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Supplementary Material—Appendix
A Proofs

Proposition Bl The map 6 — Wy is a continuous
linear map from © to R*¥. Moreover, for all@ € ©7,
we have
[Wolloa < 6= 6]
ieT
and for any W € R¥¥_ the vector of its singular

values corresponds to @ € OF such that |supp(0)| =
rank(W), Wg =W and ||0]1 = [[W]s1-

Proof. The linearity is clear by definition of Wy. The
continuity comes easily as follows. Since M is com-
pact, there exists a constant M such that [|M;|/,1 <
M for all © € Z. So we write

Wollo <D 10:llIMs o1 < D 160:M = MJ6)]1
icT icT
which proves continuity. By definition of the trace
norm, the SVD establishes that any W € R™** has a
non-negative representation in ©. ]

Theorem The function ¥y: © — R is convex
and differentiable. The following optimization prob-
lems are equivalent, i.e., they have the same optimal
value and correspondence of optimal solutions as

6 € Argmin PA(0) iff Wy e Argmin (W) .
6co+ WeRdxk

Proof. The function 1 is the composition of 8 — Wy
with ¢. Since the first function is linear and the second
convex, 1 is convex. Since the first function is continu-
ous and linear, and the second differentiable, 1) is also
differentiable. Moreover the function 6 — 3, 0; is
obviously linear and continuous (so differentiable). So
we can conclude that ) is convex and differentiable.

Let W be a minimizer of () (the existence is proved
at the end of Sec. ZH). Let 6 be the vector of ©F
made by the singular values of W, so that we have
oA(W) = 15 (0). Now write

OA(W) = 15(0) > min,(0) > min ¢, (W) > ¢5(W).

All the above inequalities are in fact equalities, which
proves that the optimal values coincide and in partic-
ular that ¢ has a minimizer, showing the “if” impli-
cation.

We now prove the converse implication. Let 8 be a
minimizer of (Bl). Since the optimal values coincide,
we have

¥A(60) = min ), (6) = min (W) < ¢:(Wy) < 05(0).

This proves the “only if” and finishes the proof. O

Theorem Let € be such that 0 < e < \. If 0 is
an e-solution of (), then Wy is an e-solution of (3.

Proof. Corollary of Thm. O

Proposition B4l There exist a,6 > 0 such that for

alle >0, 0 € ©F and i € T such that 35>(0) < —¢,

we have '
(0 + 6 e;) < Yx(0) — ac’. (7)

Proof. To simplify notation, we set W = Wy and
M = M,;. We introduce also M = maxyenm | M|
where ||-]] is the norm from assumption (C) (note that
M exists and is finite by compactness of M). We
consider the function

ft) = (W +tM) =4(0+te;) .

We have, for all ¢, f/'(t) = (M, Vo(W + ¢t M)), and by
assumption (C),

F1(t) = f'(0) < tH|M* < tHM? .
Now we write for any § > 0

5
Ft)dt

0 5
51(0) + / (F(6) — £'(0)) dt
SF(0) + HM282/2.
[oXTIN

Observe now that the assumption F7*(0) < —¢ is
equivalent to

F(0)=(M,Vp(W)) < —e— X .

f(6) = f(0)

IN

The above two inequalities yield
H(W + M) + A5 < ¢(W) — 6 + HM?5°/2.
Hence, for § = ¢/HM?,

PA(0+0e;) = (W +M)+ A5+ 1> 6

i€z
&2
< - )
< O(W) — gy +A D0
i€l
2
€
= 0O 5
Therefore we have a guaranteed decrease with a =
1/2HM?. O

Theorem R1D provides -optimal solutions 6,
and W after at most 85 (0¢)/as? iterations.

Proof. The theorem follows easily from Prop. 3.4l as
follows. The first observation is that it is not possible
to have two iterations in a row where we enter Step Ml
Suppose indeed that in iteration ¢ we enter Step Hl
Then:
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e either g;11 < —e€/2 and the algorithm will not
enter Step [ in the next iteration;

e or gi11 > —€/2, in which case the algorithm ter-
minates, because 0,1 satisfies the condition (b’).
This comes from the fact that the iterate 8, sat-
isfies the optimality conditions of the restricted
problem at the previous Step M namely

(a”) Vi € supp(6:) : %(0) >-A—¢

(b) Vi € supp(8i11) : [52(6) +A| <

We prove the bound on the number of iterations by
contradiction. Assume that there have been more
than 81),(0g)/ae® iterations of the algorithm. By
the first observation, this yields that there are more
than 41 (0g)/ae? iterations when we entered Step
Therefore, Prop. 3.4 implies that

4 A\ 0 0482
Ua(02) < n(8) — T2 0
Qe
This contradicts the fact that the function ) is non-
negative and completes the bound on the number of
iterations.

To conclude the proof we need to argue that on termi-
nation, the algorithm returns an e-solution. Above we
have already shown that on termination the returned
0, satisfies the condition (b’). Condition (a’) is implied
by —g: < £/2 and

[VO(Wi)[lo,oo < uf (—~VS(W,))ve +¢/2
=—g+A+e/2<A+¢e

which concludes the proof. O

Theorem Let ¢4 — 0. Define Wy, as the so-
lution generated by R1D with € = 4. Then a subse-
quence of (Wy, )¢ converges to a solution of ([Bl).

Proof. Since our algorithm is a descent method, we
have ¥ (0;) < 1x(6p) for all £. By the non-negativity
of ¢ and by Thm. B2l this yields, for all ¢,

[Wao,llo1 < &x(0¢) < ¥x(60).

Thus the sequence (Wg,), is bounded (by 1 (6o)).
Let us extract a converging subsequence (Wy)y; let us
show that its limit W* is a solution of (3.

With a slight abuse of notation, let us call again (g4),
the subsequence associated to (Wy),. By Thm. B3]
we know that Wy is a ey-solution to (), that is, from
(") and (ii’)

IVO(Wo)llo,00 < A+ e,
IAMWello,1 + (VO(Wi), We)| < e9)x(60).

Taking the limit ¢, — 0, we get by continuity of the
functions

V(W) [g,00 < A,

AWH[o1 + (VO(W?*), W) =0

which are the first order optimality conditions charac-
terizing a solution of (). O

B Two loss functions

In this appendix, we establish that the two loss func-
tions considered in this paper, namely the objective
functions of the learning problems ([Il) and (@), satisfy
the conditions (A-C). For these technical results, we
need another matrix norm: the ¢; /¢s-operator norm
defined as

D
||D|1)2: sup ” V||2
verr: IVl
v#0

Proposition B.1. Let

n

ZL(W;Xi,yi)

=1

1
W) = =
W) =
be the multi-class loss of Eq. [[l) and M = sup,||x;]|2-

Then ¢ satisfies conditions (A-C) for the norm |D|| =
|ID||1,2 and the Lipschitz constant H = M?.

Proposition B.2. Let

m o My

P(W) = % Z Z Lij(W;xji,yj3)

j=11i=1

be the multitask loss of Eq. @) and M = sup; ;|[x;il|2-
Then ¢ satisfies conditions (A-C) for the norm |D|| =
max;||D;||1,2 and the Lipschitz constant H = M?>.

In fact, conditions (A) and (B) are clear from the con-
vexity and non-negativeness of the multinomial logistic
loss function L(-; x,y). Condition (C) is a corollary
of the following lemma.

Lemma B.3. Let W, D € R™*. For all x € RY,
y €Y, we have L(W;x,y) >0 and

0 < P*L(W +tD; x, y)/0t* < ||x|[3| DI 5 -

Proof. For a matrix D € R%*, let d; denote its ¢-th
column and D; denote its j-th row. The first part
follows by observation that L(W;x,y) > logl = 0.
For the second part, let f(t) = L(W + tD;x,y), and
let

B exp {(wg + tdy) "x}
> ey o (e + 1) T3]

pe(t) forte) .
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Note that > ,cy, pe(t) = 1, i.e., p(t) is a probability
distribution over ¢ € Y for any fixed t. Furthermore,

flt) = (Zpg(t)d;x> —d;x |

Ley
2
() = Zpg(t) (de — Z Do (t)d;x>
ey =

From the last identity, f”(t) > 0. Moreover, using
that fact that the variance of a random variable in a
range [a, b] is at most (b — a)?/4, we obtain

1 T T .82
f(t) < 1 er,relfaé) (de X — df,x)
< Ixl3(maxlidell2)* = [x/I5Dlh.2 -

where the last equality follows because

max||ds[| = max sup u'd,= sup sup u'Dv
tey tey : veRF: ueR®:
l[ufl2<1 vii<1jluf2<1
Dv 2
= sup [Dvlla = sup 12¥2 — D,
VG]Rk: VERk: ||V||1
[[v]1<1 v#0
O

C Existing algorithms for trace norm

Here we give some details about the existing trace-
norm algorithms mentioned in Sec. and used in
Sec. M in numerical experiments.

Proximal gradient algorithms Proximal gradient
methods are specifically tailored to optimize an ob-
jective function which is the sum of a smooth func-
tion and a non-differentiable regularizer, such as trace
norm. They have drawn increasing attention because
of their (optimal) guaranteed convergence rate and
their ability to deal with large non-smooth problems.

In our context, an iteration of the basic proximal gra-
dient algorithm for solving (B]) consists of

1
Wt+1 = PI'OXUJ <Wt - vab(wt)) .

The proximal operator Prox,; associated with the
trace norm (and parameter \) is obtained by com-
puting a SVD of the matrix and then replacing each
singular value o; by max{0, (1 — \/|o;|)}o; (its “soft-
thresholding”, hence the name of the method of [21]).
Accelerated versions of the algorithm B] use a second
variable and combine it with W; at marginal extra
computational cost with information of previous step.

The basic proximal algorithm has a global convergence
rate in O(1/t) where ¢ is the number of iterations of the

algorithm. The accelerated version has a convergence
rate in O(1/t?). However, the computational burden
of the SVD computed at each iteration is prohibitive
for large-scale problems.

Variational formulation by iterative rescaling
The trace norm has the variational formulation as a
reweighted Frobenius norm (see [1])

|W|[s1 = min trace(W'D™'W +D)/2 .
D>0

The learning problem (B can then be written as

smooth optimization problem:

Atrace(W ' D™ 'W D) +¢(W

min min
WeERdxk D=0

) - (8)

A way to deal with the (open) constraint D > 0 is to
introduce the barrier function trace(D~!) controlled
by a real parameter § > 0. So in practice, we consider
the family of regularized smooth optimization prob-
lems parametrized by ¢

‘r;rvﬂ% Atrace(W 'D™'W + D + 6D 1) /2 + ¢(W) ,

replacing the non-smooth learning problem (B]).

The above formulation of the problem is particularly
well-suited for an alternating direction approach, as
follows. The minimization with respect to D

min trace(W D 'W + D + 6D !)
D0

has an explicit solution
D= (WW' +I;)!/2

which is computed by SVD (of a k x k-matrix). The
minimization over W consists of minimizing a smooth
and (strongly) convex function.
min  Atrace(W DI'W) + ¢(W) .
WeRka‘

A wide range of algorithms can be applied to solve
this problem, among them (accelerated and stabilized)
gradient methods. In practice, rather then solving the
problem in W to optimality, we do only several itera-
tions of such an algorithm.

While bypassing the non-smoothness of the problem,
this algorithm loses (part of) the benefit of the trace-
norm regularization. Numerical experiments show
that this method produces worse solutions when the
optimum is of low rank.

Variational formulation by factorization As ob-
served in several works ﬂﬁ, @ @], the trace norm has
a variational formulation by low-norm factorisation

W] (T +1VI*)/2 -

0,1 = _Iin
W=UvVT
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The learning problem (B)) can then be written as

A
min - (U2 + V") +6(UVT) . (9)

)

Block-coordinate descent is then an appealing ap-
proach for solving the above problems: the minimiza-
tion with respect to U, and the one with respect to
V are mere smooth convex optimization problems.
Again, accelerated and stabilized gradient methods are
adapted for tackling them.

In contrast to the original problem (B]) and its formula-
tion (8)), problem (@) is not jointly convex with respect
to the couple (U, V). As a result, the alternating algo-
rithm can get stuck in local minima, or saddle-points.
For example, U = V = 0 is a critical point but it is
not the global minimum. In practice, we observed that
the behavior of the algorithm is highly sensitive to the
starting point. Problem-dependent tunings as in @]
might be necessary to overcome this weakness.

Conditional gradient approaches Our algorithm
shares some similarities with a related family of al-
gorithms, recently applied to learning problems with
a bounded trace-norm constraint (or low-rank con-
straint): conditional gradient algorithms. Conditional
gradient algorithms ﬂ%, |EL a.k.a. Frank-Wolfe algo-
rithms, allow minimize a convex objective ¢ in a simple
convex set S. At iteration (¢ + 1), the conditional gra-
dient algorithm first minimizes the linearized objective
at the current iterate within the convex set

Wiy := Argmin (W — W, Vo(W,)) |
Wes

then performs a line search over the line segment join-
ing W, and W, to obtain W,,;. Conditional gra-
dient algorithms were applied to learning problems
in [10, ﬁ} Recent works [22, [33] devised conditional
gradient algorithms to learning problems with a trace-
norm or low-rank constraint, with applications to col-
laborative filtering. However, these algorithms worked
on constrained formulations, whereas we consider a pe-
nalized formulation. Penalized and constrained formu-
lations are equivalent when the entire regularization
path is calculated. Even though for each penalty co-
efficient there exists a constraint that yields the same
solution, we are not aware of a method to obtain the
matching constraint that does not involve solving the
full optimization problem. In our experience, the regu-
larization path calculation is more stable for penalized
versions than for constrained version, and penalized
versions are for example the state of the art in /-
regularization literature.

Figure 3: Tlustration of the gauge function 2. To
evaluate (W), we take a ray from the origin towards
W and compute the ratio between the distance to W
and the distance to the intersection of the ray (dotted)
with the unit ball B (in bold).

D Generalization to gauge
regularization

In this appendix, we discuss how the optimization al-
gorithm given in the paper generalizes to a broader
class of regularization functions. As special cases,
we recover coordinate descent for lasso HE], block-
coordinate descent for group lasso @}, and rank-one
descent discussed in this paper for trace norm. See
also ﬂj, @] for independent, related work.

The specific regularization examples are:

d k
Qlasso(w> = Z Z'Wj€| (10)

j=1¢=1
d
grtasso(W) = > _[Wl2 (11)
j=1
Qtrace(w) = ||W||o,1 (12)

where W denotes the j-th row of the matrix. All
of them can be naturally defined using the following
construction.

Let M = {M; € R¥™* : i € T} be a compact set
of matrices, called atoms, and let B := conv M be its
convex hull. We assume that M is chosen such that
0 € int B. We think of M as an “overcomplete ba-
sis” and B as a “unit ball”. The gauge function 2 and
support function €2° associated with B are convex func-
tions defined as (see illustration in Fig. B for further

details, see [32, 20, ld))

e QW) :=inf{t >0: W e tB}
o O°(G) :=suppep(M, G) = suppre (M, G).
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The key property of the gauge function is sublinearity:

e Q(tW) =tQ(W) for all W and t >0
e QIWHW') <QW)+Q(W) for all W and W',

In addition, by assuming O € int 3, we also obtain:

e Q(W) > 0, with equality if and only if W =0
e {W: QW) <t} =tBfort>0, ie., level sets
are compact.

Unlike norms, gauges are not required to be sym-
metric. The support function plays the role of the
dual norm in that (W, G) < Q(W)Q°(G) for all
W, G € Ré*k,

The three examples Egs. (I0)—([I2)) are obtained by:
Miasso = {seje; : s € {-1,1}
jef{l,....d}, te{l,... k}}
Mgr-lasso = {ejVT D J € {17 cee ,d}, \AS Rk7 ||VH2 = 1}
Mirace = {fuv’ : ue R4 v e R, |ullo = ||v]]2 = 1}

where e; is the j-th vector of the Euclidean basis.
Positing the same assumptions on ¢(W) as in Sec. [24]
we consider minimization of the regularized objective

Minimize

linimize  6x(W) == AUW) + 6(W) .

(13)

By compactness of level sets of (2, lower-boundedness
of ¢, and continuity, the minimum is attained. Fur-
thermore, the subdifferential of €2 is

IQUW) = {M e R”*: Q°(M) < 1, (M, W) = Q(W)}
hence the e-optimality is defined as:

(i) Q°(=Vhp(W)) < A+e¢, and

(i) (VO(W), W) + AQ(W)| < eQ(W).

We define ©, ©F and Wy as before, and the lifted
problem as

Minimize
0cO+

UA(0) = A> 0 + ¢(Wo) .

i€l

(14)

The e-optimality for Eq. (Id]) is defined as before:

(@) VieT: (~95(0)) < A+e

(b’) Vi € supp(0) : ‘gg’i (6) + /\’ <e

The following is the generalization of Prop. Bl

Proposition D.1. The map 6 — Wy is a continuous
linear map from © to R Moreover, for all@ € ©7,
we have

QUWe) <> 0= 6]

€T

and for any W € R¥** there exists @ € ©F such that
supp(0)| < (dk + 1), We = W and [|0]; = Q(W).

Proof. The linearity is clear by definition of Wgy. The
continuity comes easily as follows. Consider a norm
|-l in RE*¥ (all norms are equivalent). Since M is
compact, there exists a constant M such that || M| <
M for all © € Z. So we write

IWoll <D 16:lIM:]| < |6:| M = M6

icT icT
which proves continuity.

We next show that any W € R?** has a non-negative
representation in ©. The statement is true for W = 0.
Now, take W # 0, we have Q(W) # 0. So, we set
W' =W /Q(W). Since W' lies in B = conv M, it can
be written as a convex combination of matrices M;.
By Carathéodory’s theorem @], there exists ' € ©F
such that >, 76, = 1, W = Wy, and |supp(0")| <
(dk + 1). Now, define & = Q(W)0'. Observe that
0 € OF, |supp(0)| < (dk+1), Wg = Q(W)Wy =W,

and ||9H1 = ZieI 0; = QW) ZieI 92 = Q(W).

Finally, the inequality comes from the sublinearity of
Q and non-negativity of @ as follows:

Q(Wp) =Q (Z eiMi> < ZeiQ(Mi) < Z@' -

i€l i€l i€l

O

From Prop. [Dl we obtain

dx(Wa) < 1p2(0) .

We also obtain the equivalence similar to Thm.
and the sufficiency of lifted e-optimality similar to
Thm. 33

Theorem D.2. The function ¥y: © — R is convex
and differentiable. The following optimization prob-
lems are equivalent, i.e., they have the same optimal
value and correspondence of optimal solutions as

6 € Argmin, ()
ocot

iff Wy € Argmingy(W) .
WeERdxk

Proof. The proof is identical to proof of Thm. O

Theorem D.3. Let € be such that 0 < e < \. If 0
is an e-solution of ([[dl), then Wg is an e-solution of

@).

Proof. Assume that 0 satisfies conditions (a’) and (b’).
Note that %(W) = (M;, V¢(W)). Hence, condition
(a’) implies

YMeM: (M, —Vo(We)) <A+e  (15)
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which yields

Q° (~V$(We)) (M, ~V$(Wp)) < A+e

= sup
MeM
i.e., condition (i’) holds.

It remains to show condition (ii’). First note that

(V6(Wa), Wo) =D 0,(Vh(Wo), M)
€T
=> 0 (50)
i€l
< (A +e)> 0; < (-A+)QUWp)  (16)
i€

where the last two inequalities follow by (b’) and by
Prop. [DIl We also know by Prop. [D.] that there
exists 0 € O such that Wy = Wy, and Q(Wy) =
> icr 07 We can write

(Vo(Wo), Wa) =D 0; (Ve (W), M)

i€l

> (—A—e) Y 0 = (A — )W)

€T

where the above inequality follows by Eq. (IH). Com-
bining with Eq. (I6), we obtain

(A —e)Q2(Wp) < (Vp(Wp), Wg) < (=X +¢)Q2(Wy)

i.e., condition (ii’) holds as well. O

Using Thm. [D.3] we can derive AtomDescent (Algo-
rithm [3)), a gauge version of R1D (Algorithm [Il). The
only difference is that the computation of top singular-
vector pair is now replaced by the extremal point eval-
uation. For G € R** we define

Ext(G) = Argmax (M, G) .
Mem
Note that if M* € Ext(G), we have (M*, G) = Q°(G).
For our three examples, we obtain:

e lasso: M* = s*ej-e/.
where (j*,£*) = Argmax; ¢ |G,
5% = sign G j=¢-

e group lasso: M* = ej*v*T
where j* = Arg max;||G;||z,
v =Gy /G l2

e trace norm: M* = u*v*T

where (u*, v*) is the top singular-vector pair of G

Hence, for lasso we obtain coordinate descent; for
group lasso, block-coordinate descent; and for trace
norm, rank-one descent. As in R1D, also in

Algorithm 3 AtomDescent(¢, (2, A, 09, ¢)

empirical risk ¢, gauge €2, regularization A
initial point Wy, , convergence threshold &

Input:

Output: e-optimal Wy

Notation: W; := Wy, , M; :=M,;,, e; :=e;,
Algorithm:

Fort=20,1,2,...:

1. Find i; € 7 corresponding to the coordinate of 8 with
approximately steepest descent in positive direction,
ie.,

My, =V¢(Wy)) > Q°(=Vp(Wy)) —e/2
2. Let g == g;%wg = A+ (M, Vo (W,))
3. If gr < —¢/2

W1 = W, 4+ § M, with § given by Prop. [34]
0:11=0:+ e

4. Else (ie., gt > —¢/2)
If 0, satisfies (b’), terminate and return 6,

Otherwise, compute 0;+1 as an e-solution of the
restricted problem mineeRTpp(e” A (0)

AtomDescent, we only insist on approximate ex-
tremal points. All of the convergence results for
R1D also apply to AtomDescent, because analy-
sis of R1D only concerned the lifted problem Eq. ()
and did not depend on the particular linear map
60 — Wy (which is the only change between R1D
and AtomDescent).

E Infinite dimensional space ©

In this appendix, we briefly recall some additional
material (especially about differentiability and opti-
mality conditions) to demystify the infinite dimen-
sional space ©. We assume the gauge setting intro-
duced in the previous section.

The completion of the normed space (O, ||-]|1) is the
complete normed space (¢1(Z),|||1), the space of
(0i)iez such that ) ., 10;] < +oo. The two spaces
are in duality with the space (¢oo(Z), ||-||s) equipped
with

—

through the bracket notation

(6.0)=> 06 < [olllOll: -

i€l

Let ¢ : ® — R be a differentiable function. Its dif-
ferential di)(6) € {o(Z) can be written with the help

of partial derivatives as dy(0) = (%(0))161. The
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general optimality conditions in this context are the
following; they are used in the proof of Prop. [E2

Proposition E.1. Let ¢ : © — R be a convex differ-
entiable function, and K a convex subset of ©. Then
0" is a minimum of ¢ over K if and only if

I
90;

i€l

(07)(0; —07) >0  forall®c K.

Proof. The proof is based on the following basic prop-
erty of convex functions (see [24]). Let 1 : © — R be
a convex differentiable function; then

Y(n) > ¥(0) + (di(0),(n —0))  forall n, 0. (17)

With the help of the above inequality, the implication
“if” is obvious. To prove the “only if” implication,
take t > 0 and write for any 8 € K, by definition of
differentiability,

(0" — (6 - 6"))
t

= (a(0). (007 + 20

Note that ¢ > 0 so 8° —t(@ — ") € K and then the
left-hand-side is nonnegative. Taking the limit ¢ — 0,
we obtain (dy(0%), (0 — 6")) > 0. O

The key assumption is the differentiability of the map-
ping ¢, that we get, in our context, simply by construc-
tion.

In spite of the infinite dimension, the space © and the
new optimization problem ([4]) have simple-looking
structures, and they share many properties with finite-
dimensional analogs. In particular, the optimality con-
ditions are as expected.

Proposition E.2. The three following properties are
equivalent

i) 0 is an optimal solution to problem
(i)
(i) VieZ: Z22(0) >0
and Vi € supp(0) : %(5) =0
ﬁmxmmg%%@yzo
and 6 € Argming _p.uoo@) ¥ ©)
+

Proof. To prove the equivalence between (i) and (ii),
we apply both implications of Prop. [E]l with ¢ = 1)y
and K = ©1. We show first (i)<(ii). Let 8 € K; we
have

oY

9V 07)(0; — 07) =

SO

el igZsupp(0™*)

> waﬂmgo.

%

This is the optimality condition of (Id), so we have (i).

We now prove the converse (i)=-(ii). For all i € Z, we
write the optimality condition with i € © defined by

_ 07
= 6+

to get %(0*) > 0. Similarly for all 7 € Z such that

07 > 0, we write the optimality condition with n € ©
defined by

if 0 #£1i
otherwise

/N YAy
e = 0%/2 otherwise

to get %(0*) < 0, and we can conclude. O



