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Abstract

Open-text semantic parsers are designed to
interpret any statement in natural language
by inferring a corresponding meaning repre-
sentation (MR – a formal representation of
its sense). Unfortunately, large scale systems
cannot be easily machine-learned due to a
lack of directly supervised data. We propose
a method that learns to assign MRs to a wide
range of text (using a dictionary of more than
70,000 words mapped to more than 40,000
entities) thanks to a training scheme that
combines learning from knowledge bases (e.g.
WordNet) with learning from raw text. The
model jointly learns representations of words,
entities and MRs via a multi-task training
process operating on these diverse sources of
data. Hence, the system ends up providing
methods for knowledge acquisition and word-
sense disambiguation within the context of
semantic parsing in a single elegant frame-
work. Experiments on these various tasks in-
dicate the promise of the approach.

1 Introduction

A key ambition of AI has always been to render com-
puters able to automatically interpret text and express
its meaning in a formal representation. Semantic pars-
ing (Mooney, 2004) precisely aims at building such
systems to interpret statements expressed in natural
language. The purpose of the semantic parser is to an-
alyze the structure of sentence meaning and, formally,
this consists of mapping a natural language sentence
into a logical meaning representation (MR). This task
seems too daunting to carry out manually (because of
the vast quantity of knowledge engineering that would
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be required) so machine learning seems an appealing
avenue. On the other hand, machine learning models
usually require many labeled examples, which can also
be costly to gather, especially when labeling properly
requires the expertise of a linguist.

Hence, research in semantic parsing can be roughly
divided into two tracks. The first one, which could
be termed in-domain, aims at learning to build highly
evolved and comprehensive MRs (Ge and Mooney,
2009; Zettlemoyer and Collins, 2009; Liang et al.,
2011). Since this requires highly annotated training
data and/or MRs built specifically for one domain,
such approaches typically have a restricted vocabulary
(a few hundred words) and a correspondingly limited
MR representation. For example, the U.S. geography
dataset1 only deals with facts like the number and rela-
tive location of cities, rivers and states, with about 800
facts. Alternatively, a second line of research, which
could be termed open-domain (or open-text), works to-
wards learning to associate a MR to any kind of nat-
ural language sentence (Shi and Mihalcea, 2004; Poon
and Domingos, 2009). In this case, the supervision is
weaker because it is infeasible to label large amounts of
free text with MRs that capture deep semantic struc-
ture. As a result, models infer simpler MRs; this is
also referred to as shallow semantic parsing.

This paper focuses on the open-domain category.
We aim to produce MRs of the following form:
relation(subject, object), i.e. relations with subject
and object arguments, where each component of the
resulting triplet refers to a disambiguated entity. The
process is described in Figure 1 and detailed in Sec-
tion 2. For a given sentence, we infer a MR in two
stages: (1) a semantic role labeling step predicts the
semantic structure; (2) a disambiguation step assigns
a corresponding entity to each relevant word, so as to
minimize a learnt energy function. For step (1) we
use an existing approach. Our key contribution is a
novel inference model for performing step (2). This
consists of an energy-based model that is trained with

1See cs.utexas.edu/~ml/nldata/geoquery.html.

127



Learning Representations for Open-Text Semantic Parsing

data from multiple sources in order to combat the lack
of strong supervision. The system is large-scale with
a dictionary of more than 70,000 words that can be
mapped to more than 40,000 disambiguated entities.

Our energy-based model is trained to jointly capture
semantic information between words, entities and com-
binations of those. This is encoded in a distributed
representation in which a low dimensional embedding
vector (or simply embedding in the following) is learnt
for each symbol. Our semantic matching energy func-
tion, introduced in Section 3, is designed to blend such
embeddings in order to assign low energy values to
plausible combinations.

Resources like WordNet (Miller, 1995) and Concept-
Net (Liu and Singh, 2004) encode common-sense
knowledge in the form of relations between entities
(e.g. has part( car, wheel) ) but do not link this
knowledge to raw text (sentences). On the other hand,
text resources like Wikipedia are not grounded with
entities. As we show in Section 4, our training pro-
cedure is based on multi-task learning across differ-
ent data sets including the three mentioned above. In
this way MRs induced from text and relations between
entities are embedded (and integrated) in the same
space. This allows us to learn to perform disambigua-
tion on raw text by using large amounts of indirect
supervision and little direct supervision. The model
learns to use common-sense knowledge (such as Word-
Net relations between entities) to help disambiguate,
i.e. to choose the correct WordNet sense of a word.

Since no standard evaluation for open-text semantic
parsing exists, we evaluated our method on different
criteria to reflect its different properties. Results pre-
sented in Section 6 consider two benchmarks: word-
sense disambiguation (WSD) and (WordNet) knowl-
edge acquisition. We also demonstrate the possibility
that our system can perform knowledge extraction, i.e.
learn new common-sense relations that do not exist in
WordNet by multi-tasking with raw text.

2 Semantic Parsing Framework

This section introduces the particular framework we
are using to perform semantic parsing on free text.

2.1 WordNet-based Representations (MRs)

The MRs we consider for semantic parsing are sim-
ple logical expressions of the form REL(A0, . . . , An).
REL is the relation symbol, and A0, ..., An are its ar-
guments. Note that several such forms can be recur-
sively constructed to build more complex structures.
We wish to parse open-domain raw text so a large set
of relation types and arguments must be considered.

We employ WordNet for defining REL and Ai argu-
ments as proposed in (Shi and Mihalcea, 2004). Word-
Net encompasses comprehensive knowledge within its
graph structure, whose nodes (termed synsets) corre-
spond to senses, and edges define relations between
those senses. Each synset is associated with a set of
words sharing that sense. They are usually identified
by 8-digits codes, however, for clarity reasons, we in-
dicate in this paper a synset by the concatenation of
one of its words, its part-of-speech tag (NN for nouns,
VB for verbs, JJ for adjectives or RB for adverbs)
and a number indicating which sense it refers to. For
example, score NN 1 refers to the synset represent-
ing the first sense of the noun “score”, also containing
the words “mark” and “grade”, whereas score NN 2
refers to its second meaning (i.e. a written form of a
musical composition).

We denote instances of relations from WordNet
using triplets (lhs, rel, rhs), where lhs de-
picts the left-hand side of the relation, rel its
type and rhs its right-hand side. Examples
are ( score NN 1, hypernym, evaluation NN 1) or
( score NN 2, has part, musical notation NN 1). We
filtered out the synsets appearing in less than 15
triplets, as well as relation types appearing in less than
5000 triplets. We obtain a graph with the following
statistics: 41,024 synsets and 18 relation types; a total
of 70,116 different words belong to these synsets. For
our final predicted MRs, we will represent REL and Ai

arguments as tuples of WordNet synsets (hence REL
can for example be any verb, and is not constrained to
one of the 18 WordNet relations).

2.2 Inference Procedure

Step (1): MR structure inference Our semantic
parsing consists of two stages as described in Figure 1.
The first stage consists in preprocessing the text and
inferring the structure of the MR. For this stage we use
standard approaches, the major novelty of our work
lies in our learning algorithm for step (2).

We use the SENNA software2 (Collobert et al., 2011)
to perform part-of-speech (POS) tagging, chunking,
lemmatization3 and semantic role labeling (SRL). In
the following, we term the concatenation of a lem-
matized word and a POS tag (such as score NN or
accompany VB) a lemma. Note the absence of an inte-

ger suffix, which distinguishes a lemma from a synset:
a lemma is allowed to be semantically ambiguous. The
SRL step consists in assigning a semantic role label to
each grammatical argument associated with a verb for
each proposition. It is crucial because it will be used

2Freely available from ml.nec-labs.com/senna/.
3Lemmatization is carried out with NLTK (nltk.org)

and transforms a word into its canonical or base form.
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Figure 1: Open-text semantic parsing. To parse an input sentence (step 0), a preprocessing (lemmatization, POS,

chunking, SRL) is first performed (step 1) to clean data and uncover the MR structure. Then, to each lemma is assigned

a corresponding WordNet synset (step 2), hence defining a complete meaning representation (step 3).

to infer the structure of the MR.

We only consider sentences that match the following
template: (subject, verb, direct object). Here, each of
the three elements of the template is associated with a
tuple of lemmatized words (i.e. a multi-word phrase).
SRL is used to structure the sentence into the (lhs
= subject, rel = verb, rhs = object) template, note
that the order is not necessarily subject / verb / direct
object in the raw text (e.g. in passive sentences).

To summarize, this step starts from a sentence and
either rejects it or outputs a triplet of lemma tuples,
one for the subject, one for the relation or verb, and
one for the direct object. To complete our semantic
parse (or MR), lemmas must be converted into synsets,
that is, we still have to perform disambiguation, which
takes place in step (2).

Step (2): Detection of MR entities The sec-
ond step aims at identifying each semantic entity ex-
pressed in a sentence. Given a relation triplet (lhslem,
rellem, rhslem) where each element of the triplet is
associated with a tuple of lemmas, a corresponding
triplet (lhssyn, relsyn, rhssyn) is produced, where the
lemmas are replaced by synsets. This step is a form
of all-words word-sense disambiguation in a particu-
lar setup, i.e., w.r.t. the logical form of the seman-
tic parse from step (1). Depending on the lemmas,
this can either be straightforward (some lemmas such
as television program NN or world war ii NN corre-
spond to a single synset) or very challenging ( run VB
can be mapped to 33 different synsets and run NN to
10). Hence, in our proposed semantic parsing frame-
work, MRs correspond to triplets of synsets (lhssyn,
relsyn, rhssyn), which can be reorganized to the form
relsyn (lhssyn, rhssyn), as shown in Figure 1.

Since the model is structured around relation triplets,
MRs and WordNet relations are cast into the
same scheme. For example, the WordNet relation
( score NN 2 , has part, musical notation NN 1) fits
the same pattern as our MRs, with the WordNet rela-
tion type has part playing the role of the verb.

3 Semantic Matching Energy

This section presents the main contribution of this pa-
per: an energy function which we use to embed lem-
mas and WordNet entities into the same vector space

(see (Lecun et al., 2006) for an introduction to energy-
based learning). This semantic matching energy func-
tion is used to predict appropriate synsets given lem-
mas. This is achieved by an approximate search for a
set of synsets that are compatible with the observed
lemmas, i.e. a set of synsets that minimize the energy.

3.1 Framework

Our model is designed with the following key concepts:

• Named symbolic entities (synsets, relation types,
and lemmas) are all associated with a joint d-
dimensional vector space, termed the “embedding
space”, following previous work in neural lan-
guage models (see (Bengio, 2008)). The ith entity
is assigned to a vector Ei ∈ Rd. These vectors are
parameters of the model and are jointly learned
to perform well at the semantic parsing task.

• The semantic matching energy value associated
with a particular triplet (lhs, rel, rhs) is com-
puted by a parametrized function E that starts by
mapping all of the symbols to their embeddings.
E must also be able to handle variable-size argu-
ments, since for example there could be multiple
lemmas in the subject part of the sentence.

• The energy function E is optimized to be lower for
training examples than for other possible configu-
rations of symbols. Hence the semantic matching
energy function can distinguish plausible combi-
nations of entities from implausible ones to choose
the most likely sense for a lemma.

3.2 Parametrization

The semantic matching energy function has a parallel
structure (see Figure 2): first, pairs (lhs, rel) and (rel,
rhs) are combined separately and then, these semantic
combinations are matched.

Let the input triplet be x = ((lhs1, lhs2, . . .),
(rel1, rel2, . . .), (rhs1, rhs2, . . .)).

(1) Each symbol i in the input tuples is mapped to
its embedding Ei ∈ Rd.

(2) The embeddings associated with all the symbols
within the same tuple are aggregated by a pooling
function π (we used the mean but other plausible
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Figure 2: Semantic matching energy function. A

triplet of tuples (lhs, rel, rhs) is first mapped to its embed-

dings Elhs, Erel and Erhs (using an aggregating function

for tuples involving more than one symbol). Then Elhs

and Erel are combined using gleft(.) to output Elhs(rel)

(similarly Erhs(rel) = gright(Erhs, Erel)). Finally the en-

ergy E((lhs, rel, rhs)) is obtained by merging Elhs(rel) and

Erhs(rel) with the h(.) function.

candidates include the sum, the max, and combi-
nations of several such elementwise statistics):

Elhs = π(Elhs1 , Elhs2 , . . .),

Erel = π(Erel1 , Erel2 , . . .),

Erhs = π(Erhs1 , Erhs2 , . . .),

where lhsj denotes the j-th individual element of
the left-hand side tuple, etc.

(3) The embeddings Elhs and Erel respectively asso-
ciated with the lhs and rel arguments are used
to construct a new relation-dependent embed-
ding Elhs(rel) for the lhs in the context of the
relation type represented by Erel, and similarly
for the rhs: Elhs(rel) = gleft(Elhs, Erel) and
Erhs(rel) = gright(Erhs, Erel), where gleft and
gright are parametrized functions whose param-
eters are tuned during training.

(4) The energy is computed from the transformed em-
beddings of the left-hand and right-hand sides:
E(x) = h(Elhs(rel), Erhs(rel)), where h is a func-
tion that can be hard-coded or parametrized. If
the latter, parameters are tuned during training.

Many parametrizations are possible for the energy
function (e.g., with non-linear, linear, etc. formula-
tions for g and h) and we have explored only a few. In
this paper, we only present the bilinear setting (that
performed best in experiments proposed in Section 6):
the g functions are bilinear layers and h is a dot-

product. More precisely, we used:

Elhs(rel) =(Went,lElhs)⊗ (Wrel,lErel) + bl

Erhs(rel) =(Went,rErhs)⊗ (Wrel,rErel) + br

h(Elhs(rel),Erhs(rel)) = −Elhs(rel) · Erhs(rel)

where Went,l, Wrel,l, Went,r and Wrel,r are d×d weight
matrices, bl, br are d bias vectors and ⊗ depicts the
element-wise vector product.

This bilinear parametrization is appealing because the
operation ⊗ allows to encode conjunctions between lhs
and rel, and rhs and rel.

3.3 Training Objective

We now define the training criterion for the semantic
matching energy function. Let C denote the dictio-
nary which includes all entities (relation types, lem-
mas and synsets), and let C∗ denote the set of tuples
(or sequences) whose elements are taken in C. Let
R ⊂ C be the subset of entities which are relation
types (R∗ is defined similarly to C∗). We are given
a training set D containing m triplets of the form
x = (lhsx, relx, rhsx), where lhsx ∈ C∗, relx ∈ R∗,
and rhsx ∈ C∗, and ∀x ∈ C∗ × R∗ × C∗, E(x) =
E((lhsx, relx, rhsx)).

Ideally, we would like to perform maximum likelihood
over P (x) ∝ e−E(x) but this is intractable. The ap-
proach we follow here has already been used success-
fully in ranking settings (Collobert et al., 2011) and
corresponds to performing two approximations. First,
like in pseudo-likelihood we only consider one input at
a time given the others, e.g. lhs given rel and rhs,
which makes normalization tractable. Second, instead
of sampling a negative example from the model pos-
terior, we use a ranking criterion (that is based on
uniformly sampling a negative example).

Intuitively, if one of the elements of a given triplet
were missing, then we would like the model to be able
to predict the correct entity. For example, this would
allow us to answer questions like “what is part of a
car?” or “what does a score accompany?”. The objec-
tive of training is to learn the semantic energy function
E such that it can successfully rank the training sam-
ples x below all other possible triplets:

E(x) < E((i, relx, rhsx)),∀i ∈ C∗ : (i, relx, rhsx) /∈ D (1)

E(x) < E((lhsx, j, rhsx)),∀j ∈ R∗ : (lhsx, j, rhsx) /∈ D (2)

E(x) < E((lhsx, relx, k)),∀k ∈ C∗ : (lhsx, relx, k) /∈ D (3)

Towards achieving this, the following stochastic crite-
rion is minimized:

∑

x∈D

∑

x̃∼Q(x̃|x)
max (E(x)− E(x̃) + 1, 0) (4)
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where Q(x̃|x) is a corruption process that transforms a
training example x into a corrupted negative example.
In the experiments Q only changes one of the three
members of the triplet, by changing only one of the
lemmas, synsets or relation types in it, by sampling it
uniformly from C or R.

3.4 Disambiguation of Lemma Triplets

Our semantic matching energy function is used on
raw text to perform step (2) of the protocol de-
scribed in Section 2.2, that is to carry out the
word-sense disambiguation step. A triplet of lem-
mas ((lhslem1 , lhslem2 , . . .), (rellem1 , . . .), (rhslem1 , . . .)) is
labeled with synsets in a greedy fashion, one lemma at
a time. For labeling lhslem2 for instance, we fix all the
remaining elements of the triplet to their lemmas and
select the synset leading to the lowest energy:

lhssyn2 = argminS∈C(syn|lem)E((lhslem1 , S, . . .),

(rellem1 , . . .), (rhslem1 , . . .))

with C(syn|lem) the set of allowed synsets to which
lhslem2 can be mapped. We repeat that for all lemmas.
We always use lemmas as context, and never the al-
ready assigned synsets. This is an efficient process as
it only requires the computation of a small number of
energies, equal to the number of senses for a lemma,
for each position of a sentence. However, it requires
good representations (i.e. good embedding vectors Ei)
for synsets and lemmas because they are used jointly
to perform this crucial step. Hence, the multi-tasking
training presented in the next section attempts to learn
good embeddings jointly for synsets and lemmas (and
good parameters for the g functions).

4 Multi-Task Training

4.1 Multiple Data Resources

In order to endow the model with as much common-
sense knowledge as possible, the following heteroge-
neous data sources are combined.

WordNet v3.0 (WN). Described in Section 2.1,
this is the main resource, defining the dictionary of
entities. The 18 relation types and 40,989 synsets re-
tained are composed to form a total of 221,017 triplets.
We randomly extracted from them a validation and a
test set with 5,000 triplets each.

WordNet contains only relations between synsets.
However, the disambiguation process needs embed-
dings for synsets and for lemmas. Following (Havasi
et al., 2010), we created two other versions of this

dataset to leverage WN in order to also learn lemma
embeddings: “Ambiguated” WN and “Bridge” WN. In
“Ambiguated” WN both synset entities of each triplet
are replaced by one of their corresponding lemmas,
thus training the models with many examples that are
similar up to the replacement of a lemma by a syn-
onym. “Bridge” WN is designed to teach the model
about the connection between synset and lemma em-
beddings, thus in its relation tuples the lhs or rhs
synset is replaced by a corresponding lemma (while the
other argument remains a synset). Sampling training
examples from WN involves actually sampling from
one of its three versions, resulting in a triplet involv-
ing synsets, lemmas or both.

ConceptNet v2.1 (CN). CN (Liu and Singh,
2004) is a common-sense knowledge base in which lem-
mas or groups of lemmas are linked together with rich
semantic relations, for example ( kitchen table NN,
used for, eat VB breakfast NN). It is based on lem-

mas and not synsets, and hence it does not make
any distinction between different word senses. Only
triplets containing lemmas from the WN dictionary
are kept, to obtain a total of 11,332 training triplets.

Wikipedia (Wk). This resource is simply raw text
meant to provide knowledge to the model in an un-
supervised fashion. In this work 50,000 Wikipedia
articles were considered, although many more could
be used. Using the protocol of the first paragraph of
Section 2.2, we created a total of 1,484,966 triplets of
lemmas. Additionally, imperfect training triplets (con-
taining a mix of lemmas and synsets) are produced by
performing the disambiguation step of Section 3.4 on
one of the lemmas. This is equivalent to Maximum
A Posteriori training, i.e., we replace an unobserved
latent variable by its mode according to a posterior
distribution (i.e. to the minimum of the energy func-
tion, given the observed variables). We have used the
50,000 articles to generate more than 3M examples.

EXtended WordNet (XWN) XWN (Harabagiu
and Moldovan, 2002) is built from WordNet glosses
(i.e. definitions), syntactically parsed and with con-
tent words semantically linked to WN synsets. Using
the protocol of Section 2.2, we processed these sen-
tences and collected 47,957 lemma triplets for which
the synset MRs were known. We removed 5,000 of
these examples to use them as an evaluation set for the
MR entity detection/word-sense disambiguation task.
With the remaining 42,957 examples, we created un-
ambiguous training triplets to help the performance of
the disambiguation algorithm described in Section 3.4:
for each lemma in each triplet, a new triplet is cre-
ated by replacing the lemma by its true correspond-
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ing synset and by keeping the other members of the
triplet in lemma form (to serve as examples of lemma-
based context). This led to a total of 786,105 training
triplets, from which we removed 10,000 for validation.

Unambiguous Wikipedia (Wku). Finally, We
built an additional training set with triplets extracted
from the Wikipedia corpus which were modified with
the following trick: if one of its lemmas corresponds
unambiguously to a synset, and if this synset maps to
other ambiguous lemmas, we create a new triplet by
replacing the unambiguous lemma by an ambiguous
one. Hence, we know the true synset in that ambigu-
ous context. This allowed to create 981,841 additional
triplets with supervision (as detailed in next section).

4.2 Training Algorithm

To train the parameters of the energy function E
we loop over all of the training data resources and
use stochastic gradient descent (Robbins and Monro,
1951). That is, we iterate the following steps:

1. Select a positive training triplet xi at random
(composed of synsets, of lemmas or both) from
one of the above sources of examples.

2. Select at random resp. constraint (1), (2) or (3).

3. Create a negative triplet x̃ by sampling an entity
from the set of all entities C to replace respectively
lhsxi

, relxi
or rhsxi

.

4. If E(xi) > E(x̃) − 1, make a stochastic gradient
step to minimize the criterion (4).

5. Enforce the constraint that each embedding vec-
tor is normalized, ||Ei|| = 1, ∀i.

The constant 1 in step 4 is the margin. The gradient
step requires a learning rate of λ. The normalization in
step 5 helps remove scaling freedoms from the model.

The above algorithm was used for all the data sources
except XWN and Wku. In that case, positive triplets
are composed of lemmas (as context) and of a dis-
ambiguated lemma replaced by its synset. Unlike for
Wikipedia, this is labeled data, so we are certain that
this synset is the true sense. Hence, to increase train-
ing efficiency and yield a more discriminant disam-
biguation, in step 3 with probability 1

2 , we either sam-
ple randomly from C or from the set of remaining
candidate synsets corresponding to this disambiguated
lemma (i.e. the set of its other meanings).

The matrix E which contains the representations of
the entities is learnt via a complex multi-task learning
procedure because a single embedding matrix is used
for all relations and all data sources (each really corre-
sponding to a different distribution of symbol tuples,

i.e., a different task). As a result, the embedding of an
entity contains factorized information coming from all
the relations and data sources in which the entity is
involved as lhs, rhs or even rel (for verbs). For each
entity, the model is forced to learn how it interacts
with other entities in many different ways.

5 Related Work

Our approach is original in both its energy-based
model formulation and how it unifies multiple tasks
and training resources for its semantic parsing goal.
However, it has relations with many previous works.
Shi and Mihalcea (2004) proposed a rule-based sys-
tem for open-text semantic parsing using WordNet
and FrameNet (Baker et al., 1998) while Giuglea and
Moschitti (2006) proposed a model to connect Word-
Net, VerbNet and PropBank (Kingsbury and Palmer,
2002) for semantic parsing using tree kernels. A
method based on Markov-Logic Networks has been
recently introduced for unsupervised semantic pars-
ing that can be also used for information acquisi-
tion (Poon and Domingos, 2009, 2010). However, in-
stead of connecting MRs to an existing ontology as
the proposed method does, it constructs a new one
and does not leverage pre-existing knowledge. Au-
tomatic information extraction is the topic of many
models and demos (Snow et al., 2006; Yates et al.,
2007; Wu and Weld, 2010; Suchanek et al., 2008) but
none of them relies on a joint embedding model. Some
approaches have been directly targeting to enrich ex-
isting resources, as we do here with WordNet, (Agirre
et al., 2000; Cuadros and Rigau, 2008; Cimiano, 2006)
but these never use learning. Finally, several previ-
ous works have targeted to improve WSD by using
extra-knowledge by either automatically acquiring ex-
amples (Martinez et al., 2008) or by connecting differ-
ent knowledge bases (Havasi et al., 2010).

To our knowledge, energy-based models have not been
applied to semantic parsing, but approaches have been
developed for other NLP tasks. Bengio et al. (2003)
developed a neural word embedding approach for lan-
guage modeling (they only model words, not entities).
Paccanaro and Hinton (2001) developed entity embed-
ding for learning logical relations (but do not model
words). Collobert and Weston (2008) developed word
embedding models further and applied them to vari-
ous NLP tasks. We in fact use their SRL system to
solve step (1) of our system (see Figure 1) and focus
on step (2), which they do not address. The archi-
tecture of our system is also related to recent work
on gated models (Sutskever et al., 2011) and recursive
autoencoders (Bottou, 2011; Socher et al., 2011).

Finally, Bordes et al. (2011) describe an entity embed-
ding model for knowledge acquisition: given relation
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Table 1: WordNet Knowledge Acquisition (cols. 2-3) and Word Sense Disambiguation (cols. 4-5).
MFS uses the Most Frequent Sense. All+MFS is our best system, combining all sources of information.

Model WordNet rank WordNet p@10 F1 XWN F1 Senseval3

All+MFS – – 72.35% 70.19%
All 139.30 3.47% 67.52% 51.44%
WN+CN+Wk 95.9 4.60% 34.80% 34.13%
WN 72.1 5.88% 29.55% 28.36%

MFS – – 67.17 67.79%
Gamble (Decadt et al., 2004) – – – 66.41%
SE (Bordes et al., 2011) 53.2 7.45% – –
SE (no KDE) (Bordes et al., 2011) 87.6 4.91% – –
Random 20512 0.01% 26.71% 29.55%

training triplets, they also measure how well the model
generalizes to new relations. Their model embeds each
relation type into a pair of matrices instead of using
a bilinear parametrization. This gives relation types
a different status (they cannot appear as lhs or rhs)
and necessitates many more parameters. Training on
raw text with thousands of verbs would be impossible,
hence their model is not viable for semantic parsing.

6 Experiments

This section starts by an evaluation of our model and
then proposes an illustration of its properties.

6.1 Benchmarks

To assess the performance w.r.t. choices made with the
multi-task joint training and the diverse data sources,
we evaluated models trained with several combina-
tions of data sources on two benchmark tasks: Word-
Net knowledge encoding and WSD. WN denotes our
model trained only on WordNet, “Ambiguated” Word-
Net and “Bridge” WordNet, WN+CN+Wk is also
trained on CN and Wk datasets, and All is trained on
all sources. Results are summarized in Table 1.

Knowledge Acquisition The ability to generalize
from given knowledge (training relations) to new re-
lations is measured with the following procedure. For
each test WordNet triplet, either the left or right entity
is removed and replaced by each of the 41,024 synsets
of the dictionary in turn. Energies of those triplets are
computed by the model and sorted by ascending order
and the rank of the correct synset is stored. We then
measure the mean predicted rank (the average of those
ranks), WordNet rank, and the precision@10 (p@10)
(the proportion of ranks that are within 1 and 10, di-
vided by 10), WordNet p@10. Hyperparameters (λ
and d) are selected with a validation set.

Columns 2 and 3 of Table 1 present the compar-
ative results, together with performance of (Bordes
et al., 2011) (SE). Our model trained on WordNet

alone (WN) is a bit worse than SE (line 8). How-
ever, Bordes et al. (2011) stack a Kernel Density Es-
timator (KDE) on top of their structured embeddings
to improve prediction. Compared with SE without
KDE (line 9), our model is clearly competitive. Multi-
tasking with other data (WN+CN+Wk and All)
still allows to encode WordNet knowledge well, even if
it is slightly worse than with WordNet alone (WN).

By multi-tasking with raw text, the numbers of re-
lation types grows from 18 to several thousands. Our
model learns similarities, which are more complex with
so many relations: by adding text relations, the prob-
lem of extracting knowledge from WordNet becomes
harder. This degrading effect is a current limitation of
the multi-tasking process, even if performance is still
very good if one keeps in mind that ranks of Table 1
are over 41,024 entities. Besides, this offers the ability
to combine multiple training sources, which is crucial
for WSD and eventually for semantic parsing.

Word Sense Disambiguation Performance on
WSD is assessed on two test sets: the XWN test
set and a subset of English All-words WSD task of
SensEval-3.4 For the latter, we processed the origi-
nal data using the protocol of Section 2.2 and kept
only triplets (subject, verb, direct object) for which all
lemmas were belonging to our vocabulary defined by
WordNet. We obtained a total of 208 words to disam-
biguate (out of ≈ 2000 originally). The performance
of the most frequent sense (MFS) based on WordNet
frequencies is also evaluated. Finally, we also report
the results of Gamble (Decadt et al., 2004), winner
of Senseval-3, on our subset of its data.5

F1 scores are presented in Table 1 (cols. 4-5). The dif-
ference between WN and WN+CN+Wk indicates
that, even with no direct supervision, the model can

4www.senseval.org/senseval3.
5A side effect of our preprocessing of SensEval-3 data

is that our subset contains mostly frequent words. This
is easier for MFS than for Gamble because Gamble is
efficient on rare terms. Hence, Gamble performs worse
than during the challenge and is outperformed by MFS.
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Table 2: Embeddings. Closest neighbors for some lem-

mas/synsets in the embedding space (euclidean distance).
mark NN mark NN 1 mark NN 2

indication NN score NN 1 marking NN 1
print NN 3 number NN 2 symbolizing NN 1
print NN gradation NN naming NN 1
roll NN evaluation NN 1 marking NN

pointer NN tier NN 1 punctuation NN 3

take VB canary NN different JJ 1
bring VB sea mew NN 1 eccentric NN
put VB yellowbird NN 2 dissimilar JJ
ask VB canary bird NN 1 same JJ 2
hold VB larus marinus NN 1 similarity NN 1

provide VB mew NN common JJ 1

extract meaningful information from text to disam-
biguate some words (WN+CN+Wk is significantly
above Random and WN). But this is not enough,
the labeled examples from XWN and Wku are crucial
(+30%) and yields performance better than MFS (a
strong baseline in WSD) on the XWN test set.

However, performance can be greatly improved by
combining the All sources model and the MFS score.
To do so, we converted the frequency information into
an energy by taking minus the log frequency and used
it as an extra energy term. The total energy function
is used for disambiguation. This yields the results de-
noted by All+MFS which achieves the best perfor-
mance of all the methods tried.

6.2 Representations

Entity Embeddings Table 2 presents the closest
neighbors in the embedding space defined by the model
All for a few entities. As expected, such neighbors are
composed of a mix of lemmas and synsets. The first
row depicts variation around the word “mark”. Neigh-
bors corresponding to the lemma (column 1) consist
in other generic lemmas whereas those for two differ-
ent synsets (columns 2 and 3) are mainly synsets with
clearly different meanings. The second row shows that
for common lemmas (column 1), neighbors are also
generic lemmas, but precise ones (column 2) are close
to synsets defining a sharp meaning. The list returned
for different JJ 1 indicates that learnt embeddings do
not encode antonymy.

WordNet Enrichment WordNet and ConceptNet
use a limited number of relation types (less than 20
of them, e.g. has part and hypernym), and so they
do not consider most verbs as relations. Thanks to
our multi-task training and unified representation for
MRs and WordNet/ConceptNet relations, our model
is potentially able to generalize to such relations that
do not exist in WordNet.

Table 3: Predicted relations reported by our system

(filtering out lemmas) and by TextRunner.
Model (All) TextRunner

lhs army NN 1 army
rel attack VB 1 attacked

troop NN 4 Israel
top armed service NN 1 the village

ranked ship NN 1 another army
rhs territory NN 1 the city

military unit NN 1 the fort

business firm NN 1 People
top person NN 1 Players

ranked family NN 1 one
lhs payoff NN 3 Students

card game NN 1 business
rel earn VB 1 earn
rhs money NN 1 money

As illustration, predicted lists of synsets for relation
types that do not exist in the two knowledge bases
are given in Table 3. We also compare with lists re-
turned by TextRunner (Yates et al., 2007) (an infor-
mation extraction tool having extracted information
from 100M webpages, to be compared with our 50k
Wikipedia articles). Lists from both systems seem
to reflect common-sense. However, contrary to our
system, TextRunner does not disambiguate different
senses of a lemma, and thus it cannot connect its
knowledge to an existing resource to enrich it.

7 Conclusion

This paper presented a large-scale system for seman-
tic parsing mapping raw text to disambiguated MRs.
The key contributions are: (i) an energy-based model
that scores triplets of relations between ambiguous
lemmas and unambiguous entities (synsets); and (ii)
multi-tasking the learning of such a model over sev-
eral resources so that we can effectively learn to build
disambiguated meaning representations from raw text
with relatively limited supervision.

The final system can potentially capture the deep se-
mantics of sentences in its energy function by general-
izing the knowledge of multiple resources and linking it
to raw text. We obtained positive experimental results
on several tasks that appear to support this assertion.
Future work should explore the capabilities of such sys-
tems further including other semantic tasks, and more
evolved grammars, e.g. with FrameNet (Baker et al.,
1998; Coppola and Moschitti, 2010).
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