
Classifier Cascade for Minimizing Feature Evaluation Cost

Minmin Chen1 Zhixiang (Eddie) Xu1 Kilian Q. Weinberger1 Olivier Chapelle2 Dor Kedem1

Washington University in Saint Louis1

Saint Louis, MO
chenm, zhixiang.xu, kilian, kedem.dor@wustl.edu

Yahoo! Research2

Santa Clara, CA
chap@yahoo-inc.com

Abstract

Machine learning algorithms are increasingly
used in large-scale industrial settings. Here, the
operational cost during test-time has to be taken
into account when an algorithm is designed. This
operational cost is affected by the average run-
ning time and the computation time required for
feature extraction. When a diverse set of features
is used, the latter can vary drastically. In this
paper we propose an algorithm that constructs a
cascade of classifiers which explicitly trades-off
operational cost and classifier accuracy while ac-
counting for on-demand feature extraction costs.
Different from previous work, our algorithm re-
optimizes trained classifiers and allows expen-
sive features to be scheduled at any stage within
the cascade to minimize overall cost. Exper-
iments on actual web-search ranking data sets
demonstrate that our framework leads to drastic
test-time improvements.

1 Introduction

During the past decade, the field of machine learning has
managed a successful transition from academic research to
industrial real-world applications. Silently, machine learn-
ing algorithms have entered the mainstream market through
applications such as web-search engines (Zheng et al.,
2008), product recommendations (Bennett and Lanning,
2007), family-safe content filtering (Fleck et al., 1996),
email- and web-spam filters (Abernethy et al., 2008; Wein-
berger et al., 2009) and many others. These successes are a
testament to the maturity of machine learning as a research
field and to the robustness of the various algorithms and ap-
proaches. In web-search engines, machine learned rankers

Appearing in Proceedings of the 15th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2012, La Palma,
Canary Islands. Volume XX of JMLR: W&CP XX. Copyright
2012 by the authors.

are used hundreds of millions of times per day and are re-
lied upon by billions of people around the world.

However, there is a distinct difference between the machine
learning scenarios in typical research papers and the real-
world industrial setting. In industrial settings, the aver-
age computational cost during test-time is a serious con-
sideration when algorithms are deployed. If a task is per-
formed millions of times per day, it is crucial that the aver-
age computation time required per instance is sufficiently
low to stay within the limits of the available computational
resources. As an example consider a commercial e-mail
spam filter. It has to process millions of messages per day,
and given its limited resources must spend less than 10
milliseconds on each individual e-mail. Similarly, a web
search engine might have to score hundreds of thousands
of documents within a few milliseconds.

The two key differences from traditional machine learning
are that 1. the computational cost is evaluated on average
per test instance and 2. features are computed on-demand
and vary significantly in cost. For example, in the e-mail
spam filtering scenario, it is fine to spend 30 milliseconds
on the occasional image spam e-mail (which might require
expensive OCR features), if a majority of the messages can
be filtered out just based on their sender-IP address in less
than one millisecond (without even loading the message
content). Similarly, in web search ranking, many docu-
ments can cheaply be eliminated using precomputed fea-
tures such as PageRank. This leaves few documents to be
scored with more expensive features such as advanced text
match ones (Chapelle and Chang, 2011, Section 4.2).

Although the problem of fast evaluation has already been
studied, mostly in the context of face detection (Viola
and Jones, 2002), average-time complexity and on-demand
feature-cost amortization is surprisingly absent in most of
today’s machine-learning literature – even in application
domains such as web-search ranking (Chapelle et al., 2010;
Zheng et al., 2008) or email-spam filtering (Weinberger
et al., 2009).

In this paper we consider the problem of post-processing
classifiers to reduce their test time complexity, based on

218

Classifier Cascade for Minimizing Feature Evaluation Cost

classifier execution time and feature extraction cost in
learning scenarios with skewed class proportions. In par-
ticular, we focus on re-weighting and re-ordering of weak
learners obtained with additive regression methods (such as
gradient boosting (Friedman, 2001)). After the initial train-
ing, a dictionary of classifiers is re-organized into a chain of
cascades (Viola and Jones, 2002) – where each can reject
an input or pass it on to the subsequent stage. The aver-
age cost is significantly reduced, because most test inputs
are rejected early-on after only a few cheap features are ex-
tracted. Different from previous work (Raykar et al., 2010),
we do not pre-assign features to cascade stages; rather, we
make the order of the feature extraction part of the opti-
mization. This entails a crucial benefit, as it allows even an
expensive feature to be used early if it leads to an amortized
gain in performance through more accurate and aggressive
rejection of inputs.

Following several intuitive steps we derive an optimization
problem which can be solved in a simple iterative proce-
dure. We further relax the optimization problem into a
series of sub-problems with simple closed-form solutions,
which can be solved in a matter of minutes. We use this re-
laxed version as initialization and as an efficient method to
cross-validate hyper-parameters. We demonstrate that our
method reduces the average cost of a classifier during test
time by an order of magnitude on real-world web-search
ranking data sets, with only a marginal reduction in re-
trieval precision. Surprisingly, even our initialization al-
ready significantly outperforms the current state-of-the-art.

2 Related Work

Previous research has addressed the task of learning cas-
cades of classifiers in various ways in the context of di-
verse applications. The most prominent related work is by
Viola and Jones (2002) in the context of real-time face-
recognition, which arguably inspired most related subse-
quent research. Their algorithm uses Adaboost (Schapire,
1999) to greedily train a cascade of classifiers. Similar to
our approach, each stage can prematurely reject inputs or
pass them on for further evaluation. The average test-time
cost is reduced because early stages, which are applied to
the majority of the inputs, are short and inexpensive. Dif-
ferent from our method, they do not incorporate individu-
alized feature costs and have no global optimization across
cascade stages. In the context of information retrieval,
Wang et al. (2011) adapted this approach to ranking and in-
corporated feature costs but retained the underlying greedy
paradigm. Cambazoglu et al. (2010) propose an approach
to build on top of gradient boosted regression trees explic-
itly for web-search ranking. Similar to our method, they
post-process an additive classifier into a cascade. However,
in their setting the order and weights of the trees are fixed
and they merely introduce early-exits into a fixed additive
model. In contrast, our method re-arranges and re-weights

the trees with the help of a global optimization problem.

Lefakis and Fleuret (2010) use soft-cascades to boost the
entire cascade structure. Here, during training, at each
stage inputs are weighted by their probability of passing
all previous stages. The authors use a fixed number of
stages and all cascades are created together by iteratively
adding a weak classifier to each stage, maximizing the log-
likelihood for the entire cascade model. Saberian and Vas-
concelos (2010) propose a similar approach that takes into
account both the classification loss and the generated cost.
There is no set number of stages and new stages are gen-
erated during training. Each iteration, weak classifiers are
built for every stage and only the one which optimizes the
objective function the most is picked in a greedy fashion.

Most similar to our method is the work by Raykar et al.
(2010). Here, the authors suggest to first group the weak
classifiers and features according to their features’ costs.
They maximize the log-likelihood of the training data while
minimizing the expected test-time cost. However, different
from our method, each stage is constrained to only contain
a fixed subset of features or weak-learners, whereas our
method automatically assigns features and weak-learners
globally.

3 Method

We assume that training data is provided in a set of (in-
put, label) pairs D = {(x1, y1), (x2, y2), · · · , (xn, yn)} 2
Rd ⇥{+1,�1}. For simplicity, the class labels are binary,
although other settings are possible.

In our setting we assume that the two classes are highly
unbalanced, in particular that there are many more nega-
tive examples than positive ones. This setting occurs in
many real-world applications such as web-search ranking
(almost all web-pages are of no relevance to a search-
query), email-spam filtering (most email is spam) and many
others (Lefakis and Fleuret, 2010; Raykar et al., 2010;
Saberian and Vasconcelos, 2010; Viola and Jones, 2002).

We assume that we have a set of base hypotheses H =
{h1, h2, · · · , hT } available. Each ht could be a limited
depth regression tree (Breiman et al., 1984) and the set H
might have been obtained using gradient boosted decision
trees (Friedman, 2001). In this paper we describe how to
re-weight and re-arrange these weak learners into cascades
of more cost-efficient classifier f(·) =

P
t �tht(·).

We assume that each feature ↵ has a specific acquisition
cost c↵ > 0 with c 2 Rd

+, which is required for its ini-
tial computation. Once a feature has been used for the first
time, subsequent evaluations are free1 as its value can be

1This second-use cost could also be set to a small positive con-
stant without any major change in our problem formulation — for
simplicity we assume it is zero.

219

Minmin Chen1, Zhixiang (Eddie) Xu1, Kilian Q. Weinberger1, Olivier Chapelle2, Dor Kedem1

cached efficiently. In addition to a feature cost we also as-
sume a tree-evaluation cost, denoted by the vector e 2 RT

+,
where et is the computational cost of evaluating tree t. (The
vector e is all-constant if all trees are of identical depth.)

For notational simplicity, we define a binary matrix F 2
{0, 1}d⇥T , where F↵t = 1 if and only if feature ↵ is used
in tree t. We can express the cost of a particular classifier
f(·) =

P
t �tht(·) as

c(f) = e>�(�) + c>� (F�(�)) , (1)

where the function �(a) 2 {0, 1} is defined as �(a) = 0
if and only if a = 0.2 The first term within the sum in (1)
is the accumulative tree-evaluation cost, while the second
term sums over the feature costs of all the features that are
used in at least one tree in f .

Equation (1) is the average cost for a single function f eval-
uating all samples; this is the single-stage setting of the
next section. After that we will analyze a cascade model in
which there is a different function at every stage.

3.1 Single-stage Optimization

As a first approach, given a set of trees H previously
learned using gradient boosted regression trees or by any
other method, we propose to re-weight these trees as to ap-
proximately minimize the following loss function L which
trades off between accuracy and cost:

L(f) = `(f) + ⇢r(f) + �c(f). (2)

where `(·) is some convex regression loss function. The
cost-term is weighted by � > 0. To avoid over fitting,
we also introduce an additional regularization term r(f),
weighted by ⇢>0.

For convenience, throughout the paper we use the weighted
squared loss `(f) = 1

2

Pn
i=1 !i(f(xi) � yi)

2, where !i is
the weight pre-assigned to the loss of an input xi.3 For
balanced data usually !i = ! = 1

n , but for unbalanced
data, it is a common practice to weigh positive and neg-
ative classes differently, i.e., {!i = !+, 8i 2 C+} and
{!i = !�, 8i 2 C�} where C+ and C� are the cor-
responding sets of indices for the positive and negative
classes respectively.

For a given input xi, we create a vector h(xi) =
[h1(xi), · · · , hT (xi)]

> that contains the regression results
using all the trees in H (and a constant 1, which we assume

2We assume function �(·) operates element-wise on vectors
and matrices.

3Recently, it has been shown that for web-search ranking
tasks the squared-loss is surprisingly competitive and improve-
ments from ranking-specific loss functions are typically neglible
for non-linear ranking functions such as boosted regression
trees (Chapelle and Chang, 2011).

is an element of H). With this notation, we can express the
resulting classifier as

f(x) = �>h(x). (3)

We choose the weighted squared loss for `(·) and an `1 reg-
ularizer for r(·), and rewrite the loss function (2) entirely
in terms of the weight vector �: 4

L(�) =
1

2

nX

i=1

!i(�
>h(xi) � yi)

2 + ⇢k�k1

+ �
⇥
e>�(�) + c>�(F�(�))

⇤
. (4)

Our goal in this section is to optimize over the weight-
vector � to minimize the cost-sensitive loss L(·) as stated
in eq.(4).

Relaxation. The loss in eq. (4) is non-continuous, but we
can relax it to make it better behaved.

Tree Sparsity. The term e>�(�) in eq. (4) computes the
accumulative tree evaluation cost. To achieve continuity,
we relax the �(·) function into an absolute-value, resulting
in the following relaxation:

TX

t=1

et�(�t) �!
TX

t=1

et|�t| (5)

The resulting weighted-`1 regularization encourages spar-
sity in the weights and therefore fewer trees to be evaluated
during test-time.

Feature Sparsity. The term c>�(F�(�)) in eq. (4) calcu-
lates the total feature acquisitions cost. Each entry of the
vector F�(�) denotes the count of active trees (i.e. �t 6= 0)
in which a particular feature is used. Here, we have two
non-continuous �(·) functions. We relax both jointly into a
weighted `1 � `2 mixed-norm (Kowalski, 2009),

dX

↵=1

c↵

TX

t=1

�(F↵t�(�t)) �!
dX

↵=1

c↵

vuut
TX

t=1

(F↵t�t)2. (6)

Intuitively, the mixed-norm in (6) enforces sparsity on a
per-feature level – effectively, for a given feature, forcing
the classifier to pick many weak-learners that require it, or
none at all. This is encouraged more heavily when a feature
is expensive to compute for the first time (i.e. c↵ is large).

Applying the two relaxations (5) and (6) to our objective
(4), we obtain a continuous and convex objective function,

L̂(�) =
1

2

nX

i=1

!i(�
>h(xi) � yi)

2 + ⇢k�k1

+ �

2
4

TX

t=1

et|�t| +
dX

↵=1

c↵

vuut
TX

t=1

(F↵t�t)2

3
5. (7)

4With a slight abuse of notation we will write
L(�), `(�), r(�), c(�) for the functions in (2).

220

Classifier Cascade for Minimizing Feature Evaluation Cost

1

2

nX

i=1

!i

KX

k=1

qk
i

⇣
yi � h(xi)

>�k
⌘2

| {z }
loss

+
KX

k=1

⇢k
TX

t=1

|�k
t |

| {z }
regularization

+�

0
BBBB@

TX

t=1

et

vuut
KX

k=1

(�k
t dk)2

| {z }
tree-cost

+
dX

↵=1

c↵

vuut
KX

k=1

TX

t=1

(F↵t�k
t dk)2

| {z }
feature-cost

1
CCCCA

(8)

extracted feature unknown feature

-1-1-1

final
prediction

early-exit: predict -1 if

stages

�1 �2 �3 �4

h(x)>�k <✓k

h(x)>�4

Figure 1: Schematic layout of a classifier cascade with four
stages.

3.2 Cascaded Optimization

The previous section has shown how to re-weight the trees
in order to obtain a solution that balances both accuracy
and cost-efficiency. In this section we will go further and
re-order the trees to allow “easy” inputs to be classified on
primarily cheap features and with fewer trees than “diffi-
cult” inputs. In our setup, we utilize our assumption that
the data set is highly class-skewed. We follow the intuition
of Viola and Jones (Viola and Jones, 2002) and stack mul-
tiple re-weighted classifiers into an ordered cascade. See
Figure 1 for a schematic illustration. Each classifier can
reject an input as negative or pass it on to the next clas-
sifier. In data sets with only very few positive examples
(e.g. web-search ranking) such a cascade structure can re-
duce the average computation time tremendously. Almost
all inputs are rejected after only a few cascade steps.

Let us denote a K-stage cascade as C =
{(�1, ✓1), (�2, ✓2), · · · , (�K ,�)}. Each stage has
its own weight vector �k, which defines a classifier
fk(x) = h(x)>�k. An input is rejected (i.e. classified
as negative) at stage k if h(x)>�k < ✓k. The test-time
prediction is �1 in case an input is rejected early and
otherwise h(x)>�K .

Soft assignments. To simulate the early exit of an input
x from the cascade, we define a “soft” indicator function
I�,✓(x) = ��(h(x)>� � ✓), where ��(·) denotes the sig-
moid function ��(x) = 1

1+e��x of steepness � > 0. For
� � 0, the function I�k,✓k(x) 2 [0, 1] approximates the
non-continuous 0/1 step-function indicating whether or not

an input x proceeds beyond stage k (for this writeup we set
� = 50).

As I�k,✓k(xi) 2 [0, 1], we can interpret it as the “prob-
ability” that an input xi passes stage k, and pk

i =Qk�1
j=1 I�j ,✓j (xi) as the probability that xi passes all the

stages 1, . . . , k � 1 prior to k. Further, we let dk =
1
n

Pn
i=1 pk

i denote the expected fraction of inputs still in
stage k. We can further express the probability that stage k
is the exit-stage for an input x as qk

i =pk
i (1�I�k,✓k). (For

the last stage, K, we define qK
i = pK

i , as it is by definition
the exit-stage for every input that enters it.)

Cascade. In the following, we adapt eq. (7) to this cas-
cade setting. For the sake of clarity, we state the resulting
optimization problem in eq. (8) and explain each of the four
terms individually.

Loss. The first term in eq. (8) is a direct adaptation of the
corresponding term in eq. (7). For every input, the final
prediction is computed by its exit-stage. The loss therefore
computes the expected squared error according to the exit
probabilities q1

i , . . . , qK
i .

Regularization. Similar to the single stage case, we employ
`1-regularization to avoid over fitting. As the stages differ
in number of inputs, we allow a different constant ⇢k per
stage. Section 3.4 contains a detailed description on how
we set hyper-parameters.

Tree-cost. The third term,
PT

t=1 et|�t|, in eq. (7) addresses
the evaluation cost per tree. Naı̈vely, we could adapt this
term as

PK
k=1 dk

PT
t=1 et|�k

t |, where we sum over all trees
across all stages – weighted by the fraction of inputs dk

still present in each stage. In reality, it is reasonable to
assume that no tree is actually computed twice for the same
input5. We therefore adapt the same “pricing”-scheme as
for features and consider a tree free after its first evaluation.
Following a similar reasoning as in section 3.1, we change
the `1-norm to the mixed-norm in order to encourage tree-
sparsity across stages.

Feature-cost. The transformation of the feature-cost term
is analogous to the tree-cost. We introduce two modifica-
tions from eq. (7): 1. The mixed-norm is computed across

5The classifiers in all stages are additive and during test-time
we can maintain an accumulator for each stage from the start.
If a tree is re-used at a later stage, the appropriately weighted
result is added to those stage specific accumulators after its first
evaluation. Consequently, each tree is at most evaluated once.

221

Minmin Chen1, Zhixiang (Eddie) Xu1, Kilian Q. Weinberger1, Olivier Chapelle2, Dor Kedem1

stages. 2. The feature cost per stage is weighted by the
expected number of inputs at that stage, dk.

3.3 Optimization

The optimization is carried out in cycles. In every cycle,
K optimization problems are solved, each aiming to learn
the classifier weights �k and the early-exit threshold ✓k of
a particular stage k to reduce the joint loss of the overall
cascade in eq. (8). A detailed pseudo-code implementation
is presented in Algorithm 1.

3.3.1 Cyclic Optimization

In each iteration, we minimize the loss with respect to a
single stage (�k, ✓k) at a time – while keeping all other
optimization variables fixed.

Loss. With all the weight vectors �j and the early exit
thresholds ✓j of the stages j 6= k fixed, for all j < k, the
variables qj

i (for i = 1. . .n) become constants. For sub-
sequent stages j > k, qj

i reduces to qj
i = I�k,✓k(xi)q̃

j
i ,

where q̃j
i is a constant. Minimizing the loss term in eq.

(8) becomes equivalent to minimizing

`(�k, ✓k) = const +
1

2

nX

i=1

!iq
k
i (yi � h(xi)

>�k)2

+
1

2

nX

i=1

0
@!i

KX

j=k+1

q̃j
i

�
yi � h(xi)

>�j
�2
1
A

| {z }
constant

I�k,✓k(xi) (9)

The first term is the regression loss of stages 1 . . . k�1,
which is a constant. The second term computes the regres-
sion loss at stage k and contains �k inside the square and
inside the term qk

i (latter is also constant for k = K). The
third term accumulates the loss of the stages after stage k,
and it depends on �k and ✓k only through I�k,✓k . As we
will point out later in more detail, the third term is the only
non-convex part of the loss and vanishes if k=K.

Regularization and cost. Before we describe how to per-
form the optimization, we address how to circumvent the
non-differentiability of the

p· and | · | operators. The fol-
lowing lemma helps us to rephrase these terms as quadratic
forms, which simplifies the optimization greatly. (Please
note that |x| =

p
x2, and therefore we only address the

square-root term.)

Lemma 1 The following holds for any g(x) > 0:

p
g(x) = min

y>0

1

2


g(x)

z
+ z

�
. (10)

This lemma is straightforward to prove by noting that the
minimizer is z =

p
g(x). We apply Lemma 1 to (locally)

minimize terms of the form
p

g(�k
t) in the regularization

term and cost terms in (8). For this purpose, we introduce
auxiliary variables �t and t for 1  t  T , and ⌘↵ for 1 
↵  d which are all minimized, and perform the following
substitutions in (8):

|�k
t | ! 1

2

✓
(�k

t)2

�t
+�t

◆

vuut
KX

j=1

(�j
t dj)2 ! 1

2

 PK
j=1(�

j
t dj)

2

t
+t

!
(11)

vuut
KX

j=1

TX

t=1

(F↵t�
j
t dj)2 ! 1

2

 PK
j=1

PT
t=1(F↵t�

j
t dj)

2

⌘↵
+⌘↵

!

Optimization. Given values for �k and ✓k, the optimal
solution �⇤

t , ⇤
t , and ⌘⇤↵ is available in closed form and con-

sists exactly of the left hand side of the corresponding equa-
tion in (11), e.g., �⇤

t = |�k
t |. Given �⇤

t , ⇤
t , and ⌘⇤↵, the

resulting loss is continuous and differentiable with respect
to �k and ✓k and can be minimized with any off-the-shelf
gradient-based optimization package6. This alternating op-
timization with respect to �k, ✓k and the auxiliary variables
�t, t, and ⌘↵ converges to a local optimum for �k and ✓k.
Algorithm 1 summarizes this procedure in pseudo-code.

Algorithm 1 Cyclic Optimization in pseudo-code.

1: Initialize the weight vectors �k and the early exit
thresholds ✓k for all the stages using Algorithm 2.

2: repeat
3: for k = 1 ! K do
4: Fix �j , ✓j for j 6= k.
5: repeat
6: Fix �k, ✓k, compute �⇤, ⇤, ⌘⇤.
7: Fix �⇤, ⇤, ⌘⇤, minimize (8) w.r.t. �k, ✓k.
8: until Cost-sensitive loss (8) no longer improves.
9: end for

10: until Cost-sensitive loss (8) no longer improves.
11: Return the cascade C = {(�1, ✓1), · · · , (�K ,�)}.

3.3.2 Initialization

As the joint loss is not convex, initialization is important. In
this section, we describe how to initialize the weight vec-
tors and exit thresholds for the cascade. In particular, we
derive a simple convex approximation that we use to obtain
a good initialization with very little computational effort.
Our initialization is based on a simple insight: For k = K,
all four terms in eq. (8) become convex. We therefore ini-
tialize the vectors �k in increasing order of k, each time
pretending that the entire cascade consists of only k stages,
i.e., K =k.

6We use http://tinyurl.com/minimize-m.

222

Classifier Cascade for Minimizing Feature Evaluation Cost

Quadratic forms. For the optimization of a single stage,
the loss-term in (8) is rewritten as (9). For k = K, (9)
reduces to a simple quadratic form with respect to �K , as
its third and only non-quadratic term (the loss of following
stages) vanishes. With the help of the following extension
to Lemma 1, we can show that all the remaining terms in
(8) can also be solved by minimizing quadratic forms:

Lemma 2 If g(x) = a + bx2 with a � 0 and b > 0, then
1
2

h
g(x)

z +z
i

(in Lemma 1) is jointly convex in x and z.
Proof, (Boyd and Vandenberghe, 2004, p.72).

We can show that for k = K Lemma 2 applies to all
three cases in (11). It trivially applies to the first one
|�K

t | =
p

(�K
t)2 (b = 1, a = 0). In the other two cases,

we can show that no dj is a function of �K
t . This follows

from the definition of dj and the fact that j  K. Hence,
all expression inside the

p· in (11) become quadratic with
respect to �k

t . As all constants are non-negative, and all
terms only appear inside squares, Lemma 2 applies. As an
example,
vuut

KX

j=1

(�j
t dj)2 =

vuuuuut

K�1X

j=1

(�j
t dj)

2

| {z }
a

+ d2
K|{z}
b

(�K
t)2. (12)

We follow the same alternate optimization over the aux-
iliary variables �, , ⌘ and the weight vector �k as be-
fore, however there are two crucial differences from be-
fore: 1. the alternate optimization is now jointly convex
(see Lemma 2) and will converge to the global minimum
for this stage. 2. all terms are in quadratic forms and can
be solved in closed form7. In particular, we can collect all
constants into two design matrices

⌦ii =!iq
k
i , ⇤tt =

⇢

�t
+�dk

2

et

t
+

dX

↵=1

c↵F↵t

⌘↵

!
, (13)

and solve for �k through

�k = (H>⌦H + ⇤)�1H>⌦y, (14)

with Hti = ht(xi). (For the most common scenario,
n � T , the computation in (14) is dominated by the ma-
trix multiplication H>⌦H — however, because both H
and ⌦ stay constant throughout the optimization of a stage
this expression can be pre-computed and re-used.) The ini-
tialization is summarized in Algorithm 2 in pseudo-code.

To compensate for the fact that the current stage is not
actually the last one, during initialization, we inflate the
trade-off parameter � for early stages and decrease it mono-
tonically until we reach the intended trade-off at the last

7This assumes that `(·) is the squared-loss. If another convex
loss is used, each sub-problem of the initialization is still convex
but would have to be solved with gradient descent methods.

stage. Here, we follow a simple rule of exponentially de-
creasing �, with �1 = ���K and �k+1 = �k�

�1. As
we pretend that stage k is the last stage, and has no exit-
threshold during the optimization, we still need to set ✓k

after the optimization if k < K. Here we choose ✓k such
that the expected number of inputs per stage decays by a
constant factor ✏ > 0, i.e. we set d0 = 1 and ✓k such that
dk = (1�✏)dk�1.

Algorithm 2 Initialization in pseudo-code.

1: Input: H =
⇥
h(xi), 8i 2 Dk

⇤
, d1 = 1.

2: for k = 1 ! K do
3: Fix �j , ✓j for j = 1, · · · , k � 1.
4: repeat
5: Given �k, set �⇤, ⇤, ⌘⇤ to LHS of (11)
6: Given �⇤, ⇤, ⌘⇤, set �k with (14)
7: Set ✓k so that dk+1 = (1�✏)dk.
8: until Loss can no longer be reduced
9: end for

10: Return the cascade C0 = {(�1, ✓1), · · · , (�K , ✓k)}.

3.4 Hyper-parameters.

The fast initialization procedure provides us with a very
efficient way to set hyper-parameters. We initialize with
various parameter settings and choose the best-performing
setup (without further training) on a validation set.

We use this approach for the ranking task from section 4 to
set �=1.3 and !+ =3.5 (and by default !�=1). Only the
regularization constants of the first and last stages, ⇢1 and
⇢K , are set by cross-validation. For, k such that 1<k<K,
we set ⇢k = ⇢1. The algorithm is surprisingly insensitive to
the values of K and ✏, mostly because if K is too large the
optimization can effectively eliminate unnecessary stages
by returning all-zero weight vectors �k (which induce zero
cost) and negative thresholds ✓k so that all inputs are passed
on. We set K = 10 and ✏ = 0.15, i.e. during initialization
each stage removes 15% of the remaining inputs.

4 Results

We conduct experiments on the public Yahoo Learning to
Rank Challenge1 data set. In the original data, the la-
bel yi takes values from {0, 1, 2, 3, 4}. For simplicity, we
only distinguish if a document is relevant (yi � 3) to the
input query or not and binarize the label accordingly to
yi 2 {+1,�1}. As mentioned, the two classes are un-
balanced. Out of the 473134 documents, only 45111 are
relevant to the corresponding queries. Although this data
set is representative for a web-search ranking training set,
it is not representative for the test-case, in which typically
many more negative examples are present. In a real life

1Available from http://learningtorankchallenge.yahoo.com

223

Minmin Chen1, Zhixiang (Eddie) Xu1, Kilian Q. Weinberger1, Olivier Chapelle2, Dor Kedem1

Testing precision

Pr
ec

@
5

0 0.5 1 1.5 2
x 104

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

P
re

ci
si

on
@

5

Testing precision

Test Cost

GBRT
AND−OR (Dundar et. al., 2007)
Soft cascade (Raykar et. al., 2010)
Early exit, s = 1.0 (Cambazoglu et. al, 2010)
Early exit, s = 0.6 (Cambazoglu et. al, 2010)
Early exit, s = 0.2 (Cambazoglu et. al, 2010)
Cronus optimized

0 0.5 1 1.5 2
x 104

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Pr
ec

is
io

n@
5

Testing precision

Test Cost

GBRT
Single Stage
Cronus initialization
Cronus optimized

Figure 2: The precision@5 and the test-time cost of various approaches. Left: The comparison of the original GBRT, single-
stage optimization, Cronus after its initialization and optimization (under various settings of �). There is a clear trend that
each step improves the precision-cost curve. Right: Comparisons with prior work on test-time optimized cascades. The
graph shows the large improvement obtained by Cronus.

test-setting, the distribution of the two classes is even more
skewed. Usually for each query, there are only a few docu-
ments that are highly relevant, out of hundreds of thousands
of candidate documents. The documents in this dataset
have in fact been collected to be biased towards relevant
documents. Thus, to make our evaluation more realistic,
we replicated each negative example 10 times.

For each feature in the dataset, we have a ballpark estimate
of its acquisition cost8. This cost depends on the feature
type and is in the set {1, 5, 20, 50, 100, 150, 200}. The unit
of these costs is approximately the time required for the
evaluation of a single tree. The cheapest features (the ones
with a cost of 1) are those that can be looked up in a table
(such as the statistics of a given document), while the most
expensive ones (such as BM25F-SD described in (Broder
et al., 2010)) typically involve term proximity scoring.

Many different measures for evaluating the performance
of web ranking systems have been proposed, such as
NDCG (Järvelin and Kekäläinen, 2002) or ERR (Chapelle
et al., 2009). In this work, we use the Precision@5 mea-
surement, i.e., the fraction of the top 5 documents retrieved
that are relevant to the query, as it best reflects a classifier’s
ability to accurately retrieve a small number of relevant in-
stances within a large set of irrelevant documents.

The initial set of trees is constructed using Gradient
Boosted Regression Trees (GBRT). Most of the ranking
systems implement GBRT or a variation of it.9 Our imple-
mentation of GBRT uses the CART (Breiman et al., 1984;
Tyree et al., 2011) algorithm to find the regression tree ht

in each iteration. We end up with a set of T = 5, 000 trees.

8Personal communication with web search experts at Yahoo!
9We use the open-source implementation rt-rank (Mohan

et al., 2011) from http://tinyurl.com/rtrank.

Test-inputs Remaining

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
Fr

ac
tio

n
of

 in
pu

ts
 re

m
ai

ne
d

Stage

Cronus initialization
Cronus optimized

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

Fr
ac

tio
n

of
 fe

at
ur

es
 u

se
d

Stage

c = 1 (123)
c = 5 (31)
c = 20 (191)
c = 50 (125)
c = 100 (16)
c = 150 (32)
c = 200 (1)

Figure 3: The fraction of test-inputs remaining per stage.

Analysis. We refer to our algorithm as Cronus10. Figure 2
(left) illustrates the precision/cost performance of the var-
ious approaches from this paper (under varying values for
�). The single stage optimization (section 3.1) — which
essentially re-weights the trees to minimize cost — sig-
nificantly improves over the greedy GBRT (dashed black
line)11. The cascaded Cronus improves substantially over
the single-stage approach, even already after its initializa-
tion (green curve). Finally, the optimized version of Cronus
improves even further and yields the best precision/cost
trade-off. The Cronus and single-stage curves were ob-
tained by setting � = 10�4, 10�4��1, . . . , 10�4��9.

Figure 3 shows the fraction of inputs remaining at each
stage. The optimized classifier is more aggressive and re-
duces inputs more rapidly in earlier stages. In fact, a curi-
ous artifact of the optimization is that the resulting cascade
is reduced to four stages (1,3,4,10). All other weight vec-
tors �k are returned as all-zeros-vectors with a low thresh-
old ✓k that accepts all inputs. Note that these dummy stages
have no cost, as they require no trees to be evaluated or fea-

10According to Greek mythology, in order to gain power,
Cronus used the help of the cyclops — a well-known abbrevia-
tion for cyclic-optimizations.

11The GBRT curve is obtained by plotting the precision and
cost as more trees are added.

224

Classifier Cascade for Minimizing Feature Evaluation Cost

Fe
at

ur
es

 u
se

d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1 3 4 10
0

0.2
0.4
0.6
0.8

1
Fr

ac
tio

n
of

 fe
at

ur
es

 u
se

d

Stage

c = 1 (123)
c = 5 (31)
c = 20 (191)
c = 50 (125)
c = 100 (16)
c = 150 (32)
c = 200 (1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1 3 4 10
0

0.2
0.4
0.6
0.8

1

Fr
ac

tio
n

of
 fe

at
ur

es
 u

se
d

Stage

c = 1 (123)
c = 5 (31)
c = 20 (191)
c = 50 (125)
c = 100 (16)
c = 150 (32)
c = 200 (1)

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

Fr
ac

tio
n

of
 in

pu
ts

 re
m

ai
ne

Stage

Cronus initialization
Cronus optimized

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
Fr

ac
tio

n
of

 fe
at

ur
es

 u
se

d

Stage

Initialization OptimizedFeature cost:

Figure 4: Features (grouped by cost c) used in the various stages of Cronus (the number of features in each cost group
is indicated in parentheses in the legend). Most cheap features (c = 1, 5) are already extracted in the first stage, whereas
expensive features (c � 20) are only gradually used. (The line for c = 200 is a step-function because there exists only a
single feature at that cost.)

tures to be extracted, and can be regarded as a way to au-
tomatically learn the effective cascade length. Figure 4 de-
picts what fraction of features of a given cost are extracted
at each stage. The number of features for a given cost is
indicated in parentheses inside the legend. There is a clear
trend that cheap features, c↵  5, are extracted early-on
while more expensive features c � 20 are extracted near
the end of the cascade if at all. However, it is important
to notice that a few expensive features (c = 100, 150) are
extracted in the very first stage. This highlights one of the
great advantages of Cronus over prior work. If a feature is
expensive, but very userful, it can choose to extract it very
early on. This is in strong contrast to (Dundar and Bi, 2007;
Raykar et al., 2010), where the features are pre-assigned to
stages prior to learning.

Comparison. Figure 2 (right) compares Cronus with sev-
eral state-of-the-art approaches to test-time sensitive learn-
ing. Early exit, proposed by (Cambazoglu et al., 2010), is
identical to GBRT, but the average test-time is reduced by
short-circuiting the scoring process of unpromising docu-
ments. The authors suggest various methods for early ex-
iting, all of which we implemented. Here we showcase
the best-performing method, “Early Exits Using Proxim-
ity Threshold”, where we introduce an early exit every 10
trees (500 in total) and at the ith early-exit we remove all
test-inputs that have a score of at least 500�i

499 s lower than
the fifth best input. Overall, the benefits from early-exiting
are very limited in our scenario as the cost is dominated by
feature extraction and not tree computation. The approach
is limited because it cannot re-order the trees such that ex-
pensive features are extracted at later stages in the cascade.

Two algorithms, Soft-Cascade (Raykar et al., 2010) and
AND-OR (Dundar and Bi, 2007) provide alternative for-
mulations to globally optimize cascaded classifiers. Both
employ an AND-OR learning scheme with a loss function
that treats negative instances and positive instances sep-
arately. The loss for positive instances is the maximum
loss across all stages, which corresponds to the AND op-
eration (i.e., all stages are encouraged to be correct). For
negative instance, the loss is a noisy-or (i.e., at least one
stage must be correct). Feature-cost is accounted for by

restricting earlier stages to use only trees with cheaper fea-
tures. We use five stages in total, allowing features of costs
 5, 20, 50, 150, 200. The curves were obtained
by varying the loss/cost trade-off constant. In addition,
the Soft-Cascade also incorporates probabilistic threshold-
ing (similar to Cronus). As can be observed in Figure 2,
both methods perform rather poorly on the Yahoo! rank-
ing data set. The reason for this is two-fold: 1. several
expensive features are necessary to obtain high precision
test-scores. Because both algorithms assign trees to stages
prior to learning, trees that use these features are only ex-
tracted in late cascade stages, which makes it impossible to
obtain high precision at a low cost. 2. both the AND- and
OR-loss are order independent and return a low loss even if
only late stages obtain high accuracy — therefore magni-
fying this effect even further by encouraging inputs to only
exit in the final cascade stage.

All experiments were conducted on a desktop with dual
6-core Intel i7 cpus with 2.66Ghz. Early Exit requires
no training and is therefore almost instantaneous. Soft-
Cascade and AND-OR both require several hours for a sin-
gle training of the Yahoo! data set. With parameter setting
by cross-validation, the overall training procedure requires
several days. Cronus can be initialized in a few minutes and
trained in less than one hour (including cross-validation for
the setting of the hyper-parameter).

5 Conclusion

Controlling the operational cost of machine learning algo-
rithms is a crucial problem that appears all-through current
and potential applications of machine learning. We believe
that understanding and controlling this trade-off will be-
come a fundamental part of machine-learning research in
the near future. This paper introduces a novel algorithm,
Cronus, to build cascades of classifiers to trade-off predic-
tion accuracy and runtime cost. Different from prior work,
our learning framework optimizes the order in which fea-
tures are extracted globally and provides an elegant and ef-
ficient method for initialization and parameter tuning.

225

Minmin Chen1, Zhixiang (Eddie) Xu1, Kilian Q. Weinberger1, Olivier Chapelle2, Dor Kedem1

References
J. Abernethy, O. Chapelle, and C. Castillo. Web spam iden-

tification through content and hyperlinks. In Proceed-
ings of the 4th international workshop on Adversarial
information retrieval on the web, pages 41–44. ACM,
2008.

J. Bennett and S. Lanning. The netflix prize. In Proceed-
ings of KDD Cup and Workshop, volume 2007, page 35,
2007.

S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, Cambridge, England, 2004.

L. Breiman, J. Friedman, C.J. Stone, and R.A. Ol-
shen. Classification and regression trees. Chapman &
Hall/CRC, 1984.

A. Broder, E. Gabrilovich, V. Josifovski, G. Mavromatis,
D. Metzler, and J. Wang. Exploiting site-level informa-
tion to improve web search. In Proceedings of the 19th
ACM Conference on Information and Knowledge Man-
agement, 2010.

B.B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen,
C. Liao, Z. Zheng, and J. Degenhardt. Early exit opti-
mizations for additive machine learned ranking systems.
In Proceedings of the third ACM international confer-
ence on Web search and data mining, pages 411–420.
ACM, 2010.

O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. In Journal of Machine Learning
Research, Workshop and Conference Proceedings, vol-
ume 14, pages 1–24, 2011.

O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Ex-
pected reciprocal rank for graded relevance. In Pro-
ceeding of the 18th ACM conference on Information and
knowledge management, pages 621–630, 2009.

O. Chapelle, P. Shivaswamy, S. Vadrevu, K.Q. Weinberger,
Ya Zhang, and B. Tseng. Multi-task learning for boost-
ing with application to web search ranking. In Proceed-
ings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1189–
1198, 2010.

M.M. Dundar and J. Bi. Joint optimization of cascaded
classifiers for computer aided detection. In 2007 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE, 2007.

M. Fleck, D. Forsyth, and C. Bregler. Finding naked peo-
ple. Computer Vision—ECCV’96, pages 593–602, 1996.

J. Friedman. Greedy function approximation: a gradient
boosting machine. Annals of Statistics, 29:1189–1232,
2001.

K. Järvelin and J. Kekäläinen. Cumulated gain-based eval-
uation of IR techniques. ACM Transactions on Informa-
tion Systems (TOIS), 20(4):422–446, 2002.

M. Kowalski. Sparse regression using mixed norms. Ap-
plied and Computational Harmonic Analysis, 27(3):
303–324, 2009.

L. Lefakis and F. Fleuret. Joint Cascade Optimization Us-
ing a Product of Boosted Classifiers. Advances in neural
information processing systems, 2010.

A. Mohan, Z. Chen, and K.Q. Weinberger. Web-search
ranking with initialized gradient boosted regression
trees. Journal of Machine Learning Research, Workshop
and Conference Proceedings, 14:77–89, 2011.

V.C. Raykar, B. Krishnapuram, and S. Yu. Designing effi-
cient cascaded classifiers: tradeoff between accuracy and
cost. In Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 853–860, 2010.

M.J. Saberian and N. Vasconcelos. Boosting classifier
cascades. In Neural Information Processing Systems
(NIPS), 2010.

R.E. Schapire. A brief introduction to boosting. In In-
ternational Joint Conference on Artificial Intelligence,
volume 16, pages 1401–1406. Lawrence Erlbaum Asso-
ciates ltd, 1999.

S. Tyree, K.Q. Weinberger, K. Agrawal, and J. Paykin. Par-
allel boosted regression trees for web search ranking.
In Proceedings of the 20th international conference on
World wide web, pages 387–396. ACM, 2011.

P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision, 57(2):137–
154, 2002.

L. Wang, J. Lin, and D. Metzler. A cascade ranking
model for efficient ranked retrieval. In Proceedings of
the 34th Annual International ACM SIGIR conference
on Research and development in information retrieval,
2011.

K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and
J. Attenberg. Feature hashing for large scale multitask
learning. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, pages 1113–
1120. ACM, 2009.

Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and
G. Sun. A general boosting method and its application to
learning ranking functions for web search. In Advances
in Neural Information Processing Systems. Cambridge,
MA, 2008.

226

