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Abstract

In this paper, we propose to apply sparse
canonical correlation analysis (sparse CCA)
to an important genome-wide association
study problem, eQTL mapping. Existing
sparse CCA models do not incorporate struc-
tural information among variables such as
pathways of genes. This work extends the
sparse CCA so that it could exploit either
the pre-given or unknown group structure
via the structured-sparsity-inducing penalty.
Such structured penalty poses new challenge
on optimization techniques. To address this
challenge, by specializing the excessive gap
framework, we develop a scalable primal-dual
optimization algorithm with a fast rate of
convergence. Empirical results show that the
proposed optimization algorithm is more effi-
cient than existing state-of-the-art methods.
We also demonstrate the effectiveness of the
structured sparse CCA on both simulated
and genetic datasets.

1 Introduction

A fundamental problem in genome-wide association
study (GWA study or GWAS) is to understand associ-
ations between genetic variations and phenotypes. An
important special case of GWA study is the expres-
sion quantitative trait loci (eQTLs) mapping. More
specifically, the eQTL mapping discovers genetic as-
sociations between genotype data of single nucleotide
polymorphisms (SNPs) and phenotype data of gene
expression levels to provide insights into gene regula-
tion, and potentially, controlling factors of a disease.
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More formally, we have two datasets X (e.g. SNPs
data) and Y (e.g. gene expression data) of dimensions
n × d and n × p collected on the same set of n ob-
servations. Both p and d could be much larger than
n in an eQTL study. Our goal is to investigate the
relationship between X and Y.

A popular approach for eQTL mapping is to formulate
the problem into a sparse multivariate regression (Lee
et al., 2010; Kim et al., 2009). These methods treat X
as input, Y as output and try to identify a small subset
of input variables that are simultaneously related to
all the responses. Despite the promising aspects of
these models, such multivariate-regression approaches
are not symmetric in that the regression coefficients
are only put on the X side. There is no clear reason
why one wants to regress Y on X but instead of X on
Y for an association study. Also, in eQTL mapping,
it is difficult to find a small subset of SNPs which can
explain the expression levels for all the involved genes.

In contrast to sparse regression approach, sparse
canonical correlation analysis (sparse CCA) (Witten
et al., 2009; Witten and Tibshirani, 2009) provides a
more “symmetric” solution in which it finds two sparse
canonical vectors u and v to maximize the correla-
tion between Xu and Yv. Although sparse CCA has
been successfully applied to some genomic datasets
(e.g. CGH data (Witten and Tibshirani, 2009)), it has
not well been studied for eQTL mapping. In a study
of eQTL mapping, it is of great interest for biologists
to seek for a subset of SNP genotypes and a subset
of gene expression levels that are closely related. To
address this problem, we apply sparse CCA to eQTL
mapping; and show that by incorporating the proper
structural information, sparse CCA can be a useful
tool for GWAS.

It is well known that when dealing with high-
dimensional data, prior structural knowledge is crucial
for the analysis, which facilities model’s interpretabil-
ity. For example, a biological pathway is a group of
genes that participate in a particular biological pro-
cess to perform certain functionality in a cell. To find
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the controlling factors related to a disease, it is more
meaningful to study the genes by considering their
pathways. However, the existing sparse CCA models
use the ℓ1-regularization and do not incorporate the
rich structural information among variables (e.g. ge-
netic pathways). In this paper, we propose a structured
sparse CCA framework that can naturally incorporate
the group structural information. In particular, we
consider two scenarios: (1) when the group structure is
pre-given, we propose to incorporate such prior knowl-
edge using the overlapping-group-lasso penalty (Jenat-
ton et al., 2009, 2010b). Compare to the standard
group lasso (Yuan and Lin, 2006), we allow arbitrary
overlaps among groups which reflects the fact that a
gene may belong to multiple pathways. We refer to
this model as the group-structured sparse CCA; (2) if
such structural information is not available as a pri-
ori, we propose the group pursuit sparse CCA using a
group pursuit penalty, which simultaneously conducts
variable selection and structure estimation.

We formulate the structured sparse CCA into a bi-
convex problem and adopt an alternating optimiza-
tion strategy. However, unlike in Witten et al. (2009)
where the simple ℓ1-norm penalty is used, our formu-
lation involves the non-separable overlapping-group-
lasso penalty and group pursuit penalty. Such non-
separability poses great challenge on optimization
techniques. Although many methods have been pro-
posed (Duchi and Singer, 2009; Jenatton et al., 2009,
2010a; Mairal et al., 2010; Yuan et al., 2011; Chen
et al., 2012; Argyriou et al., 2011; Qin and Goldfarb,
2011) for solving the related sparse learning problems,
as we surveyed in Section 3.1, they either (1) cannot be
applied to our problem, or (2) suffer from slow conver-
gence rate, or (3) have no convergence guarantees or
convergence rate analysis. In this paper, we propose
an efficient optimization algorithm under the exces-
sive gap framework (Nesterov, 2003), which solves the
sparse CCA with various structured-sparsity-inducing
penalties. Since it is a first-order method, the per-
iteration time complexity is very low (e.g. linear in
the sum of group sizes) and the method can scale up
to millions of variables. It is a primal-dual approach
which diminishes the primal-dual gap over iterations.
For each subproblem in the alternating optimization
procedure, the algorithm provably converges to an ϵ
accurate solution (i.e. the duality gap is less than ϵ)
in O(1/

√
ϵ) iterations.

2 Preliminaries

Given two datasets X and Y of dimensions n× d and
n × p on the same set of n observations, we assume
that each column of X and Y is normalized to have
mean zero and standard deviation one. The sparse

CCA (Witten et al., 2009) takes the form:

maxu,v uT XT Yv (1)

s.t. ∥u∥2 ≤ 1, ∥v∥2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2,

where the constraints ∥u∥2 ≤ 1, ∥v∥2 ≤ 1 are the
convex relaxations of the equality constraints ∥u∥2 =
1, ∥v∥2 = 1 which ensure that the correlation is
normalized. P1 and P2 are convex and non-smooth
sparsity-inducing penalties that yield sparse u and v.
We note that since the focus of the paper is on struc-
tured sparsity, we only consider the first pair of canon-
ical vectors. Using the technique from Section 3 in
Witten and Tibshirani (2009), we could easily extend
our method to estimate multiple canonical vectors.

Witten et al. (2009) only studied two specific forms of
the penalty P (either P1 or P2) with relatively simple
structure: ℓ1-norm penalty and the chain-structured
fused lasso penalty. In this work, we extend the sparse
CCA to more general forms of P to incorporate the
group structural information. In eQTL mapping, the
structural knowledge among genes on Y side is often of
more interest. For the ease of illustration, we assume
that P1(u) = ∥u∥1 and mainly focus on P2(v), which
incorporates the structural information. Since Eq. (1)
is biconvex in u and v, a natural optimization strat-
egy is the alternating approach: fix u and optimize
over v; then fix v and optimize over u; and iterate
over these two steps. In our setting, the optimization
with respect to u with P1(u) = ∥u∥1 is relatively sim-
ple and the closed-form solution has been obtained in
Witten et al. (2009). However, due to the complicated
structure of P2(v), the optimization with respect to v
cannot be easily solved and we will address this chal-
lenge in the following section.

3 Group-structured Sparse CCA

In this section, we study the problem in which the
group structural information among variables in Y is
pre-given from the domain knowledge; and our goal
is to identify a small subset of relevant groups un-
der the sparse CCA framework. More formally, let
us assume that the set of groups of variables in Y:
G = {g1, . . . , g|G|} is defined as a subset of the power
set of {1, . . . , p}, and is available as prior knowledge.
Note that the members (groups) of G are allowed to
overlap. Inspired by the group-lasso penalty (Yuan and
Lin, 2006) and the elastic-net penalty (Zou and Hastie,
2005), we define our penalty P2(v) as follows:

P2(v) =
∑

g∈G
wg∥vg∥2 +

c

2
vT v, (2)

where vg ∈ R|g| is the subvector of v in group g, wg

is the predefined weight for group g; c is the tuning
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parameter. The ℓ1/ℓ2 mixed-norm penalty in P2(v)
plays the role of group selection. Since some gene ex-
pression levels are highly correlated, the ridge penalty
c
2v

T v addresses the problem of the collinearity, en-
forcing strongly correlated variables to be in or out
of the model together for better interpretability (Zou
and Hastie, 2005). In addition, according to Zou and
Hastie (2005), the ridge penalty is crucial to ensure
stable variable selection performance when p ≫ n,
which is a typical setting of eQTL mapping.

Rather than solving the constraint form of P2(v), we
solve the regularized problem using the Lagrange form:

min
u,v

−uT XT Yv +
τ

2
vT v + θ

∑

g∈G
wg∥vg∥2

s.t.∥u∥2 ≤ 1, ∥v∥2 ≤ 1, ∥u∥1 ≤ c1, (3)

where there exists a one to one correspondence be-
tween (θ, τ) and (c, c2). We refer to this model as the
group-structured sparse CCA.

3.1 Optimization Algorithm

The main difficulty in solving Eq. (3) arises from op-
timizing with respect to v. Let the domain of v be
denoted as Q1 = {v | ∥v∥2 ≤ 1}, β = 1

τ YT Xu and

γ = θ
τ , the optimization of Eq. (3) with respect to v

can be written as:

min
v∈Q1

f(v) ≡ l(v) + P (v), (4)

where l(v) = 1
2∥v − β∥2

2 is the Euclidean distance
loss function and P (v) is the overlapping-group-lasso
penalty: P (v) = γ

∑
g∈G wg∥vg∥2.

Related First-order Methods When v is un-
constrained and the groups are non-overlapped, the
closed-form optimal solution can be easily obtained
as in Duchi and Singer (2009). In contrast, when
the groups are overlapped, the sub-gradient over each
group becomes very complicated and hence there is no
closed-form solution. The traditional interior point
method and iterated reweighted least squares (Ar-
gyriou et al., 2008) suffer from the high computational
cost of solving a large linear system.

A number of first-order methods have recently been
developed for solving variants of overlapping-group-
lasso problem. The methods in Jenatton et al.
(2010a) and Mairal et al. (2010) can only be applied
to the tree-structured or ℓ1/ℓ∞-regularized groups
but not to ℓ1/ℓ2-regularized overlapping group struc-
ture. The forward-backward splitting method in Duchi
and Singer (2009) and smoothing proximal-gradient
method in Chen et al. (2012) achieve slow convergence
rate of O(1/ϵ). An algorithm for ℓ1/ℓ2-regularized

overlapping group structure was proposed very re-
cently in Yuan et al. (2011). However, due to the
additional constraint ∥v∥2 ≤ 1, the key theorem in
Yuan et al. (2011) no longer holds. Although it is still
possible to apply a modification of this algorithm, the
convergence rate is unknown. Other possible methods,
including alternating direction augmented Lagrangian
method (Qin and Goldfarb, 2011) and the fixed-point
method (Argyriou et al., 2011), also lack of the con-
vergence rate.

In this section, by specializing a general excessive gap
framework of Nesterov (2003), we present a first-order
approach with a fast convergence rate of O(1/

√
ϵ) for

solving Eq. (4).

Reformulation of the Penalty As shown in Chen
et al. (2012), the overlapping-group-lasso penalty P (v)
can be reformulated into a maximization form as
follows. Using the dual norm, we have ∥vg∥2 =
max∥αg∥2≤1 αT

g vg where αg is a vector of length |g|.
Let α =

[
αT

g1
, . . . ,αT

g|G|

]T

be the concatenation of

the vectors {αg}g∈G . We denote the domain of α as
Q2 ≡ {α | ∥αg∥2 ≤ 1, ∀g ∈ G}. The penalty P (v)
can be reformulated as:

P (v) = γ
∑

g∈G
wg max

∥αg∥2≤1
αT

g vg = max
α∈Q2

αTCv, (5)

where C ∈ R(
∑

g∈G |g|)×p is defined as follows. The
rows of C are indexed by all pairs of (i, g) ∈ {(i, g)|i ∈
g, i ∈ {1, . . . , p}}, the columns are indexed by j ∈
{1, . . . , p}, and C(i,g),j = γwg if i = j and 0 otherwise.

Here, we provide some insights of this reformulation by
showing its connection with Fenchel Conjugate (Bor-
wein and Lewis, 2000). Let f∗ denote the Fenchel
Conjugate of a general function f . P (v) can be
viewed as Fenchel Conjugate of the indicator function

δQ2(x) =

{
0 x ∈ Q2,

+∞ x ̸∈ Q2.
at Cv:

P (v) = max
α∈Q2

αTCv = δ∗
Q2

(Cv).

Smoothing the Penalty With the penalty P (v)
in the form of maxα∈Q2 αTCv, we construct a smooth
approximation of P (v) using the Nesterov’s smoothing
technique (Nesterov, 2005) as follows:

Pµ(v) = max
α∈Q2

αTCv − µd(α), (6)

where µ is a positive smoothness parameter and d(α)
is defined as 1

2∥α∥2
2. The relationship between the

smooth approximation Pµ(v) and original penalty
P (v) can be characterized by the following inequality:

P (v) − µD ≤ Pµ(v) ≤ P (v), (7)
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where D = maxα∈Q2 d(α). In our case, D = |G|/2,
where |G| is the number of groups.

According to Theorem 1 (Nesterov, 2005) as below,
Pµ(v) is a smooth function for any µ > 0.

Theorem 1 For any µ > 0, Pµ(v) is convex and
continuously-differentiable in v with the gradient:

∇Pµ(v) = CT αµ(v), (8)

where αµ(v) is the optimal solution to Eq. (6):

αµ(v) = argmaxα∈Q2
αTCv − µd(α). (9)

Performing some algebra, we obtain the closed-form
equation for αµ(v) as in the next proposition.

Proposition 1 The αµ(v) in Eq. (9) is the concate-
nation of subvectors {[αµ(v)]g} for all g ∈ G. For

any g, [αµ(v)]g = S2

(
γwgvg

µ

)
, where S2 is the pro-

jection operator (to the ℓ2- ball) defined as follows:
S2(x) = x

∥x∥2
if ∥x∥2 > 1 and S2(x) = x otherwise.

We substitute P (v) in the original objective function
f(v) with Pµ(v) and construct the smooth approxi-
mation of f(v): fµ(v) ≡ l(v) + Pµ(v). According to
Eq. (7), for any µ > 0:

f(v) − µD ≤ fµ(v) ≤ f(v). (10)

Therefore, fµ(v) is a uniformly smooth approximation
of the objective f(v) with the maximum gap of µD,
and µ controls the gap between fµ(v) and f(v).

Fenchel Dual of f(v) The fundamental idea of the
excessive gap method is to diminish the duality gap
between the objective f(v) and its Fenchel dual over
iterations. According to Theorem 3.3.5 in Borwein and
Lewis (2000), the Fenchel dual problem of f(v), ϕ(α),
takes the following form:

ϕ(α) = −l∗(−CT α) − δQ2(α), (11)

where l∗ is the Fenchel Conjugate of l and
−l∗(−CT α) = minv∈Q1 vTCT α + 1

2∥v − β∥2
2. By a

direct consequence of Theorem 1 in Nesterov (2005),
we obtain the next theorem.

Theorem 2 The gradient of ϕ(α) is as follows:

∇ϕ(α) = Cv(α), (12)

where v(α) = argminv∈Q1
vTCT α+ 1

2∥v−β∥2
2. More-

over, ∇ϕ(α) is Lipschitz continuous with the Lipschitz
constant L(ϕ) = 1

σ ∥C∥2, where σ = 1 is the strongly
convex parameter for function l(v) and ∥C∥ is the ma-
trix spectral norm of C: ∥C∥ ≡ max∥x∥2=1 ∥Cx∥2.

Utilizing Proposition 1 in Chen et al. (2012), we
present the closed-form equations for v(α) and ∥C∥.

Proposition 2 v(α) takes the following form:
v(α) = S2

(
β − CT α

)
, where S2 is the pro-

jection operator (to the ℓ2- ball). ∥C∥ =

γmaxj∈{1,...,p}

√ ∑
g∈G s.t. j∈g

(wg)2.

According to Proposition 2, the Lipschitz constant for
∇ϕ(α) is:

L(ϕ) = ∥C∥2 = γ2 max
j∈{1,...,p}

∑
g∈G s.t. j∈g

(wg)2. (13)

Excessive Gap Method According to the Fenchel
duality theorem (Borwein and Lewis, 2000), under cer-
tain mild conditions which hold for our problem, we
have minv∈Q1 f(v) = maxα∈Q2 ϕ(α), and

ϕ(α) ≤ f(v), ∀ v ∈ Q1,α ∈ Q2. (14)

For each iteration t, the excessive gap method (Nes-
terov, 2003), simultaneously updates v and α to guar-
antee that: fµt(v

t) ≤ ϕ(αt). According to Eq. (10)
and (14):

fµt(v
t) ≤ ϕ(αt) ≤ f(vt) ≤ fµt(v

t) + µtD. (15)

To guarantee the convergence of the algorithm, the ex-
cessive gap method diminishes the value of the smooth-
ness parameter µt over iterations: µt+1 ≤ µt and
limt→∞ µt = 0. From Eq. (15), when µt → 0, we
have f(vt) ≈ ϕ(αt), which are hence the optimal pri-
mal and dual solution.

Moreover, in the excessive gap method, a gradient
mapping operator ψ : Q2 → Q2 is defined as follows,

ψ(z) = argmax
α∈Q2

{
⟨∇ϕ(z),α − z⟩ − 1

2
L(ϕ)∥α − z∥2

2

}
,

(16)

where z is any point in Q2. In our problem, the
gradient mapping operator ψ can also be computed in
a closed-form as shown in the next proposition.

Proposition 3 For any z ∈ Q2, ψ(z) in Eq. (16) is
the concatenation of subvectors [ψ(z)]g for all groups

g ∈ G. For any g, [ψ(z)]g = S2

(
zg +

[∇ϕ(z)]g
L(ϕ)

)
, where

[∇ϕ(z)]g = γwg[v(z)]g is the g-th subvector of ∇ϕ(z).

With Propositions 1, 2, 3 in place, all the essential in-
gredients of the excessive gap framework can be com-
puted in a closed-form. We present the excessive gap
method for solving Eq. (4) in Algorithm 1.

Convergence Rate and Time Complexity The
Lemma 7.4 and Theorem 7.5 in Nesterov (2003) guar-
antee that both the starting points, v0 and α0, and
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Algorithm 1 Excessive Gap for Solving Eq. (4)

Input: β, γ, G and {wg}g∈G
Initialization: (1) Construct C; (2) Compute L(ϕ) as in
Eq. (13) and set µ0 = 2L(ϕ); (3) Set v0 = v(0) = S2(β);
(4) Set α0 = ψ(0)
Iterate For t = 0, 1, 2, . . ., until convergence of vt:

1. Set τt = 2
t+3

.

2. Compute αµt(v
t) as in Proposition 1.

3. Set zt = (1 − τt)α
t + τtαµt(v

t).

4. Update µt+1 = (1 − τt)µt.

5. Compute v(zt) = S2(β − CT zt).

6. Update vt+1 = (1 − τt)v
t + τtv(zt).

7. Update αt+1 = ψ(zt) as in Proposition 3.

Output: vt+1.

the sequences, {vt} and {αt} in Algorithm 1 satisfy
the key condition fµt(v

t) ≤ ϕ(αt). Using Eq. (15),
the duality gap can be bounded by:

f(vt) − ϕ(αt) ≤ fµt
(vt) + µtD − ϕ(αt) ≤ µtD. (17)

From Eq. (17), we can see that the duality gap which
characterizes the convergence rate is reduced at the
same rate at which µt approaches to 0. According to
Step 4 in Algorithm 1, the closed-form equation of µt
can be written as:

µt = (1 − τt−1)µt−1 =
t

t+ 2
· t− 1

t+ 1
· · · 2

4
· 1

3
· µ0

=
2

(t+ 1)(t+ 2)
µ0 =

4∥C∥2

(t+ 1)(t+ 2)
. (18)

Combining Eq. (17) and (18), we immediately obtain
the convergence rate for duality gap of Algorithm 1.

Theorem 3 (Nesterov, 2003) The duality gap be-
tween the primal solution {vt} and dual solution {αt}
generated from Algorithm 1 satisfies: f(vt) − ϕ(αt) ≤
µtD = 4∥C∥2D

(t+1)(t+2) , where D = maxα∈Q2 d(α). In other

words, if we require that the duality gap is less than ϵ,

Algorithm 1 needs at most
⌈
2∥C∥

√
D
ϵ − 1

⌉
iterations.

According to Theorem 3, Algorithm 1 converges in
O(1/

√
ϵ) iterations. The per-iteration time complexity

of Algorithm 1 is linear in p+
∑

g∈G |g|.

4 Group Pursuit in Sparse CCA

When the group information is not given as a priori,
it is of desire to automatically group the relevant vari-
ables into clusters under the sparse CCA framework.
For this purpose, we propose the group pursuit sparse
CCA in this section. Our group pursuit approach is
based on pairwise comparisons between vi and vj for
all 1 ≤ i < j ≤ p : when vi = vj , the i-th and

j-th variables are grouped together. We identify all
subgroups among p variables by conducting pairwise
comparisons and applying transitivity rule, i.e. vi = vj

and vj = vk implies that the i-th, j-th, and k-th vari-
ables are clustered into the same group. The pairwise
comparisons can be naturally encoded in the fusion
penalty (Tibshirani and Saunders, 2005; Kim et al.,
2009)

∑
i<j |vi − vj |, where the ℓ1-norm will enforce

vi − vj = 0 for closely related (i,j) pairs.

In practice, instead of using the simple penalty∑
i<j |vi − vj | which treats each pair of variables

equally, we could add the weight wij to incorporate
the prior knowledge that how likely the i-th and j-th
variables are in the same group. Moreover, the ℓ1-
norm of v is also incorporated in the penalty to enforce
sparse solution as in the fused lasso model (Tibshirani
and Saunders, 2005). Then, the group pursuit penalty
takes the following form

P2(v) =
∑

i<j

wij |vi − vj | + c′∥v∥1 +
c

2
vT v, (19)

where c′ is the tuning parameter to balance the ℓ1-
norm and the fusion penalty. This penalty function
will simultaneously select the relevant variables and
cluster them into groups in an automatic manner. A
natural way for assigning wij is to set wij = |rij |q,
where rij is the correlation between the i-th and j-th
variable; q models the strength of the prior: a larger
q results in a stronger belief of the correlation based
group structure. For the purpose of simplicity, we set
wij = |rij | with q = 1 in this paper; while in principle,
any prior knowledge of the possibility of being in the
same group can be incorporated into w. Note that the
group pursuit penalty can be viewed as a variant of
graph-guided fusion penalty (Kim et al., 2009).

In some cases, we have the prior knowledge that the i-
th and j-th variables do not belong to the same group;
then the term |vi − vj | should not appear in the group
pursuit penalty Eq. (19). Therefore, rather than hav-
ing |vi − vj | for all (i, j) pairs which forms a complete
graph, we generalize the group pursuit penalty with
the fusion penalty defined on an arbitrary graph with
the edge set E. In summary, the group pursuit sparse
CCA is defined as follows:

min
u,v

−uT XT Yv +
τ

2
vT v + θ1∥v∥1 + θ2

∑

(i,j)∈E

wij |vi − vj |

s.t.∥u∥2 ≤ 1, ∥v∥2 ≤ 1, P1(u) ≤ c1. (20)

It is straightforward to specialize excessive gap
method for solving the group pursuit sparse CCA with
a similar approach as in Section 3.1. Note that an-
other non-convex group pursuit penalty has recently
been proposed in (Shen and Huang, 2010). However,
it is computationally very expensive due to the non-
convexity of the penalty and could be easily trapped
by local minima.
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|G| = 40, p = 40, 100
γ = 0.4 CPU Primal Obj Rel Gap
ExGap 1.9767E-02 8.8682E+03 2.6663E-15
AG 3.5394E-01 8.8682E+03 —
ADAL 2.1506E+00 8.8682E+03 —
IPM 9.6420E+02 8.8682E+03 7.0490E-09
γ = 4 CPU Primal Obj Rel Gap
ExGap 1.7907E-01 8.8851E+03 1.6285E-08
AG 3.0946E+00 8.8851E+03 —
ADAL 1.8290E+01 8.8851E+03 —
IPM 2.9520E+03 8.8851E+03 3.8840E-08

|G| = 500, p = 500, 100
γ = 5 CPU Primal Obj Rel Gap
ExGap 4.1094E+00 1.1211E+05 4.9669E-08
AG 1.0723E+01 1.1211E+05 —
ADAL 1.8374E+01 1.1211E+05 —
γ = 10 CPU Primal Obj Rel Gap
ExGap 6.2159E+00 1.1219E+05 2.8000E-07
AG 9.0650E+00 1.1219E+05 —
ADAL 1.5146E+01 1.1219E+05 —

|G| = 5, 000, p = 5, 000, 100
γ = 10 CPU Primal Obj Rel Gap
ExGap 9.8349E+01 1.1240E+06 9.0019E-07
AG 8.5362E+02 1.1240E+06 —
ADAL 7.7661E+02 1.1240E+06 —
γ = 20 CPU Primal Obj Rel Gap
ExGap 1.7264E+02 1.1245E+06 8.7364E-07
AG 1.0585E+03 1.1245E+06 —
ADAL 7.3510E+02 1.1245E+06 —

Table 1: Computational Efficiency Comparisons

5 Experiment

5.1 Computational Efficiency

We evaluate the scalability and efficiency of our exces-
sive gap method (ExGap) for solving

argmin
v:∥v∥2≤1

f(v) =
1

2
∥v − β∥2

2 + γ
∑

g∈G
∥vg∥2,

where β is given. We compare ExGap with sev-
eral state-of-the-art algorithms: (1) A modification of
the accelerated gradient method (AG) (Yuan et al.,
2011) by adding the constraint; (2) Alternating direc-
tion augmented Lagrangian (ADAL) method (Qin and
Goldfarb, 2011); (3) Interior point method (IPM) for
second order cone programming by CVX (Grant and
Boyd, 2011). All of the experiments are performed
on a PC with Intel Core 2 Quad Q6600 2.4GHz CPU
and 4GB RAM. The software is written in MATLAB.
We terminate ExGap and IPM when the relative du-
ality gap (Rel Gap) is less than 10−6: Rel Gap =

|f(vt)−ϕ(αt)|
1+|f(vt)|+|ϕ(αt)| ≤ 10−6. For ADAL and (modified)

AG, the dual solutions cannot be easily derived. We
stop AG and ADAL when its objective is less than
1.00001 times the objective of ExGap.

We generate the simulated data with an overlap-
ping group structure imposed on β as follows. As-
suming that inputs are ordered and each group is
of size 1000, we define a sequence of groups of
1000 adjacent inputs with an overlap of 100 vari-
ables between two successive groups, i.e. G =
{{1, . . . , 1000}, {901, . . . , 1900}, . . . , {p − 999, . . . , p}}
with p = 1000|G| + 100. We set the support of β
to the first half of the variables and set the values of
β in the support to be 1 and otherwise 0.

We vary the number of the groups |G| and report the
CPU time in seconds (CPU), primal objective (Primal
Obj), relative duality gap (Rel Gap) in Table 1. For
each setting of |G|, we use two levels of regularization
parameter γ. Note that when |G| ≥ 50 (p ≥ 50, 100),
we are unable to collect results for IPM, because they
lead to out-of-memory errors due to the large stor-
age requirement for solving the Newton linear system.
From Table 1, we can see ExGap is more efficient than
both AG and ADAL in terms of CPU time. In ad-
dition, when p is smaller, AG is more efficient than
ADAL; while for large p, ADAL seems to be more effi-
cient. In addition, ExGap can easily scale up to high-
dimensional data with millions of variables. Another
interesting observation is that: for smaller γ which
leads to smaller ∥C∥ and L(ϕ), the convergence of Ex-
Gap is much faster. This observation suggests that Ex-
Gap is more efficient when the non-smooth part plays
less important role in the optimization problem.

5.2 Simulation Study

In this and next subsection, we use simulated data
and a real eQTL dataset to investigate the perfor-
mance of the overlapping group-structured and group
pursuit sparse CCA. All the regularization parame-
ters are chosen from 0.01 to 10 and set using the
permutation-based method in Witten and Tibshirani
(2009). Instead of tuning all the parameters on
a multi-dimensional grid which is computationally
heavy, we first train the ℓ1-regularized sparse CCA (i.e.
P1(u) = ∥u∥1, P2(v) = ∥v∥1) and the tuned regular-
ization parameter c1 in Eq. (1) is used for all struc-
tured models. For the overlapping-group-lasso penalty
in Eq. (3), all the group weights {wg} are set to 1. In
addition, we observe that the learned sparsity pattern
is insensitive to the parameter τ ; and therefore we set
it to 1 for simplicity. For all algorithms, we use 10
random initializations of u and select the results that
lead to the largest correlation.

Given Overlapping Group Structure In this sec-
tion, we conduct the simulation where the overlapping
group structure in v is given as a priori. We gener-
ate the data X and Y with n = 50, d = 100 and
p = 82 as follows. Let u be a vector of length d with
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Figure 1: (a) True u and v; (b) Estimated u and v us-
ing the ℓ1-regularized sparse CCA; (c) Estimated u and v
using the group-structured sparse CCA.
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Figure 2: (a) True u and v; (b) Estimated u and v us-
ing the ℓ1-regularized sparse CCA; (c) Estimated u and v
using the group pursuit sparse CCA.

20 0s, 20 -1s, and 60 0s. We construct v with p = 82
variables as follows: assuming that v is covered by 10
groups; each group has 10 variables with 2 variables
overlapped between every two successive groups, i.e.
G = {{1, . . . , 10}, {9, . . . , 18}, . . . , {73, . . . , 82}}. For
the indices of the 2nd, 3rd, 8th, 9th and 10th groups,
we set the corresponding entries of v to be zeros and
the other entries are sampled from i.i.d. N(0, 1). In
addition, we randomly generate a latent vector z of
length n from N(0, In×n) and normalize it to unit
length.

We generate the data matrix X with each Xij ∼
N(ziuj , 1) and Y with each Yij ∼ N(zivj , 1). The
true and estimated vectors for u and v are presented
in Figure 1. For the group-structured sparse CCA, we
add the regularization

∑
g∈G ∥vg∥2 on v where G is

taken from the prior knowledge. It can be seen that
the group-structured sparse CCA recovers the true
v much better while the simple ℓ1-regularized sparse
CCA leads to an over-sparsified v vector.

Group Pursuit In this simulation, we assume that
the group structure over v is unknown and the goal is
to uncover the group structure using the group pur-
suit sparse CCA. We generate the data X and Y with
n = 50 and p = d = 100 as follows. Let u be a vector of
length d with 20 0s, 20 -1s, and 60 0s as in the previous
simulation study; and v be a vector of length p with 10
3s, 10 -1.5s, 10 1s, 10 2s and 60 0s. In addition, we ran-
domly generate a latent vector z from N(0, In×n) and
normalize it to unit length. We generate X with each
sample xi ∼ N(ziu, 0.1Id×d); and Y with each sample

yi ∼ N(ziv, 0.1Σy) where (Σy)jk = exp−|vj−vk|. We
conduct the group pursuit sparse CCA in Eq. (20),
where we add the fusion penalty for each pair of vari-
ables in v, i.e. E is the edge set of the complete graph.
The estimated vector u and v are presented in Figure
2 (c). It can be easily seen that the group pursuit
sparse CCA correctly captures the group structure in
the v vector.

5.3 Real eQTL Data Analysis

Pathway Selection via Group-structured Sparse
CCA We analyze a yeast eQTL data in Zhu et al.
(2008)1: X contains d = 1260 SNPs from the chromo-
somes 1–16 for n = 114 yeast strains. Y is the gene ex-
pression data of p = 1, 155 genes for the same 114 yeast
strains. All these genes are in the KEGG database
(Kanehisa and Goto, 2000) and belong to 92 path-
ways. We treat each pathway as a group. To achieve
more refined resolution of gene selection, besides the
92 pathway groups, we also add in p = 1, 155 groups
where each group only has one singleton gene so that
the solutions could be sparse at both the group and
individual feature levels as in Friedman et al. (2010).

Using the group-structured sparse CCA, we select 121
SNPs and 47 genes. These 47 genes spread over 32
pathways. Using the tool ClueGO (Bindea et al.,
2009), we perform KEGG enrichment on the selected
genes and the overview chart is presented in Figure

1The full dataset could be downloaded from http://
blogs.ls.berkeley.edu/bremlab/data
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Figure 3: Overview chart of KEGG functional enrichment using (a) the group-structured sparse CCA; (b) ℓ1-regularized
sparse CCA; (c) learned group structure using the group pursuit sparse CCA. In (a) and (b), the proportion of the
pie chart represents the number of the selected genes with this annotation over the total number of the selected genes.
Different colors are used to visually discriminate different functional groups. See Bindea et al. (2009) for more details of
the presentation.

3(a). From Figure 3(a), we see that most pathways
involve in the functional group Terpenoid backbone
biosynthesis, which is a large class of natural prod-
ucts consisting of isoprene (C5) units. As a compar-
ison, the ℓ1-regularized sparse CCA selects 173 SNPs
and 71 genes and these 71 genes belong to 50 path-
ways. The enrichment of the selected genes by ℓ1-
regularized sparse CCA is presented in Figure 3(b).
We further perform GO enrichment analysis on the
selected genes. Most Go terms obtained from group-
structured sparse CCA has much less p-values than
that from ℓ1-regularized sparse CCA. In addition, the
overlapping-group-lasso penalty on genes will also af-
fect the selection of SNPs. An interesting observation
is that, most of the selected SNPs using the group-
structured sparse CCA are concentrated on Chromo-
some 12 and 13.

In addition to the group-structured sparse CCA with
the group extracted from KEGG pathways, we also
perform the tree-structured sparse CCA, where we first
run the hierarchical agglomerative clustering of the
p × p correlation matrix of Y; define the groups by
each tree node and then run the group-structured
sparse CCA. The tree-structured sparse CCA selects
123 SNPs and 66 genes. The functional enrichment
results show that most of the functions are identical
to those learned by the group-structured sparse CCA
with groups from KEGG, e.g. Terpenoid backbone
biosynthesis, Steroid biosynthesis, O-Mannosyl glycan
biosynthesis, Sphingolipid, etc. This experiment sug-
gests that, even without any prior knowledge of the
group structure, the correlation based tree-structured
sparse CCA can also select the relevant genes and pro-

vide the similar enrichment results.

Group Pursuit Sparse CCA Now, we do not as-
sume any prior information of the group structure
among the genes. Our goal is to simultaneously se-
lect the relevant genes and group them into clusters.
Using the group pursuit sparse CCA in Eq. (20) and
thresholding the absolute value of the pair-wise corre-
lation at 0.8 to construct the edge set E, we selected
61 genes in total. We present the obtained clusters
among these 61 genes in Figure 3 (c) where two se-
lected genes are connected if the absolute value of dif-
ference between the estimated parameters (|vi − vj |)
is less than 1E-3 (singleton nodes are not plotted due
to space limitations) . We observe that there are two
obvious clusters. With the learned clustering struc-
ture, we can study the functional enrichment of each
cluster separately, which could lead to more elaborate
enrichment analysis as compared to the analysis of the
selected genes all together.

6 Conclusions

In this paper, we propose a structured sparse CCA
framework that can exploit either the pre-given or un-
known group structural information. We also provide
an efficient optimization algorithm that can scale up
to very large problems.
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