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Abstract

We study a generalized framework forstructured
sparsity. It extends the well known methods of
Lasso and Group Lasso by incorporating addi-
tional constraints on the variables as part of a
convex optimization problem. This framework
provides a straightforward way of favouring pre-
scribedsparsity patterns, such as orderings, con-
tiguous regions and overlapping groups, among
others. Available optimization methods are lim-
ited to specific constraint sets and tend to not
scale well with sample size and dimensional-
ity. We propose afirst order proximal method,
which builds upon results on fixed points and
successive approximations. The algorithm can
be applied to a general class of conic and norm
constraints sets and relies on a proximity opera-
tor subproblem which can be computed numeri-
cally. Experiments on different regression prob-
lems demonstrate state-of-the-art statistical per-
formance, which improves over Lasso, Group
Lasso and StructOMP. They also demonstrate the
efficiency of the optimization algorithm and its
scalability with the size of the problem.

1 Introduction

We study the problem of learning a sparse linear regression
model. The goal is to estimate a parameter vectorβ∗ ∈ Rn

from a vector of measurementsy ∈ Rm, obtained from
the modely = Xβ∗ + ξ, whereX is anm × n matrix,
which may be fixed or randomly chosen, andξ ∈ Rm

is a vector resulting from the presence of noise. We are
interested in sparse estimation under additional conditions
on the sparsity pattern ofβ∗. In other words, not only do
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we expect thatβ∗ is sparse but also that it exhibitsstruc-
tured sparsity, namely certain configurations of its nonzero
components are preferred to others. This problem arises in
several applications, such as regression, image denoising,
background subtraction etc. – see [9, 11] for a discussion.

In this paper, we build upon the structured sparsity frame-
work recently proposed by [12, 13]. It is a regularization
method, formulated as a convex, non-smooth optimization
problem over a vector of auxiliary parameters. This ap-
proach provides a constructive way to favor certain sparsity
patterns of the regression vectorβ. Specifically, this formu-
lation involves a penalty function given by the formula

Ω(β|Λ) = inf

{
1

2

n∑

i=1

(
β2
i

λi
+ λi

)
: λ ∈ Λ

}
.

This function can be interpreted as an extension of a well-
known variational form for theℓ1 norm. The convex con-
straint setΛ provides a means to incorporate prior knowl-
edge on the magnitude of the components of the regression
vector. As we explain in Section 2, the sparsity pattern of
β is contained in that of the auxiliary vectorλ at the opti-
mum. Hence, if the setΛ allows only for certain sparsity
patterns ofλ, the same property will be “transferred” to the
regression vectorβ.

The first contribution of this paper is the introduction of a
tractable class of regularizers of the above form which ex-
tend the examples described in [12, 13]. Specifically, we
study in detail the cases in which the setΛ is defined by
normor conic constraints, combined with a linear map. As
we shall see, these cases include formulations which can
be used for learninggraph sparsityandhierarchical spar-
sity, in the terminology of [9]. That is, the sparsity pattern
of the vectorβ∗ may consist of a few contiguous regions
in one or more dimensions, or may be embedded in a tree
structure. This sparsity problem may arise in several appli-
cations, ranging from functional magnetic resonance imag-
ing [7, 25], to scene recognition in vision [8], to multi-task
learning [1, 18] and to bioinformatics [20] – to mention but
a few.

A main limitation of the technique described in [12, 13]
is that in many cases of interest the penalty function can-
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not be easily computed. This makes it difficult to solve the
associated regularization problem. For example, [12, 13]
proposes to use block coordinate descent, but this method
is feasible only for limited choices of the setΛ. The second
contribution of this paper is an efficient accelerated prox-
imal point method to solve regularized least squares with
the penalty functionΩ(·|Λ) in the general case of setΛ
described above. The method combines a fast fixed point
iterative scheme, which is inspired by recent work by [14]
with an accelerated first order method equivalent to FISTA
[4]. We present a numerical study of the efficiency of the
proposed method and a statistical comparison of the pro-
posed penalty functions with the greedy method of [9], the
Lasso and the Group Lasso.

Recently, there has been significant research interest on
structured sparsity and the literature on this subject is grow-
ing fast, see for example [1, 9, 10, 11, 26] and refer-
ences therein for an indicative list of papers. In this work,
we mainly focus on convex penalty methods and compare
them to greedy methods [3, 9]. The latter provide a natu-
ral extension of techniques proposed in the signal process-
ing community and, as argued in [9], allow for a signifi-
cant performance improvement over more generic sparsity
models such as the Lasso or the Group Lasso [26]. The for-
mer methods have until recently focused mainly on extend-
ing the Group Lasso, by considering the possibility that the
groups overlap according to certain hierarchical structures
[11, 27]. Very recently, general choices of convex penalty
functions have been proposed [2, 12, 13]. In this paper we
build upon [12, 13], providing both new instances of the
penalty function and improved optimization algorithms.

The paper is organized as follows. In Section 2, we set
our notation, review the method of [12, 13] and recall some
basic facts from convex analysis. In Section 3, we provide
some general insights on the method and introduce two new
classes of setsΛ. In Section 4, we present our technique for
computing the proximity operator of the penalty function
and the resulting accelerated proximal method. In Section
5, we assess the efficiency and the statistical performance
of the method via some numerical experiments.

2 Background

In this section, we introduce our notation, review the learn-
ing method which we study in this paper and recall some
basic facts from convex analysis.

We letR+ andR++ be the nonnegative and positive real
line, respectively. For everyβ ∈ Rn we define|β| ∈ Rn

+

to be the vector|β| = (|βi|)ni=1. For everyp ≥ 1, we

define theℓp norm of β as‖β‖p = (
∑n

i=1 |βi|p)
1
p . We

denote by〈·, ·〉 the standard inner product inRn, that is,
if x, t ∈ Rn, then〈x, t〉 = ∑n

i=1 xiti. If C ⊆ Rn, we
denote byδC : Rn → R the indicator function of the setC,

that is,δC(x) = 0 if x ∈ C andδC(x) = +∞ otherwise.
Finally, if ϕ : Rn → R is a convex function, we use∂ϕ(x)
to denote thesubdifferentialof ϕ atx ∈ Rn [21].

We now review the structured sparsity approach of [12, 13].
Given anm × n input data matrixX and an output vector
y ∈ Rm, obtained from the linear regression modely =
Xβ∗ + ξ discussed earlier, they consider the optimization
problem

inf

{
1

2
‖Xβ − y‖22 + ρΓ(β, λ) : β ∈ Rn, λ ∈ Λ

}
(2.1)

whereρ is a positive parameter,Λ is a prescribed convex
subset of the positive orthantRn

++ and the functionΓ :
Rn × Rn

++ → R is given by the formula

Γ(β, λ) =
1

2

n∑

i=1

(
β2
i

λi
+ λi

)
.

Note that the infimum overλ in general is not attained,
however the infimum overβ is always attained. Since the
auxiliary vectorλ appears only in the second term and our
goal is to estimateβ∗, we may also directly consider the
regularization problem

min

{
1

2
‖Xβ − y‖22 + ρΩ(β) : β ∈ Rn

}
, (2.2)

where the penalty function takes the form

Ω(β) = inf {Γ(β, λ) : λ ∈ Λ} .

This problem is still convex because the functionΓ is
jointly convex [5]. Also, note that the functionΩ is in-
dependent of the signs of the components ofβ.

For a generic convex setΛ, since the penalty functionΩ
is not easily computable, one needs to deal directly with
problem (2.1). To this end, we recall here the definition of
the proximity operator [15].

Definition 2.1. Let ϕ be a real-valued convex
function on Rd. The proximity operator ofϕ
is defined, for everyt ∈ Rd by proxϕ(t) :=

argmin

{
1

2
‖z − t‖22 + ϕ(z) : z ∈ Rd

}
.

The proximity operator is well-defined, because the above
minimum exists and is unique.

3 The setΛ

In this section, we first provide some general insights on
how the setΛ can favour certain sparsity patterns onβ and,
secondly, we introduce two new classes of setsΛ that can
be used in many relevant applications.

We begin by noting that, for everyλ ∈ Rn
++, the quadratic

functionΓ(·, λ) provides an upper bound to theℓ1 norm,
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namely it holds thatΩ(β) ≥ ‖β‖1 and the inequality is
tight if and only if |β| ∈ Λ. This fact is an immediate
consequence of the arithmetic-geometric inequality. In par-
ticular, we see that if we chooseΛ = Rn

++, the method
(2.2) reduces to the Lasso1. The above observation sug-
gests a heuristic interpretation of the method (2.2): among
all vectorsβ which have a fixed value of theℓ1 norm, the
penalty functionΩ will encourage those for which|β| ∈ Λ.
Moreover, when|β| ∈ Λ the functionΩ reduces to theℓ1
norm and, so, the solution of problem (2.2) is expected to
be sparse. The penalty function therefore will encourage
certain desired sparsity patterns.

The last point can be better understood by looking at prob-
lem (2.1). For every solution(β̂, λ̂), the sparsity pattern
of β̂ is contained in the sparsity pattern ofλ̂, that is, the in-
dices associated with nonzero components ofβ̂ are a subset
of those ofλ̂. Indeed, ifλ̂i = 0 it must hold thatβ̂i = 0
as well, since the objective would diverge otherwise (be-
cause of the ratioβ2

i /λi). Therefore, if the setΛ favors
certain sparse solutions ofλ̂, the same sparsity pattern will
be reflected on̂β. Moreover, the regularization term

∑
i λi

favors sparse vectorsλ. For example, a constraint of the
form λ1 ≥ · · · ≥ λn, favors consecutive zeros at the end
of λ and non-zeros everywhere else. This will lead to zeros
at the end ofβ as well. Thus, in many cases like this, it
is easy to incorporate a convex constraint onλ, whereas it
may not be possible to do the same directly onβ.

In this paper, we consider setsΛ of the form

Λ = {λ ∈ Rn
++ : Aλ ∈ S}

whereS is a convex set andA is a k × n matrix. Two
main choices of interest are whenS is a convex cone or the
unit ball of a norm. We shall refer to the corresponding set
Λ asconic constraintor norm constraintset, respectively.
We next discuss two specific examples, which highlight the
flexibility of our approach and help us understand the spar-
sity patterns favoured by each choice.

Within the conic constraint sets, we may chooseS = Rk
++,

so thatΛ = {λ ∈ Rn
++ : Aλ ≥ 0}. For example, in

[12, 13], they considered the setΛ = {λ ∈ Rn
++ : λ1 ≥

· · · ≥ λn} and derived an explicit formula of the corre-
sponding regularizerΩ(·|Λ). This set can be used to en-
courage hierarchical sparsity. Note that, for a generic ma-
trix A, the penalty function cannot be computed explicitly.
In the next section, we present an optimization method that
overcomes this difficulty.

Within the norm constraint sets, we may chooseS to be the
ℓ1-unit ball andA the edge map of a graphG with edge

setE, so thatΛ =
{
λ ∈ Rn

++ :
∑

(i,j)∈E |λi − λj | ≤ 1
}
.

This set can be used to encourage sparsity patterns consist-

1More generally, method (2.2) includes the Group Lasso
method, see [12, 13].

ing of few connected regions/subgraphs of the graphG. For
example ifG is a1D-grid we have thatΛ = {λ ∈ Rn

++ :∑n−1
i=1 |λi+1 − λi| ≤ 1}, so the corresponding penalty will

favour vectors which are constant within few connected re-
gions.

4 Optimization Method

In this section, we discuss how to solve problem (2.1) using
an accelerated first-order method that scales linearly with
respect to the problem size, as we later show in the ex-
periments. This method relies on the computation of the
proximity operator of the functionΓ, restricted toRn × Λ.
Since the exact computation of the proximity operator is
possible only in simple special cases of setsΛ, we present
here an efficient fixed-point algorithm for computing the
proximity operator that can be applied to a wide variety
of constraints. Finally, we discuss an accelerated proximal
method that leverages our algorithm.

4.1 Computation of the Proximity Operator

According to Definition 2.1, the proximal operator ofΓ at
(α, µ) ∈ Rn × Rn is the solution of the problem

min

{
1

2
‖(β, λ)− (α, µ)‖22 + ρΓ(β, λ) : β ∈ Rn, λ ∈ Λ

}
.

(4.1)
For fixedλ, a direct computation yields that the objective
function in (4.1) attains its minimum at

βi(λ) =
αiλi

λi + ρ
.

Using this equation we obtain the simplified problem

min

{
1

2
‖λ− µ‖2+ ρ

2

n∑

i=1

(
α2
i

λi + ρ
+ λi

)
: λ ∈ Λ

}
.

(4.2)
This problem can still be interpreted as a proximity map
computation. We discuss how to solve it under our general
assumptionΛ = {λ : λ ∈ Rn

++, Aλ ∈ S}. Moreover,
we assume that the projection on the setS can be easily
computed. To this end, we define the(n+ k)× n matrix

B =

[
I
A

]

and the functionϕ(s, t) = ϕ1(s)+ϕ2(t), (s, t) ∈ Rn×Rk,
where

ϕ1(s) =
ρ

2

n∑

i=1

(
α2
i

si + ρ
+ si + δR++(si)

)
,

andϕ2(t) = δS(t). Note that the solution of problem (4.2)
is the same as the proximity map of the linearly composite
functionϕ ◦B atµ, which solves the problem

min

{
1

2
‖λ− µ‖2 + ϕ(Bλ) : λ ∈ Rn

}
.
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At first sight this problem seems difficult to solve. How-
ever, it turns out that if the proximity map of the function
ϕ has a simple form, the following theorem adapted from
[14, Theorem 3.1] can be used to accomplish this task. For
ease of notation we setd = n+ k.

Theorem 4.1. Letϕ be a convex function onRd, B a d×n
matrix,µ ∈ Rn, c > 0, and define the mappingH : Rd →
Rd at v ∈ Rd as

H(v) = (I − proxϕ
c
)((I − cBB⊤)v +Bµ).

Then, for any fixed point̂v ofH , it holds that

proxϕ◦B(µ) = µ− cB⊤v̂

ThePicard iterates{vs : s ∈ N} ⊆ Rd, starting atv0 ∈
Rd, are defined by the recursive equationvs = H(vs−1).
Since the operatorI − proxϕ is nonexpansive2 (see e.g.

[6]), the mapH is nonexpansive ifc ∈
[
0, 2

||B||2
]
. Because

of this, the Picard iterates are not guaranteed to converge to
a fixed point ofH . However, a simple modification with an
averaging scheme can be used to compute the fixed point.

Theorem 4.2. [19] Let H : Rd → Rd be a nonexpansive
mapping which has at least one fixed point and letHκ :=
κI + (1 − κ)H . Then, for everyκ ∈ (0, 1), the Picard
iterates ofHκ converge to a fixed point ofH .

The required proximity operator ofϕ is directly given, for
every(s, t) ∈ Rn × Rk, by

proxϕ(s, t) =
(
proxϕ1

(s), proxϕ2
(t)

)
.

Bothproxϕ1
andproxϕ2

can be easily computed. The lat-
ter requires computing the projection on the setS. The
former requires, for each component of the vectors ∈ Rn,
the solution of a cubic equation as stated in the next lemma.

Lemma 4.1. For everyµ, α ∈ R and r, ρ > 0, the func-
tion h : R+ → R defined ats as h(s) := (s − µ)2 +

r
(

α2

s+ρ + s
)

has a unique minimum on its domain, which

is attained at(x0 − ρ)+, wherex0 is the largest real root
of the polynomial2x3 + (r − 2(µ+ ρ))x2 − rα2.

Proof. Setting the derivative ofh equal to zero and mak-
ing the change of variablex = s + ρ yields the polyno-
mial stated in the lemma. Letx0 be the largest root of this
polynomial. Since the functionh is strictly convex on its
domain and grows at infinity, its minimum can be attained
only at one point, which isx0 − ρ, if x0 > ρ, and zero
otherwise.

4.2 Accelerated Proximal Method

Theorem 4.1 motivates a proximal numerical approach (Al-
gorithm 1 below) to solving problem (2.1) and, in turn,

2A mappingT : Rd → Rd is said nonexpansive if‖T (v) −
T (v′)‖2 ≤ ‖v − v′‖2, for everyv, v′ ∈ Rd.

problem (2.2). LetE(β) = 1
2‖Xβ − y‖22 and assume an

upper boundL of ‖X⊤X‖ is known.3 Proximal first-order
methods – see [4, 6, 17, 23] and references therein – can be
used for nonsmooth optimization, where the objective con-
sists of the sum of a smooth term and a non-smooth term, in
our caseE andΓ + δΛ, respectively. The idea is to replace
E with its linear approximation around a pointwt specific
to iterationt. This leads to the computation of a proximity
operator, and specifically in our case tout := (βt, λt) ←
argmin

{
L
2 ‖(β, λ) − (wt − 1

L∇E(wt))‖22 + ρΓ(β, λ) :

β ∈ Rn, λ ∈ Λ
}

. Subsequently, the pointwt is updated,
based on the current and previous estimates of the solution
ut, ut−1, . . . and the process repeats.

Algorithm 1
Proximal structured sparsity algorithm (NEPIO).
u1, w1 ← arbitrary feasible values
for t=1,2,. . .do

Compute a fixed point̂v(t) of Ht by Picard-Opial
ut+1 ← wt − 1

L∇E(wt)− c
LB

⊤v̂(t)

wt+1 ← πt+1ut+1 − (πt+1 − 1)ut

end for

The simplest (and a commonly used) update rule iswt =
ut. By contrast,accelerated proximal methodsproposed
by [17] use a carefully chosenw update with two levels
of memory,ut, ut−1. If the proximity map can be exactly
computed, such schemes exhibit a fast quadratic decay in
terms of the iteration count, that is, the distance of the ob-
jective from the minimal value isO

(
1
T 2

)
after T itera-

tions. In the case that the proximal operator is computed
numerically, it has been shown only very recently [22, 24]
that, under some circumstances, the accelerated method
still converges with the rateO

(
1
T 2

)
. The main advantages

of accelerated methods are their low cost per iteration and
their scalability to large problem sizes. Moreover, in ap-
plications where a thresholding operator is involved – as in
Lemma 4.1 – the zeros in the solution are exact, which may
be desirable.

For our purposes, we use a version of accelerated meth-
ods influenced by [23] (described in Algorithm 1). Ac-
cording to Nesterov, the optimal update iswt+1 ← ut+1 +

θt+1

(
1
θt
− 1

)
(ut+1−ut) where the sequenceθt is defined

by θ1 = 1 and the recursive equation

1− θt+1

θ2t+1

=
1

θ2t
.

We have adapted [23, Algorithm 2] (equivalent to FISTA
[4]) by computing the proximity operator ofϕL ◦ B us-
ing the Picard-Opial process described in Section 4.1. We
rephrased the algorithm using the sequenceπt := 1− θt +√
1− θt = 1 − θt +

θt
θt−1

for numerical stability. At each

3For variants of such algorithms which adaptively learnL, see
the above references.
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iteration, the mapHt is defined by

Ht(v) := (I − proxφ
c
)
((

I − c

L
BB⊤

)
v

− 1

L
B(∇E(wt)− Lwt)

)
.

We also apply an Opial averaging, so that the update at
stages of the proximity computation isvs+1 = κvs +
(1 − κ)Ht(vs). By Theorem 4.1, the fixed point pro-
cess combined with the assignment ofu are equivalent to
ut+1 ← proxϕ

L◦B
(
wt − 1

L∇E(wt)
)
.

The reason for resorting to Picard-Opial is that exact com-
putation of the proximity operator (4.2) is possible only
in simple special cases for the setΛ. By contrast, our
approach can be applied to a wide variety of constraints.
Moreover, we are not aware of another proximal method
for solving problems (2.1) or (2.2) and alternatives like in-
terior point methods do not scale well with problem size. In
the next section, we will demonstrate empirically the scal-
ability of Algorithm 1, as well as the efficiency of both the
proximity map computation and the overall method.

5 Numerical Simulations

In this section, we present experiments with method (2.1).
The main goal of the experiments is to study both the
computational and the statistical estimation properties of
this method. One important aim of the experiments is to
demonstrate that the method is statistically competitive or
superior to state-of-the-art methods while being computa-
tionally efficient. The methods employed are the “Lasso”,
“StructOMP” [9], “GL1”, the Group Lasso variant pre-
sented in [10], and “GL2”, a Group Lasso with overlap-
ping groups. For both Group Lasso methods, we used as
groups all sets of4 contiguous variables (1D) or the sets
of all neighbours of each variable (2D). Moreover, we used
method (2.1) with the following choices for the constraint
setΛ:

• Λ = {λ : ‖Aλ‖1 ≤ α}, whereA is the edge map of a
1D or 2D grid – we refer to the corresponding method
as “Grid-C”.

• Λ = {λ : Aλ ≥ 0}, whereA is the edge map of a
tree graph – we refer to the corresponding method as
“Tree-C”.

We solved the optimization problem (2.1) either with the
toolbox CVX4 or with the proximal method presented in
Section 4. When using the proximal method, we found that
setting the parameterκ from Opial’s Theorem to0.2 gave
the best results, even though in [14] they show that con-
vergence of the fixed-point iterations is guaranteed also for

4http://cvxr.com/cvx/

κ = 0. Our main stopping criterion is based on the de-
crease in the objective value of (2.1) which must be less
than10−8. For the computation of the proximity operator,
we stopped the iterations of the Picard-Opial method when
the relative difference between two consecutive iterates is
smaller than10−2. We studied the effect of varying this
tolerance in the next experiments. We used the square loss
and computed the Lipschitz constantL using singular value
decomposition (if this were not possible, a Frobenius esti-
mate could be used). Finally, the implementation ran on an
8GB memory quad-core Intel machine.

5.1 Efficiency experiments

First, we investigated the computational properties of the
proximal method (NEPIO). Our aim in these experiments
was to show that our algorithm has a time complexity
that scales linearly with the number of variables, while
the relative number of training examples is kept constant.
We considered both the Grid and the Tree constraints and
compared our algorithm to the toolbox CVX, which is
an interior-point method solver. As is commonly known,
interior-point methods are very fast, but do not scale well
with the problem size. We also compared to the non-
accelerated version of our algorithm, similar to ISTA [4, 6].
ISTA has been shown [6] to converge in the presence of
very general, but summable, errors in the computation of
the proximity operator. In the case of the Tree constraint,
we further compared with an adapted version of the alter-
nating algorithm (AA) of [12, 13]. For each problem size,
we repeated the experiments10 times and we report the av-
erage computation time in Figure 1 for Grid-C and Tree-C.
All methods achieve objective values that are within1% of
each other, apart from ISTA that sometimes did not con-
verge after105 iterations. The proposed method scales lin-
early with the problem size, making it suitable for large
scale experiments.

In order to empirically assess the importance of the Picard-
Opial tolerance for converging to a good solution, we con-
sidered a problem with100 variables for both the Grid and
the Tree constraints and repeated the experiments100 times
with different sampling of training examples. For each con-
straint, we evaluated the average distance from the solution
obtained by our method with different values of the Picard-
Opial tolerance to the solution obtained by CVX.

We did not observe any improvement in the solution by de-
creasing a fixed tolerance from10−2 to 10−8 or by setting
the tolerance to decrease as1/Tα with α equal to1, 1.5 or
2, as suggested by very recent results [22, 24]. However,
decreasing the tolerance remarkably increased the compu-
tational overhead from an average of5s for a fixed toler-
ance of10−2 to 80s for 1/T 2 in the case of the Grid con-
straint.

Finally, we considered the2D Grid-C case and observed
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Figure 1: Computation time vs problem size for Grid-C and
Tree-C for different optimization methods. For the Tree
constraint, CVX was not able to deal with problem sizes
bigger than1600.

that the number of Picard-Opial iterations needed to reach a
tolerance of10−2 scales well with the number of variables
n. For example, whenn varies between200 and6400, the
average number of iterations varied between20 and40.

In all the following statistical experiments we used a fixed
tolerance of10−2.

5.2 Statistical experiments

One dimensional contiguous regions. In the first ex-
periment we chose a model vectorβ∗ ∈ R200 with 40
nonzero elements, whose values are random±1. We con-
sidered sparsity patterns forming one, two, three or four
non-overlapping contiguous regions, which have lengths of
40, 20, 13 and10, respectively. We generated a noiseless
output from a matrixX whose elements have a standard
Gaussian distribution and whose columns are normalized.
The estimateŝβ for several models are then compared with

the originalβ∗. Figure 2 shows the model error‖ β̂−β∗‖2

‖ β∗‖2
as
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Figure 2: 1D contiguous regions: comparison between
different methods for one (top-left), two (top-right), three
(bottom-left) and four (bottom-right) regions.

up to120 (more than half the dimensionality). These errors
are the average over50 runs, each with a differentβ∗ and
X . We observe that Grid-C outperforms both Lasso and
StructOMP, whose performance deteriorates as the number
of regions is increased. The length of the groups for the
Group Lasso variants was selected among2, 4 and8, but
only the best performers (lengths4 in both cases) are rep-
resented here. Even then, we observe that Grid-C is com-
parable to both methods and sometimes shows a strong im-
provement over them. For one particular run with a sample
size which is twice the model sparsity, Figure 3 shows the
original vector and the estimates for different methods.

Two dimensional contiguous regions.We also repeated
the same experiment in the case that the sparsity pattern of
β∗ ∈ R20×20 consists of2D continuous regions. For the
sparsity pattern, we consider either a single7 × 7 region,
two 5×5 regions, three4×4 regions or four4×3 regions.
Figure 4 shows the model error versus the sample size in
this case. Figure 5 shows the original image and the images
estimated by different methods for a sample size which is
twice the model sparsity. Note that Grid-C is superior to
both the Lasso and StructOMP and that StructOMP is out-
performed by Lasso when the number of regions is more
than two. Again, we observe that both Group Lasso vari-
ants for contiguous2D regions are never better than Grid-
C, and sometimes show a higher model error. For brevity,
we will not include these methods in the next experiments

Background subtraction. We replicated the experiment
from [9, Sec. 7.3] in which the underlying modelβ∗ corre-
sponds to the nonzero pixels of the foreground of a CCTV
image. We measured the output as a random projection plus
Gaussian noise. Figure 7-Leftshows that, while the Grid-C
outperforms the Lasso, it is not as good as StructOMP in
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Figure 3: Two1D contiguous regions: regression vector
estimated by different models: (top-left)β∗, (top-right)
Lasso, (centre-left) GL1, (centre-right) GL2, (bottom-left)
StructOMP, (bottom-right) Grid-C.
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Figure 4: 2D contiguous regions: comparison between
different methods for one (top-left), two (top-right), three
(bottom-left) and four (bottom-right) regions.
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Figure 5:2D-contiguous regions: Original regression vec-
tor and regression vector estimated by the Lasso, GL1,
GL2, StructOMP and Grid-C (left to right) for one region
(top) and two regions (bottom).
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Figure 6:1D contiguous regions: model error against spar-
sity for a fixed sample size (100 points). Number of con-
tiguous regions, from left to right, top to bottom: one, two,
three and four.
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Figure 7: Average model error for the background subtrac-
tion (top) andcameraman(bottom) experiments.

this case. We speculate that the reason for this result is the
non uniformity of the values of the image, which makes it
harder for Grid-C to estimate the model.

Image Compressive Sensing.In this experiment, we com-
pared the performance of the proposed method (Tree-C) on
an instance of2D image compressive sensing, following
the experimental protocol of [9]. Natural images can be
well represented with a wavelet basis and their wavelet co-
efficients, besides being sparse, are also structured as a hi-
erarchical tree. We computed the Haar-wavelet coefficients
of a widely used sample image:cameraman. We gener-
ated a projection matrixX whose entries are i.i.d. draws
from a standard Gaussian distribution. Zero-mean Gaus-
sian noise with standard deviationσ = 0.01 was added to
the measurements. StructOMP and Tree-C, both exploiting
the tree structure, were used to recover the wavelet coeffi-
cients from the random projection measurements and com-
pared to the Lasso. The inverse wavelet transform was used
to reconstruct the images with the recovered wavelet co-
efficients. The recovery performances of the methods are
reported in Figure 7-Right, which highlights the good per-
formance of Tree-C.
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6 Conclusion

We proposed new families of penalties and presented a
new algorithm and results on the class of structured spar-
sity penalty functions proposed by [12, 13]. These penal-
ties can be used, among else, to learn regression vectors
whose sparsity pattern is formed by few contiguous re-
gions. We presented a proximal method for solving this
class of penalty functions and derived an efficient fixed-
point method for computing the proximity operator of our
penalty. We reported encouraging experimental results
which highlight the advantages of the proposed penalty
function over a state-of-the-art greedy method [9], the
Lasso and two Group Lasso variants. At the same time, our
numerical simulations indicate that the proximal method is
computationally efficient, scaling linearly with the problem
size. An important problem which we wish to address in
the future is to study the applicability of the recent results
regarding accelerated proximal method with inexact com-
putation of the proximity operator [22, 24] to our case and
determine whether the optimal rateO( 1

T 2 ) can be attained.
Finally, it would be important to derive sparse oracle in-
equalities for the estimators studied here.
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