we see
that upper bounding the condition number allows us
to lower bound g. Hence, it remains to estimate the

least and greatest eigenvalues of Σ
− 1

2

N Σ̂NΣ
− 1

2

N — this
we do in the next subsection (section 2.3.2), and the
resulting upper bound on the condition number of this
matrix we denote by κ̄(ε) (see eq. (2.19)).

Now, replacing, the term A is lower bounded w.h.p by:

A > 2g(κ̄(ε))

√
(1− ε)

(‖µ1 − µ0‖2
λmax(Σ)

+
N

N0N1

Tr (Σ)

λmax(Σ)

)

(2.13)

The first summand under the square root in (2.13),
represents a bound on the negative log of the Bayes
error of the classifier. It is governed by the scaled dis-
tance between the true mean functions in H — the
larger this distance the better the performance guar-
antee. The second summand represents the extent of
overestimation of this relative distance — that is the
extent to which the estimated error underestimates the
true error due to the use of estimated parameters in
the place of the true ones. We see this term is largest
when the number of training points is smallest and
when the ‘effective dimension’ of the true data density,
Tr(Σ)/λmax(Σ), is largest. The optimistic misestima-
tion of the true error by the estimated error term will
of course be countered by the other terms in the over-
all error decomposition, namely those that quantify
the quality of the parameter estimates κ and B.

2.3.2 Upper-bounding κ(Σ
− 1

2

N Σ̂NΣ
− 1

2

N )

Because in KFLD we estimate an N × N covariance
matrix in an N -dimensional subspace of H, and the
sample means are linear combinations of the labelled

features, the scatter matrices
∑Ny
i=1(xi− µ̂y)(xi− µ̂y)T

have rank at most Ny − 1 and so the unregularized
covariance estimate has rank at most N −2. Since the
sample covariance matrix is inverted in building the
classifier, one must deal with the fact that this matrix
is singular. We will hence assume that some suitable
form of regularization is employed that ensures that
Σ̂N is full rank, and this is indeed what allowed us

to write κ(Σ̂
− 1

2

N ΣN Σ̂
− 1

2

N ) = κ(Σ
− 1

2

N Σ̂NΣ
− 1

2

N ) earlier in
eq.(2.9).

The most common form of regularizing the covariance
estimate in the feature space is:

XΣ̂URX
T + αC (2.14)

where α is the regularization parameter, Σ̂UR is the
unregularized estimate (e.g. the maximum likelihood
estimate), which is nothing but the within-class scatter
matrix (as defined in e.g. S 4.10 of [18]), normalized
by the total number of training points , i.e.:

Σ̂UR =
1

N

1∑

y=0

Ny∑

i=1

(xi − µ̂y)(xi − µ̂y)T (2.15)

The regularization term may be chosen as C = IN ,
or C = XXT . The former is more common, the lat-
ter is proposed in [19] by drawing a parallel between
KFLD and a Bayesian reformulation of it, which was
also demonstrated to have superior performance. It is
interesting to note that this latter option corresponds
to regularizing with αIN after orthogonal projection
(i.e. projection by P rather than X) into the N -
dimensional linear span of the training points. Indeed,
using our earlier notation:

Σ
− 1

2

N Σ̂NΣ
− 1

2

N

= (PΣPT )−
1
2 (P Σ̂URP

T + αIN )(PΣPT )−
1
2

= (XΣXT )−
1
2 (XΣ̂URX

T + αXXT )(XΣXT )−
1
2

after cancellation of the terms (XXT )−1/2, and we
recognise XXT in place of C. In the following we
will employ this regularization choice to have Σ̂N ≡
P Σ̂URP

T + αIN , noting that the alternative C = IN
may be analysed in a similar way.

Then λmax(Σ
− 1

2

N Σ̂NΣ
− 1

2

N ) is equal to:

λmax


 1

N

1∑

y=0

(PΣPT )−
1
2

Ny∑

i=1

P (xi − µ̂y)(xi − µ̂y)TPT (PΣPT )−
1
2

+ α(PΣPT )−1

)

Now, observe that for each class:

Sy := (PΣPT )−
1
2

Ny∑

i=1

P (xi−µ̂y)(xi−µ̂y)TPT (PΣPT )−
1
2

has an N -dimensional singular Wishart distribution
[20] with Ny − 1 degrees of freedom, WN (Ny − 1, IN ).
Hence S0 + S1 is Wishart with N − 2 d.f., S0 + S1 ∼
WN (N − 2, IN ). This means that there exists a ma-
trix Z ∈MN×(N−2) with standard normal entries s.t.
ZZT has the same distribution as S0 + S1.
Now, to bound the scatter matrix terms we use the fol-
lowing high probability bound on the singular values
of Z:
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Lemma 4 Singular values of Gaussian matrices.
([21], Eq. (2.3)) Let A be an n×N matrix with stan-
dard normal entries, and denote by smin(A), smax(A)
its least and greatest singular values. Then:

Pr{
√
N −√n− ε 6 smin(A) 6 smax(A) 6

√
N +

√
n+ ε}

> 1− 2e−ε
2/2, ∀ε > 0

We can use Weyl’s inequality, which gives the crude
bound λmax(A+B) 6 λmax(A)+λmax(B), to decouple
the within class scatters and the regularization term.
Then we use the bounds on the extreme singular val-
ues of Gaussian matrices given in lemma 4 to bound
the eigenvalues of the terms of the unregularized co-
variance estimate. Hence we have:

λmax

(
Σ
− 1

2

N Σ̂NΣ
− 1

2

N

)
(2.16)

6
(

1 +
√

N−2
N + ε√

N

)2

+ α/λmin(ΣN )

with probability at least 1− e−ε2/2.

The smallest eigenvalue is governed by the regulariza-
tion term, and may be lower bounded as:

λmin(Σ
− 1

2

N Σ̂NΣ
− 1

2

N ) = λmin(Σ
− 1

2

N Σ̂URΣ
− 1

2

N + α(Σ−1
N ))

> λmin(α(Σ−1
N )) = α/λmax(ΣN ) (2.17)

> α/λmax(Σ) (2.18)

by using the other side of Weyl’s inequality with
λmin(A+B) > λmin(A)+λmin(B) and noting that the

scatter matrix is singular, λmin(Σ
− 1

2

N Σ̂URΣ
− 1

2

N ) = 0.

Putting these together, the condition number is upper
bounded with probability at least 1− e−ε2/2 by:

κ
(

Σ
− 1

2

N Σ̂NΣ
− 1

2

N

)

6 λmax(Σ)
α

(
1 +

√
N−2
N + ε√

N

)2

+ κ(ΣN )

=: κ̄(ε) (2.19)

The first term in eq. (2.19) is independent of the data.
The last term κ(ΣN ), however, is the condition number
of the projection of the true covariance onto the span
of the training points. While λmax(ΣN ) 6 λmax(Σ)
for any projection P , removing the data-dependence
of λmin(ΣN ) seems to be tricky in a general setting —
clearly if the condition number of Σ is finite then we
can write κ(ΣN ) 6 κ(Σ) — however finiteness of κ(Σ)
is not necessary for κ(ΣN ) to be finite.

Comments. We note that (for either regularizer)
there is a trade-off regarding the regularization param-
eter α: To minimize the condition number α needs to
be small to decrease the λmax term, while it has to be
large to increase the λmin term. This is indeed how we

would expect the classifier error to behave w.r.t the
regularization parameter.

We also observe that, if we were to ridge regularize
with the choice C = IN then we would have λmax and
λmin of the matrix XΣXT instead of those of PΣPT

in eq. (2.16) and eq. (2.17) respectively. These ex-
treme eigenvalues can be more spread out since XXT

is less well-conditioned than PPT = IN the identity,
which suggests support for the findings in [19] that
regularization with the kernel matrix can reduce the
generalization error of KFLD.

2.3.3 Upper-bounding the term B

To upper bound B, first we multiply Σ̂−1
N on the left

by the identity to rewrite and bound equation (2.7) as:

B =
2 (µ0 − µ̂0)

T
N Σ

− 1
2

N Σ
1
2

N Σ̂−1
N (µ̂1 − µ̂0)N√

(µ̂1 − µ̂0)TN Σ̂−1
N ΣN Σ̂−1

N (µ̂1 − µ̂0)N

6 2‖Σ−
1
2

N (µ0 − µ̂0)N‖‖Σ
1
2

N Σ̂−1
N (µ̂1 − µ̂0)N‖

‖Σ
1
2

N Σ̂−1
N (µ̂1 − µ̂0)N‖

= 2‖Σ−
1
2

N (µ0 − µ̂0)N‖ (2.20)

using Cauchy-Schwarz in the numerator.
Then, using lemma 1 we further upper bound (2.20)
with:

2
√

(1 + ε) · Tr (IN/N0) = 2
√

(1 + ε)N/N0 (2.21)

with probability > 1− exp
(
− 1

2N · (
√

1 + ε− 1)2
)
.

2.3.4 Putting everything together

Now we collate the results proved so far to arrive at
our final bound. Our chain of arguments shows that,
∀ε1, ε2 ∈ (0, 1),∀ε3 > 0 the expression Φ

(
− 1

2 (A−B)
)

is bounded above, with probability 1− δ0 by:

Φ

(
−2

[
g(κ̄(ε2))

√
(1− ε1)

(
‖µ1−µ0‖2
λmax(Σ)

+ N
N0N1

Tr(Σ)
λmax(Σ)

)

−
√
κ̄(ε2)

√
(1 + ε3)N/N0

])

where κ̄(ε2) is given by eq. (2.19), and the risk proba-
bility δ0 = δ0(Σ, ε1, ε2, ε3, N0, N1) is, by union bound,

δ0 6 exp

(
−1

2
N · (

√
1 + ε3 − 1)2

)
+exp

(
−ε22/2

)

. . . + exp

(
−Tr(Σ) + ‖µ1 − µ0‖2N0N1

N

2λmax(Σ)

(√
1− ε1 − 1

)2
)

Repeating the argument for the case when the query
point has label yq = 1 and applying the law of to-
tal probability we finally obtain our upper bound on
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the misclassification error of KFLD. Note that in do-
ing so, the probability bounds employed in bound-
ing the terms A and κ are re-used, so both sides of
the final bound will hold simultaneously w.p. 1 −
δ(Σ, ε1, ε2, ε3, N0, N1) = 1−(δ0+exp(− 1

2N ·(
√

1 + ε3−
1)2)).

For the sake of a better interpretability, we may rear-
range this result by suitably choosing ε1, ε2, ε3. In par-
ticular, putting all four terms of the probability bound
δ(Σ, ε1, ε2, ε3, N0, N1) to δ/4, solving for ε1, ε2, ε3 and
replacing, yields after some straightforward algebra
the following equivalent formulation:

Theorem 1 For any δ ∈ (0, 1), the generalization er-
ror of KFLD in a Gaussian Hilbert space, eq.(2.4), is
upper-bounded w.p. at least 1 − δ over the random
choice of training set TN=N0+N1

, by:

1∑

y=0

πyΦ

(
−2

[
g(κ̄(ε2))× . . .



√
‖µ1 − µ0‖2
λmax(Σ)

+
N0 +N1

N0N1

Tr (Σ)

λmax(Σ)
−
√

2(N0 +N1)

N0N1

log
4

δ




+

. . .−
√

N

Ny

(
1 +

√
2

N
log

4

δ

)])

where now κ̄(ε2) is given by replacing ε2 :=
√

2 log 4
δ

in eq. (2.19).

We proved this probability bound conditional on any
fixed value of N0 ∈ {1, ..., N − 1}, therefore it also
holds for a random N0 over this set. Hence we can
remove the conditioning on the value of N0 by taking
expectation w.r.t N0 on both sides of the probability
bound.

We see that a key term in the bound is the scaled
distance between the mean functions in the Hilbert
space. Using the fact [7] that with a suitable kernel
choice (universal kernels) there is an injective mapping
between a mean function in the Hilbert space and a
class density function in the input space, the distance
between the mean functions may be seen as represent-
ing a distance between the class-conditional density
functions in the input space. This is never zero unless
the two class densities coincide — consequently good
generalization can be achieved unless the two classes
have identical densities in the input space.

It is tempting to attempt to interpret the behaviour of
the bound with respect to the sample size. However,
we should point out that in a kernel setting the precise
relation of the various error terms to the number of
training points is much more complex than this level
of analysis enables us to see. This is because both µy
and Σ are functions of the sample size, e.g. due to the
fact that the kernel width needs to be decreased as the

sample size increases, and their precise relationship is
not known. Therefore the bound in Theorem 1 is for
a fixed N only.

However, it is instructive to assess this aspect of our
bound by noting that it applies to non-kernel FLD
as a special case. The only difference is that then
N 6= N0+N1 but instead N is the fixed dimensionality
of the data and M = M0 +M1 is the sample size that
can grow.

Corollary 1 (to theorem 1) Let the data be N -
dimensional, and having Gaussian class-conditionals
x|y ∼ N (µy,Σ). Then for any δ ∈ (0, 1), and any
training set of size M = M0 + M1, the generalization
error of FLD in RN is upper-bounded w.p. 1 − δ by
the following:

1∑

y=0

πyΦ

(
−2

[
g(κ̄(ε2))× . . .

[√
‖µ1 − µ0‖2
λmax(Σ)

+
M

M0M1

Tr (Σ)

λmax(Σ)
−
√

2M

M0M1
log

5

δ

]

+

. . .−
√

N

My

(
1 +

√
2

N
log

5

δ

)])
(2.22)

where κ̄(ε2) is as in Theorem 1 when the MLE of Σ,
Σ̂UR is singular, and when Σ̂UR is non-singular we can
bound its minimum eigenvalue away from zero using
Lemma 4, which yields the following tighter κ̄(ε2):

κ
(

Σ−
1
2 Σ̂Σ−

1
2

)
6
(√

M − 2 +
√
N + ε√

M − 2−
√
N − ε

)2

=: κ̄(ε)

with probability at least 1 − 2e−ε
2/2. Hence in the

latter case we will have ε2 :=
√

2 log 5
δ in (2.22).

More interpretation may be drawn from the bound
in the finite dimensional setting in Corollary 1. The
first thing to note is that Tr(Σ)/λmax(Σ) becomes of
the same order as N i.e. the dimensionality of the
problem. (In fact it is not difficult to derive a ver-
sion of the bound that actually contains N in place of
Tr(Σ)/λmax(Σ) in this setting. This would also have

(µ1 − µ0)TΣ−1(µ1 − µ0) in place of ‖µ1−µ0‖2
λmax(Σ) .) Then

we see clearly how the term of A that is responsible
for the optimistic distance estimate, of the form di-
mension/#points, gets countered by the reverse effect
of the same form from B.

More importantly, the consistency of FLD follows from
Corollary 1. Indeed, as the sample sizes M0 and M1

both increase, the condition number bound (2.23) con-
verges to 1, and all the terms other than (an upper
bound on) the Bayes error vanish in eq.(2.22). Hence
we may conclude that our bound behaves in a desir-
able natural way. We also note in both the kernel
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and non-kernel settings that, in addition to the good
properties already mentioned, class balance makes the
bound tighter as it should.

3 Conclusions

We derived a dimension-free bound on the generaliza-
tion error of KFLD which, to the best of our knowl-
edge, is the first non-trivial bound for the standard
KFLD model. This puts KFLD on a solid theoret-
ical foundation and improves our understanding of
the working of this classifier. In this work we as-
sumed that the kernel-induced space is a Gaussian
Hilbert space. Extension to Gaussian classes with
different class-conditional covariances or to the much
wider family of sub-Gaussian class-conditional distri-
butions appears relatively straightforward using the
results and tools in [21]. Further work is required to
extend this analysis to a more detailed level, e.g. in
order to determine the relationship between kernel pa-
rameters and the generalization error.

Appendix

Proof of Lemma 1

We prove the statement of eq. (2.2) fully, and outline
the proof of (2.3) which is very similar. Let t > 0 be a
positive real constant (to be optimized later), then:

Pr
{
‖X‖2 > (1 + ε)

(
Tr (Σ) + ‖µ‖2

)}

= Pr
{

exp
(
t‖X‖2

)
> exp

(
t (1 + ε)

(
Tr (Σ) + ‖µ‖2

))}

6 exp
(
−t (1 + ε)

(
Tr (Σ) + ‖µ‖2

))
E
[
exp

(
t‖X‖2

)]
(3.1)

Where (3.1) follows by Markov’s inequality. Now,
X ∼ N (µ,Σ) and so ‖X‖2 =

∑∞
i=1X

2
i has a non-

central χ2 distribution, and therefore E
[
exp

(
t‖X‖2

)]

is the moment generating function of a non-central χ2

distribution. Hence (e.g. [22] proposition 1.2.8) for all
t ∈ (0, 1/2λmax(Σ)) we have (3.1) is equal to:

= exp
(
−t (1 + ε)

(
Tr (Σ) + ‖µ‖2

))

. . .
∏∞
i=1 (1− 2tλi)

− 1
2 exp

(
tµ2
i

1−2tλi

)

= exp
(
−t (1 + ε)

(
Tr (Σ) + ‖µ‖2

))

. . .
∏∞
i=1

(
1 + 2tλi

1−2tλi

) 1
2

exp
(

tµ2
i

1−2tλi

)

6 exp
(
−t (1 + ε)

(
Tr (Σ) + ‖µ‖2

))

. . .
∏∞
i=1 exp

(
1
2

2tλi
1−2tλmax(Σ)

)
exp

(
tµ2
i

1−2tλmax(Σ)

)

= exp

(
−t (1 + ε)

(
Tr (Σ) + ‖µ‖2

)
+

t(
∑∞
i=1 λi+µ

2
i )

1−2tλmax(Σ)

)

= exp

(
−t (1 + ε)

(
Tr (Σ) + ‖µ‖2

)
+

t(Tr(Σ)+‖µ‖2)
1−2tλmax(Σ)

)
(3.2)

Now taking t = 1−(1+ε)−
1
2

2λmax(Σ) ∈ (0, 1/2λmax(Σ)) and

substituting this value of t into (3.2) yields, after some

algebra, (2.2):

Pr
{
‖X‖2 > (1 + ε)

(
Tr (Σ) + ‖µ‖2

)}

6 exp
(
−Tr(Σ)+‖µ‖2

2λmax(Σ)

(√
1 + ε− 1

)2)

The second inequality (2.3) is proved similarly. We
begin by noting:

Pr
{
‖X‖2 6 (1− ε)

(
Tr (Σ) + ‖µ‖2

)}

= Pr
{

exp
(
−t‖X‖2

)
> exp

(
−t (1− ε)

(
Tr (Σ) + ‖µ‖2

))}

6 exp
(
t(1− ε)

(
Tr (Σ) + ‖µ‖2

)

− t
(
Tr (Σ) + ‖µ‖2

)
/1 + 2tλmax(Σ)

)

and then complete the proof as before, substituting

in the optimal t = 1+(1−ε)− 1
2

2λmax(Σ) to give the bound.

Proof of Lemma 2

Without loss of generality let xq have label 0, and note
that for KFLD the decision of which label to assign to
a query point xq is made with respect to the projection
of xq onto HN . The probability that xq is misclassified
is therefore given by:

Prxq

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq −

µ̂0 + µ̂1

2

)

N

> 0

∣∣∣∣ y = 0

}

(3.3)
Define aTN := (µ̂1 − µ̂0)TN Σ̂−1

N and observe that if xq ∼
N (µ0,Σ) then:

(
xq −

µ̂0 + µ̂1

2

)

N

∼ N
((

µ0 −
µ̂0 + µ̂1

2

)

N

,ΣN

)

and so:

aTN

(
xq − µ̂0 + µ̂1

2

)

N

∼ N
(
aTN

(
µ0 − µ̂0 + µ̂1

2

)

N

, aNΣNa
T
N

)

which is a univariate Gaussian. Therefore:

aTN

(
xq − µ̂0+µ̂1

2

)
N
− aTN

(
µ0 − µ̂0+µ̂1

2

)
N√

aNΣNaTN

∼ N (0, 1)

Hence, for the query point xq we have the probability
(3.3) is given by:

Prxq

{
(µ̂1 − µ̂0)TN Σ̂−1

N

(
xq − µ̂0+µ̂1

2

)
N
> 0
∣∣∣ y = 0

}

= Φ

(
aTN(µ0− µ̂0+µ̂1

2 )
N√

aNΣNaTN

)

= Φ

(
− 1

2

(µ̂1−µ̂0)TN Σ̂−1
N (µ̂0+µ̂1−2µ0)N√

(µ̂1−µ̂0)TN Σ̂−1
N ΣN Σ̂−1

N (µ̂1−µ̂0)N

)

where Φ is the c.d.f of the standard Gaussian.
A similar argument deals with the case when xq be-
longs to class 1, and applying the law of total proba-
bility gives the lemma.
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