
Minimax Rates for Homology Inference

A Appendix – Supplementary
Material

A.1 Key technical lemmas from [17]

We will need two technical lemmas, which follow from
[17].

Lemma 6 (Ball volume lemma, Lemma 5.3 in
[17]). Let p ∈ M . Now consider A = M ∩ Bε(p).
Then vol(A) ≥ (cos(θ))dvol(Bdε (p)) where Bdε (p) is
the a d-dimensional ball in the tangent space at p,
θ = sin−1 ε

2τ .

Next, consider a collection of balls {Br(pi)}i=1,...,n

centered around points pi on the manifold and such
that M ⊂ ∪li=1Br(pi).

Lemma 7 (Sampling lemma, Lemma 5.1 in [17]).
Let Ai = Br(pi) be a collection of sets such that ∪li=1Ai
forms a minimal cover of M . If Q(Ai) ≥ α, and

n >
1

α

(
log l + log

(
2

δ

))
then w.p. at least 1 − δ/2, each Ai contains at least
one sample point, and M ⊂ ∪ni=1B2r(xi). Further we

have that l ≤ vol(M)
cosd(θ)vdrd

.

A.1.1 Proofs for the noiseless case

Lower bound Here we describe the densities on the
two manifolds M1 and M2. There are two sets of inter-
est to us: W1 = M1 \M2 which corresponds to the two
“holes” of radius 4τ in the annulus, and W2 = M2\M1

which corresponds to the d-dimensional piece added to
smoothly join the inner pieces of the two annuli in M2.

By construction, vol(W1) = 2vd(4τ)d where vd is the
volume of the unit d-ball. vol(W2) is somewhat tricky
to calculate exactly due to the curvature of W2 but
it is easy to see that vol(W2) is also O(τd) with the
constant depending on d.

One of the densities is constructed in the following way,
on the set of larger volume (between W1 and W2) we
set p(x) = a, and evenly distribute the rest of the mass
over the remaining portion of the manifold (we are
guaranteed that the mass on the rest of the manifold
is at least a since otherwise the constraint p(x) ≥ a
can never be satisfied).

The other density is constructed to be equal (to the
first density) outside the set on which the two mani-
folds differ. The remaining mass is spread evenly on
the set where they do differ. We are again guaranteed
that p(x) ≥ a by construction.

Let us now calculate the TV between these two den-
sities. This is just the integral of the difference of

the densities over the set where one of the densities
is larger. Since the two densities are equal outside
W1 ∪W2 and disjoint over W1 ∪W2 it is clear that

TV (p1, p2) = amax(vol(W1), vol(W2) ≤ O(aτd)

with the constant depending on d. The lower bound
follows from the calculations in the main paper.

Upper bound The NSW lemma tells us that for n >

ζ1
(
log(ζ2) + log

(
1
δ

))
, with ζ1 = vol(M)

a cosd θ1vol(Bdε/4)
, ζ2 =

vol(M)

cosd θ2vol(Bdε/8)
, θ1 = sin−1 ε

8τ and θ2 = sin−1 ε
16τ , we

have P(Ĥ 6= H(M)) < δ.

By assumption, we have vol(M) ≤ C. We further
take ε = τ/2. It is clear that in ζ1 and ζ2 all terms
except the ball volumes are constant. This gives us
that ζ1 = C1/(aτ

d) and ζ2 = C2/(aτ
d).

Now, the NSW lemma can be restated as if n =
C1/τ

d(log(C2/τ
d) + log(1/δ)) we recover the homol-

ogy with probability at least 1 − δ. Notice that this
means that the minimax risk ≤ δ.

A straightforward rearrangement of this gives us

Rn ≤ C2/(aτ
d) exp(−naτd/C1)

for appropriate C1, C2. To bound the resolution we
rewrite this as

Rn ≤ exp

(
−naτ

d

C1
+ log

(
C2

aτd

))
One can verify that if

τd ≤ C log n log(1/ε)

n

for an appropriately large C, we have Rn ≤ ε as de-
sired.

A.1.2 Proofs for the clutter noise case

Lower bound This is a straightforward extension of
the noiseless case. The densities are constructed in an
identical manner. The contribution to the densities
from the clutter noise is identical in each case. As in
the analysis for the noiseless case we bound the total
variation distance between the two densities. We have
an additional factor of π which is the mixture weight
of the component corresponding to the density on the
manifold.

TV (q1, q2) = πamax(vol(W1), vol(W2)) ≤ Cdπaτd

Given this bound the calculations are identical to those
in the noiseless case.

Upper bound As a preliminary step we will need to
clean the data to eliminate points that are far away
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from the manifold. Our analysis will show that Algo-
rithm 1 will achieve this, with high probability. We
will then show that taking a union of balls of the ap-
propriate radius around the remaining points will give
us the correct homology, with high probability.

Let a = infx∈M p(x), which is strictly positive by as-
sumption. Define, A = tuber(M) and B = RD −
tube2r(M) where r < (

√
9−
√

8)τ
2 . Following [18], we de-

fine αs = inft∈AQ(Bs(t)) and βs = supt∈B Q(Bs(t))

where s = 2r. Then αs ≥ vDs
D(1−π)

vol(Box) +πavdr
d cosd θ =

α and βs ≤ vDs
D(1−π)

vol(Box) = β where θ = sin−1( r
2τ ). The

second term of the bound on αs follows in two steps:
first observe that for any point x in A, Bs(x) ⊇ Br(t)
where t is the closest point on M to x. Now, we use
Lemma 6 to bound Q(Br(t)).

We will now invoke Algorithm CLEAN on the data with

threshold t =
(
vDs

D(1−π)
vol(Box) + πavdr

d cosd θ
2

)
and radius

2r. Let I be the set of vertices returned.

Define the events E1 =

{
{Xi : i ∈ I} ⊇ {Xi ∈

A} and {Xi : i ∈ Ic} ⊇ {Xi ∈ B}

}
and E2 ={

M ⊂
⋃
i∈I B2r(Xi)

}
. We will show that E1 and E2

both hold with high probability.

For E1 to hold, we need β to be not too close to α,
in particular β < α/2 will suffice. This happens with
probability 1, for τ small if d < D. By Lemma 13
in the Appendix, E1 happens with probability at least
1− δ/2, provided that n > 4κ log κ, where

κ = max

(
1 +

200

3πavdrd cosd(θ)
log

(
2

δ

)
, 4

)
.

Now we turn to E2. Let p1, . . . , pN ∈ M be such that
Br(p1), . . . , Br(pN ) forms a minimal covering of M .

From Lemma 7, we have that N ≤ vol(M)
cosd(θ)vdrd

. Let

Aj = Br(pj). Then

Q(Aj) ≥ vDs
D(1− π)

vol(Box)
+ πavdr

d cosd(θ)

≥ πavdr
d cosd(θ) ≡ γ.

Using again Lemma 7, if n > 1
γ

(
logN + log

(
2
δ

))
, then

with probability at least 1 − δ/2, each Ai contains at
least one sample point, and hence M ⊂

⋃
i∈I B2r(Xi),

which implies that E2 holds.

Combining these we are now ready to again apply the
main result from NSW. We restate this lemma in a
slightly different form here.

Lemma 8. [NSW] Let S be a set of points in the
tubular neighborhood of radius R around M . Let U =

⋃
x∈S Bε(x). If S is R-dense in M then Ĥ(U) = H(M)

for all R < (
√

9−
√

8)τ , if ε = R+τ
2 .

Combining the previously established facts with the
lemma above we obtain Lemma 3 from the main paper.
Taking r = (

√
9 −
√

8)τ/4 in that lemma, we can see
that if n ≥ C1

πτd
(log C2

τd
+ log(C3/ε)) then we recover

the correct homology with probability at least 1− ε.

This is a sample complexity upper bound. Corre-
sponding upper bounds on the minimax risk and res-
olution follow the arguments of the noiseless case.

A.1.3 Proofs for the tubular noise case

Lower bound In this setting we get samples uni-
formly in a full dimensional tube around the manifold.
We are interested in the case when σ ≤ C0τ for a small
constant C0.

Let us denote the density q1 at a point in the tube
around M1 by θ1 and the density q2 around M2 by θ2.
Since, it is not straightforward to decide whether θ1 ≤
θ2 or not we will need to consider both possibilities.
We will show the calculations assuming θ1 ≤ θ2 (the
other calculation follows similarly).

Now, remember from the definition of total variation
TV = q1(G)− q2(G) where G is the set where q1 > q2.
We need an upper bound on total variation and so it
suffices to use TV ≤ q1(G+)− q2(G−) where G+ and
G− are sets containing and contained inG respectively.

Since, θ1 < θ2 we have G is contained in the holes (of
radius 4τ) of the two annuli, and G contains a strip of
width at least 2τ − 2σ in these holes. These are G+

and G−.

We need to upper bound the mass under q1 in G+

and lower bound the mass under q2 in G−. We can
now follow the a similar argument to the one made
below (in the tubular noise upper bound) to obtain
bounds on the various volumes. In each case, the
volume of the tubular region is Ω(vol(M)σD−d), and
both M1 and M2 have constant volume, in particular
c1 ≤ vol(M) ≤ C1. Giving us that the tubular region
has volume Ω(σD−d).

It is also clear that both G+ and G− have volumes
that are Ω(σD−dτd) (these can be calculated exactly
since they are cylindrical with no additional curvature
but we will not need this here). Here we use that σ
is not too close to τ (and in particular is at most a
constant fraction of τ).

Since q1 and q2 are both uniform in their respective
tubes, it follows that

TV (q1, q2) ≤ Ω

(
σD−dτd

σD−d

)
= Ω(τd)
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Notice, that we assumed θ1 ≤ θ2 above. The other cal-
culation is nearly identical and we will not reproduce
it here.

Upper bound Denote by Mσ the tube of radius σ
around M . Recall that we are interested in the case
when σ � τ , and ε = τ/2.

Lemma 9. If ε� σ (in particular ε ≥ 2σ will suffice)

kε = Ω(εd).

Proof. For any p ∈M ,

Q(Bε(p)) =
vol(Bε(p) ∩Mσ)

vol(Mσ)
.

We will prove the claim by deriving derive an up-
per bound on the denominator and a lower bound
on the numerator using packing/covering arguments,
both bounds holding uniformly in p.

Upper bound on vol(Mσ)
We consider a covering of M by γ-balls of d dimen-
sions, and denote the number of balls required Nγ ,
and the centers Cγ . It is clear Nγ is bounded by the
number of balls of radius γ/2 one can pack in M . A
simple volume argument then gives

Nγ ≤ C
vol(M)

(γ/2)d
,

for some constant C. Given this covering of M , it is
easy to see that γ+σ D-dimensional balls around each
of the centers in Cγ covers the tubular region. Thus,
we have

vol(Mσ) ≤ vDNγ(γ + σ)D ≤ vDC
vol(M)

(γ/2)d
(γ + σ)D,

for any γ. Selecting γ = σ, we have

vol(Mσ) ≤ CD,dvol(M)σD−d

for some constant CD,d depending on the manifold and
ambient dimensions, independent of σ.

Lower bound on vol(Bε(p) ∩Mσ)
Define

A(p) = M ∩Bε−σ(p),

B(p) = M ∩Bε(p),
Bσ(p) = Mσ ∩Bε(p).

Denote with Nσ the number of points we can “pack”
in A(p) such that the distance between any two points
is at least 2σ. Denote the points themselves by the set
C. Then,

vol(Bσ) ≥ NσvDσD

where vD is the volume of the unit ball in D-
dimensions. To see this just note that every point that
is at most σ away from any point in C is contained in
Bσ, and these sets are disjoint so the union of σ balls
around C is contained in Bσ.

Now, to prove a lower bound on Nσ we invoke some
ideas from [17]. Consider, the map f described in
Lemma 5.3 in [17], which projects the manifold onto
its tangent space, and observe its action on A(p). It
is clear by their discussion that this map projects the
manifold onto a superset of a ball of radius (ε−σ) cos θ,
for θ = sin−1( ε−σ2τ ). In addition to being invertible,
this map is a projection, and only shrinks distances
between points. So if we can derive a lower bound on
the number of points we can “pack” in this projection
then it is also a lower bound on Nσ. Now, the set is
just a ball in d-dimensions of radius (ε− σ) cos θ. Us-
ing, the fact that 2σ balls around each of the points in
C must cover this set a simple volume argument shows

Nσ(2σ)d ≥ vd((ε− σ) cos θ)d,

i.e.

Nσ ≥ CD,d
(

(ε− σ) cos θ

σ

)d
,

which gives a lower bound.

Putting the upper and lower bound together, we get

kε = inf
p∈M

Q(Bε(p))

≥ C ′D,d
1

vol(M)σD−d

(
(ε− σ) cos θ

σ

)d
σD

= C ′D,d
[(ε− σ) cos θ]

d

vol(M)
,

for some quantity C ′D,d, independent of σ.

We will prove the following main lemma.

Lemma 10. Let Nε be the ε-covering number of the
submanifold M . Let U =

⋃n
i=1Bε+τ/2(Xi). Let Ĥ =

H(U). Then if n > 1
kε

(log(Nε) + log(1/δ)), P(Ĥ 6=
H(M)) < δ as long as σ ≤ ε/2 and ε < (

√
9−
√

8)τ
2 .

Proof. This is a straightforward consequence of
Lemma 8 and Lemma 7.

A.1.4 Proof of Theorem 4 (additive case)

Lower Bound

From Lemma 14 we see that convolution only decreases
the total variation distance, and so the lower bound for
the noiseless case is still valid here.
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Upper Bound

We will again proceed by a similar argument to the
clutter noise case. Let

√
Dσ < r, R = 8r and

s = 4r and set αs = infp∈AQ(Bs(p)) and βs =
supp∈B Q(Bs(p)), where A = tuber(M), B = RD −
tubeR(M).

As in the clutter noise case, we will need the two events
E1 and E2 to hold with high probability.

We will use the following version of a common χ2 in-
equality, established by [18].

Lemma 11. For a D-dimensional Gaussian random
vector

P(||ε|| >
√
T ) ≤ (ze1−z)D/2

where z = T
Dσ2

Using this inequality,

P(||ε|| ≥ 4r) ≤ (16 exp{−15})D/2 ≡ t

and

P(||ε|| ≥ 2r) ≤ (4 exp{−3})D/2 ≡ γ.

Observe that these are both constants. Next, it is easy
to see that

αs ≥ Q(Bs−r(p)) ≥ avdrd(cos θ)d(1− γ) ≡ α,

where θ = sin−1(r/(2τ)), and

βs ≤ vD(8r)Dt ≡ β.

As in the clutter noise, we need β to be sufficiently
smaller than α if we are to successfully clean the data.
As we are interested in the case when r is small, if
D > d then we can take β ≤ α/2, while, if D = d then
we will need that the dimension is quite large (observe
that both γ and t tend to zero rapidly rapidly as D
grows).

We are now in a position to invoke the Lemma 13
to ensure E1 holds with high probability for n large
enough. Further, one can see that the mass of an r/2-
ball close to manifold is at least

Q(Ai) ≥ avd(1− γ)(cos θ)d(r/2)d

for θ = sin−1(r/(4τ)). This quantity is also O(rd) as
desired, and for n large enough we can ensure E2 holds
with high probability. Under the condition on σ, and

r we have r ≤ (
√

9−
√

8)τ
8 . At this point we can invoke

Theorem 5.1 from [18] to see that for n �∗ 1
τd

we
recover the correct homology with high probability.

A.1.5 Deconvolution

Upper bound Recall, that the kernel Ψ satisfies

Ψ{x : |x| ≥ ε} ≤ γ (2)

with ε and γ being small constants that we will specify
in our proof.

The starting point of our proof will be a uniform con-
centration result from Koltchinskii [16].

Lemma 12. Consider the event

A = {max
x
|P̂n(B2ε(x))− P̂Ψ(B2ε(x))| < γ}

For any small constants ε and γ, there exists q ∈ (0, 1)
such that

P (Ac) ≤ 4qn

This lemma tells us that the deconvolved measure is
uniformly close to a smoothed (by the kernel Ψ) ver-
sion of the true density.

Our first step will be to draw

m >
1

ω

(
log l + log

(
2

δ

))
samples from P̂n, where ω = infx∈M P̂n(B2ε(x)), and
l is the 2ε covering number of the manifold, and
δ = 8qn. Denote, this sample Z. We know that

l ≤ vol(M)
cosd(θ)vd(2ε)d

.

Let us first show that we can choose ε and γ so that ω
is at least a small positive constant.

ω = inf
x∈M

P̂n(B2ε(x))

≥ inf
x∈M

PΨ(B2ε(x))− γ

Notice that,

PΨ(B2ε) ≥ P (Bε)Ψ(x : |x| ≤ ε)

So, we have,

ω ≥ inf
x∈M

P (Bε(x))(1− γ)− γ

Using the ball volume lemma we have,

ω ≥ avdε
d cosd θ(1− γ)− γ

where θ = sin−1(ε/2τ). Notice, that τ is a fixed con-
stant, and ε and γ are constants to be chosen appro-
priately. It is clear that for γ ≤ Cd,τ ε, with Cd,τ small
we have

ω ≥ c
for a small constant c which depends on τ ,d and our
choices of ε and γ.

We now use the sampling lemma 7 to conclude that
w.p. at least 1− 4qn,
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1. The m samples are 4ε dense around M .

2. M ⊂ ∪mi=1B4ε(xi)

Our next step will be a cleaning step. This cleaning
procedure differs from the Algorithm CLEAN in that
we use the deconvolved measure to clean the data. In
particular, we will remove all points from Z for which
P̂n(B4ε(Zi)) ≤ 2γ. Denote the remaining points by
W . Our estimator will then be constructed from

H =
⋃
B 5ε+τ

2
(Wi)

To analyze this cleaning procedure, we use the uniform
concentration lemma 12 above, and consider the case
when event A happens.

1. All points far away from M are eliminated:
In particular, for any point x if we have

dist(B4ε(x),M) ≥ ε

then the corresponding point is eliminated.

To see this is simple. We eliminated all points
with deconvolved empirical mass P̂n(B4ε) < 2γ.
Since, we are assuming event A happened, we
have for any remaining point PΨ(B4ε) > γ. Now,
we have that

Ψ{x : |x| ≥ ε} ≤ γ

From this we see that some part of B4ε must be
within ε of M , and we have arrived at a contra-
diction.

2. All points close to M are kept: In particular,
for any point x if

dist(x,M) ≤ 2ε

then the corresponding point is kept.

We need to show P̂n(B4ε(x)) ≥ 2γ. Notice, that

P̂n(B4ε(x)) ≥ P̂n(B2ε(π(x))) where π(x) is the
projection of x onto M . This quantity is just ω.

To finish, we need to show that we can choose
ε and γ such that ω ≥ 2γ. Since, ω ≥
avdε

d cosd θ(1 − γ) − γ which as a function of γ
is continuous, bounded from below by a constant
depending on τ , d and ε and monotonically in-
creasing as γ decreases we have for γ small enough

ω ≥ 2γ

3. The set H has the right homology: We have
shown that the cleaning eliminates all points out-
side a tube of radius 5ε, and further keeps all
points in a tube of radius 2ε. From the sampling

result we know the points that we keep are 4ε
dense and that M ⊂ ∪mi=1B4ε(xi). We can now
apply lemma 8 to conclude that H has the right
homology provided

ε <
(
√

9−
√

8)τ

5

Since τ is a fixed constant we can always choose
ε small enough to satisfy this condition. To re-
view, we need to select γ and ε to satisfy three
conditions

(a) ω ≥ avdεd cosd θ(1− γ)− γ has to be atleast
a small positive constant.

(b) ω ≥ 2γ

(c) ε < (
√

9−
√

8)τ
5

Each of these can be satisfied by choosing γ and
ε small enough.

Now, returning to m. We have

m >
1

ω

(
log l + log

(
2

δ

))
where ω = infx∈M P̂n(B2ε(x)), and l is the 2ε cov-

ering number of the manifold l ≤ vol(M)
cosd(θ)vd(2ε)d

,

and δ = 8qn. It is clear that all terms except
those in n are constant. In particular it is easy to
see that

m ≥ Cn

for C large enough is sufficient.

From this we can conclude with probability at least
1−8qn our procedure will construct an estimator with
the correct homology. Since, q ∈ (0, 1) the success
probability can be re-written as at least 1− e−cn for c
small enough. Together this gives us the deconvolution
lemma from the main paper.

A.2 Additional technical lemmas

A.2.1 The cleaning lemma

In this section we sharpen Lemma 4.1 of [18], also
known as the A-B lemma, by using Bernstein’s in-
equality instead of Hoeffding’s inequality. This modi-
fication is crucial to obtain minimax rates.

Lemma 13. Let βs ≤ β < α/2 ≤ αs/2. If n >
4β log β, where

β = max

(
1 +

200

3α
log

(
1

δ

)
, 4

)
,

then procedure CLEAN(α+β
2 ) will remove all points in

region B and keep all points in region A with probabil-
ity at least 1− δ.
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Proof. We use the notation established in section 5.2.
We first analyze the set A.

For a point Xi in A, let q = q(i) = Q(Bs(Xi)), and
define,

Zj = I(Xj ∈ Bs(Xi)), j 6= i,

where I denotes the indicator function. Notice that
the random variables {Zj , j 6= i} are independent
Bernoulli with common mean q.

We will consider two cases.

Case 1: α ≤ q ≤ 2α.
Notice that if

q − 1

n− 1

∑
j 6=i

Zj ≤
α

4

the point Xi will not be removed. By Bernstein’s in-
equality, the probability that Xi will instead be re-
moved is

P

q − 1

n− 1

∑
j 6=i

Zj ≥
α

4

 ≤ exp

{
−1

2

(n− 1)(α/4)2

2α+ α/12

}

≤ exp

{
− 3

200
(n− 1)α

}
.

Case 2: q > 2α.
In this case if

q − 1

n− 1

∑
j 6=i

Zj ≤ q −
3α

4

the point Xi will be removed. Another application of
Bernstein’s inequality yields

P

q − 1

n− 1

∑
j 6=i

Zj ≥ q −
3α

4


≤ exp

{
−1

2

(n− 1)(q − 3α/4)2

q + (q − 3α/4)/3

}
≤ exp

{
−1

2
(n− 1)

[
q

2
+

9α2

32p
− 3α

4

]}
≤ exp

{
− (n− 1)α

8

}
.

Now, consider a point Xi in the region B, and define
q and the Zjs in an identical way. This time if

1

n− 1

∑
j 6=i

Zj − q ≤
α

4
,

the point Xi will not be removed. By Bernstein’s in-
equality,

P

 1

n− 1

∑
j 6=i

Zj − q ≥
α

4

 ≤ exp

{
−1

2

(n− 1)(α/4)2

α/2 + α/12

}

≤ exp

{
− 3

56
(n− 1)α

}

Putting all the pieces together, we obtain that the
cleaning procedure succeeds on all points with proba-
bility at least n exp

{
− 3

200 (n− 1)α
}

. This requires,

n− 1 >
200

3α

(
log n+ log

(
1

δ

))
i.e.

n > 1 +
200

3α
log

(
1

δ

)
+

200

3α
log n

If δ < 1/2, then 1 + 200
3α log

(
1
δ

)
> 200

3α , so it is enough
to solve

n > x+ x log n

with x = 1 + 200
3α log

(
1
δ

)
. The result of the lemma

follows.

A.2.2 Convolution only decreases total
variation

Lemma 14. Let P and Q two probability measures in
RD with common dominating measure µ. Then,

TV(P ? Φ, Q ? Φ) ≤ CφTV(P,Q).

where ? denotes deconvolution and Φ is a probability
measure on RD.

Proof. This is a standard result, but we provide a
proof for completeness. Let p ? φ denote the Lebesgue
density of the probability distribution P ? Φ, i.e.

p ? φ(z) =

∫
φ(z − x)p(x)dµ(x), z ∈ RD.

Similarly, q?φ denotes the analogous quantity forQ?Φ.
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Then,

2TV(P ? Φ, Q ? Φ) =

∫
RD
|p ? φ(z)− q ? φ(z)| dz

=

∫
RD

∣∣∣∣∫ φ(z − x)p(x)dµ(x)

−
∫
φ(z − x)p(x)dµ(x)

∣∣∣∣ dz
=

∫
RD

∣∣∣∣∫ φ(z − x)(p(x)

−q(x))dµ(x)| dz

≤
∫
RD

∫
|φ(z − x)(p(x)

−q(x))| dµ(x)dz

≤
∫ ∫

RD
φ(z − x)dz |p(x)− q(x)| dµ(x)

=

∫
|(p(x)− q(x)| dµ(x)

= 2TV(P,Q)


