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Abstract

In this paper, we present a simple but ef-
fective method for multi-label classification
(MLC), termed Correlated Logistic Models
(Corrlog), which extends multiple Indepen-
dent Logistic Regressions (ILRs) by modeling
the pairwise correlation between labels. Al-
gorithmically, we propose an efficient method
for learning parameters of Corrlog, which
is based on regularized maximum pseudo-
likelihood estimation and has a linear com-
putational complexity with respect to the
number of labels. Theoretically, we show
that Corrlog enjoys a satisfying generaliza-
tion bound which is independent of the num-
ber of labels. The effectiveness of Corrlog on
modeling label correlations is illustrated by a
toy example, and further experiments on real
data show that Corrlog achieves competitive
performance compared with popular MLC al-
gorithms.

1 Introduction

Multi-label classification (MLC) extends conventional
single label classification (SLC) by allowing an in-
stance to be simultaneously assigned to multiple labels
from a label set. It occurs naturally from a wide range
of practical problems, from document categorization,
image classification, to music annotation. Due to
its great generality and potential applications, MLC
has received increasing attentions from researchers in
various domains in the past few years (Zhang and
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Zhou, 2007)(Cheng and Hüllermeier, 2009)(Hsu et al.,
2009)(Tsoumakas et al., 2010)(Petterson and Caetano,
2010).

The key problem with MLC is how to utilize label cor-
relations to boost the classification performance, moti-
vated by which a dozen of MLC algorithms have been
proposed in recent years. For example, multi-label k-
nearest neighbor (MLkNN) (Zhang and Zhou, 2007)
and instance based logistic regression (IBLR) (Cheng
and Hüllermeier, 2009) use label correlations within
the neighborhood of an instance for posterior infer-
ence. Classifier Chain (CC) (Read et al., 2009), as
well as its ensemble and probabilistic variants (Dem-
bczyński et al., 2010a), incorporate label correlations
into a chain of binary classifiers, where the prediction
of a label uses previous labels as features. Another
group of algorithms are built upon concurrence or
structure information extracted from the label set, in-
cluding pruned problem transformation (PPT) (Read,
2008), hierarchical binary relevance (HBR) (Bianchi
et al., 2006) and hierarchy of multi-label classifiers
(HOMER) (Tsoumakas et al., 2010). It is impossi-
ble to refer to all the relevant literature. The recent
surveys (Tsoumakas et al., 2010), (Tsoumakas and
Katakis, 2007) contain many references omitted from
this paper.

Besides above algorithmic studies, some theoretical
properties of MLC have also been investigated. (Dem-
bczyński et al., 2010b) and (Dembczyński et al., 2010a)
give an in-depth discussion on label dependence, by
which they show the difference between marginal and
conditional dependence of labels and categorize popu-
lar MLC algorithms accordingly. And, most recently,
Gao and Zhou (2011) studies the conditions for the
consistency of MLC algorithms with surrogate loss
functions.

In this paper, we present a very simple but effective
method for MLC, termed Correlated Logistic Models
(CorrLog),which is built upon Independent Logistic
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Regressions (ILRs) and explicitly models the pairwise
correlation between labels. We propose an efficient
learning algorithm for Corrlog, based on regularized
maximum pseudo-likelihood estimation. In particular,
the computational complexity of the learning proce-
dure is linear with respect to the number of labels and
thus nearly the same with ILRs. Theoretically, we
show that Corrlog enjoys a satisfying generalization,
which is independent of the number of labels. This in-
dicates the generalization bound holds with high con-
fidence even with a large number of labels. Toy exam-
ple is used to illustrate how Corrlog improves ILRs in
modeling label correlations. And thorough experimen-
tal results on MLC benchmark datasets suggest that
CorrLog performs competitively with popular MLC al-
gorithms.

2 Correlated Logistic Models

We study the problem of learning a joint prediction
y = d(x) : X 7→ Y, where the instance space X = {x :
‖x‖ ≤ 1,x ∈ RD} and the label space Y = {−1, 1}m.
By assuming the conditional independence among la-
bels, we can model MLC by a set of independent lo-
gistic regressions (ILRs). The posterior probability of
ILRs is given by

plr(y|x) =
m∏

i=1

plr(yi|x)

=
m∏

i=1

exp
(
yiβ

T
i x
)

exp
(
βTi x

)
+ exp

(
−βTi x

) ,
(1)

where βi ∈ RD is the coefficients for the i-th logistic
regression (LR) in ILRs. For convenience, the bias
of standard LR is omitted here, which is equivalent
to augmenting x with a constant. Although (1) can
be learned efficiently and the probabilistic formulation
helps handle the imbalance problem encountered in
MLC, it ignores the label correlations and tends to
underfit the true posterior p0(y|x), especially when
the number of labels m is large.

2.1 Correlated Logistic Regressions

To overcome this problem, it is essential to consider
the label correlations in (1). In this paper, we pro-
pose to augment (1) with a simple function q(y), and
reformulate the posterior probability as

p(y|x) ∝ plr(y|x)q(y). (2)

Since q(y) is independent of x, (2) models the label
correlations in an average sense. This is similar to
the concept of “marginal dependence ” in MLC (Dem-
bczyński et al., 2010b). However, they are intrinsi-
cally different, because we integrate this correlation

into the posterior probability, which directly aims at
prediction. In addition, the idea used in (2) for corre-
lation modeling is also distinct from the “Curds and
Whey” procedure in (Breiman and Friedman, 1997)
which corrects outputs of multivariate linear regres-
sion by reconsidering their correlations to the true re-
sponses.

In this paper, we define q(y) as a quadratic form of y,

q(y) = exp




∑

i<j

αijyiyj



 . (3)

where yi and yj are positively correlated if αij > 0 and
negatively correlated if αij < 0. It is possible to define
αij as functions of x, but this will drastically increase
number of model parameters by O(m2D) (and thus
the model complexity) even by linear functions. Sub-
stituting (3) to (2), we obtain the Correlated Logistic
models (CorrLog)

p(y|x; Θ) ∝ exp





m∑

i=1

yiβ
T
i x +

∑

i<j

αijyiyj



 , (4)

where the model parameter Θ contains β = [β1, ..., βm]
and α = [α12, ..., α(m−1)m]T . CorrLog is a simple
modification of (1), by using quadratic term to adjust
the joint prediction, in order to explore label correla-
tions.

CorrLog is closely related to popular statistical models
for joint binary responses modeling. For example, (4)
can be regarded as an Ising model (Ravikumar et al.,
2010) for y conditioned on x. Besides, it also defines
a very simple conditional random fields (CRFs) (Laf-
ferty et al., 2001). However, it should be distinguished
from the Collective multi-label classification method
(Ghamrawi and McCallum, 2005), where the later di-
rectly applies CRFs and intuitively defines features
φ(yi,yj) taking values from {0, 1, 2, 3}, but (4) has
distinct motivations, which improves ILRs by mod-
eling label dependence. Moreover, the classical model
multivariate Probit (MP) (Ashford and Sowden, 1970)
also models pairwise correlations in y. However, it
utilizes Gaussian latent variables for correlation mod-
eling, which is essentially different from CorrLog.

2.2 Approximate Learning via Pseudo
Likelihood Maximization

Exact learning of CorrLog (4) needs the calculation
of the partition function, which is computationally in-
tractable. An effective method to avoid this calcu-
lation is using the pseudo likelihood method (Besag,
1975), which is developed for spatial dependence anal-
ysis and has been widely applied to the estimation of
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various models, such as the Ising models (Ravikumar
et al., 2010) and CRFs (Sutton and Mccallum, 2007).
The pseudo likelihood of (4) is given by

p̃(y|x; Θ) =
m∏

i=1

p(yi|y−i,x; Θ), (5)

where y−i = [y1, ...,yi−1,yi+1, ...,ym] and the condi-
tional probability p(yi|y−i,x; Θ) can be directly ob-
tained from (4),

p(yi|y−i,x; Θ) =

1

1 + exp
{
−2yi

(
βTi x +

∑m
j=i+1 αijyj +

∑i−1
j=1 αjiyj

)} .

(6)
Given a set of i.i.d. training data D = {(x(l),y(l)), l =
1, 2, ..., n}, the negative log pseudo likelihood is given
by

L(Θ) = − 1

n

n∑

l=1

m∑

i=1

log p(y
(l)
i |y

(l)
−i,x

(l); Θ). (7)

Then, the optimal parameter can be obtained by the
following regularized minimization

Θ̂ = arg min
Θ
Lr(Θ) = arg min

Θ
L(Θ)+λ1‖β‖2+λ2‖α‖2.

(8)
The two `2 regularizations on β and α control their
respective search spaces to avoid overfitting. In par-
ticular, the former one penalizes the coefficients for
the prediction of individual labels while the latter pe-
nalizes the coefficients for correlations between labels.
An alternative choice of the regularization on α is the
`1 norm, which is intensively studied in recent year
(Ravikumar et al., 2010). However, empirically we
found that, given the satisfying performance of `2 regu-
larization, the `1 regularization offers limited improve-
ment compared to its heavy computational cost when
the dataset is large. Thus, we prefer to adopt the `2
regularization in this paper.

Problem (8) is convex and smooth, and thus can be
solved efficiently by using the gradient based method,
where the gradient of Lr(Θ) is calculated by




∇Lrβi = 1
n

n∑
l=1

ξlix
(l) + 2λ1βi

∇Lrαij
= 1

n

n∑
l=1

(
ξliy

(l)
j + ξljy

(l)
i

)
+ 2λ2αij

(9)

with

ξli =
−2y

(l)
i

1 + exp





2y
(l)
i

(
βTi x

(l) +
m∑

j=i+1

αijy
(l)
j

+
i−1∑

j=1

αjiy
(l)
j

)





. (10)

Algorithm 1 Learning CorrLog by Regularized
Pseudo Likelihood Maximization

Input: Training data D, initialization β(0) = 0,
α(0) = 0, B(1) = β(0), A(1) = α(0), t = 1, and
learning rate η, where 1/η is set larger than the Lip-
schitz constant of ∇Lr(Θ).

Output: Model parameters Θ̂ = (β(t),α(t)).
repeat

β(t) = B(t) − η∇Lrβ(B(t),A(t))
α(t) = A(t) − η∇Lrα(B(t),A(t))

ct+1 =
(

1 +
√

1 + 4c2t

)
/2

B(t+1) = β(t) + ct−1
ct+1

(
β(t) − β(t−1)

)

A(t+1) = α(t) + ct−1
ct+1

(
α(t) −α(t−1)

)

t = t+ 1
until Converged

It can been seen that the calculation of gradients with
respect to βi and αij share (10). Accordingly, the com-
putational cost of learning CorrLog is linear with re-
spect to the number of labels and nearly the same as
that of learning ILRs. This is favorable for largescale
MLC problems. In particular, we use the acceler-
ated gradient descent method developed in (Beck and
Teboulle, 2009) to solve (8), which is proved to have an
optimal convergence rate in the sense of Nemirovsky
and Yudin (Nemirovsky and Yudin, 1983). Algorithm
1 summarizes the pseudo code.

2.3 Joint Prediction

Given the model parameter Θ̂, the joint prediction of
ŷ on a new instance x can be obtained by maximum
a posteriori (MAP) estimation

ŷ = arg max
y∈Y

p(y|x; Θ̂)

∝ exp





m∑

i=1

yiβ̂
T
i x +

∑

i<j

α̂ijyiyj



 .

(11)

We solve (11) by using the max-product algorithm
(Bishop, 2006). Although sophisticated decoding algo-
rithms are available, such as loopy belief propagation
(Murphy et al., 1999), our empirical studies show that
max-product algorithm performs well for joint predic-
tion.

3 Generalization Analysis

In the design of effective learning algorithms, an im-
portant issue is the estimation of the accuracy. To
this end, we derive a generalization bound for Cor-
rLog. Based upon the stability analysis introduced in
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(Bousquet and Elisseeff, 2002), we first show the learn-
ing of CorrLog by maximizing the pseudo likelihood is
stable, and then prove that the generalization error
can be bounded by the empirical error plus a term re-
lated to the stability but independent of the number
of labels.

3.1 The stability of CorrLog

The stability of a learning algorithm indicates how
much the learned model changes according to a small
change of the training data set. Denote by Dk a train-
ing data set the same with D but replace the k-th
training sample (x(k),y(k)) with another independent

sample (x′,y′). Suppose Θ̂ and Θ̂k are learned from
(8) on D and Dk, respectively. We intend to show that

‖Θ̂k−Θ̂‖ ,
m∑

i=1

‖β̂ki−β̂i‖+
∑

i<j

|α̂kij−α̂ij |, ∀ 1 ≤ k ≤ n,

(12)
is bounded by O(1/n). The following auxiliary model

Θ̂\k on D will be used

Θ̂\k = arg min
Θ
L\kr (Θ)

= L\k(Θ) + λ1‖β‖22 + λ2‖α‖22,
(13)

where

L\k(Θ) = − 1

n

∑

l 6=k

m∑

i=1

log p(y
(l)
i |y

(l)
−i,x

(l); Θ). (14)

We start by bounding Lr(Θ̂\k)−Lr(Θ̂), which partic-
ularly results in the following two Lemmas.

Lemma 1. For 1 ≤ k ≤ n,

Lr(Θ̂\k)− Lr(Θ̂) ≤ 1

n

(
m∑

i=1

log p(y
(k)
i |y

(k)
−i ,x

(k); Θ̂\k)

−
m∑

i=1

log p(y
(k)
i |y

(k)
−i ,x

(k); Θ̂)

)

(15)

Proof. Denote by RHS the righthand side of (15), we
have

RHS =
(
Lr(Θ̂\k)− L\kr (Θ̂\k)

)
−
(
Lr(Θ̂)− L\kr (Θ̂)

)
.

(16)

Furthermore, the definition of Θ̂\k implies

L\kr (Θ̂\k) ≤ L\kr (Θ̂). (17)

Combining (16) and (17), we have (15). This com-
pletes the proof.

Lemma 2. For 1 ≤ k ≤ n,

Lr(Θ̂\k)−Lr(Θ̂) ≥ λ1‖β̂
\k−β̂‖2+λ2‖α̂\k−α̂‖2. (18)

Proof. Define a function

f(Θ) = Lr(Θ)− λ1‖β − β̂‖2 − λ2‖α− α̂‖2. (19)

Then it is sufficient to show that f(Θ̂\k) ≥ f(Θ̂). By
using (8), we have

f(Θ) = L(Θ) + 2λ1trace(βT β̂)− λ1‖β̂‖2

+ 2λ2α
T α̂− λ2‖α̂‖2.

(20)

Clearly, f(Θ) is convex, and

∇f(Θ) = ∇L(Θ) + 2λ1β̂ + 2λ2α̂. (21)

Since Θ̂ minimizes Lr(Θ̂), we have

∇f(Θ̂) = ∇L(Θ̂) + 2λ1β̂ + 2λ2α̂

= ∇Lr(Θ̂) = 0,
(22)

which implies f(Θ̂) ≤ f(Θ̂\k). This completes the
proof.

Afterward, by checking the Lipschitz continuous prop-
erty of log p(yi|y−i,x; Θ), we have the following
Lemma 3.

Lemma 3. For ∀ (x,y) ∈ X × Y and 1 ≤ k ≤ n

∣∣
m∑

i=1

log p(yi|y−i,x; Θ̂)−
m∑

i=1

log p(yi|y−i,x; Θ̂\k)
∣∣

≤ 2
m∑

i=1

‖β̂i − β̂\ki ‖+ 4
∑

i<j

|α̂ij − α̂\kij |.

(23)

Proof. The proof is completed by verifying that

‖∂ log p(yi|y−i,x; Θ)/∂βi‖ ≤ 2‖x‖ ≤ 2 (24)

and

|∂ log p(yi|y−i,x; Θ)/∂αij | ≤ 4|yiyj | = 4. (25)

By combining the above three Lemmas, we have the
following Theorem 1 that shows the stability of Cor-
rLog.

Theorem 1. For ∀ D and Dk, 1 ≤ k ≤ n, it holds
that

m∑

i=1

‖β̂ki − β̂i‖+
∑

i<j

|α̂kij − α̂ij | ≤
16

min(λ1, λ2)n
. (26)

112



Wei Bian, Bo Xie, Dacheng Tao

Proof. By rearranging the combination of (15), (18)
and (23), we have

‖β̂\k − β̂‖2 + ‖α̂\k − α̂‖2

≤ 4

min(λ1, λ2)n




m∑

i=1

‖β̂i − β̂\ki ‖+
∑

i<j

|α̂ij − α̂\kij |


 .

(27)
Since

‖β̂\k − β̂‖2 + ‖α̂\k − α̂‖2

≥ 1

2




m∑

i=1

‖β̂i − β̂\ki ‖+
∑

i<j

|α̂ij − α̂\kij |




2

,
(28)

we have

m∑

i=1

‖β̂i− β̂\ki ‖+
∑

i<j

|α̂ij − α̂\kij | ≤
8

min(λ1, λ2)n
. (29)

Further, since D and D differ from each other only
on the k-th training sample, by using the same proof
strategy, we have

m∑

i=1

‖β̂ki − β̂\ki ‖+
∑

i<j

|α̂kij− α̂\kij | ≤
8

min(λ1, λ2)n
. (30)

Then, (26) is obtained immediately. This completes
the proof.

3.2 Generalization Bound

We first define a loss function to measure the gen-
eralization error. Considering that CorrLog predicts
labels by MAP estimation, we define the loss function
by using the log probability

`(x,y; Θ) =





1, f(x,y,Θ) < 0
1− f(x,y,Θ)/γ, 0 ≤ f(x,y,Θ) < γ
0, f(x,y,Θ) ≥ γ,

(31)
where the constant γ > 0 and

f(x,y,Θ) = log p(y|x; Θ)−max
y′ 6=y

log p(y′|x; Θ)

=




m∑

i=1

yiβ
T
i x +

∑

i<j

αijyiyj




−max
y′ 6=y




m∑

i=1

y′iβ
T
i x +

∑

i<j

αijy
′
iy
′
j


 .

(32)

The loss function (31) is defined analogue to the loss
function used in binary classification, where f(x,y,Θ)
is replaced with the margin ywTx if a linear classi-
fier w is used. Besides, (31) gives a 0 loss only if all

dimensions of y are correctly predicted, which empha-
sizes the joint prediction in MLC. By using this loss
function, the generalization error and the empirical er-
ror are given by

R(Θ̂) = Exy`(x,y; Θ̂), (33)

and

R̂(Θ̂) =
1

n

n∑

l=1

`(x(l),y(l); Θ̂). (34)

According to (Bousquet and Elisseeff, 2002), an expo-

nential bound exists for R(Θ̂) if CorrLog has uniform
stability with respect to the loss function (31). The
following Theorem 2 shows this condition holds.

Theorem 2. For ∀(x,y) ∈ X × Y, D and Dk, 1 ≤
k ≤ n, it holds that

|`(x,y; Θ̂)− `(x,y; Θ̂k)| ≤ 32

γmin(λ1, λ2)n
. (35)

Proof. First, by using (31), we have

γ|`(x,y; Θ̂)− `(x,y; Θ̂k)| ≤ |f(x,y, Θ̂)− f(x,y, Θ̂k)|.
(36)

Then, by introducing notation A(x,y,β,α) =∑m
i=1 yiβ

T
i x +

∑
i<j αijyiyj and rewriting

f(x,y,Θ) = A(x,y,β,α) − maxy′ 6=y A(x,y′,β,α),
(36) gives rise to

γ|`(x,y; Θ̂)− `(x,y; Θ̂k)|

≤
∣∣A(x,y, β̂, α̂)−A(x,y, β̂

k
, α̂k)

∣∣

+ |max
y′ 6=y

A(x,y′, β̂, α̂)−max
y′ 6=y

A(x,y′, β̂
k
, α̂k)|.

(37)

Since it holds for general functions h1(u) and h2(u)
that1

|max
u

h1(u)−max
u

h2(u)| ≤ max
u
|h1(u)−h2(u)|, (38)

we have

γ|`(x,y; Θ̂)− `(x,y; Θ̂k)|

≤
∣∣A(x,y, β̂, α̂)−A(x,y, β̂

k
, α̂k)

∣∣

+ max
y′ 6=y

∣∣A(x,y′, β̂, α̂)−A(x,y′, β̂
k
, α̂k)

∣∣

≤ 2 max
y




m∑

i=1

|yi(β̂i − β̂ki )Tx|+
∑

i<j

|(α̂ij − α̂kij)yiyj |




≤ 2




m∑

i=1

‖β̂i − β̂ki ‖+ 2
∑

i<j

|α̂ij − α̂kij |


 .

(39)

1Suppose u?
1 and u?

2 maximize h1(u) and h2(u) respec-
tively, and without loss of generality h1(u?

1) ≥ h2(u?
2),

we have |h1(u?
1) − h2(u?

2)| = h1(u?
1) − h2(u?

2) ≤ h1(u?
1) −

h2(u?
1) ≤ maxu |h1(u)− h2(u)|.
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Afterward, the proof is completed by applying Theo-
rem 1.

Finally, we have the following theorem on the general-
ization bound of Corrlog.

Theorem 3. Given i.i.d. training data D =
{(x(l),y(l)), l = 1, 2, ..., n} from X × Y and regular-
ization parameters λ1, λ2, we have with at least prob-
ability 1− δ,

R(Θ̂) ≤R̂(Θ̂) +
32

γmin(λ1, λ2)n

+

(
64

γmin(λ1, λ2)
+ 1

)√
log 1/δ

2n
.

(40)

Proof. Given the stability result from above Theorem
2, the proof of (40) is similar to that of the Theorem 12
in (Bousquet and Elisseeff, 2002), and thus we omit the
details due to space limitation and leave the readers
to (Bousquet and Elisseeff, 2002).

Remarks A notable point of Theorem 3 is that the
generalization bound (40) is independent of the num-
ber of labels. This is of great importance, since it
indicates that the generalization error of CorrLog can
be bounded with a high confidence even the number of
labels is large. Moreover, the regularization parame-
ters result in a form of min(λ1, λ2), because these two
regularization items penalize different aspects of Cor-
rLog and one cannot be relieved by the other.

4 A Toy Example

We design a simple toy example to illustrate the ca-
pacity of CorrLog on label correlation modeling. In
particular, we show that when ILRs fails drastically
due to ignoring the label correlations (underfitting),
CorrLog performs well. Consider a two-label classifi-
cation problem on a 2-D plane, where each instance x
is sampled uniformly from the unit disc ‖x‖ ≤ 1 and
the corresponding labels y = (y1,y2) are defined by

y1 = sign(ηT1 x̃) and y2 = OR
(
y1, sign(ηT2 x̃)

)
,
(41)

where η1 = (1, 1,−0.5), η2 = (−1, 1,−0.5) and the
augmented feature is x̃ = [xT , 1]T . The sign(·) func-
tion takes value 1 or −1, and the OR(·, ·) operation
outputs 1 if either of its input is 1. The definition of
y2 makes the two labels correlated. We generate 1,000
random samples according to above setting and split
them into training and test sets, each of which contains
500 samples.

Figure 1 shows that true labels of test data, the pre-
dictions of ILRs and the predictions of CorrLog, where

different labels are marked by different colors. In (a),
the disc is divided into three regions, −/−, −/+ and
+/+, where the two black boundaries are specified
by η1 and η2, respectively. In (b), the first bound-
ary η1 properly learned by ILRs, while the second one
is learned wrongly. This is because the second label
is highly correlated to the first label, but ILRs ignores
such correlation. The misclassification rate measured
by 0-1 loss is 0.197. In contrast, CorrLog predicts cor-
rect labels for most instances with a 0-1 loss 0.068.
Besides, it is interesting to note that the correlation
between the two labels are “asymmetric”, for the first
label is not affected by the second. This asymmetry
contributes the most to the misclassification of Cor-
rLog, because previous definition implies that only
symmetric correlations are modeled in CorrLog.

5 Real Data Experiments

We evaluated the proposed method on six datasets,
spanning different application domains. They are En-
ron (text), Slashdot (text), Emotions (music) and
three sub-datasets selected from the Yahoo dataset
(web data). The datasets were obtained from Mulan
and Meka’s website 2. Summary of the basic informa-
tion of the datasets is illustrated in Table 1. We can
see that they vary in feature dimension and number of
labels.

Table 1: Dataset summary. # train stands for the
number of training instances and # test for the number
of test instances. d is the dimension of the features and
m is the number of labels. Education, Recreation and
Science are from Yahoo web datasets.

Datasets # train # test d m
Education 2000 3000 550 33
Emotions 391 202 72 6
Enron 1123 579 1001 53
Recreation 2000 3000 606 22
Science 2000 3000 743 40
Slashdot 2338 1444 1079 22

Experimental Settings: To demonstrate the effec-
tiveness of utilizing label correlation, we compared our
algorithm’s performance with ILRs. Also, we com-
pared with three state-of-the-arts methods – Instance-
Based Learning by Logistic Regression (IBLR) Cheng
and Hüllermeier (2009), Multi-label k-Nearest Neigh-
bor (MLkNN) Zhang and Zhou (2007) and Classifier
Chains (CC) Read et al. (2009). We used six differ-
ent measures to evaluate the performance. These in-

2(Mulan) http://mulan.sourceforge.net/ and (Meka)
http://meka.sourceforge.net/
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Figure 1: Comparing of ILRs and Corrlog on the two-label toy example: (a) true labels of test data; (b)
predictions given by ILRs; (c) predictions given by CorrLog. The dash and solid black boundaries are specified
by η1 and η2. In the legend, “+” and “-” stand for positive and negative labels, respectively, e.g., “−/+” means
y1 = −1 and y2 = 1, and so on.

clude different loss functions (Hamming loss and zero-
one loss) and other popular measures (precision, re-
call, F-1 score and accuracy). The details of these
evaluation measures can be found in Read et al.
(2009)Dembczyński et al. (2010a)Tsoumakas and Vla-
havas (2007). We used the train-test split given in
the website. The parameter pair was chosen accord-
ing to the best accuracy via 5-fold cross validation on
the training set. All experiments are implemented in
MatLab on a dual-core laptop. The training time is
less than 50 seconds while the test time is less than 30
seconds for all six datasets .

MLC Results and Discussion: Table. 2 summa-
rizes the experimental results of all five algorithms
evaluated by the six measures. By comparing the re-
sults of CorrLog and ILRs, we can clearly see the im-
provements on joint prediction. Except the Hamming
loss, CorrLog outperforms ILRs on all datasets. Espe-
cially, the reduction of zero-one loss is significant on
“Recreation” and “Emotions”. This confirms the value
of correlation modeling to joint prediction. However, it
should be noticed that CorrLog performs only compa-
rable with ILRs when the performance is measured by
Hamming loss. This is because Hamming loss treats
the prediction of each label individually. Besides, com-
pared with the other three algorithms, CorrLog also
shows promising performance.

6 Conclusion

In this paper, we have presented a new model CorrLog
for MLC. Built upon IRLs, CorrLog explicitly mod-
els the pairwise correlation between labels, and thus
improves the effectiveness for MLC. However, due to

the learning algorithm based on regularized maximum
pseudo-likelihood estimation, the computational com-
plexity of Corrlog is linear with respect the number
of labels and thus nearly the same with IRLs. This
is particular favorable for MLC. Further, we proved a
generalization bound for CorrLog, which is indepen-
dent of the number of labels and thus suggests that
satisfying generalization holds with high confidence
even the number of labels is large. Thorough empiri-
cal studies on a toy dataset and several MLC bench-
mark datasets show the effectiveness of Corrlog by
comparing with representative MLC algorithms, such
as MLkNN, IBLR, and CC.
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