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Supplementary Material—Appendix

A Proofs

Proposition 3.1. The map θ 7→ Wθ is a continuous
linear map from Θ to R

d×k. Moreover, for all θ ∈ Θ+,
we have

‖Wθ‖σ,1 ≤
∑

i∈I

θi = ‖θ‖1

and for any W ∈ R
d×k, the vector of its singular

values corresponds to θ ∈ Θ+ such that |supp(θ)| =
rank(W), Wθ = W and ‖θ‖1 = ‖W‖σ,1.

Proof. The linearity is clear by definition of Wθ. The
continuity comes easily as follows. Since M is com-
pact, there exists a constant M such that ‖Mi‖σ,1 ≤
M for all i ∈ I. So we write

‖Wθ‖σ,1 ≤
∑

i∈I

|θi|‖Mi‖σ,1 ≤
∑

i∈I

|θi|M =M‖θ‖1 ,

which proves continuity. By definition of the trace
norm, the SVD establishes that any W ∈ R

n×k has a
non-negative representation in Θ.

Theorem 3.2. The function ψλ : Θ → R is convex
and differentiable. The following optimization prob-
lems are equivalent, i.e., they have the same optimal
value and correspondence of optimal solutions as

θ̂ ∈ Argmin
θ∈Θ+

ψλ(θ) iff W
θ̂
∈ Argmin

W∈Rd×k

φλ(W) .

Proof. The function ψ is the composition of θ 7→ Wθ

with φ. Since the first function is linear and the second
convex, ψ is convex. Since the first function is continu-
ous and linear, and the second differentiable, ψ is also
differentiable. Moreover the function θ 7→

∑

i∈I θi is
obviously linear and continuous (so differentiable). So
we can conclude that ψλ is convex and differentiable.

Let Ŵ be a minimizer of (3) (the existence is proved
at the end of Sec. 2.5). Let θ̂ be the vector of Θ+

made by the singular values of Ŵ, so that we have
φλ(Ŵ) = ψλ(θ̂). Now write

φλ(Ŵ) = ψλ(θ̂) ≥ minψλ(θ) ≥ minφλ(W) ≥ φλ(Ŵ).

All the above inequalities are in fact equalities, which
proves that the optimal values coincide and in partic-
ular that ψλ has a minimizer, showing the “if” impli-
cation.

We now prove the converse implication. Let θ̂ be a
minimizer of (5). Since the optimal values coincide,
we have

ψλ(θ̂) = minψλ(θ) = min
W

φλ(W) ≤ φλ(Wθ̂
) ≤ ψλ(θ̂).

This proves the “only if” and finishes the proof.

Theorem 3.3. Let ε be such that 0 ≤ ε ≤ λ. If θ is
an ε-solution of (5), then Wθ is an ε-solution of (3).

Proof. Corollary of Thm. D.3.

Proposition 3.4. There exist α, δ > 0 such that for
all ε > 0, θ ∈ Θ+ and i ∈ I such that ∂ψλ

∂θi
(θ) ≤ −ε,

we have
ψλ(θ + δ ei) ≤ ψλ(θ)− αε2. (7)

Proof. To simplify notation, we set W = Wθ and
M = Mi. We introduce also M = maxM∈M‖M‖
where ‖·‖ is the norm from assumption (C) (note that
M exists and is finite by compactness of M). We
consider the function

f(t) = φ(W + tM) = ψ(θ + t ei) .

We have, for all t, f ′(t) = 〈M,∇φ(W + tM)〉, and by
assumption (C),

f ′(t)− f ′(0) ≤ tH‖M‖2 ≤ tHM2 .

Now we write for any δ > 0

f(δ)− f(0) =

∫ δ

0

f ′(t) dt

= δf ′(0) +

∫ δ

0

(f ′(t)− f ′(0)) dt

≤ δf ′(0) +HM2δ2/2.

Observe now that the assumption ∂ψλ

∂θi
(θ) ≤ −ε is

equivalent to

f ′(0) = 〈M,∇φ(W )〉 ≤ −ε− λ .

The above two inequalities yield

φ(W + δM) + λδ ≤ φ(W)− δε+HM2δ2/2.

Hence, for δ = ε/HM2,

ψλ(θ + δ ej) = φ(W + δM) + λδ + λ
∑

i∈I

θi

≤ φ(W)− ε2

2HM2
+ λ

∑

i∈I

θi

= ψλ(θ)−
ε2

2HM2
.

Therefore we have a guaranteed decrease with α =
1/2HM2.

Theorem 3.5. R1D provides ε-optimal solutions θε
and Wε after at most 8ψλ(θ0)/αε

2 iterations.

Proof. The theorem follows easily from Prop. 3.4, as
follows. The first observation is that it is not possible
to have two iterations in a row where we enter Step 4.
Suppose indeed that in iteration t we enter Step 4.
Then:
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• either gt+1 ≤ −ǫ/2 and the algorithm will not
enter Step 4 in the next iteration;

• or gt+1 > −ǫ/2, in which case the algorithm ter-
minates, because θt+1 satisfies the condition (b’).
This comes from the fact that the iterate θt+1 sat-
isfies the optimality conditions of the restricted
problem at the previous Step 4, namely

(a”) ∀i ∈ supp(θt) :
∂ψ
∂θi

(θ) ≥ −λ− ε

(b”) ∀i ∈ supp(θt+1) :
∣

∣

∣

∂ψ
∂θi

(θ) + λ
∣

∣

∣
≤ ε

We prove the bound on the number of iterations by
contradiction. Assume that there have been more
than 8ψλ(θ0)/αǫ

2 iterations of the algorithm. By
the first observation, this yields that there are more
than 4ψλ(θ0)/αǫ

2 iterations when we entered Step 3.
Therefore, Prop. 3.4 implies that

ψλ(θt) ≤ ψλ(θ0)−
4ψλ(θ0)

αǫ2
· αε

2

4
= 0 .

This contradicts the fact that the function ψ is non-
negative and completes the bound on the number of
iterations.

To conclude the proof we need to argue that on termi-
nation, the algorithm returns an ε-solution. Above we
have already shown that on termination the returned
θt satisfies the condition (b’). Condition (a’) is implied
by −gt < ε/2 and

‖∇φ(Wt)‖σ,∞ ≤ u⊤
t

(

−∇φ(Wt)
)

vt + ε/2

= −gt + λ+ ε/2 ≤ λ+ ε ,

which concludes the proof.

Theorem 3.6. Let εℓ → 0. Define Wθℓ
as the so-

lution generated by R1D with ε = εℓ. Then a subse-
quence of (Wθℓ

)ℓ converges to a solution of (3).

Proof. Since our algorithm is a descent method, we
have ψλ(θℓ) ≤ ψλ(θ0) for all ℓ. By the non-negativity
of φ and by Thm. 3.2, this yields, for all ℓ,

‖Wθℓ
‖σ,1 ≤ φλ(θℓ) ≤ ψλ(θ0).

Thus the sequence (Wθℓ
)ℓ is bounded (by ψλ(θ0)).

Let us extract a converging subsequence (Wℓ)ℓ; let us
show that its limit W⋆ is a solution of (3).

With a slight abuse of notation, let us call again (εℓ)ℓ
the subsequence associated to (Wℓ)ℓ. By Thm. 3.3,
we know that Wℓ is a εℓ-solution to (3), that is, from
(i’) and (ii’)

‖∇φ(Wℓ)‖σ,∞ ≤ λ+ εℓ,

|λ‖Wℓ‖σ,1 + 〈∇φ(Wℓ),Wℓ〉| ≤ εℓψλ(θ0).

Taking the limit εℓ → 0, we get by continuity of the
functions

‖∇φ(W⋆)‖σ,∞ ≤ λ,

λ‖W⋆‖σ,1 + 〈∇φ(W⋆),W⋆〉 = 0

which are the first order optimality conditions charac-
terizing a solution of (3).

B Two loss functions

In this appendix, we establish that the two loss func-
tions considered in this paper, namely the objective
functions of the learning problems (1) and (2), satisfy
the conditions (A–C). For these technical results, we
need another matrix norm: the ℓ1/ℓ2-operator norm
defined as

‖D‖1,2 = sup
v∈R

k:
v 6=0

‖Dv‖2
‖v‖1

.

Proposition B.1. Let

φ(W) =
1

n

n
∑

i=1

L(W;xi, yi)

be the multi-class loss of Eq. (1) and M = supi‖xi‖2.
Then φ satisfies conditions (A–C) for the norm ‖D‖ =
‖D‖1,2 and the Lipschitz constant H =M2.

Proposition B.2. Let

φ(W) =
1

n

m
∑

j=1

nj
∑

i=1

Lj(W;xji, yji)

be the multitask loss of Eq. (2) and M = supj,i‖xji‖2.
Then φ satisfies conditions (A–C) for the norm ‖D‖ =
maxj‖Dj‖1,2 and the Lipschitz constant H =M2.

In fact, conditions (A) and (B) are clear from the con-
vexity and non-negativeness of the multinomial logistic
loss function L( · ; x, y). Condition (C) is a corollary
of the following lemma.

Lemma B.3. Let W,D ∈ R
d×k. For all x ∈ R

d,
y ∈ Y, we have L(W;x, y) ≥ 0 and

0 ≤ ∂2L(W + tD; x, y)/∂t2 ≤ ‖x‖22‖D‖21,2 .

Proof. For a matrix D ∈ R
d×k, let dℓ denote its ℓ-th

column and Dj denote its j-th row. The first part
follows by observation that L(W;x, y) ≥ log 1 = 0.
For the second part, let f(t) = L(W + tD;x, y), and
let

pℓ(t) =
exp

{

(wℓ + tdℓ)
⊤x
}

∑

ℓ′∈Y exp {(wℓ′ + tdℓ′)⊤x}
for ℓ ∈ Y .
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Note that
∑

ℓ∈Y pℓ(t) = 1, i.e., pℓ(t) is a probability
distribution over ℓ ∈ Y for any fixed t. Furthermore,

f ′(t) =

(

∑

ℓ∈Y

pℓ(t)d
⊤
ℓ x

)

− d⊤
y x ,

f ′′(t) =
∑

ℓ∈Y

pℓ(t)

(

d⊤
ℓ x−

∑

ℓ′∈Y

pℓ′(t)d
⊤
ℓ′x

)2

.

From the last identity, f ′′(t) ≥ 0. Moreover, using
that fact that the variance of a random variable in a
range [a, b] is at most (b− a)2/4, we obtain

f ′′(t) ≤ 1

4
max
ℓ,ℓ′∈Y

(

d⊤
ℓ x− d⊤

ℓ′x
)2

≤ ‖x‖22(max
ℓ∈Y

‖dℓ‖2)2 = ‖x‖22‖D‖1,2 .

where the last equality follows because

max
ℓ∈Y

‖dℓ‖2 = max
ℓ∈Y

sup
u∈R

d:
‖u‖2≤1

u⊤dℓ = sup
v∈R

k:
‖v‖1≤1

sup
u∈R

d:
‖u‖2≤1

u⊤Dv

= sup
v∈R

k:
‖v‖1≤1

‖Dv‖2 = sup
v∈R

k:
v 6=0

‖Dv‖2
‖v‖1

= ‖D‖1,2

C Existing algorithms for trace norm

Here we give some details about the existing trace-
norm algorithms mentioned in Sec. 3.3 and used in
Sec. 4 in numerical experiments.

Proximal gradient algorithms Proximal gradient
methods are specifically tailored to optimize an ob-
jective function which is the sum of a smooth func-
tion and a non-differentiable regularizer, such as trace
norm. They have drawn increasing attention because
of their (optimal) guaranteed convergence rate and
their ability to deal with large non-smooth problems.

In our context, an iteration of the basic proximal gra-
dient algorithm for solving (3) consists of

Wt+1 = Proxσ,1

(

Wt −
1

H
∇φ(Wt)

)

.

The proximal operator Proxσ,1 associated with the
trace norm (and parameter λ) is obtained by com-
puting a SVD of the matrix and then replacing each
singular value σi by max{0, (1 − λ/|σi|)}σi (its “soft-
thresholding”, hence the name of the method of [21]).
Accelerated versions of the algorithm [3] use a second
variable and combine it with Wt at marginal extra
computational cost with information of previous step.

The basic proximal algorithm has a global convergence
rate in O(1/t) where t is the number of iterations of the

algorithm. The accelerated version has a convergence
rate in O(1/t2). However, the computational burden
of the SVD computed at each iteration is prohibitive
for large-scale problems.

Variational formulation by iterative rescaling

The trace norm has the variational formulation as a
reweighted Frobenius norm (see [1])

‖W‖σ,1 = min
D≻0

trace(W⊤D−1W +D)/2 .

The learning problem (3) can then be written as
smooth optimization problem:

min
W∈Rd×k

min
D≻0

λ trace(W⊤D−1W+D)+φ(W) . (8)

A way to deal with the (open) constraint D ≻ 0 is to
introduce the barrier function trace(D−1) controlled
by a real parameter δ > 0. So in practice, we consider
the family of regularized smooth optimization prob-
lems parametrized by δ

min
W,D

λ trace(W⊤D−1W +D+ δD−1)/2 + φ(W) ,

replacing the non-smooth learning problem (3).

The above formulation of the problem is particularly
well-suited for an alternating direction approach, as
follows. The minimization with respect to D

min
D≻0

trace(W⊤D−1W +D+ δD−1)

has an explicit solution

D = (WW⊤ + δIk)
1/2

which is computed by SVD (of a k × k-matrix). The
minimization over W consists of minimizing a smooth
and (strongly) convex function.

min
W∈Rd×k

λ trace(W⊤D−1W) + φ(W) .

A wide range of algorithms can be applied to solve
this problem, among them (accelerated and stabilized)
gradient methods. In practice, rather then solving the
problem in W to optimality, we do only several itera-
tions of such an algorithm.

While bypassing the non-smoothness of the problem,
this algorithm loses (part of) the benefit of the trace-
norm regularization. Numerical experiments show
that this method produces worse solutions when the
optimum is of low rank.

Variational formulation by factorization As ob-
served in several works [15, 36, 31], the trace norm has
a variational formulation by low-norm factorisation

‖W‖σ,1 = min
W=UV⊤

(‖U‖2 + ‖V‖2)/2 .
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The learning problem (3) can then be written as

min
U,V

λ

2
(‖U‖2 + ‖V‖2) + φ(UV⊤) . (9)

Block-coordinate descent is then an appealing ap-
proach for solving the above problems: the minimiza-
tion with respect to U, and the one with respect to
V are mere smooth convex optimization problems.
Again, accelerated and stabilized gradient methods are
adapted for tackling them.

In contrast to the original problem (3) and its formula-
tion (8), problem (9) is not jointly convex with respect
to the couple (U,V). As a result, the alternating algo-
rithm can get stuck in local minima, or saddle-points.
For example, U = V = 0 is a critical point but it is
not the global minimum. In practice, we observed that
the behavior of the algorithm is highly sensitive to the
starting point. Problem-dependent tunings as in [36]
might be necessary to overcome this weakness.

Conditional gradient approaches Our algorithm
shares some similarities with a related family of al-
gorithms, recently applied to learning problems with
a bounded trace-norm constraint (or low-rank con-
straint): conditional gradient algorithms. Conditional
gradient algorithms [16, 13], a.k.a. Frank-Wolfe algo-
rithms, allow minimize a convex objective φ in a simple
convex set S. At iteration (t+1), the conditional gra-
dient algorithm first minimizes the linearized objective
at the current iterate within the convex set

W̃t+1 := Argmin
W∈S

〈W −Wt,∇φ(Wt)〉 ,

then performs a line search over the line segment join-
ing Wt and W̃t+1 to obtain Wt+1. Conditional gra-
dient algorithms were applied to learning problems
in [10, 19]. Recent works [22, 33] devised conditional
gradient algorithms to learning problems with a trace-
norm or low-rank constraint, with applications to col-
laborative filtering. However, these algorithms worked
on constrained formulations, whereas we consider a pe-
nalized formulation. Penalized and constrained formu-
lations are equivalent when the entire regularization
path is calculated. Even though for each penalty co-
efficient there exists a constraint that yields the same
solution, we are not aware of a method to obtain the
matching constraint that does not involve solving the
full optimization problem. In our experience, the regu-
larization path calculation is more stable for penalized
versions than for constrained version, and penalized
versions are for example the state of the art in ℓ1-
regularization literature.

B

W

0

Ω(W)B

M

Figure 3: Illustration of the gauge function Ω. To
evaluate Ω(W), we take a ray from the origin towards
W and compute the ratio between the distance to W

and the distance to the intersection of the ray (dotted)
with the unit ball B (in bold).

D Generalization to gauge

regularization

In this appendix, we discuss how the optimization al-
gorithm given in the paper generalizes to a broader
class of regularization functions. As special cases,
we recover coordinate descent for lasso [18], block-
coordinate descent for group lasso [28], and rank-one
descent discussed in this paper for trace norm. See
also [7, 37] for independent, related work.

The specific regularization examples are:

Ωlasso(W) =

d
∑

j=1

k
∑

ℓ=1

|Wjℓ| (10)

Ωgr-lasso(W) =
d
∑

j=1

‖Wj‖2 (11)

Ωtrace(W) = ‖W‖σ,1 (12)

where Wj denotes the j-th row of the matrix. All
of them can be naturally defined using the following
construction.

Let M = {Mi ∈ R
d×k : i ∈ I} be a compact set

of matrices, called atoms, and let B := convM be its
convex hull. We assume that M is chosen such that
0 ∈ intB. We think of M as an “overcomplete ba-
sis” and B as a “unit ball”. The gauge function Ω and
support function Ω◦ associated with B are convex func-
tions defined as (see illustration in Fig. 3; for further
details, see [32, 20, 6])

• Ω(W) := inf{t ≥ 0 : W ∈ tB}
• Ω◦(G) := sup

M∈B〈M,G〉 = sup
M∈M〈M,G〉.
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The key property of the gauge function is sublinearity :

• Ω(tW) = tΩ(W) for all W and t ≥ 0

• Ω(W+W′) ≤ Ω(W)+Ω(W′) for all W and W′.

In addition, by assuming 0 ∈ intB, we also obtain:

• Ω(W) ≥ 0, with equality if and only if W = 0

• {W : Ω(W) ≤ t} = tB for t ≥ 0, i.e., level sets
are compact.

Unlike norms, gauges are not required to be sym-
metric. The support function plays the role of the
dual norm in that 〈W,G〉 ≤ Ω(W)Ω◦(G) for all
W,G ∈ R

d×k.

The three examples Eqs. (10)–(12) are obtained by:

Mlasso =
{

seje
⊤
ℓ : s ∈ {−1, 1}

j ∈ {1, . . . , d}, ℓ ∈ {1, . . . , k}
}

Mgr-lasso = {ejv⊤ : j ∈ {1, . . . , d}, v ∈ R
k, ‖v‖2 = 1}

Mtrace = {uv⊤ : u ∈ R
d, v ∈ R

k, ‖u‖2 = ‖v‖2 = 1}

where ej is the j-th vector of the Euclidean basis.

Positing the same assumptions on φ(W) as in Sec. 2.4,
we consider minimization of the regularized objective

Minimize
W∈Rd×k

φλ(W) := λΩ(W) + φ(W) . (13)

By compactness of level sets of Ω, lower-boundedness
of φ, and continuity, the minimum is attained. Fur-
thermore, the subdifferential of Ω is

∂Ω(W) =
{

M ∈ R
d×k : Ω◦(M) ≤ 1, 〈M,W〉 = Ω(W)

}

hence the ε-optimality is defined as:

(i’) Ω◦
(

−∇φ(W)
)

≤ λ+ ε, and

(ii’)
∣

∣〈∇φ(W),W〉+ λΩ(W)
∣

∣ ≤ εΩ(W).

We define Θ, Θ+ and Wθ as before, and the lifted
problem as

Minimize
θ∈Θ+

ψλ(θ) := λ
∑

i∈I

θi + φ(Wθ) . (14)

The ε-optimality for Eq. (14) is defined as before:

(a’) ∀i ∈ I :
(

− ∂ψ
∂θi

(θ)
)

≤ λ+ ε

(b’) ∀i ∈ supp(θ) :
∣

∣

∣

∂ψ
∂θi

(θ) + λ
∣

∣

∣
≤ ε

The following is the generalization of Prop. 3.1.

Proposition D.1. The map θ 7→ Wθ is a continuous
linear map from Θ to R

d×k. Moreover, for all θ ∈ Θ+,
we have

Ω(Wθ) ≤
∑

i∈I

θi = ‖θ‖1

and for any W ∈ R
d×k there exists θ ∈ Θ+ such that

|supp(θ)| ≤ (dk + 1), Wθ = W and ‖θ‖1 = Ω(W).

Proof. The linearity is clear by definition of Wθ. The
continuity comes easily as follows. Consider a norm
‖·‖ in R

d×k (all norms are equivalent). Since M is
compact, there exists a constant M such that ‖Mi‖ ≤
M for all i ∈ I. So we write

‖Wθ‖ ≤
∑

i∈I

|θi|‖Mi‖ ≤
∑

i∈I

|θi|M =M‖θ‖1 ,

which proves continuity.

We next show that any W ∈ R
d×k has a non-negative

representation in Θ. The statement is true for W = 0.
Now, take W 6= 0, we have Ω(W) 6= 0. So, we set
W′ = W/Ω(W). Since W′ lies in B = convM, it can
be written as a convex combination of matrices Mi.
By Carathéodory’s theorem [20], there exists θ′ ∈ Θ+

such that
∑

i∈I θ
′
i = 1, W′ = Wθ′ , and |supp(θ′)| ≤

(dk + 1). Now, define θ = Ω(W)θ′. Observe that
θ ∈ Θ+, |supp(θ)| ≤ (dk+1), Wθ = Ω(W)Wθ′ = W,
and ‖θ‖1 =

∑

i∈I θi = Ω(W)
∑

i∈I θ
′
i = Ω(W).

Finally, the inequality comes from the sublinearity of
Ω and non-negativity of θ as follows:

Ω(Wθ) = Ω

(

∑

i∈I

θiMi

)

≤
∑

i∈I

θiΩ(Mi) ≤
∑

i∈I

θi .

From Prop. D.1, we obtain

φλ(Wθ) ≤ ψλ(θ) .

We also obtain the equivalence similar to Thm. 3.2
and the sufficiency of lifted ε-optimality similar to
Thm. 3.3.

Theorem D.2. The function ψλ : Θ → R is convex
and differentiable. The following optimization prob-
lems are equivalent, i.e., they have the same optimal
value and correspondence of optimal solutions as

θ̂ ∈ Argmin
θ∈Θ+

ψλ(θ) iff W
θ̂
∈ Argmin

W∈Rd×k

φλ(W) .

Proof. The proof is identical to proof of Thm. 3.2.

Theorem D.3. Let ε be such that 0 ≤ ε ≤ λ. If θ
is an ε-solution of (14), then Wθ is an ε-solution of
(13).

Proof. Assume that θ satisfies conditions (a’) and (b’).
Note that ∂ψ

∂θi
(W) = 〈Mi,∇φ(W)〉. Hence, condition

(a’) implies

∀M ∈ M : 〈M, −∇φ(Wθ)〉 ≤ λ+ ε (15)
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which yields

Ω◦
(

−∇φ(Wθ)
)

= sup
M∈M

〈M, −∇φ(Wθ)〉 ≤ λ+ ε ,

i.e., condition (i’) holds.

It remains to show condition (ii’). First note that

〈∇φ(Wθ),Wθ〉 =
∑

i∈I

θi〈∇φ(Wθ),Mi〉

=
∑

i∈I

θi

(

∂ψ
∂θi

(θ)
)

≤ (−λ+ ε)
∑

i∈I

θi ≤ (−λ+ ε)Ω(Wθ) (16)

where the last two inequalities follow by (b’) and by
Prop. D.1. We also know by Prop. D.1 that there
exists θ∗ ∈ Θ+ such that Wθ∗ = Wθ, and Ω(Wθ) =
∑

i∈I θ
∗
i . We can write

〈∇φ(Wθ),Wθ〉 =
∑

i∈I

θ∗i 〈∇φ(Wθ),Mi〉

≥ (−λ− ε)
∑

i∈I

θ∗i = (−λ− ε)Ω(Wθ)

where the above inequality follows by Eq. (15). Com-
bining with Eq. (16), we obtain

(−λ− ε)Ω(Wθ) ≤ 〈∇φ(Wθ),Wθ〉 ≤ (−λ+ ε)Ω(Wθ)

i.e., condition (ii’) holds as well.

Using Thm. D.3, we can derive AtomDescent (Algo-
rithm 3), a gauge version of R1D (Algorithm 1). The
only difference is that the computation of top singular-
vector pair is now replaced by the extremal point eval-
uation. For G ∈ R

d×k, we define

Ext(G) = Argmax
M∈M

〈M,G〉 .

Note that ifM∗ ∈ Ext(G), we have 〈M∗,G〉 = Ω◦(G).
For our three examples, we obtain:

• lasso: M∗ = s∗ej∗e
⊤
ℓ∗

where (j∗, ℓ∗) = Argmax(j,ℓ) |Gjℓ|,
s∗ = signGj∗ℓ∗

• group lasso: M∗ = ej∗v
∗⊤

where j∗ = Argmaxj‖Gj‖2,
v∗⊤ = Gj∗/‖Gj∗‖2

• trace norm: M∗ = u∗v∗⊤

where (u∗,v∗) is the top singular-vector pair of G

Hence, for lasso we obtain coordinate descent; for
group lasso, block-coordinate descent; and for trace
norm, rank-one descent. As in R1D, also in

Algorithm 3 AtomDescent(φ,Ω, λ,θ0, ε)

Input: empirical risk φ, gauge Ω, regularization λ
initial point Wθ0 , convergence threshold ε

Output: ε-optimal Wθ

Notation: Wt := Wθt , Mt := Mit , et := eit

Algorithm:

For t = 0, 1, 2, . . . :

1. Find it ∈ I corresponding to the coordinate of θ with
approximately steepest descent in positive direction,
i.e.,

〈Mt, −∇φ(Wt)〉 ≥ Ω◦(−∇φ(Wt))− ε/2

2. Let gt :=
∂ψλ

∂θit
(θt) = λ+ 〈Mt,∇φ(Wt)〉

3. If gt ≤ −ε/2

Wt+1 = Wt + δMt with δ given by Prop. 3.4
θt+1 = θt + δ et

4. Else (i.e., gt > −ε/2)

If θt satisfies (b’), terminate and return θt

Otherwise, compute θt+1 as an ε-solution of the
restricted problem min

θ∈R
supp(θt)
+

ψλ(θ)

AtomDescent, we only insist on approximate ex-
tremal points. All of the convergence results for
R1D also apply to AtomDescent, because analy-
sis of R1D only concerned the lifted problem Eq. (5)
and did not depend on the particular linear map
θ 7→ Wθ (which is the only change between R1D

and AtomDescent).

E Infinite dimensional space Θ

In this appendix, we briefly recall some additional
material (especially about differentiability and opti-
mality conditions) to demystify the infinite dimen-
sional space Θ. We assume the gauge setting intro-
duced in the previous section.

The completion of the normed space (Θ, ‖·‖1) is the
complete normed space (ℓ1(I), ‖·‖1), the space of
(θi)i∈I such that

∑

i∈I |θi| < +∞. The two spaces
are in duality with the space (ℓ∞(I), ‖·‖∞) equipped
with

‖δ‖∞ = max
i∈I

|δi|

through the bracket notation

〈δ,θ〉 =
∑

i∈I

δiθi ≤ ‖δ‖∞‖θ‖1 .

Let ψ : Θ → R be a differentiable function. Its dif-
ferential dψ(θ) ∈ ℓ∞(I) can be written with the help
of partial derivatives as dψ(θ) = ( ∂ψ∂θi (θ))i∈I . The
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general optimality conditions in this context are the
following; they are used in the proof of Prop. E.2.

Proposition E.1. Let ψ : Θ → R be a convex differ-
entiable function, and K a convex subset of Θ. Then
θ∗ is a minimum of ψ over K if and only if

∑

i∈I

∂ψ

∂θi
(θ∗)(θi − θ∗i ) ≥ 0 for all θ ∈ K.

Proof. The proof is based on the following basic prop-
erty of convex functions (see [29]). Let ψ : Θ → R be
a convex differentiable function; then

ψ(η) ≥ ψ(θ) + 〈dψ(θ), (η − θ)〉 for all η,θ. (17)

With the help of the above inequality, the implication
“if” is obvious. To prove the “only if” implication,
take t > 0 and write for any θ ∈ K, by definition of
differentiability,

ψ(θ∗ − t(θ − θ∗))

t
= 〈dψ(θ∗), (θ − θ∗)〉+ o(t)

t
.

Note that t > 0 so θ∗ − t(θ − θ∗) ∈ K and then the
left-hand-side is nonnegative. Taking the limit t → 0,
we obtain 〈dψ(θ∗), (θ − θ∗)〉 ≥ 0.

The key assumption is the differentiability of the map-
ping ψ, that we get, in our context, simply by construc-
tion.

In spite of the infinite dimension, the space Θ and the
new optimization problem (14) have simple-looking
structures, and they share many properties with finite-
dimensional analogs. In particular, the optimality con-
ditions are as expected.

Proposition E.2. The three following properties are
equivalent

(i) θ̄ is an optimal solution to problem (14)

(ii) ∀i ∈ I : ∂ψλ

∂θi
(θ̄) ≥ 0

and ∀i ∈ supp(θ̄) : ∂ψλ

∂θi
(θ̄) = 0

(iii) mini∈I
∂ψλ

∂θi
(θ̄) ≥ 0

and θ̄ ∈ Argmin
θ∈R

supp(θ̄)
+

ψλ(θ)

Proof. To prove the equivalence between (i) and (ii),
we apply both implications of Prop. E.1 with ψ = ψλ
and K = Θ+. We show first (i)⇐(ii). Let θ ∈ K; we
have

∑

i∈I

∂ψ

∂θi
(θ∗)(θi − θ∗i ) =

∑

i6∈supp(θ∗)

∂ψ

∂θi
(θ∗)θi ≤ 0.

This is the optimality condition of (14), so we have (i).

We now prove the converse (i)⇒(ii). For all i ∈ I, we
write the optimality condition with η ∈ Θ defined by

ηℓ =

{

θ∗ℓ if ℓ 6= i
θ∗i + 1 otherwise

to get ∂ψ
∂θi

(θ∗) ≥ 0. Similarly for all i ∈ I such that

θ∗
i > 0, we write the optimality condition with η ∈ Θ

defined by

ηℓ =

{

θ∗ℓ if ℓ 6= i
θ∗i /2 otherwise

to get ∂ψ
∂θi

(θ∗) ≤ 0, and we can conclude.


