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Abstract

Regularized logistic regression is a standard
classification method used in statistics and
machine learning. Unlike regularized least
squares problems such as ridge regression, the
parameter estimates cannot be computed in
closed-form and instead must be estimated
using an iterative technique. This paper ad-
dresses the computational problem of regu-
larized logistic regression that is commonly
encountered in model selection and classi-
fier statistical significance testing, in which
a large number of related logistic regression
problems must be solved for. Our proposed
approach solves the problems simultaneously
through an iterative technique, which also
garners computational efficiencies by leverag-
ing the redundancies across the related prob-
lems. We demonstrate analytically that our
method provides a substantial complexity re-
duction, which is further validated by our re-
sults on real-world datasets.

1 Introduction

Regularized logistic regression is a standard classifi-
cation technique for predicting a binary label from a
set of features. It has been used successfully across a
wide array of applications. Since it is capable of not
only predicting the class from the data, but also the
posterior class probabilities, it has particularly become
popular in the medical and life sciences fields (Hosmer
and Lemeshow 2000, and references therein).

While the parameter estimates in regularized least
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squares regression, such as ridge regression, can be
computed in closed-form, logistic regression necessi-
tates an iterative solver. The most popular tech-
nique is a variant of Newton’s method, iteratively re-
weighted least squares (IRLS), which iteratively min-
imizes a quadratic approximation to the likelihood.
This approach may be slow because it requires com-
puting the inverse of a Hessian matrix. This step scales
poorly with problem size unless the Hessian has special
structure, such as being sparse or banded.

Many papers have addressed this computational prob-
lem. For example, cyclic coordinate descent (Zhang
and Oles 2001, Genkin et al. 2007) avoids inverting
the Hessian matrix by updating the estimates one co-
ordinate at a time. The technique of Komarek and
Moore (2003,2005) also avoids computing the inverse
of the Hessian by solving each Newton step by a con-
jugate gradient method. Bound optimization tech-
niques (Böhning and Lindsay 1988, Krishnapuram et
al. 2005) complete a sequence of Newton steps with
only a single Hessian matrix inversion.

Although these approaches have been very successful
at improving the efficiency of logistic regression, real-
world applications rarely consist of solving only a sin-
gle problem. Instead, an entire machine learning ap-
plication involves solving hundreds or even thousands
of regression problems over the course of model se-
lection and significance testing. For example, model
selection strategies based on cross-validation estimate
prediction accuracy by re-training the classifier on dif-
ferent splits of the data. Additionally, assessing the
statistical significance of a chosen model involves run-
ning a nonparametric test that trains the classifier on
different permutations of the data. These model fits
are computed sequentially in a loop, or in parallel if a
computing cluster is available.

For large problems, cross-validation and significance
testing can be very expensive endeavors, even with
efficient logistic regression solvers. In the context of
cross-validation, this has sometimes been addressed by
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deriving upper bounds on generalization error that are
fast to compute from the training data (Zhang 2003,
Cawley and Talbot 2004). These bounds, however,
can be loose and may greatly overestimate prediction
error. For regularized least squares (ridge regression),
it is well known that leave-one-out error can be com-
puted exactly from one model fit to the training data
(Rifkin and Lippert 2007). This special case, unfortu-
nately, does not extend to logistic regression.

With these considerations in mind, this paper ad-
dresses the computational problems of logistic regres-
sion from a different perspective. Instead of learning
each classifier’s parameters tabula rasa, we solve the
multitude of problems simultaneously, and leverage
the shared structure to improve computational per-
formance. Our method is simple to implement and is
based on the well-established theory of stationary iter-
ative methods for solving linear systems of equations.
It can be applied to a large number of applications,
including K-fold cross-validation and classifier signifi-
cance testing through permutation tests.

In Section 2 we introduce the necessary preliminaries
and outline the details of our approach, along with a
complexity analysis that highlights its merits. We then
offer a summary of applications of our method in Sec-
tion 3. Finally, we validate our approach on real-world
datasets in Section 4 and conclude with potentials for
future work in Section 5.

2 Methods

2.1 Preliminaries

Let a classification dataset be given by {(xi, yi)}Ni=1,
with features xi ∈ RD and binary labels yi ∈ {0,+1}.
Logistic regression attempts to find a separating hy-
perplane in feature space, parameterized by normal
vector w = (w1, . . . , wD) ∈ RD, that separates the two
classes. The posterior label probability is modeled as:

p(y = 1|x,w) =
1

1 + exp(−xTw)
(1)

We assume for simplicity that the bias is estimated
by incorporating a constant regressor into the fea-
ture space so that wD is the bias term. We will de-
note by µ(xTw) = p(y = 1|x,w). Also, let X =
[x1, x2, . . . , xN ] be the data matrix.

For logistic regression, the negative log-likelihood is:

L(w) = −
N∑

i=1

yi log(µ(xTi w))+(1−yi) log(1−µ(xTi w))

(2)

In many cases, the maximum-likelihood estimator may

overfit to the training data. To reduce overfitting, pe-
nalized likelihood methods based on l2-regularization
seek to minimize a version of:

J(w) = L(w) + λwTLw (3)

The matrix L can be any symmetric positive semi-
definite (PSD) matrix, in which case J(w) is a convex
function. For example, L could be a graph Laplacian
matrix (Belkin et al. 2004), or the identity matrix.

Newton-type methods optimize for w by iteratively
minimizing a quadratic approximation to J(w). The
log-likelihood is approximated locally around a current
estimate w(t) by a quadratic function Lq(w,w(t)) given
by (ignoring terms independent of w):

Lq(w,w(t)) =
1

2
(w−w(t))TH(w−w(t)) +∇L(w(t))Tw

(4)
where H and ∇L(w(t)) are the Hessian matrix and
gradient of L(w) evaluated at w = w(t):

∇L(w(t)) = −X(y − µ(XTw(t))) (5)

H = XRXT (6)

Here, we have overloaded the notation µ(XTw(t)) to
denote a column vector whose ith entry is given by
µ(xTi w

(t)). Also, the Hessian changes on each iteration
based on the diagonal matrixR, whose diagonal entries
contain the current variances of the model fits:

Rii = µ
(
w(t)Txi

)(
1− µ

(
w(t)Txi

))
(7)

Substituting Lq(w,w(t)) into (3) gives us our objective
to minimize at each iteration:

Jq(w) = Lq(w,w(t)) + λwTLw (8)

Equating the gradient of Jq(w) to zero, we obtain:

w(t+1) = (H + 2λL)−1
[
Hw(t) −∇L(w(t))

]
(9)

This procedure repeats until convergence.

2.2 Simultaneous Logistic Regression

The update equation in (9) amounts to solving a lin-
ear system of equations. In many situations, including
cross-validation and permutation testing, this compu-
tation is performed repeatedly for a set of P differ-
ent problems. Despite this, there is frequently a large
amount of shared structure across the P problems that
is otherwise ignored. We propose an efficient method
to compute the update in (9) simultaneously across a
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set of P related problems. Specifically, our approach
simultaneously solves P linear systems of the form:

Apwp = Xmp, p = 1, . . . , P (10)

where the matrix Ap is of the form:

Ap = XRpX
T + C (11)

and Rp is a diagonal matrix with nonnegative entries
as in (7). Note that (9) can be put into the form of (10)

and (11) by taking C = 2λL and mp = RpX
Tw

(t)
p +

y − µ(XTw
(t)
p ). Here, we use the subscript p on a

variable to emphasize that it depends on the problem
p ∈ {1, . . . , P}. Without the subscript, the variable is
assumed to be shared across the P problems.

There are many ways to effectively solve related sys-
tems of linear equations such as (10). For example,
given a Cholesky factorization for A1, which enables
the linear system to be solved via back substitution,
techniques exist to update the factorization for other
Ap, p > 1 (Golub and Van Loan 1996). However,
these methods are geared for situations in which the
matrices are related by very low rank perturbations,
such as rank-one changes of the form Ap = A1 + upu

T
p

for some column vector up. The difficulty with (10) is
that since the model fits are in general different across
the P problems, the weights in the diagonal entries of
Rp are not shared across the problems. As a result,
the variability in Ap across the P problems cannot be
modeled simply as a low-rank perturbation.

Instead, we focus on stationary iterative methods for
solving a linear system Ax = b because of their simplic-
ity to implement, and efficiency when designed appro-
priately. Throughout, we assume that A is invertible.
In this case, stationary methods define a sequence of
iterates of the form (Young 1971):

x(k+1) = Gx(k) + d (12)

where G is typically called the iteration matrix.

Two important issues involving these methods are: (a)
does the sequence in (12) converge; and (b) consistency
– when the sequence does converge, does it converge
to the unique solution A−1b? Fortunately, these ques-
tions can be easily answered when the iteration matrix
G takes a special form. Specifically, given an additive
splitting A = M − N , the sequence (12) is consistent
provided the iterates take the form:

x(k+1) = M−1Nx(k) +M−1b (13)

Moreover, the sequence will converge from any initial-
ization x(0) iff the spectral radius of G = M−1N is less
than one, ρ(G) < 1 (Young 1971). The rate of conver-
gence also depends heavily on the spectral radius. In

particular, an estimate, K̃, of the number of iterations
K required to reduce the norm of the error by a factor
ζ is given by (Hageman and Young 1981):

K̃ =
log(ζ)

log(ρ(G))
(14)

Stationary iterative methods are most often used to
solve a single linear system efficiently. In these cases,
M is taken to have a special structure so that Mx = y
can be solved very efficiently. For example, the Jacobi
iteration takes M to be the diagonal portion of A,
while the Gauss-Seidel iteration takes M to be the
lower-triangular portion of A.

Our approach, however, is focused on solving many re-
lated problems efficiently, rather than one individual
problem. As a result, we are willing to spend some
time towards solving Mx = y, as long as this solu-
tion can then be applied to all of the P problems to
be solved. Thus, we produce an additive splitting in
which the M matrix is shared across the P problems.
Given a template matrix M = XRXT + C, for some
diagonal matrix R, we define our splittings as:

Ap = M −Np (15)

Np = X(R−Rp)XT (16)

and the iterations are defined as:

w(k+1)
p = M−1Npw

(k)
p +M−1Xmp (17)

Since the iterations in (17) are based on an additive
splitting, we are assured of consistency. For conver-
gence, however, we must consider the spectral radius
of Gp = M−1Np for each p = 1, . . . , P . In this regard,
we have the freedom to design the diagonal matrix R
to ensure convergence for all p.

Since M and Np are both symmetric matrices, we
know that the eigenvalues of M−1Np are all real.
Moreover, the eigenvalues of M−1Np are equal to the
generalized eigenvalues λMx = Npx. Thus, ρ(Gp) =
maxx |xTNpx|/|xTMx|. In the following, we assume
that C is positive definite, with γmin > 0 its minimum
eigenvalue. Also, let σmax > 0 be the maximum singu-
lar value of X. Then we can bound ρ(Gp) as follows:

ρ(Gp) = max
y∈RD:||y||=1

∣∣∣∣
yTX(R−Rp)XT y

yT (XRXT + C)y

∣∣∣∣ (18)

≤ max
y∈RD:||y||=1

∣∣∣∣
yTX(R−Rp)XT y

yTXRXT y + γmin

∣∣∣∣ (19)

≤ max
w∈RN :||w||=1

∣∣∣∣
σ2
maxw

T (R−Rp)w

σ2
maxw

TRw + γmin

∣∣∣∣ (20)

= max
w∈RN :||w||=1

∣∣∣∣
wT (R−Rp)w

wTRw + γmin/σ2
max

∣∣∣∣(21)
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To ensure that ρ(Gp) < 1, it is sufficient to design the
template weighting matrix R so that, for each p,

|wT (R−Rp)w| < |wTRw + γmin/σ
2
max| (22)

for all unit vectors w. This can be satisfied by taking

R = max(R1, . . . , RP ) (23)

the element-wise maximum. In this case, both R and
R−Rp are PSD for all p, and (22) reduces to:

wTRpw > −γmin/σ
2
max (24)

which is true since Rp is a PSD matrix, and the right-
hand-side of (24) is strictly negative.

2.3 Connection to Bound Optimization
Methods

Bound optimization methods are EM-style algorithms
that utilize an upper bound on the Hessian (Böhning
and Lindsay 1988), (Krishnapuram et al., 2005). For
logistic regression, the bound arises from the fact that
the diagonal entries of R in (7) are limited to the range
[0, 14 ], and so H̃ = 1

4XX
T upper bounds the Hessian in

(6) in the sense that H̃−H is PSD (denoted H̃ � H).
From this, a sequence of quasi-Newton steps are taken,
with H replaced by H̃.

Thus, applying this technique simultaneously to P
problems amounts to solving a set of P linear sys-
tems of equations of the form Awp = Xmp, where

A = H̃ + C. Since A is constant through the itera-
tions, the entire sequence of quasi-Newton steps may
be taken with only a single inversion computation.

A connection to our approach may be made by the fact
that the template matrix computed at each iteration
also serves as an upper bound to the Hessian, since
taking R as in (23) ensures that XRXT � XRpX

T

for each p. Thus, our approach may be interpreted
as initializing each Newton step from the approximate
solution given by the bound optimization, followed by
a sequence of iterates in (17) that refines the estimates
to the true Newton step solution.

The refinement stage can have a significant improve-
ment in convergence properties: while our system im-
plements the true Newton step, which has quadratic
convergence properties in general, the bound optimiza-
tion method can only guarantee linear convergence
(Böhning and Lindsay 1988). Moreover, we show in
the next section that the refinement iterates may be
computed efficiently.

2.4 Complexity Analysis

In this section, we analyze the computational com-
plexity of each Newton step for our proposed approach

and compare it with the brute-force inversion method,
which we refer to as the direct method. The key vari-
ables in this analysis are the number of features, D,
the number of training examples, N , the number of
problems to be solved, P , and for our approach, the
number of iterations required for (17) to converge, K.

The direct approach requires computing XRpX
T , for

each p = 1, . . . , P , which is O(DN + D2N). Subse-
quently, the inversion step of solving Apwp = Xmp is
O(D3+2D2). This results in an overall complexity for
the direct method of:

O(P (DN +D2N +D3 + 2D2)) (25)

Before detailing the complexity of our approach, we
first show that the updates in (17) can be computed
in one matrix multiplication across all P problems.
Let the D×N matrix Y be the solution to MY = X,
where M is the template matrix and X is the data
matrix. Also, let W (k) be the D×P matrix whose pth

column is equal to the regression weight estimates for

problem p at iteration k, w
(k)
p . Finally, denote R̂ as

the N × P matrix whose pth column is the diagonal
entries of R−Rp, and B the matrix whose pth column
is equal to Y mp. Then W (k+1) can be expressed as:

W (k+1) = Y
[
R̂ ◦ (XTW (k))

]
+B (26)

where ◦ denotes the elementwise Hadamard product.

We are now equipped to compute the complexity of
our approach. Solving for Y from MY = X re-
quires O(D3 + 2D2N) operations, and computing B
is O(DNP ). The update in (26) requires O(2PDN +
PN), and is computed K times. Thus, the overall
complexity of our proposed approach is given by:

O(D3 + 2D2N + P (DN + 2KDN +KN)) (27)

As is clear from (14), the number of iterations K for
the linear system solver is a balance between the spec-
tral radius of the iteration matrices M−1Np, and the
initial error. K does not, however, tend to grow with
D or N . Thus, in comparing (25) and (27), we see that
while the direct method has two cubic terms D2N and
D3 that grow with P , our proposed approach scales
much better with problem size, having only at most
second order terms that grow with P .

Pseudo-code for the algorithm is provided in Algo-
rithm 1. In the following two sections, we discuss two
modifications that further improve upon the complex-
ity in (27). The first is based on continuation methods
and has the effect of decreasing the number of inner
loop iterations K. This is followed by a result in Sec-
tion 2.6, which is applicable in high-dimensional fea-
ture spaces and exploits the discrepancy between the
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number of features D and the rank of the data ma-
trix. This has the effect of replacing D in (27) with
s = rank(X).

Algorithm 1 Simultaneous Newton Steps

Given data matrix X and regularization matrix C
Given Rp,mp for each problem p = 1, . . . , P

Initialize w
(0)
p and assemble as columns into W (0)

Assemble diagonals of Rp as columns into R̂

Compute R as row-wise maximum of R̂
Compute template matrix M = XRXT + C
Solve MY = X for Y
Compute B, whose pth column is equal to Y mp

for k = 1, . . . do
Compute update correction:

W (k+1) = Y [R̂ ◦ (XTW (k))] +B

if maxj ||(W (k+1) −W (k))T ej ||2 < tol then
K = k
break

end if
end for
The pth column of W (K) contains the solution
to Apwp = Xmp, where Ap = XRpX

T + C

2.5 Continuation Methods

The regularization matrix C in (11) generally incor-
porates a parameter λ that trades-off the likelihood
fit with the regularization. For example, the ridge
penalty takes C = 2λI. Since this parameter is not
know a-priori, it is often selected by a cross-validation
technique that fits the model for a range of λ values.

Similar to (Friedman et al. 2010), requiring fits for
multiple λ values can be used to our advantage by a
warm-starting procedure, in which results from larger
λ values are used to initialize fits for successively
smaller λ values. The intuition is that the higher reg-
ularization further constrains the problem, making it
easier to solve. The solution can then be used to better
initialize the more challenging (smaller λ) problems.

In general, the larger λ problems are easier to solve in
that they require fewer Newton steps. In the context
of the proposed algorithm though, there is a secondary
advantage in that for larger λ values, each Newton step
is more efficient because the iterative solver (17) tends
to require fewer iterations to converge. The reason-
ing is twofold. First, the spectral radius of the iter-
ation matrix decreases for higher regularization. To
see this, let C(1), C(2), . . . , C(M) denote the regular-
ization matrices in (11) for a decreasing sequence of
regularization parameters λ1 > λ2 > · · · > λM ≥ 0.
Note that since C(k) = λkC, for some base PSD ma-

trix C, we know that the eigenvalues of C(k) grow
proportionally with λ. From this, it is easy to see
that the spectral radius of the iteration matrix G(k) =
(XRXT +C(k))−1Np tends to decrease as k increases.
The second reason fis that higher regularization acts
to shrink the estimates, so that there is decreased vari-
ability in the model fits. As a result, there tends to
be less variability in the entries of the Rp matrices,
in which case the template matrix M serves as a bet-
ter model for the Hessian of all P problems. These
intuitions are confirmed in the results.

Additionally, we see from (14) that the number of it-
erations K also depends on the accuracy of our ini-
tialization. Thus, warm-starting can significantly im-
prove convergence for smaller λ values by decreasing
the initial approximation error even though the spec-
tral radius of the iteration matrix is larger.

2.6 Exploiting low-rank data matrices

Further computational improvements can be made if
there is a large disparity between the number of fea-
tures in the dataset, D, and the rank of the data ma-
trix, s = rank(X), (e.g., when N < D). In effect,
(10) can be transformed from systems of D equations
into systems of s equations. For this, we require a
low-rank factorization of the data matrix, X = QZ,
with Q ∈ RD×s having orthonormal columns and
Z ∈ Rs×N . The result follows from the next 2 lemmas,
whose proofs are given in supplementary material.

Lemma 1. The solution wp to Apwp = Xmp satisfies
wp ∈ range(C−1Q).

Lemma 2. Let
[
Q W

]
be a matrix with orthonor-

mal columns that is a basis for range([Q,C−1Q]). Note
that W has at most s columns. Then the solution wp

to Apwp = Xmp can be computed by first solving a
linear system of s equations:

Ãpw̃p = Zmp (28)

where

Ãp = ZRpZ
T + C̃ (29)

C̃ = QTC(Q−WF ) (30)

F = (WTCW )−1WTCQ (31)

Then wp can be obtained from w̃p by:

wp = (Q−WF ) w̃p (32)

Since (28) takes the same form as (10), we may imple-
ment our proposed algorithm to solve (28). This yields
significant computational savings when s < D. Specif-
ically, in the complexity equation of our approach in
(27), all occurrences of D are replaced with s.
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3 Applications

3.1 Permutation Testing

Permutation tests are a popular nonparametric tech-
nique for estimating classifier significance (Ojala and
Garriga 2010). Here, a hypothesis test is formulated
to see whether or not a meaningful relationship be-
tween the features and the class labels has been iden-
tified by the classifier. A distribution of classifier ac-
curacy under the null hypothesis that no relationship
exists is computed by re-training the classifier on new
datasets in which the labels have been permuted across
instances. This allows the derived classifier accuracy
to be assigned a p-value of statistical significance.

Permutation tests fit naturally into our method. Since
only the binary labels y change in each permutation
problem p = 1, . . . , P , the data matrix X is shared
across the P problems. As a result, each permutation
p can be written in the form (10) for some Rp and mp.

3.2 Cross-validation

For K-fold cross-validation, the logistic regression
model is trained on K different subsets of the training
data. At first glance, it appears that the data matrix
is not shared across problems, because even though
there will be a large amount of overlap in training data
across folds, each fold still contains a different subset.

This technicality is overcome by a small modification.
For a particular fold p of the data, let hp index the
training instances that are excluded from the training
data. Expressing this fold’s Newton step in the form of
(10) simply involves zeroing out the hp diagonals of Rp,
as well as the hp indices of mp. With this modification,
the full data matrix X can be shared across all K folds.

Thus, K-fold cross-validation fits into our approach
given the slight modification mentioned above, with
the problem size P equal to the number of cross-
validation folds. For leave-one-out cross-validation
with P = N , our approach yields significant savings
when there are a large number of trials. However, the
true value of our approach is not really apparent if the
number of folds is small, as in 10-fold cross-validation.
As noted in Kohavi (1995), the cross-validation error
depends on the random split of the data and may be
highly biased for small K. To minimize this bias, it
is best to average cross-validation error over multiple
random K-fold splits of the data. In this case, our
approach is again valuable, even if K is small.

4 Results

We applied our algorithm to a number of real-world
datasets and benchmarked its speed against the direct
method of inverting the Hessian matrix independently
for each problem p. To enable a fair comparison, the
convergence tolerance used in our algorithm was set
very conservatively at tol = 1 × 10−11. In all analy-
ses, the regularization matrix was taken to be a scaled
identity matrix, with the last diagonal entry set to
zero. Zeroing out the last entry prevents shrinkage of
the bias term. The amount of regularization is con-
trolled by the parameter λ.

The MNIST handwritten digits database (LeCun et al.
1998), is a well established machine learning dataset.
The data consist of 6, 000 grey-level 28 × 28 images
for each digit 0 through 9. Two binary classification
datasets were derived from this database – discrimi-
nating digit 0 from digit 1, and the more challenging
case of distinguishing digits 4 and 9. Features corre-
sponded to pixel intensities, with D = 282 + 1 = 785.

Leave-one-out classification was performed on subsam-
pled datasets of size 1, 000 up to 10, 000, in incre-
ments of 1, 000. For each training set size, we com-
pared the computation times of our approach and the
direct method by computing the number of leave-one-
out runs that could be computed by the direct method
in the same amount of time that was required by
our method to complete the full leave-one-out cross-
validation set. We call this quantity the effective prob-
lem size of our method, and the ratio of P (training set
size) to effective problem size gives the overall speedup
factor. Plots of effective problem size are given in Fig-
ure 1. It is clear that the computational speedup is
consistently around 100× for both MNIST datasets
and values of the regularization parameter λ.

We also benchmarked our algorithm on the MNIST
data for the case of 10-fold cross-validation repeated
over 100 random splits, so that P = 1000 total prob-
lems. Similar to the leave-one-out analysis, we again
plot effective problem size against the training set size
for various values of the regularization parameter. In
this case, P is constant over training set size, so the
speedup factor is the ratio of 1000 to effective problem
size. Plots are given in Figure 2. In this case, speedup
ranges from 30× to 100×. A contributing factor for
the reduced speedup, as compared to the leave-one-out
analysis, is due to the fact that there is more variabil-
ity in the model fits for 10-fold cross-validation than
leave-one-out cross-validation.

We also applied our technique to classifier significance
testing problems on electroencephalography (EEG)
and functional MRI (fMRI) datasets collected during
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an auditory oddball detection task (Goldman et al.
2009). Permutation tests were used to evaluate per-
formance of oddball vs. standard prediction perfor-
mance of classifiers derived separately from the EEG
and fMRI data. There were a total of N = 374 exam-
ples, with the EEG feature space corresponding to the
measured voltages from 43 bipolar electrodes averaged
over a 50ms window (D = 44), while for the fMRI clas-
sifier the feature space was the BOLD response of 300
voxels in auditory cortex (D = 301).

Figure 3 plots the effective problem size against the
number of permutation tests P for both the EEG clas-
sifier and the fMRI classifier and various regularization
values λ. For the EEG classifier, the computational
improvement is ∼ 10×, while for the fMRI classifier,
the improvement is ∼ 100×. The more dramatic im-
provement for the fMRI case is due to the higher fea-
ture space dimension (D = 301 vs. D = 44).

Finally, we ran an additional analysis on the MNIST
dataset to test the effectiveness of applying a contin-
uation method to our approach, as detailed in Sec-
tion 2.5. Here we compared the overall time required
to perform leave-one-out cross-validation for regular-
ization values λ ∈ {1, 10, . . . , 1e10} between initializ-
ing each regularization from w = 0, and warm start-
ing from the results of the next highest regularization
value. This comparison was performed across a va-
riety of training set sizes. The continuation method
provided an additional improvement of ∼ 1.5×, and
this was consistent across training set sizes.

5 Conclusion and Future Work

This paper addresses the computational problem of
l2-regularized logistic regression that is commonly en-
countered in model selection and assessment, where
the solution to a large number of related problems
must be computed. We derive a principled iterative
algorithm that is simple to implement and efficiently
solves all of the problems simultaneously. We show
that this results in a significant improvement in com-
plexity over the direct approach, and we demonstrate
this empirically on real-world datasets.

There are a number of avenues of future research re-
lated to this algorithm. The first involves extending
this algorithm to fitting other regression problems. Lo-
gistic regression is one example of a generalized linear
model (GLM), which allows for very flexible modeling
assumptions. Since all GLM’s can be fit almost com-
pletely analogously to the IRLS procedure of logistic
regression, generalizing the algorithm to all GLM’s and
testing its validity is a natural next step.

Finally, the current version of the algorithm is lim-
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(b) MNIST (Digits 4 vs. 9)

Figure 1: Leave-one-out cross-validation (P = training
set size) using the proposed method compared against
the direct IRLS method for the MNIST datasets and
various training set sizes. The effective problem size
represents the number of problems that can be solved
by the direct method in the same amount of time as the
entire LOO set for the proposed method. For example,
LOO cross-validation by our proposed approach on a
training set size of P = 2000 may be computed in the
same time as approximately P = 20 folds by the direct
method, resulting in a speedup of 100×.

ited to l2-regularized problems, which excludes the
sparsity-inducing LASSO regularizers. Extending this
algorithm to l1 and mixed l1-l2 regularizers, such as
the elastic net, is another important open question.
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(b) MNIST (Digits 4 vs. 9)

Figure 2: 10-fold cross-validation using the proposed
method for the MNIST datasets and various training
set sizes. Each cross-validation run was repeated over
100 random splits, resulting in P = 1000 total prob-
lems. The effective problem size represents the number
of problems that can be solved by the direct method
in the same amount of time as the P problems for the
proposed method. Here, the ratio of 1000 to the ef-
fective problem size gives the computational speedup,
which varies between 30× to 100×.
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(a) EEG Dataset
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(b) fMRI Dataset

Figure 3: Permutation testing using the proposed
method compared against the direct IRLS method for
the EEG and fMRI datasets and various numbers of
permutations P . The effective problem size represents
the number of permutations that can be solved by the
direct method in the same time as the entire set of P
permutations by our proposed approach. Here, the ra-
tio of number of permutations P to the effective prob-
lem size gives the computational speedup.
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