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Abstract

This paper is concerned with the problem
of goodness-of-�t testing for curve registra-
tion, and more precisely for the shifted curve
model, whose application �eld reaches from
computer vision and road tra�c prediction to
medicine. We give bounds for the asymptotic
minimax separation rate, when the functions
in the alternative lie in Sobolev balls and the
separation from the null hypothesis is mea-
sured by the l2-norm. We use the general-
ized likelihood ratio to build a nonadaptive
procedure depending on a tuning parameter,
which we choose in an optimal way accord-
ing to the smoothness of the ambient space.
Then, a Bonferroni procedure is applied to
give an adaptive test over a range of Sobolev
balls. Both achieve the asymptotic minimax
separation rates, up to possible logarithmic
factors.

Introduction

Curve registration

Our concern is the statistical problem of curve reg-
istration, which appears naturally in a large number
of applications, when the available data consist of a
set of noisy, distorted signals that possess a common
structure or pattern. This pattern constitutes the es-
sential information that we want to dig out from the
observations. However, the deformations of the signals
are generally nonlinear and relatively complex, which
complicates the statistical task. Fortunately it is rele-
vant in some cases to assume that the signals only dif-
fer from each other by a horizontal and vertical shift:
we call this modelling the shifted curve model. For
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instance, it was successfully adopted for the interpre-
tation of the ElectroCardioGramms: each de�ection is
considered as a repetition of the same signal starting
at a random time. Trigano et al. (2011) proposed an
estimator of the common pattern. Interestingly, the
assumptions on the deformations are in practice vio-
lated due to the baseline wandering, a periodic vertical
perturbation of the potential, but the estimation of the
structural pattern performs well yet.

By contrast, SIFT descriptors
(
cf. Lowe (2004)

)
in

computer vision are an example where the speci�ca-
tion of the deformations is essential: selected keypoints
of an image are assigned with descriptors including a
histogram of the local gradient. If the image is rotated,
the histogram of each keypoint is simply shifted by the
angle of the rotation. To match the keypoints of the
two images, it is then su�cient to test the adequation
of their histograms with the shifted curve model. So,
testing the model is sometimes the main concern, and
even when estimation matters, the adequation of the
model may have to be tested, as the estimation tech-
niques depend on the structure of the deformations.

We refer to the papers Bigot and Gadat (2010), Bigot
et al. (2009a), Bigot et al. (2009b), Castillo, Loubes
(2009), Dalalyan et al. (2006) and Gamboa et al.
(2007) for results on the estimation of di�erent features
of the curve registration model. The present work
builds on another paper of the author (cf. Appendix
B of the Supplementary Material), where a compre-
hensive overview can be found.

Shifted curve model

In the shifted curve model, we assume to dispose of
two noisy signals f and f# mapping the interval [0, 2π]
into R, or equivalently of their Fourier coe�cients:

{
Yj = cj + σξj

Y #

j = c#j + σξ#j
, j = 1, 2, . . . ,

where

• {ξj , ξ#j ; j = 1, 2, . . .} is a family of independent com-
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plex random variables, whose real and imaginary
parts are independent standard Gaussian variables,

• c = (c1, c2, . . .), c
# = (c#1, c

#

2, . . .) are sequences in l2
that represent the Fourier coe�cients of the under-
lying signals,

• σ is assumed to be known.

If we introduce the pseudo-distance d such that

d2(c, c#) , inf
τ

+∞∑

j=1

|cj − e−ijτ c#j |2,

testing that f was shifted from f# amounts to testing
H0 against H1 with

{
H0 : d(c, c#) = 0,

H1 : d(c, c#) ≥ Cρσ,
where C is a positive constant and ρσ is a sequence
of positive real numbers. For reasons that we shall
explain later, we assume that c and c# belong under
the alternative to a Sobolev ball

Fs,L ,
{
u = (u1, u2, . . .) :

∞∑

j=1

j2s|uj |2 ≤ L2
}
,

with s > 0. With this notation, we denote Θ0 and
Θ1 the parameter sets corresponding to the hypothe-
ses H0 and H1, Y and Y # the sequences (Y1, Y2, . . .)
and (Y #

1 , Y
#

2 , . . .), and we call Pc,c# the probability en-
gendered by (Y ,Y #) when the parameters are c and
c#.

A detailed discussion of the model is deferred to Sec-
tion 4.

Minimax testing

A randomized test in our model is a random variable
taking values in [0, 1] and measurable with respect to
the σ-algebra engendered by (Y ,Y #). In practice, the
user simulates an independent random variable with
a Bernoulli distribution of parameter the value of the
test, which was computed from the data (Y ,Y #). The
null hypothesis is accepted, respectively rejected, when
the result of the simulation is 0 or 1. We say that a
test is nonrandomized when it only takes the values 0
or 1.

To measure the performance of a test ψ, we choose the
minimax point of view, in which the errors of �rst and
second kind are de�ned by

{
α(ψ,Θ0) = supΘ0

Ec,c#
(
ψ
)
,

β(ψ,Θ1) = supΘ1
Ec,c#

(
1− ψ

)
.

Note that in the nonrandomized case, the �rst kind
error is supΘ0

Pc,c#
(
ψ = 1

)
and the second kind error

supΘ1
Pc,c#

(
ψ = 0

)
.

We say that consistent testing in the asymptotic min-
imax sense is possible if for all α, β > 0, there exists a
test ψσ such that





lim
σ→0

α(ψσ,Θ0) ≤ α,
lim
σ→0

β(ψσ,Θ1) ≤ β.

The distance between the null and the alternative hy-
potheses, Cρσ, determines the existence of such tests.
Indeed, if Cρσ is too small, no testing procedure is
asymptotically better than a blind guess, for which
α(ψ,Θ0) + β(ψ,Θ1) = 1. We call ρ∗σ the asymptotic
minimax separation rate if there are two positive con-
stants C∗ and C∗ such that consistent testing is impos-
sible for ρσ = ρ∗σ and C < C∗, and possible for ρσ = ρ∗σ
and C > C∗. The best constants C∗ and C∗ satisfying
these conditions are called exact separation constants.
Conventionally, one applies the informal minimal writ-
ing length rule to avoid nonuniqueness of the minimax
separation rate and of these constants. Moreover, a
test which is consistent when ρσ = ρ∗σ and for some
C > 0 is called asymptotically minimax rate optimal.

There is a vast literature on the subject of mini-
max testing: minimax separation rates were investi-
gated in many models, including the Gaussian white
noise model, the regression model, the Gaussian se-
quence model and the probability density model, for
the greater part in signal detection, i.e., testing the hy-
pothesis "f ≡ 0" against the alternative "‖f‖ ≥ Cρσ".
We present a selective overview of the papers that are
the most relevant in the context of this work.

Starting from Ingster (1982) and Ermakov (1990),
where the minimax separation rate and the exact sep-
aration constants were obtained when the functions in
the alternative lie in ellipsoids and the separation from
0 is measured by the l2-norm, various cases were con-
sidered: lp-bodies as well as Sobolev, Hölder and Besov
classes. We refer to Ingster, Suslina (2003) and Ingster
(1993) for a survey. The cases when the functions in
the alternative set lie in Sobolev or Hölder classes and
the separation from 0 is measured by the sup-norm or
by their values at a �xed point were studied in Lep-
ski, Tsybakov (2000). Finally, the case of the Lp-norm
with p < 2 in Besov classes was considered in Lepski,
Spokoiny (1999).

Now, all the previously cited results are asymptotic,
in the sense that the noise level σ (in the white noise
model) tends to 0. But from a practical point of
view, it may be interesting to look at the problem
from a nonasymptotic point of view. In the regression
and Gaussian sequence models, Baraud (2002) derived
nonasymptotic minimax separation rates when the
functions in the alternative lie in lp-bodies (0 < p ≤ 2)
and the separation from 0 is measured by the l2-norm.
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Baraud et al. (2003,2005) proposed procedures for
testing linear or convex hypotheses in the regression
model, and Fromont et al. (2006) inspected the im-
provement implied by a further hypothesis on the pe-
riodicity of the signal in the periodic Sobolev balls.

Composite null hypothesis testing

Up to here, we have reviewed results dealing mainly
with a simple null hypothesis, namely in the case of
signal detection: "f ≡ 0". In contrast, the testing
problem in the shifted curve model deals with a com-
posite null hypothesis. Here, we give a brief overview
of the papers presenting hypothesis testing problems
with composite null hypotheses.

The series of papers Baraud (2002), Baraud et al.
(2003,2005) tackled with nonparametric null hypoth-
esis, but their assumptions are not applicable in our
set-up, since our null hypothesis is neither linear nor
convex. On the other hand, the test of a parametric
model against a nonparametric one was studied in a
substantial number of papers (cf. Horowitz, Spokoiny
(2001) and references therein), but only in Horowitz,
Spokoiny (2001) from a minimax point of view. The
minimax separation rate that they obtained is the
same as with a simple null hypothesis. This is due to
the strong assumptions made on the behaviour of the
estimator of the parameter characterizing the model
under H0.

On a related note, Gayraud, Pouet (2001, 2005)
treated a more general composite null hypothesis in
the regression model, that is mainly characterized by
its entropy. In fact, the set of functions in the null
hypothesis can grow with the sample size, and so be
nonparametric. Their rate is the same as in the case
of a simple hypothesis.

Adaptive testing

A limitation of the minimax approach is that the opti-
mal tests depend on the smoothness class. This is not
convenient from a practical point of view, because the
choice of the smoothness seems to be unnatural and
arbitrary. To obtain handier procedures, we need an
adaptive de�nition for hypothesis testing.

Prior to testing, some sets of smoothness parameters
s, L must be chosen, over which adaptation is per-
formed. Typically, these sets are taken as compact
intervals [s1, s2], [L1, L2]. To each couple of smooth-
ness parameters (s, L), we associate the smoothness

set Fs,L, and we write Θs,L
0 and Θs,L

1 the correspond-
ing null and alternative hypotheses. Note that, in our
problem, Θs,L

0 ≡ Θ0 is independent of the smooth-

ness parameters, and that Θs,L
1 depends on (s, L), not

only because c and c# are in Fs,L, but also since ρσ
is allowed to be a function of s: as a matter of fact,
Θs,L

1 depends on the choice of the radius Cρσ(s). The
easiest way to achieve adaptation is to use the test
corresponding to the most constraining smoothness
(s1, L2), but this entails a signi�cant loss of e�ciency
if the tested parameters are in fact smoother.

Thus, we prefer a more economical approach and we
will say that consistent adaptive testing is possible uni-
formly over s ∈ [s1, s2] and L ∈ [L1, L2], if for all
α, β > 0, there is a test ψσ depending only on s1, s2, L1

and L2 such that




lim
σ→0

α(ψσ,Θ0) ≤ α,
lim
σ→0

sup
s,L

β(ψσ,Θ
s,L
1 ) ≤ β.

However, adaptive testing is not always possible with-
out loss of e�ciency, i.e., taking ρσ(s) = ρ∗σ(s) for each
s. That is why it was suggested to replace σ by σdσ
in the expression of ρ∗σ(s), where dσ is a sequence of
positive real numbers, which can be seen as a neces-
sary payment regarding the intensity of the noise to
achieve adaptivity.

Now, we say that ρ∗σdσ (s), s ∈ [s1, s2] is the adaptive
asymptotic minimax separation rate if there are two
positive constants C∗ and C∗ such that adaptive con-
sistent testing is impossible for ρσ(s) = ρ∗σdσ (s) and
C < C∗, and possible for ρσ(s) = ρ∗σdσ (s) and C > C∗.

Spokoiny (1996) proved that the optimal asymptotic
factor is dσ = (log log σ−1)1/4, for signal detection in
Besov balls. Gayraud, Pouet (2005) extended this re-
sult for Hölder classes in the regression model.

Fan et al. (2001) provided a generic tool to construct
minimax and adaptive minimax tests: the generalized
maximum likelihood, that we also use in the present
work to build our procedures both in the nonadaptive
and adaptive contexts.

Our contribution

The problem considered in the present work is qual-
itatively di�erent from the aforementioned works on
the minimax separation rate, since our null hypothesis
is not only composite but also semiparametric. Fur-
thermore, it seems that the �nite-dimensional parame-
ter cannot be uniformly consistently estimated, which
contrasts with the situation of Horowitz, Spokoiny(
2001).

Nethertheless, we propose a testing procedure which
is consistent when the separation rate is of order
(σ2
√

log σ−1)2s/4s+1. This rate is then proven to be
minimax, up to a possible logarithmic factor. Indeed,
no testing procedure is consistent for a separation rate
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smaller than σ4s/4s+1, which is the rate of signal detec-
tion in the Gaussian sequence model when the signal
to be detected belongs to a Sobolev ball and the sep-
aration from 0 is measured by the l2-norm.

Further, an adaptive test is proposed to circumvent
the limitations of the nonadaptive approach. This test
is minimax rate optimal, up to a possible logarithmic
factor, uniformly over a family of Sobolev balls.

Finally, there is a gap between our lower and upper
bounds for the asymptotic minimax separation rate.
It could be argued that the lower bound is subop-
timal, and that the minimax separation rate for the
shifted curve model does contain our logarithmic fac-
tor. Indeed, the problem of testing the goodness-of-�t
of the shifted curve model can be regarded as an adap-
tation to the unknown shift parameter. As a matter
of fact, if adaptation to the unknown smoothness typ-
ically entails a loglog-factor, other types of adapta-
tion can bring simple logarithmic ones: it is proved in
Lepski, Tsybakov (2000) that the asymptotic minimax
separation rate for signal detection when the signal to
be detected belongs to a Sobolev or Hölder ball and
the separation from 0 is measured by the sup-norm is
(σ2
√

log σ−1)s/2s+1, while it is σ2s/2s+1 when the sep-
aration from 0 is measured by the value of the signal
at a �xed point. The logarithmic factor can be inter-
preted as a payment for the adaptation of the problem
of testing at one point when this point is unknown.
Furthermore, note that the same logarithmic factor
appears in Fromont et al. (2006), where upper bounds
on the minimax separation rate are established in the
problem of periodic signal detection with unknown pe-
riod.

Organization of the paper

The rest of this paper is organized as follows: a non-
adaptive procedure is proposed in Section 1, and ad-
justed in Section 2 to obtain an adaptive test. We also
state their minimax performances, which Section 3 in-
dicates to be at least nearly optimal in the minimax
sense. Sketches of the proofs of the Theorems are given
in Sections 5 to 7, and the lemmas used in these proofs
are stated in Section 8. Long versions of the proofs are
available in Appendix A of the Supplementary Mate-
rial. The model is discussed in Section 4.

1 Nonadaptive testing procedure

Here, we build a test which will be proven later
to be minimax, up to a possible logarithmic fac-
tor. Indeed, the procedure achieves the rate ρσ =
(σ2
√

log σ−1)2s/4s+1.

Our proposal, which carries on the work presented

in Appendix B of the Supplementary Material, is
based on standardized versions λσ(N) of estimators
of d(c, c#):





λσ(N) =
minτ

∑N
j=1

∣∣Yj−e−ijτY #

j

∣∣2
4σ2
√
N

−
√
N,

ψσ(N, q) = 1{
λσ(N)>q

}.

Put into words, the test ψσ(N, q) rejects the null hy-
pothesis when the statistic λσ(N) exceeds the thresh-
old q and accepts it otherwise. The following theorem
establishes the minimax properties of this testing pro-
cedure for a proper choice of the tuning parameters.

Theorem 1. Set





Θ0 =
{
c, c# ∈ l2 | d(c, c#) = 0

}
,

Θ1 =
{
c, c# ∈ Fs,L | d(c, c#) ≥ Cρσ

}
,

with s and L are positive real numbers, ρσ =(
σ2
√

log σ−1
) 2s

4s+1

and C2 > 4L2c−2s
s,L +

√
256 cs,L

4s+1 ,

cs,L = (4sL2
√

4s+ 1)2/4s+1. Consider the test ψσ =

ψσ(N, q) with N = Nσ(s, L) =
[
cs,L ρ

−1/s
σ

]
and q =

qα, the quantile of order 1 − α of the standard Gaus-
sian distribution. Then

lim
σ→0

α(ψσ,Θ0) ≤ α ,

lim
σ→0

β(ψσ,Θ1) = 0 .

Remark. In the rest of this section and in the proof,
we skip the dependence of Nσ(s, L) in s and L when
no confusion is possible.

A sketch of the proof is given in Sections 5 to 7. Let us
now develop a brief heuristic describing how one could
have guessed the optimal value of ρσ.

Heuristic for the performance of the

nonadaptive procedure

Our proof will show that, under H0, λσ(Nσ) is
bounded from above in probability. Thus, we decide to
reject the null hypothesis when λσ(Nσ) is larger than
a constant to be chosen properly.

On the other hand, we inspect the behaviour of the
statistic under the alternative hypothesis and give a
condition on ρσ under which the test statistic is or-
ders of magnitude larger than a constant, so that the
procedure can have the desired power.
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We derive the heuristical lower bound

λσ(Nσ) '
minτ

∑Nσ
j=1 |cj − e−ijτ c#j |2
4σ2
√
Nσ

−
∣∣∣
Nσ∑

j=1

|ξj |2 + |ξ#j |2 − 4

4
√
Nσ

∣∣∣

− 1

2
√
Nσ

max
τ

∣∣∣
Nσ∑

j=1

Re
(
eijτξjξ#j

)∣∣∣.

The proof will establish that the second term is
bounded in probability, while the third, that we call
perturbative, is of order

√
logNσ. The �rst term, up

to a 4
√
Nσσ

2 factor, is an approximation of the square
of the pseudo-distance d(c, c#). Since c and c# lie in
Fs,L, the remainder of the sum can be bounded from
above, up to a constant factor, by N−2s

σ . In a nutshell,
we get the heuristical lower bound

λσ(Nσ) & d2(c, c#)−K N−2s
σ√

Nσσ2
−OP (

√
logNσ).

Consequently, the alternative is detected as soon as

ρ2
σ � max

(
σ2
√
Nσ, N

−2s
σ , σ2

√
Nσ logNσ

)

∼
(
σ2
√

log σ−1
) 4s

4s+1

.

Heuristic for the optimal constant

The previous optimization shows that the test achieves
its best rate when Nσ is of the order of ρ∗σ

−1/s. Now,

denoting Nσ =
[
cρ∗σ
−1/s

]
, a similar heuristic can give

an optimized constant C in the de�nition of Θ1. In-
deed, Lemma 6 (cf. Section 8) gives the more precise
lower bound (C2−4L2c−2s)ρ∗σ

2 for the sum in the �rst
term, and we will prove the exact order of magnitude

of the third to be
√

256 c
4s+1 logNσ. Thus

λσ(Nσ) ≥
(
C2 − 4L2c−2s −

√
256 c

4s+ 1

)√
logNσ.

and this leads to a minimization problem determining
the choice of c

(
cf. Theorem 1

)
.

2 Adaptive testing procedure

The procedure given in the previous section possesses
asymptotic minimax optimality properties thanks to
an appropriate choice of the tuning parameter Nσ, but
the practician needs to determine values of s and L to
implement the test. As it seems arbitrary and nonin-
tuitive to make assumptions on the smoothness of the
signals, it is necessary in practice to use an adaptive

procedure, i.e., a procedure that does not require any
precise knowledge of s and L.

In this section, we give an adaptive procedure over
s ∈ [s1, s2] and L ∈ [L1, L2], and prove that it
achieves the same rate as the nonadaptive one, i.e.,
(σ2
√

log σ−1)2s/4s+1. Note that the test only depends
on s1 and s2, and not on L1 or L2.

Here is the idea of its construction. The nonadaptive
testing procedure proposed above depends on s only
via the tuning parameter Nσ(s). Using a Bonferroni
procedure like in Gayraud, Pouet (2005) or Horowitz,
Spokoiny (2001), we consider the maximum of these
tests for several values of Nσ(s). However, the set
N (s1, s2) of these parameters has to be chosen prop-
erly. Indeed, it is not necessary to consider a maximum
over every possible Nσ(s), we only need to consider a
smaller set of parameters of logarithmic size (which
will be justi�ed by Lemma 6 of Section 8). For every
s2 > s1 > 0, de�ne





Σ(s1, s2) =
{
s = s1 + j

log σ−1 | s1 ≤ s ≤ s2

}
,

N (s1, s2) =
{
Nσ(s) | s ∈ Σ(s1, s2)

}
.

Theorem 2. Set





Θ0 =
{
c, c# ∈ l2 | d(c, c#) = 0

}
,

Θs,L
1 =

{
c, c# ∈ Fs,L | d(c, c#) ≥ Cρσ(s)

}
,

with C > 0, ρσ(s) = rσρ
∗
σ(s), ρ∗σ(s) =(

σ2
√

log σ−1
) 2s

4s+1 , rσ → +∞.

Consider the test ψ̃σ = maxN ψσ
(
N,
√

2 log log σ−1
)

where the maximum is taken over all N in N (s1, s2)
with ∀ s ∈ [s1, s2], Nσ(s) =

[
ρ∗σ(s)−1/s

]
. Then, for all

�nite intervals [s1, s2] and [L1, L2] included in R+
∗ ,

lim
σ→0

α
(
ψ̃σ,Θ0

)
= 0,

lim
σ→0

sup
[L1,L2]

sup
[s1,s2]

β
(
ψ̃σ,Θ

s,L
1

)
= 0,

Heuristic for the performance of the adaptive

procedure

Here we explain why our adaptive procedure achieves
the same rate as the nonadaptive one. The heuristic
of the previous section roughly holds, with this dif-
ference that maxN λσ(N) is of loglog-order under the
null hypothesis. But this term is negligible in view of
the perturbative term, so that the performances of the
test do not deteriorate in the adaptive problem.
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3 Lower bound for the minimax rate

After stating the performance of our tests, we prove
in this section that they are at least nearly rate opti-
mal. Indeed, we are able to establish a lower bound for
our model, by proving that the detection of a signal
lying in a Sobolev ball when the separation from 0 is
measured by the l2-norm is simpler than ours, in the
sense that every lower bound result for this model is
adaptable for our purpose.

Let us �rst introduce the classical signal detection
problem, for which the minimax separation rate, and
even the exact separation constants, are known:





Yj = cj + σξj , j = 1, 2, . . . ,

Θclas
0 = {0},

Θclas
1 =

{
c ∈ Fs,L

∣∣ ‖c‖2 ≥ Cρσ
}
.

For this model, we de�ne the errors of �rst and second
kind of a test ψclass by
{
αclass(ψclass,Θclass

0 ) = supΘclass
0

Ec
(
ψ
)
,

βclass(ψclass,Θclass
1 ) = supΘclass

1
Ec
(
1− ψ

)
,

where we denote Pc the probability engendered by
Y = (Y1, Y2, . . .) when (c1, c2, . . .) = c.

Theorem 3. Given the two models exposed above, we
have

inf
ψα
β(ψα,Θ1) ≥ inf

ψclass
α

βclass(ψclass
α ,Θclass

1 ) ,

where the in�ma are taken over all tests of level α
respectively for our model and for the classical one.

Thus, our model can bene�t from every lower bound
result on the classical model. We choose to exploit
the nonasymptotic results presented in Baraud (2002),
Proposition 3. The following theorem shows that the
asymptotic minimax separation rate for our problem
is not smaller than σ4s/4s+1.

Corollary. Let α and β be in ]0, 1]. De�ne η = 2(1−
α − β), L = log(1 + η2) and ρ2 = supd≥1

[√
2Ldσ2 ∧

L2d−2s
]
. Then

ρσ ≤ ρ ⇒ inf
ψα

β
(
ψα,Θ1

)
≥ β,

where the in�mum is taken over all tests of level α for
the shifted curve model.

Remark. We can approximate ρ by computing

sup
x∈R+

√
2Lxσ2 ∧ L2x−2s = L

1
4s+1

(
σ2
√

2L
) 2s

2s+1 .

Remark. Our proof shows that every lower bound re-
sult for adaptive testing could be used for our purpose
as well.

4 Discussion

Model

The choice of our model was inspired by practical con-
siderations, and we consider applying it to a problem
in computer vision. Accordingly, it is necessary to jus-
tify the realism of this model.

Variance

First of all, we assumed that the common variance is
known, which is not satis�ed in practice. Netherthe-
less, a consistent estimator for the Gaussian sequence
model can be computed. Then, we can plug the es-
timator of the common variance in the expressions of
the test statistics, as done in Gayraud, Pouet (2001)
for example.

Symmetry of the model

In our modelization, the two parts corresponding in
the Gaussian white noise model to two di�erent func-
tions are treated symmetrically: the same model, with
the same variance and the same noise, applies to both.
But, in applications, the signals that we want to match
with each other are thought to have the same nature.
On the other hand, as we can compute an estimator of
the variance in the Gaussian sequence model, we are
free to normalize the equations of the model to get the
same variance for both parts.

Gaussian sequence model

Our choice of the Gaussian sequence model is not re-
strictive, since this model is equivalent in Le Cam's
sense to many other models, including Gaussian white
noise, density estimation

(
cf. Nussbaum (1996)

)
, non-

parametric regression
(
cf. Brown, Low (1996), in the

case of random design in Reiss (2008), in the case of
nonGaussian noise in Grama, Nussbaum (1998,2002)

)
,

ergodic di�usion
(
cf. Dalalyan, Reiss (2007)

)
. On the

other hand, the Gaussian noise is accepted in com-
puter vision as a good approximation of the Poisson
noise, that is more natural in this context.

Nonasymptotic approach

The statement of our results concerning the perfor-
mance of both the nonadaptive and adaptive testing
procedure are asymptotic: the �rst and second kind
errors are asymptotically bounded by some prescribed
levels, and no precision is given about the convergence
speed. For the practician, nonasymptotic results are
preferable, since real studies consider �nite samples
of observations. Nethertheless, the proofs of Theo-
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rems 1 and 2 use only nonasymptotic upper bounds,
and nonasymptotic statements can be derived.

5 Sketch of the proof of Theorem 1

5.1 First kind error

Here, we prove that the asymptotic �rst kind error of
the test ψσ does not exceed the prescribed level α. To
this end, denote τ∗ a real number such that, under H0,
∀j ≥ 1, c#j = eijτ∗cj . We skip the dependence of τ∗ on
c and c#. Using the inequality

min
τ

Nσ∑

j=1

∣∣Yj − e−ijτY #

j

∣∣2 ≤ σ2
Nσ∑

j=1

∣∣ξj − e−ijτ∗ξ#j
∣∣2,

we get that α(ψσ,Θ0) equals

sup
Θ0

Pc,c#
(minτ

∑Nσ
j=1

∣∣Yj − e−ijτY #

j

∣∣2

4σ2
√
Nσ

−
√
Nσ > qα

)

≤ P
( 1

4
√
Nσ

Nσ∑

j=1

(
η2
j + η̃2

j − 4
)
> qα

)
,

where ηj , η̃j
iid∼ N (0, 2),

and we conclude by Berry-Esseen's inequality.

5.2 Second kind error

It remains to study the second kind error of the test,
and to show that it tends to 0. Our proof is based
on the heuristic given in the main paper: we decom-
pose λσ(Nσ) into several terms, and make use of their
respective orders of magnitude. The decomposition
gives

β(ψσ,Θ1) ≤ sup
Θ1

Pc,c#

(
Dσ(c, c#)− σ2

√
NσAσ

− 2σ2Bσ ≤ 4qασ
2
√
Nσ

)
.

with the notation:




Dσ(c, c#) = minτ

{∑Nσ
j=1 |cj − e−ijτ c#j |2

+2σ
∑Nσ
j=1 Re

(
(cj − e−ijτ c#j)(ξj − e−ijτξ#j )

)}
,

Aσ =
∣∣∣
∑Nσ
j=1

|ξj |2+|ξ#j |2−4√
Nσ

∣∣∣,

Bσ = maxτ

∣∣∣
∑Nσ
j=1 Re

(
eijτξjξ#j

)∣∣∣.

In addition to cs,L, introduced in the de�nition of Nσ,
we will need the constant c′ and ε, de�ned as




c′ =

√
256 cs,L

4s+1 ,

ε = 1
2

(
C2 − 4L2c−2s

s,L −
√

256 cs,L
4s+1

)
.

Separating the di�erent terms to study them indepen-
dently, we write

β(ψσ,Θ1) ≤ sup
Θ1

Pc,c#

(
Dσ(c, c#) ≤ κσρ2

σ

)

+ P

(
σ2
√
NσAσ > ερ2

σ

)
+ P

(
2σ2Bσ > c′ρ2

σ

)
,

with κσ = c′ + ε+
4qα
√
cs,L√

log σ−1
.

The conclusion follows by using respectively
Lemma 1 and 2, Berry-Esseen's inequality and
Lemma 3.

6 Sketch of the proof of Theorem 2

6.1 First kind error

With the same arguments as for Theorem 1, we derive
the inequality

α
(
ψ̃σ,Θ0

)
≤

∑

N∈N (s1,s2)

1√
2πN

+
exp(− log log σ−1)√

4π log log σ−1

≤ 1√
2π

CardN (s1, s2)√
Nσ(s2)

+
1√
4π

CardN (s1, s2)

log σ−1
√

log log σ−1
.

As CardN (s1, s2) = 1 +
[

(s2 − s1) log σ−1
]
is of log-

arithmic order, this implies that α
(
ψ̃σ,Θ0

)
→ 0.

6.2 Second kind error

Finally, we study the second kind error and prove that
it converges to 0.

For s ∈ [s1, s2], de�ne S = max
{
t ∈ Σ(s1, s2) | t ≤

s
}
, where we omit the dependence of S in s for sim-

plicity sake. With this de�nition, sups,L β(ψ̃σ,Θ
s,L
1 ) is

smaller than

sup
s,L

sup
Θs,L1

Pc,c#
(
λσ(Nσ(S)) ≤

√
2 log log σ−1

)
.

Then, the computations are similar to those of The-
orem 1, with the additionnal use of Lemma 4, which
justi�es the approximation of s by S.

7 Proof of Theorem 3

Consider a randomized test ψ in the shifted curve
model. We will de�ne a corresponding test in the clas-
sical model with smaller �rst and second kind errors,
and it is su�cent to establish the result.

First note that there is a measurable function f
with respect to the σ-algebra engendered by the se-
quences Y and Y # and with values in [0, 1] such that
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ψ = f(Y ,Y #). Denoting ε a sequence of i.i.d ran-
dom variables N (0, σ2) independent from Y , we de�ne
ψclass = Eε

(
f(Y , ε)|Y

)
, where Eε is the integration

with respect to the probability engendered by ε. ψclass

is σ(Y )-measurable and thus constitutes a test for the
classical model.

This testing procedure can be interpreted as a test
in the shifted curve model when c# = 0. Indeed,
d(c, c#) = ‖c‖2 when c# = 0, so that Θclass

0 × 0 ⊆ Θ0

and Θclass
1 × 0 ⊆ Θ1. By Tonelli-Fubini's theorem,

ψclass satis�es αclass(ψclass,Θclass
0 ) ≤ α(ψ,Θ0) and

βclass(ψclass,Θclass
1 ) ≤ β(ψ,Θ1).

8 Statements of the lemmas

Lemma 1. Let N be some positive integer, let ξj,

ξ̃j, j = 1, . . . , N be independent complex valued ran-
dom variables such that their real and imaginary parts
are independent standard Gaussian variables, and let
c = (c1, . . . , cN ), c̃ = (c̃1, . . . , c̃N ) be complex vectors.
Denote ξ = (ξ1, . . . , ξN ), ξ̃ = (ξ̃1, . . . , ξ̃N ) and




Dσ,N (c, c̃) = minτ

{∑N
j=1 |cj − e−ijτ c̃j |2

+2σ
∑N
j=1 Re

(
(cj − e−ijτ c̃j)(ξj − e−ijτ ξ̃j)

)}
,

dN,τ (c, c̃) =
√∑N

j=1

∣∣cj − e−ijτ c̃j
∣∣2,

uN (ξ, c, c̃) = supτ

∣∣∣
∑N
j=1

Re
[
ξj(cj−e−ijτ c̃j)

]
dN,τ (c,c̃)

∣∣∣.

Assume that x0 ≤ minτ dN,τ (c, c̃), then for every real
M ,

P

(
Dσ(c, c̃) ≤M

)
≤ 2P

(
σuN (ξ, c, c̃) ≥ x0

4
− M

4x0

)

+ 2P

(
x0

2
< σuN (ξ, c, c̃)

)
.

Assume further that c and c̃ are in Fs,L and that x0

4 −
M
4x0

> 0, then combining the last result with Lemma 2,

P

(
Dσ(c, c̃) ≤M

)
≤ 2
(

1 + x−1
0 L max{1, N1−s}

)

×
(

exp
{
− (x2

0 −M)2/32x2
0σ

2
}

+ exp
{
− x2

0/8σ
2
})
.

Lemma 2. Let c = (c1, c2, . . .) and c̃ = (c̃1, c̃2, . . .)
in Fs,L with s > 0 and let N be an integer. Denoting

ηj , η̃j
iid∼ N (0, 1), we de�ne

S(t) =

N∑

j=1

ηj Re(cj − e−ijtc̃j) + η̃j Im(cj − e−ijtc̃j)√∑N
j=1

∣∣cj − e−ijtc̃j
∣∣2

for every t in [0, 2π]. Then P
(
‖S‖∞ ≥ x

)
is smaller

than
( L ·max{1, N1−s

σ }√
minτ

∑N
j=1 |cj − e−ijτ c̃j |2

+ 1
)
e−

x2

2 .

Lemma 3. Let ξj , ξ̃j be independent complex val-
ued random variables such that their real and imag-
inary parts are independent standard Gaussian vari-
ables, let c, s and σ be some positive real numbers.

Denote ρσ = (σ2
√

log σ−1)
2s

4s+1 , Nσ = [cρ
−1/s
σ ] and

B = maxτ

∣∣∣
∑Nσ
j=1 Re

(
eijτξj ξ̃j

)∣∣∣. Then, for σ small

enough,

P

(
2σ2Bσ > c′ρ2

σ

)
≤ 2c(log σ−1)

−1
4s+1σ

c′2
64c− 4

4s+1 +e−Nσ/2.

The proofs of the lemmas are based on the following
formula.

Theorem (Berman (1988)). Let N be a positive in-
teger, a < b some real numbers and gj, j = 1, . . . , N
be continuously di�erentiable functions on [a, b] satis-

fying
∑N
j=1 gj(t)

2 = 1 for all t ∈ R and j ∈ [1, N ], and
ηj, j = 1, . . . , N , some independent standard Gaussian
variables. Then

P

(
sup
[a,b]

N∑

j=1

gj(t)ηj ≥ x
)
≤ I

2π
e−

x2

2 +

∫ ∞

x

e−
t2

2√
2π

dt

with I =

∫ b

a

[ n∑

j=1

g′j(t)
2

]1/2

dt.

Lemma 4. Let σ be a positive real number and s, S in
[s1, s2] ⊆ R+

∗ be such that 0 ≤ s−S ≤ 1
log σ−1 . Denote

ρ∗σ(s) =
(
σ2
√

log σ−1
) 2s

4s+1

, then, for σ small enough,

ρ∗σ(S)

ρ∗σ(s)
≤ e

4
(4s1+1)2 .
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