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Abstract

The relevant HIV data sets used for predict-
ing outcomes of HIV combination therapies
suffer from several problems: different treat-
ment backgrounds of the samples, uneven
representation with respect to the level of
therapy experience and uneven therapy rep-
resentation. Also, they comprise only viral
strain(s) that can be detected in the patients’
blood serum. The approach presented in this
paper tackles these issues by considering not
only the most recent therapies but also the
different treatment backgrounds of the sam-
ples making up the clinical data sets when
predicting the outcomes of HIV therapies.
For this purpose, we introduce a similarity
measure for sequences of therapies and use
it for training separate linear models for pre-
dicting therapy outcome for each target sam-
ple. Compared to the most commonly used
approach that encodes all available treatment
information only by specific input features
our approach has the advantage of deliver-
ing significantly more accurate predictions
for therapy-experienced patients and for rare
therapies. Additionally, the sample-specific
models are more interpretable which is very
important in medical applications.

1 Introduction

Causing the acquired immunodeficiency syndrome
(AIDS), with no cure or vaccine available, the human
immunodeficiency virus (HIV) is among the deadliest
pathogens in the history of mankind. It has claimed
more than 27 million lives since its discovery in 1981
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and the current number of infected people worldwide
is larger than 33 million (UNAIDS/WHO, 2010). HIV
patients are customarily treated with administration
of combinations of several antiretroviral drugs. Al-
though compared to individual drugs such a drug cock-
tail prolongs the time until HIV has acquired resis-
tance to the therapy, it is eventually defeated by the
evolution of HIV to resistance and needs to be replaced
by a different drug combination. Finding a successful
combination therapy on such an occasion, while keep-
ing future therapy options open, is the central problem
with which the physician is faced when treating HIV
patients. However, selecting an appropriate therapy is
quite hard, mainly because of the very large number of
putative drug combinations (hundreds to thousands)
and the large number of resistance-relevant mutations
accumulated in the latent virus population in several
tissues and organs. Such hidden mutations have to be
taken into account because they are quickly accessed
if this is beneficial for the virus after a therapy change.

The large amount of available clinical data combined
with the use of advanced statistical learning methodol-
ogy offer an automated computational approach to uti-
lizing the available knowledge for predicting the out-
come of a potential antiretroviral therapy. Such tech-
nology can therefore assist physicians in choosing a
successful regimen for an HIV patient. This is not
so central for first-line therapies, as there are specific
guidelines for administering initial therapies, but it
becomes highly relevant for therapy-experienced pa-
tients.

However, there are several important issues affecting
the HIV clinical data sets. First of all, they com-
prise therapy samples that originate from patients with
different treatment backgrounds. Also the specific
treatment histories for the majority of these therapy-
experienced samples are unique. Second, the vari-
ous levels of therapy experience ranging from therapy-
naive to heavily pretreated are represented with differ-
ent sample abundances — especially samples stemming
from patients with higher therapy-experience levels are
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underrepresented. Third, in most clinical data sets
and in practice only the genotype of the most abun-
dant viral strain in the patient’s blood serum is avail-
able and considered when making a decision on the
future therapy, while the remaining latent virus vari-
ants whose genomes are stored in different organs of
the patient do not leave a mark. However, the in-
formation regarding the latent virus population is im-
portant for making accurate predictions for therapy-
experienced HIV patients. Finally, the HIV clinical
data sets contain data on different combination thera-
pies with widely differing frequencies. In particular,
many therapies are only represented with very few
data points. All this creates what we refer to as treat-
ment bias in the data sets which propagates to the
derived statistical models and influences their predic-
tions and usefulness.

This paper presents an interpretable statistical method
for predicting outcomes of HIV combination therapies
that deals with the treatment bias pertaining to the
HIV clinical data sets. For this purpose, our approach
takes not only the most recent (target) therapy but
also available information on preceding therapies into
account. First, we adapt techniques from sequence
alignment to the problem of aligning sequences of ther-
apies and use them to introduce a quantitative notion
of pairwise similarity of therapy sequences. The sim-
ilarity measure also incorporates information on the
similarity of the corresponding genomic fingerprints in
the latent virus population of the compared therapy
sequences. Then, for each sample of interest, which
is associated with a corresponding target therapy se-
quence, we train an individual model for predicting
therapy outcome. The model utilizes the similarities
between the target therapy sequence and the training
therapy sequences in order to quantify the influence of
the respective training samples on the model’s predic-
tion. In this way the model, incorporates information
on the latent virus population, the specific therapies
previously given to a patient and the order in which
they were administered, on the one hand, and uses
this information and all available data to deal with
the treatment bias present in the clinical data, on the
other hand.

1.1 Related work

Over the years a wide range of statistical learning
methods, including artificial neural networks, deci-
sion trees, random forests, support vector machines
(SVMs) multi-task learning and logistic regression
(Wang et al., 2003; Larder et al., 2007; Deforche et al.,
2008; Rosen-Zvi et al., 2008; Bickel et al., 2008; Alt-
mann et al.; 2009; Prosperi et al., 2009; Bogojeska
et al., 2010; Revell et al., 2010), have emerged for
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tackling the problem of predicting the virological re-
sponse to HIV combination therapies. Some of these
approaches (Bickel et al., 2008; Rosen-Zvi et al., 2008)
incorporate information on the previous therapies ad-
ministered in a patient’s history and thereby demon-
strate the value of such knowledge. In the aforemen-
tioned publications the information on treatment his-
tory has been flattened to the set of different drugs
that have been administered in any of the therapies
that comprise the relevant treatment history record.
While this simple approach can easily be incorporated
in every statistical learning method, it neglects the
information on the specific makeup of drug combina-
tions comprising the patient’s treatment history, their
resulting viral genomic fingerprints in the latent vi-
ral population and the order in which they were ad-
ministered. Saigo et al. (2010) present an approach
denoted as sequence boosting for predicting therapy
effectiveness targeted at therapy-experienced patients
with completely recorded treatment history. This
method incorporates information on the order in which
the therapies were administered and shows the impor-
tance of such information for treatment-experienced
patients. However, in the available HIV clinical data
the information on whether the treatment information
is complete or not is missing for the majority of the
samples.

None of the approaches mentioned above tackles
the bias introduced by the different treatment back-
grounds of the samples and their sparse representation
in the clinical data sets.

2 Methods

In this paper we present an approach, referred to as
history-alignment model, that tackles the treatment
bias in the HIV clinical data by introducing a notion
of treatment similarity which considers not only infor-
mation on the current therapy but also detailed infor-
mation on the treatment history. More specifically, it
considers two treatments as similar if they have sim-
ilar treatment patterns and their genomic fingerprint
in the latent viral population is similar. Our approach
trains a separate model for each sample of interest by
using all available training samples, each with a spe-
cific weight, that reflects the similarity of the corre-
sponding treatment pattern to the treatment pattern
of the target sample. In this way we address the dif-
ferent treatment backgrounds of the clinical samples,
their differing sample abundances, the latent virus
population and the uneven therapy representation in
the clinical data sets. In what follows we first describe
the problem setting and then provide detailed descrip-
tion of the similarity measure of therapy sequences and
the history-alignment model.
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2.1 Problem setting

Let x denote the viral genotype represented as a binary
vector indicating the occurrence of a set of resistance-
relevant mutations, let z denote the therapy combi-
nation encoded as a binary vector that indicates the
individual drugs comprising the current therapy and
let h denote a binary vector representing the drugs
administered in all known previous therapies for the
specific therapy example. The label y indicates the
success (1) or failure (—1) of each therapy sample.
Let D = {(Xh Zy, hl» y1)7 ey (Xm: Zim, hma y'rn)} de-
note the training set and let t denote the therapy sam-
ple of interest. Let start(t) denote the point of time
when the therapy t was started and pat(t) denote the
patient identifier corresponding to therapy sample t.
Then:

r(t) = {z | (start(z) < start(t)) and (pat(z) = pat(t))}

denotes the complete treatment record associated with
the therapy sample t and is referred to as therapy se-
quence. It contains all known therapies administered
to pat(t) not later than start(t) ordered by their cor-
responding starting times, from older to newer and
will be referred to as the therapy sequence. We point
out that each therapy sequence also contains the cur-
rent therapy, ¢.e., the most recent therapy in the ther-
apy sequence r(t) is t. Our goal is to train a model
f(x,t,h) that correctly predicts the outcome of the
target therapy t for given viral genotypes by utilizing
the information from its associated therapy sequence.

2.2 Similarity of therapy sequences

Our main objective when quantifying the similarity of
therapy sequences is to consider two therapy sequences
similar if they consist of similar drug combinations ad-
ministered in a similar order and producing similar ge-
nomic fingerprints in the latent viral population.

We first quantify the pairwise similarity between dif-
ferent drug combinations and then use it together with
the order in which the therapies were administered to
compute the overall similarity between two therapy
sequences. Since we lack primary data on the latent
virus population, the pairwise therapy similarity mea-
sure considers the genomic fingerprint the therapies
leave in the viral genome as a surrogate. This fin-
gerprint comprises resistance-relevant mutations of the
drugs making up the therapy.

For quantifying the pairwise similarities between dif-
ferent therapy combinations we use the resistance mu-
tations kernel, which uses the table of resistance-
associated mutations of each drug afforded by the In-
ternational AIDS society (Johnson et al., 2008). The
kernel assumes that the similarity between different
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drug groups is additive. This is a reasonable assump-
tion since drugs belonging to different groups have dif-
ferent targets and/or modes of action and thus can
be assumed to act independently (Beerenwinkel et al.,
2003). Formally the kernel is defined as follows. Let G
denote the set of different drug groups. In our clinical
data set we have three drug groups: NRTIs (Nucleo-
side Reverse Transcriptase Inhibitors), NNRTIs (Non-
Nucleoside Reverse Transcriptase Inhibitors) and Pls
(Protease Inhibitors). Let u,, and u,/, be binary vec-
tors indicating the resistance-relevant mutations for
the set of drugs occurring in drug group g € G of
the therapies z and z’, respectively. The similarity be-
tween the drug-g mutations of the two therapies z and
7’ is then calculated by:

T
uzguzfg
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where x"y denotes the scalar product of the vectors
x and y, and | - | is the Lo-norm. We derive the
similarity k., (z,z’) between the therapies z and z’ by
averaging the similarities of their corresponding drug
groups:

simgy(z,z'
km(Z7Z/) = Z iqél ).
geG

Since the group similarities simg,(z,2’) lie in the inter-
val [0, 1], the values of the resistance mutations ker-
nel are also within [0,1]. Intuitively, the higher the
number of common resistance relevant mutations as-
sociated with the corresponding sets of drugs making
up the two therapies of interest, the higher their sim-
ilarities. In this way the therapy similarity also ac-
counts for the similarity of the genomic fingerprints of
the potential latent virus populations of the compared
therapies. Furthermore, our kernel represents drugs in
terms of their mutation profile and, by doing so, allows
for high group similarity for non-identical drugs that
have very similar resistance mutation profiles. In this
way we take the high levels of cross resistance within
the same drug classes into account.

Once we have determined the pairwise similarities of
different drug combinations, we will use them to quan-
tify the pairwise similarities between complete therapy
sequences. We need a similarity score that accounts for
both the similarity of the different therapies compris-
ing the therapy sequences and the order in which they
were administered. Thus we can adapt the score com-
monly used for assessing the quality of an alignment
of protein or nucleic acid sequences. In what follows
we give the details of this adaptation.

Let X = [21,...,2x)] and Y = [y1,...,y}y|] be two
therapy sequences defined over a finite alphabet 3 with
lengths |X| and |Y|, respectively. Let the pair of se-
quences (X', Y") defined over the alphabet {¥ U”—-"}
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that includes the gap character ”—" denotes their se-
quence alignment.

Each alignment can be associated with a score that
determines its quality:

| X
S(ley/) = ZS($Z7Z/;),

i=1

where s is a similarity function that quantifies all pair-
wise similarities of all letters in the alphabet {¥ U
7=}, Of course only good alignments with as few
gaps as possible are of interest. In this sense an opti-
mal alignment (X*,Y™*) is the one that maximizes the
alignment score S

(X", Y") = arg(}rg}%icl)S(X’,Y’).

The maximization problem above can be solved with
the Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970).

The alphabet used for the therapy sequence alignment
comprises all distinct drug combinations making up
the clinical data set. The mutations kernel determines
the pairwise similarities s between its letters. Each
therapy sequence ends with the current (most recent)
therapy — the one that determines the label of the sam-
ple. Therefore, we adapt the sequence alignment such
that the rightmost (most recent) therapies (characters)
are always matched, i.e. we do not allow for gaps at
the right end of an alignment. In this way we also
address the problem of uneven representation of the
different therapies. We apply linear gap cost penalty.
The parameter specifying the gap cost is selected in
the model selection procedure. The score of such an
optimal alignment quantifies the pairwise similarity of
therapy sequences and is referred to as alignment sim-
tlarity. It should also be pointed out that since it is a
sum that uses the mutations kernel values, the align-
ment similarity also reflects the similarity of the accu-
mulated mutations (genomic fingerprints) of the latent
virus population of the compared therapy sequences.

2.3 Method

The history-alignment model utilizes the alignment
similarity to train a separate model for every sample
of interest. The details of this method for a given
target sample are summarized in Algorithm 1. The
first step utilizes the alignment similarity: the therapy
sequence of the target sample 7(t) is aligned to the
corresponding therapy sequences of all training sam-
ples {r(z;),i = 1,...,m} and the resulting alignment
scores {S(r(z;),r(t)),s =1,...,m} are the weights for
the training samples.
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Algorithm 1: History-alignment method

Input: Target sample with corresponding current
therapy t and therapy sequence 7(t).

1. Calculate the weights for all training samples
{S(r(z;),r(t)),i=1,...,m}.

2. Apply linear rescaling to normalize the
alignment similarity weights to the range of [0, 1]:

S(r(zi), r(t)) — min; S(r(z;), r(t))
max; S(r(z;),7(t)) — min; S(r(z;),(t))"

S(r(z:),r(t)) =

3. Use the weights {S(r(z;),r(t)),i =1,...,m} to
estimate the final model for the target sample -
minimize weighted loss on training data.

Once the sample weights are available we can proceed
to step two and train the final model that predicts the
therapy response for the sample of interest. For this
purpose we use regularized logistic regression model
(Evgeniou et al., 2000) that minimizes the loss with
respect to w, over the weighted training samples:

ﬁZs<r<zi>,r(t)w-e(f(xi,z,yhi,wt>7yi>+aw?wt
D

where o is the regularization parameter, v is the
smoothing parameter and w; is the model parameter.
In the minimization above we use all available train-
ing samples, from therapy-naive to heavily pretreated,
to produce a separate model for each sample of in-
terest or, if we have a specific test set, for each test
sample. Intuitively, the history-alignment approach
estimates a model tailored towards the sample of in-
terest such that it up-weights those samples that are
relevant for the target sample and down-weights the re-
maining samples. In this manner the method accounts
for the various treatment backgrounds associated with
the samples making up the clinical data sets, the dif-
ferent abundances of the levels of therapy experience,
the latent virus population and the sparse therapy rep-
resentation. Note also that using the alignment simi-
larity kernel which allows for gaps enables our method
to utilize information from samples with incomplete
treatment histories.

As an important aspect in every biomedical applica-
tion interpretability should be one of the properties of
our prediction models. We thus use linear logistic re-
gression and the loss function in the formula above is
given by:

K(f(X,Z,h, Wt)vy) = 111(1 + exp(—yth[x,z,h])).

Our approach of training a separate model for each
target sample demands an efficient method for mini-
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mizing the loss function. The choice for linear models
and the sparse input feature space, provided by the
binary input features, offer the possibility to use the
trust region Newton method for training linear logis-
tic regression (Lin et al., 2008). In this way we ensure
real-time model fitting (in the range of few millisec-
onds) and time-efficient model selection. Section 3 of
the Supplementary material provides more detailed in-
formation on the running time of the history-alignment
models.

3 Experiments and results
3.1 Validation setting

Data set. The data source for our models is the Eu-
Resist clinical database that contains information on
93014 antiretroviral therapies administered to 18325
HIV (subtype B) patients from several countries in the
period from 1988 to 2008. The information employed
by our models includes the consensus sequences of the
predominant viral strains in the patients’ blood, the
individual drugs that comprise a therapy, the virus
load measurements (copies of viral RNA per ml blood
plasma, ¢p/ml) at different time points during ther-
apy, and all available (known) therapies administered
to each patient before some specific point of time.
We point out that the clinical data do not necessarily
have the complete information on all administered HIV
therapies for all patients. Furthermore, the informa-
tion on whether all administered therapies for a given
patient is available or not is also missing. Therefore,
the statistical methods utilize only the available infor-
mation. The viral sequence assigned to each therapy
sample is obtained shortly before the respective ther-
apy was started (up to 90 days before). The response
to a given therapy is quantified with a label (success or
failure) based on the virus load values measured during
its course. The label assignment is identical to the one
described in Bogojeska et al. (2010). The information
on the viral genotype is given in terms of a binary vec-
tor indicating the presence (1) or absence (0) of a set of
predefined resistance-relevant mutations derived from
the list given in Johnson et al. (2008). The currently
administered therapy is also encoded by a binary vec-
tor that indicates the presence or absence of all drugs
appearing in the data set. The set of drugs adminis-
tered in all available therapies preceding the current
therapy is represented in the same manner. Finally,
our training set comprises all samples providing a viral
sequence and a label; it includes 6537 labeled therapy
samples from 690 distinct therapy combinations.

Time-oriented validation scenario. The trends
of treating HIV patients change over time as a result
of the gathered practical experience with the drugs
and the introduction of new antiretroviral drugs. As
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in Bickel et al. (2008); Bogojeska et al. (2010), our
evaluation scenario accounts for this phenomenon by
using a time-oriented split when selecting the training
and the test set. In this way, our models are trained
on the data from the more distant past, while their
performance is measured on the data from the more
recent past. This scenario, referred to as time-oriented
scenario, is more realistic than other scenarios since
it captures how a given model would perform on the
recent trends of combining the drugs. For our clini-
cal data set we realize it as follows. First, we order
all available training samples by the starting dates of
their corresponding therapies. We then make a time-
oriented split by selecting the most recent 20% of the
samples as the test set and the rest as the training set.
For the model selection we split the training set fur-
ther in a similar manner. We use the most recent 25%
of the training set for selecting the best model param-
eters and refer to this set as the tuning set. Figure 1 in
the Supplementary material depicts the different treat-
ment trends in the training, tuning and test sets, de-
fined as explained in the text above and thereby illus-
trates how treatment trends change over time. One
can observe that, unlike the treatment trends in the
training set, the treatment trends in the tuning set
closely resemble those in the test set. This justifies
the choice of the tuning set.

The therapy samples gathered in the HIV clinical data
sets are associated with patients whose treatment his-
tories differ in length: while some patients receive
their first antiretroviral treatment, others are heavily
pretreated. Moreover, these different sample groups,
from treatment-naive to heavily pretreated, are rep-
resented with different abundances in the HIV clin-
ical data. Figure 2 in the Supplementary material
depicts a histogram of the frequencies of the previ-
ously mentioned sample groups in the training data
set: the number of samples stemming from patients in
early stages of HIV treatment is much higher than the
number of samples from therapy-experienced patients
(with more than five or more than ten previously ad-
ministered therapies). The numbers are based on the
therapy-history data in the data set. We should also
point out that most of the therapy sequences associ-
ated with patients in the mid or late stages of HIV
treatment are unique, i.e., the representation of spe-
cific longer therapy sequences in the clinical data sets
is very sparse.

In our computational experiments we want to assess
the predictive power of the models in dependence on
the level of therapy experience. We therefore group
the therapy samples in the test set into different bins
based on the number of therapies administered prior
to the therapy of interest — the current therapy. Note
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that for some patients some therapy information might
be missing. Thus, with the sample binning we make
sure that the samples in the treatment-experienced bin
(denoted by > 5) originate from patients that had at
least five previous therapies. Another important prop-
erty of our approach is its ability to address the uneven
and sparse representation of the different therapies as
depicted in Figure 3 in the Supplementary material.
This property arises from the definition of similarities
of therapy sequences where the current therapies are
always matched. In order to consider the uneven rep-
resentation of the different therapies when assessing
the performance of our models we adopt the validation
scenario from Bogojeska et al. (2010): the therapies in
the test set are grouped based on the number of sam-
ples they have in the training set, and then the model
performance on each of the groups is measured. We
thereby assess the performance of the models for the
rare and the abundant therapies, separately. Note that
due to the lack of data and practical experience for the
rare HIV combination therapies, predicting their effi-
ciency is more challenging compared to estimating the
efficiency of the frequent therapies. Some details on
each of the bins for both groupings are given in Ta-
ble 1 and Table 2 in the Supplementary material. We
assess the quality of a given target model by reporting
its performance for each of the bins.

In order to be able to assist the selection of a poten-
tial combination therapy for HIV patients our method
should provide a good ranking based on the probabil-
ity of therapy success. For this reason, we carry out
the model selection based on AUC (Area Under the
ROC Curve) results and use AUC to assess the model
performance. The standard errors of the AUC values
and the significance of the difference of two AUCs used
for the pairwise method comparison are estimated as
described in Hanley and McNeil (1983).

Reference methods. In our computational experi-
ments we compare the results of our history-alignment
approach, denoted as history-alignment validation sce-
nario, to those of the one-for-all validation scenario
and the one-for-all + hist mutations validation sce-
nario, which are used as reference methods. The
one-for-all reference method mimics the most com-
mon approach in the field where a single linear logis-
tic regression model is trained on all available ther-
apy samples in the data set. The information on the
individual drugs comprising the target (most recent)
therapy and the drugs administered in all its avail-
able preceding therapies are encoded in a binary vector
and supplied as input features. We should also point
out that removing the similarity score weights from
the history-similarity approach yields the one-for-all
method. The one-for-all + hist mutations approach is
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a modified version of one-for-all approach where the
drugs from the drug indicator representation of the
treatment history are replaced with their respective
cumulative resistance-mutation profiles. In this way
the accumulated mutations of the latent virus popula-
tion are encoded in the input feature space.

When assessing the ability of our history-alignment
model to address the uneven representation of the dif-
ferent therapies in the clinical data sets we also con-
sider the therapy-specific model as a second reference
method. It represents the approaches that deal with
the uneven, sparse therapy representation by training
a separate model for each combination therapy by us-
ing not only the samples from the target therapy but
also the available samples from similar therapies with
appropriate sample weights. It implements the drugs
kernel therapy similarity model as described in Bogo-
jeska et al. (2010) on the input feature space defined
in the previous section of this paper.

3.2 Experimental results

In what follows, we first present the results of the vali-
dation experiments of the time-oriented validation sce-
nario stratified for the length of treatment history, fol-
lowed by the results stratified for the abundance of the
different therapies.

The experimental results for the history-alignment
method and the two one-for-all reference methods
stratified for the length of treatment history are sum-
marized in Figure 1. For samples with a small number
of previously administered therapies (less than six), i.e.
with short treatment histories, all considered models
have comparable performance. The low AUC values of
all methods for the group of samples with very short
history lengths (less than three) are to be expected.
Based on the information available in our clinical data
this group comprises samples from therapy-naive pa-
tients (~ 75%) and samples from patients who had
only one or two previous HIV therapies. Therefore,
most of them are successful — the success rate is 89%.
The main reason for ineffectiveness of initial therapies
is lack of adherence. An additional reason for observ-
ing failing therapies in the bin of samples with short
treatment histories is the wrong assignment of treat-
ment history lengths due to the incomplete patient his-
tories in the database. All these issues may be causes
for the low AUCs for the samples with short treat-
ment history. One should also point out that there
are specific guidelines for both treating therapy-naive
patients with first-line therapy and administering the
first couple of follow-up therapies, which normally are
successfully applied. This is also reflected in the high
success rate in our clinical data for this group of ther-
apy samples (see Table 1 in the Supplementary mate-
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rial). Thus assistance is mainly necessary for therapy-
experienced patients. According to the paired differ-
ence test described in Hanley and McNeil (1983) the
history-alignment model that incorporates knowledge
on the specific therapies comprising the treatment his-
tory, their latent virus population and the order in
which they were applied significantly improves the per-
formance for the test samples stemming from patients
with longer treatment histories (> 5) over the two ref-
erence models with p-value= 0.001 for the one-for-all
and p-value= 0.005 for the one-for-all + hist muta-
tions model. Figure 1 (b) depicts the ROC curves for
this group.

The experimental results stratified for the abundance
of the therapies are summarized in Figure 2 (a). As can
be observed, the history-alignment method achieves
better results than the three reference methods for the
test therapies with 0—7 available training samples. Ac-
cording to the paired difference test described in Han-
ley and McNeil (1983), the improvement is significant
with estimated p-value= 0.018 for the one-for-all, p-
value= 0.050 for the one-for-all + hist mutations, and
p-value= 0.008 for the therapy-specific model. Con-
sidering the test therapies with 8 — 30 and more than
30 training samples all considered approaches deliver
comparable results with no significant differences. The
relevant ROC curves for the rare test therapies are
shown in Figure 2 (b).

4 Discussion

This paper presents the history-alignment learning ap-
proach for predicting the outcome of combination ther-
apies that trains individual model for each target sam-
ple. Each of these models weights different training
samples differently: the more similar the respective
therapy sequences to the target therapy sequence, the
higher their importance for the respective model. The
similarity of the therapy sequences is quantified by
means of sequence alignment which incorporates infor-
mation on the resistance-relevant mutations. In this
way we account for the bias imposed by the sparse
sample representation of the various treatment histo-
ries in the clinical data and we extract information on
the genomic fingerprint of the latent virus population.
According to the experimental results this approach
significantly outperforms the reference methods for
test therapies associated with treatment-experienced
patients (with at least five previous treatments) and
exhibits comparable performance for the rest of the
test therapies. Considering the available guidelines
for choosing the several initial HIV treatments and
their high success rates, on the one hand, and the dif-
ficulty of choosing successful therapies for heavily pre-
treated patients, on the other hand, availability of sta-
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Figure 1: Experimental results stratified for the length
of treatment history. (a) Barplot representing the AUC
values with their corresponding standard errors for the
history-alignment approach and the reference (one-for-all,
one-for-all + hist mutations) models. The test samples are
grouped by their corresponding number of available pre-
viously administered therapies — length of treatment his-
tory; and (b) ROC curves displaying the performance of
all methods for the group of test samples with more than
five previously administered therapies (> 5).

tistical methods that focus on providing high-quality
models for treatment-experienced patients is becom-
ing increasingly important. Furthermore, our model
also addresses the uneven therapy representation in
the clinical data sets and outperforms the reference
methods for rare test therapies. This is an important
feature because the rare therapies comprise 61% of the
different therapies in the test set.

An example of the ability of the history-alignment ap-
proach to tackle the bias in the clinical data intro-
duced from the sparse therapy-history representation
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Figure 2: Experimental results stratified for the abun-
dance of therapies. (a) Barplot representing the AUC
values with their corresponding standard errors for the
history-alignment approach and the three reference mod-
els: the one-for-all, the one-for-all + hist mutations, and
the therapy-specific model. The test samples are grouped
based on the number of training examples for their corre-
sponding therapy combinations; and (b) ROC curves dis-
playing the performance of all models for the rare therapies
(with 0 — 7 training samples) of the test set.

is illustrated in Figure 3. From the image of the ther-
apy sequence corresponding to the sample of interest
(Figure 3 a)) we can observe that the target model
predicts the outcome of the therapy ZDV 3TC SQV
TDF RTV LPV — this is the most recent therapy
in the therapy sequence, and the therapy sequence
has a length of nine. Furthermore, Figure 3 b) de-
picts the three most relevant therapy sequences for
this specific model. Here the relevance is reflected in
the similarity of the training therapy sequences to the
target therapy sequence. One can observe that the
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most recent therapies in these sequences are similar
to the most recent target therapy. Moreover, the cor-
responding training samples originate from pretreated
patients. Also the average length of the therapy se-
quences for the 100 most relevant training samples
for the considered model is 11. In this way the tar-
get model assigns the highest relevance to the training
samples originating from therapy-experienced patients
with therapy sequences similar to the target therapy
sequence and thereby compensates for the bias caused
by the different treatment backgrounds of the train-
ing samples and the sparse representation of therapy
sequences. Furthermore, the available information on
the contribution of each training combination therapy
to predicting the outcome of the sample of interest is
an important aspect of model interpretability. Such
information details the most relevant training therapy
sequences for a given target therapy sequence and thus
enables access to the argumentative basis of the pre-
dictions. An additional contribution to model inter-
pretability is achieved by assessing the relevance of
the different input features is presented in Section 2 of
the Supplementary material.

a)

ZDV >ZDV DDI > ZDV > ZDV 3TC SQV > DDI DAT RTV LPV > DDI DAT EFV >
DDITDF EFV > ZDV 3TC TDF > ZDV 3TC TDF SQV RTV LPV

b)

ZDV > ZDV DDI > ZDV 3TC > ZDV 3TC IDV > D4T 3TC IDV > DAT ABC EFV >
DAT ABC TDF EFV > DAT TDF > DAT 3TC TDF RTV LPV

ZpV >ZDV DDI > D4T 3TC > DAT 3TC SQV > DAT SQV RTV > D4T 3TC SQV >
DAT SQV RTV > DDI D4T NFV > DAT 3TC EFV > 3TC TDF EFV >
ZDV 3TC RTVAPV > 3TC TDF RTV APV

ZDV DDI > ZDV DDC > ZDV 3TC > ZDV 3TC IDV > D4T 3TC IDV >
DAT 3TC SQV RTV > DDI D4T 3TC NFV > DDI D4T EFV > DDI D4T NVP >
ZDV 3TC ABC > DDI ABC NVP > D4T 3TC RTV LPV

Figure 3: a) target therapy sequence; b) therapy sequences
of the three most relevant training therapies for the given
target therapy sequence. The therapies comprising each
therapy sequence are given from older to newer where the
current (latest) therapy is depicted in red and > denotes a
treatment change.

To summarize, training an individual model for each
sample when predicting outcomes for HIV combina-
tion therapies enhances the model interpretability.
Additionally, these models incorporate detailed infor-
mation on the treatment history which contributes
information on the genomic fingerprint of the latent
virus population, addresses the uneven therapy repre-
sentation and deals with the various treatment back-
grounds of the samples making up the clinical data
sets. This results in significant improvement of the
predictions for the rare test therapies and the therapy
samples associated with patients in the mid or late
stages of HIV treatment.
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