Supplementary Material for Adaptive Metropolis with Online Relabeling

Notations and assumptions

By convention, vectors z € R? are column vectors. 7 is the transpose vector of z. We fix a norm || - || on vectors and will
also denote by || - || the derived norm for matrices.

Let 7 be a probability density with respect to (w.r.t.) the Lebesgue measure on X where X C R? is measurable (R? is
endowed with its Borel o-field). It is assumed that

(a) = in invariant under the action of P, a finite group of d x d block permutation matrices.

(b) 7 has finite second moment.

Let Cj be the set of the real d x d (symmetric) positive definite matrices. For any § = (u, %) € R? x Cj and x € &,
define the quadratic loss
Lo(z) = (x — )" 27 (@ — ) (1)

and the set
= ceX:L = min Ly(P .
Vo {:c 9(95) meln 9( x)}

Observe that for any § € R? x C, Vj is measurable.

For any § € R? x CJJ, let 7y be the probability density on R, defined by
mo(z) = Z, 1y, (z)m(z), where Zp= / 7(x)d.
ATA
Under the assumptions on 7, g has an expectation

My = /xﬂ'g(x)da:

and a covariance matrix
Sy = [[(@ = i) o = ) o)

Define the function w : R? x CJ — R by
w(f) = —/logN(a:|¢9) mo(x)dx.

Finally, denote by M, the set of d x d real matrices. Define the function h : R? x C:{ — R x Mg by

() = ((Hmy = 1), By = B+ (pimy — 1) (1 — 1)7) - 2
The set R? x M is endowed with the scalar product given by

Tr = (MlaMl)ay = (M27M2) € Rd X Mda <$7y> = /’LI{IU’Z + Trace (MlTj\/‘[Z) .



1 Main result

We first prove that w is positive on the set © defined by
0={0= %) eR*xCJ :YP € P,PTYP # Y or u# Pu}, (3)

and for any 6 € ©, w(#) is, up to a constant, the Kullback-Leibler divergence between 7y and the Gaussian distribution
N(-19).
Proposition 1. Forany 6 € ©,

w(8) = / log X;‘Z%) o (x)dz — (1og7> + / 1og7r(x)7r(x)dx) ,

where | P| denotes the cardinal of P.

Proposition 2 shows that for any # € O, w is similar to a distortion measure in vector quantization [1].

Proposition 2. Forany 6 € ©,
1 1 .
w(f) = ilndet(E) + 7 [ min Lipy,pspry(z) m(z)dz.

Finally, Proposition 3 and Corollary 1 show that on ©, w is a natural Lyapunov function for the mean field i given by (2).
Proposition 3. The function w is continuously differentiable on © and for any 0 € ©,

Vﬂw(e) = _E_l(,um) - :U’)7

1 _

VE’LU(H) = *52 ! (Eﬂ'g -Y+ (,LL‘fre - :LL)(H’"TQ - H)T) =

Corollary 1. For any 0 € ©,
(Vw(0), h(0)) <0,

and (Nw(0),h(0)) = 0iff p = pir, and ¥ = X,,.

Corollary 1 is equivalent to Proposition 2 in the main paper.

Proofs

1.1 Proof of Proposition 1

We start by proving a lemma. Let
PVy={Pz:x € Vp}. €]

Lemma 1. For any 0 € ©, the sets {PVy, P € P} cover X and for any P,QQ € P, P # Q, the Lebesgue measure of
PVy N QVy is zero.

Therefore, Zy = |P|~! for any 6 € ©.

Proof. Let6 € ©. We first prove that for any P, Q) € P and P # @, the Lebesgue measure of PV NQVj is zero. Observe
that PVy N QVy C {x: Ly(PTx) = Lo(QTx)} and Ly(PTz) = Ly(QT ) iff

(x = Pu)"PY P (x — Pp) = (z — Qu)"QE'QT (z — Qu),

or, equivalently,
" (PETIPT — Q) —2u” (BT PT —27IQT )z =0.

Then {z : Lo(PTz) = Ly(QTx)} is either a quadratic or a linear surface, and thus of Lebesgue measure zero, except if
both ¥~! = RTY 'R and x = Ry with R = QT P. Since P is a group, R € P and the definition of © now guarantees
that these two conditions never simultaneously hold when 6 € ©.



We now prove that X C Jpop PVy. Forany 2 € X, there exists P € P such that Ly(Px) = mingep Lg(Qx).

x € PTVj and this concludes the proof since P is a group.

Let P € P. Observe that since 7 is invariant under the action of P,

[ wwis= [ wPyay= [ rlz)aa.
VQ Vg PVg
Then, since Leb(PVp N QVy) = 0 forany P # Q and X = | Jpp PVa,

Zy /VB m(y)dy = ‘713‘ > /PVG z)de = |7?/

PeP

Proof. (of Proposition 1) Since 7(Pz) = w(x) for any € X and P € P,

/VB log m(y) m(y)dy = /Vs log w(Py) m(Py)dy = /PVB log m(z) 7(x)dz.

log m(x dx = / log 7 (x
/Pve [Pl

Then, by Lemma 1, for any 6 € O,

1 d
/VS ogm(y) m(y)dy = |7>\ >

PcP

Since Zyp = 1/|P| by Lemma 1, this implies that

—/logm)(m) mo(x)dx = —log |P| — |73|/V log m(x) w(x)dx = —log |P| — /log m(z)m(z)dz,

thus showing that for any 6 € O,

/log 7:((;)) mg(z)dz = log [P|,

and

7T9(5L') o
/log N(l0) mo(x)dx = w(h) + log |P| + /log m(z)m(z)dx.

1.2 Proof of Proposition 2 (Proposition 3 in the main paper)
Let § € ©. By definition of w and by Lemma 1,
[Pl

Vo

w(f) = %ln det(X) + Ly(z)mw(z)dx

where Vp and Ly are given resp. by (4) and (1) and |P| denotes the cardinal of P. We have

|P| L x)d = Z/ x)da = Z/ Lo(P"2)m(z)dx,

PeP pep PV

where we use that 7 is invariant under the action of P. In addition, by definition,

PVy ={x € X : Ly(PTx) = min Ly(Qx)}.
QEP
Then by using Lemma 1,

|P| v Lo(z)m(z)dx = Z min Ly(Qx)w(z)dx = /glel% Lo(Qz)7(z)dx

eP
pep PV @

Finally, by definition of Ly, Lg(Qz) = L(g7,,orx0)(x), and this concludes the proof.

Then,



1.3 Proof of Proposition 3

We start by two lemmas. Lemma 2 is established for generic loss functions Ly and a generic open set ©. Its proof is
adapted from [ |, Lemma 4.10, page 44]. We then show in Lemma 3 that this result applies to the loss function given by (1)
and the set © given by (3).

Lemma 2. Let © be an open subset of RY, r be a positive integer and © C O be an open set. Let X C R? be a
measurable set and w be a probability density w.r.t. the Lebesgue measure on X. Let {Lg,0 € ©} be a family of loss
functions Lg : X — R, satisfying

1. For m-almost every x, 0 — Lg(x) is C* on © and for any 0 € ©, there exists hg > 0 such that

1
/ sup ——|hT VyLg(z)| n(x)dz < co.
Inl<ho I

2. For any 0 € O, there exists hg > 0 such that

/ sup |Lo+n(z) — Lo(z)]

IRl <ho [[A]]

m(x)dr < co.

3. Forany @ = (04, ...,0,) € O, the sets
Vo, ={x € X : Ly,(x) <min;Lg,(x)}
are measurable, cover X and for any i # j, the Lebesgue measure of Vo, N Vy, is zero.

For 0 = (01, ,0,.) € O define the function i) : " — R

¥(0) = [ min Ly, (x) 7(z)dz.

1<i<r

Then v is differentiable on O and for 1 < v <,

Vo, (0) = g Vo, Lo, (z) m(x)dz.

Proof. (of Lemma 2) Let @ = (61,---,0,) € O. Set

d(x,0) = min Lg,(x).

1<i<r

By definition of the function ¢
(@ +h) —(0) = / (d(z,60 +h) — d(z,0)) w(z)dx. (5)

We prove that lim, o [|2] ™" (w(G +h) =) -3, [y, (Vo Lo, (), hi) W(x)dx) = 0 by applying the domi-
nated convergence theorem. '

By Assumption 3,

GO+ —pO) — 3 /V (Yo, Lo, (2), hi) () da

Set
Vo, ={r € X : Lo, (v) < minjx; Lo, (v)}



and note that Vp, \ V;? has measure zero under Assumption 3. Then
w0+ 1)~ 0(6) = - [ (VLo (@), hi) w(w)dz
Ve,

i=1

— Z/ (d(z,0 +h) — d(z,0) — (Ve,Le,(x), hy) ) 7(x)dz.

Letz € Voi; under Assumption 1, 6 — Ly(x) is continuous on © and there exists €, such that
|h]| < ep = d(x,0 +h) = Lo, p,(x).
Then, by Assumption 1,
d(z,0 +h) —d(z,0) — (Vg,Lg,(x), h;) = Lo, 1, (x) — Lo, (x) — (Vg, Ly, (x), hi) = C(0;,x, h;)
with || h|| = C (65,2, hy) — 0 when ||h;|| — 0. Hence, we proved that for any i < r and any z € Vy?,

wu ||h|| ' (d(z,0 + h) — d(z,0) — (Vo,Le, (), h;) ) = 0.

We now prove that there exists hg such that

T

/ sup ||A]|~|d(z,0 +h) — ) = > (Yo, Lo, (x), hi) Ly, (z)| m(z)dz < +o0. (6)
Hh||<h0 i=1
First remark that for all z,a = (a1, ,a,), b= (b1, -+ ,b,),
|d(z,a+b) — d(z,a)| < max [Lq,+v,(2) = Lq,(2)]- )
1<i<r

Indeed, assume without loss of generality that d(z,a) < d(z,a + b) and let ¢ be such that d(z,a) = L,,(z), then by
definition of the distance d, d(z,a + b) < Lg,+s,(2), which proves Eq. (7). Now, the proof of (6) is a consequence of
Assumptions 1 and 2 and the inequality

max |L0«z+b ( — Lq, (Z)‘ < Z |Lai+bi(2) — Lq, (Z)l

1<i<

Lemma 3. The quadratic loss function given by (1), the set © given by (3) and the open set
O ={(Pu, PEPT): PP, (1,X) € O}

satisfy the assumptions of Lemma 2.

Proof. (of Lemma 3) When taking derivatives with respect to a matrix, we shall use the “vec” notation during computations.
For a d x d matrix A, its vectorized form vec(A) is a d? vector such that vec(A) stacks the columns of A on top of one
another. In general, we refer to [2] for matrix algebra notions.

We check the conditions of Lemma 2. Denote by r the cardinality of P and set P = (I, Pa,--- , P.). We set
O={, - ,0,) €0 :0; = (P, P, Vi > 1}.

Note that Ly, (x) = Lg, (P¥z) and Vy, = P;Vj, .
We have

(1, %) = (& = p) 'S o — p) = (z — )" Adjugate(S) (x — u)

det X



so that 6 — Lg(x) is a rational function in the coefficients of y and ¥ whose denominator det ¥ > 0. In addition,

|W'VoLg(x)| < ||VoLo(z)| < ||V,Lo()]| + |VsLo(z)].-
|\h\|<ho ||h\|

The RHS is at most quadratic in x (for fixed ). Under the stated assumptions on 7, the RHS is 7-integrable. This proves
Assumption 1.

We now prove Assumption 2. Let § € © and set A = (Ap, AY). By standard algebra, we have
(E4+AY) ' = -2 PAT ST 4 o(|AD))
for any matrix A such that > + AY is invertible. Therefore,
Lot as(w) — Lo(x) = —2(Ap)"S™ @ — ) — (@ — ) 'S AL @ — 1) + E(, 0, A9),
for some function =(z, 6, Af) such that
E(z,0,20)] < C(O)]|«]*[A9]*

and some constant C(#) (depending upon 6 but independent of z and A#). The proof is concluded since [ ||z||*m(z)dz <
+00.

Finally, the sets Vj, are measurable for any 61, --- ,6, € O since (z,6) — Lg(x) is continuous on X’ x O. The proof of
Assumption 3 is then concluded by application of Lemma 1. O

We finally turn to proving Proposition 3.

Proof. (of Proposition 3) Let r denote the cardinality of P and set P = (Ig4, P, -, P,). Let § € ©. By Proposition 2,
we have ) )

w(f) = 5 Indet(X) + 5 11212 Ly, (z) n(z)dz,
where §; = (P, ;X1 PT).

We first consider the derivative w.r.t. u. We have

V,w V /mln Ly, (x) m(x)dx.

1<i<

By Lemmas 2 and 3 and the chain rule, we have

T

1
Via®) =33 P [ Vo (@ = ) PSP (0 = )], w(a)de
" 2 ; {z:Lo, (#)<min; Lo, ()} g A wi=Pips
=-_x! Z/ (Ple — p) n(x)dx
; {z:Lg,; (x)<min; Lo, (z)}
By definition of P;Vjy (see (4)),
{x: Lp,(v) <min Ly, ()} = P;Vjp.
J
Hence, by Lemma | and since 7 is invariant under action of P, we have
Tu00) = =573 [ (o =) wlodie = =5 [ (o= ot = =5 o, =0,

where we used the definition of i, .

We now consider the derivative w.r.t. X, that we will derive in a similar manner. We refer to [2] for matrix algebra notions
such as Kronecker products. First remark that, by standard algebra and since X is symmetric,

Viee(syIndet ¥ = vec(X7h).



Then recall that
Vieew) (@ = )Xz —p) = =37z — ) @ 7 (& — p).
Now, using Lemmas 2 and 3 along with the chain rule, we have

1 _ I _
vvec(z)w(e) - §VCC(E 1) = 5 Z(-PZ & -Pz)T vvec(Ef,) [({E - PZN)TZz 1({E - PZ:U’):I EiZPiZPiT W(l’)d(ﬂ
i=1

P;Vy

= 3PP e ) [ [PETPI @ - Pu)) @ [PET P (@ - P w(o)ds
i=1 PiVe

—% > /pv [N (Pe -] © [S7H(P 'z — w)] m(z)de

1 T
~5E e )Y [ (PTo— o [PTo - n(e)ds

2 i=17FiVe
where we used the identities (A ® B)T = AT ® BT and (A ® B)(C ® D) = (AC) ® (BD). A change of variables now
leads to

1
Vvec(z)w(e) — §VCC(Z_1)

| LY
_5(2 ®% );/Ve(x—u)é@(x—u)w(x)dx

S E O [ ey siny — 1) © (& = ey + 1y — lrn(e) Ly, (@)

_ _%(2—1 2 (/(a: — firy) ® (2 = fimy)To(2)dx + (pry — 1) @ (fomy — M))

= (T © S vee(Sr, + 1ty — 1)1tr, — 1))

where we used the distributivity of the Kronecker product, Lemma | and the definitions of p,, and ¥.,. Finally, the
identity vec(AX B) = (BT ® A)vec(X) allows us to write

1 _ _
vvec(E)w(Q) = 7§VCC(E 1[271'9 -3+ (Nﬂ'e - M)(:u‘ﬂe - ILL)T}E 1)'

1.4 Proof of Corollary 1 (Proposition 1 in the main paper)

Let € R? x C;. By definition of the scalar product on R? x M, we have

(Vw(9), h(0)) = — (ttry — 1) X7 (ptmy — )"

- %Trace (7 By = B+ (g — 1) (my = 1) 127 By = B4 (pimy — 1) (g — 1)7]) -

The first term of the right-hand side is negative since ¥~! € CJ, and this term is null iff ;1 = Wr,. For the second term,
note that since (A, B) — Trace(AT B) is a scalar product on My, TraceAT A > 0. This yields

Trace (57! [Sry — 5 4 (tmy — 1) (timy — 1) 157 Sy = =+ (g — 1) (timy — 1)")
= Trace (E‘I/Q[Em — S+ (bmg = 1) (g — 1)1 By = A (g — 1) (g — M)T]E_I/Q) >0,

and when p = jir,, this term is null iff ¥ = X ,.

References

[1] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions. Springer-Verlag, 2000.

[2] J.W. Brewer. Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems,
25:772-781, 1978.



	Main result
	Proof of Proposition 1
	Proof of Proposition 2 (Proposition 3 in the main paper)
	Proof of Proposition 3
	Proof of Corollary 1 (Proposition 1 in the main paper)


