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Abstract

We introduce the graphlet decomposition of
a weighted network, which encodes a notion
of social information based on social struc-
ture. We develop a scalable algorithm, which
combines EM with Bron-Kerbosch in a novel
fashion, for estimating the parameters of the
model underlying graphlets using one net-
work sample. We explore theoretical prop-
erties of graphlets, including computational
complexity, redundancy and expected accu-
racy. We test graphlets on synthetic data,
and we analyze messaging on Facebook and
crime associations in the 19th century.

1 Introduction

In recent years there has been a surge of interest in col-
laborative projects similar to Wikipedia, social media
platforms such as Facebook and Twitter, and services
that rely on the social structure underlying these ser-
vices, including cnn.com “popular on Facebook” and
nytimes.com “most emailed”. Efforts in the computa-
tional social sciences have begun studying patterns of
behavior that result in organized social structure and
interactions (e.g., see Lazer et al., 2009). Here, we de-
velop a new tool to analyze data about social structure
and interactions routinely collected in this context.

There is a rich literature of statistical models to ana-
lyze binary interactions or networks (Goldenberg et al.,
2010). Arguably, however, only a few of them may
be fit to weighted networks. Our approach is to de-
compose the graphon Λ, which defines an exchange-
able model (Kallenberg, 2005) for integer-valued mea-
surements of pairs of individuals P (Y |Λ), in terms of
a number of basis matrices that grows with the size
of the network, Λ =

∑
i µiPi. The factorization of
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Λ is related to models for binary networks based on
the singular value decomposition and other factoriza-
tions (Hoff, 2009; Kim and Leskovec, 2010). We aban-
don the popular orthogonality constraint (Jiang et al.,
2011) among the basis matrices Pis to attain inter-
pretability in terms of multi-scale social structure, and
we chose not model zero edge weights to enable the es-
timation to scale linearly with the number of positive
weights (Leskovec et al., 2010). These choices lead
to a non-trivial inferential setting (Airoldi and Haas,
2011). Related methods utilize a network to encode in-
ferred dependence among multivariate data (Coifman
and Maggioni, 2006; Lee et al., 2008). We term our
method “graphlet decomposition”, as it is reminiscent
of a wavelet decomposition of a graph. An unrelated
literature uses the term graphlets to denote network
motifs (Przulj et al., 2006; Kondor et al., 2009).

The key features of the graphlet decomposition we in-
troduce in this paper are: the basis matrices Pis are
non-orthogonal, but capture overlapping communities
at multiple scales; the information used for inference
comes exclusively from positive weights; parameter es-
timation is linear in the number of positive weights.
The basic idea is to posit a Poisson model for the edge
weights P (Y |Λ) and parametrize the rate matrix Λ in
terms of a binary factor matrix B. The binary factors
can be interpreted as latent features that induce social
structure through homophily. The factor matrix B al-
lows for an equivalent interpretation as basis matrices,
which define overlapping cliques of different sizes. In-
ference is carried out in two stages: first we identify
candidate basis matrices using Bron-Kerbosch, then
we estimate coefficients using EM. The computational
complexity of the inference is addressed in Section 3.2.

2 Graphlet decomposition and model

Consider observing an undirected weighted network,
encoded by a symmetric adjacency matrix with inte-
ger entries and diagonal elements equal to zero. Intu-
itively, we want to posit a data generating process that
can explain edge weights in terms of social information,
quantified by community structure at multiple scales
and possibly overlapping. We choose to represent com-
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munities in terms of their constituent maximal cliques.

Below, we avoid notation whose sole purpose is to set
to zero diagonal elements of the resulting matrices.

Definition 1. The graphlet decomposition (GD) of a
matrix Λ with non-negative entries λij is defined as
Λ = BW B′, where B is an N ×K binary matrix, W
is a K ×K diagonal matrix. Explicitly, we have



λ11 λ12 . . . λ1N

λ21 λ22 . . . λ2N

...
...

. . .
...

λN1 λN2 . . . λNN


 = B




µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µK


B′

where λii is set to zero and µi is positive for each i.

The basis matrix B can be interpreted in terms over-
lapping communities at multiple scales. To see this,
denote the i-th column of the matrix B as b·i. We can
re-write Λ =

∑K
i=1 µi Pi, where each Pi is an N × N

matrix defined as Pi = b·i b′·i, in which the diagonal is
set to zero. We refer to Pi as basis elements. Think
of the i-th column of B as encoding a community of
interest; then the vector b·i specifies which individuals
are members of that community, and the basis element
Pi is the binary graph that specifies the connections
among the member of that community. The same in-
dividual may participate to multiple communities, and
the communities may span different scales.

The model for an observed network Y is then

Y ∼ Poisson+ (
∑K
i=1 µi Pi). (1)

This is essentially a binary factor model with a trun-
cated Poisson link and two important nuances. Stan-
dard factor models assume that entire rows of the ma-
trix Y are conditionally independent, even when the
matrix is square and row and column i refer to the
same unit of analysis. In contrast, our model treats
the individual random variables yij as exchangeable,
and imposes the restriction that positives entries in the
factors map (in some way) to maximal cliques in the
observed network. In addition, the matrix Y is sparse;
our model implies that zero edge weights carry no in-
formation about maximal cliques, and thus are not
relevant for estimation. These nuances—map between
cliques and factors, and information from positives en-
tries only—produce a new and interesting inferential
setting that scales to large weighted networks.

2.1 Inference

Computing the graphlet decomposition of a network
Y involves the estimation of a few critical parameters:
the number of basis elements K, the basis matrix B
or equivalently the basis elements P1:K , and the coef-
ficients associated with these basis elements µ1:K .

We develop a two-stage estimation algorithm. First,
we identify a candidate set of Kc basis elements, using
the Bron-Kerbosch algorithm, and obtain a candidate
basis matrix Bc. Second, we develop an expectation-
maximization (EM) algorithm to estimate the corre-
sponding coefficients µ1:Kc ; several of these coefficients
will vanish, thus selecting a final set of basis elements.
We study theoretical properties of this estimation al-
gorithm in Section 3. Figure 1 illustrates the steps of
the estimation process on a toy network.

2.1.1 Identifying candidate basis elements

The algorithm to identify the candidate basis elements
proceeds by thresholding the observed network Y at a
number of levels, t = max(Y ) . . .min(Y ), and by iden-
tifying all the maximal cliques in the corresponding
sequence of binary networks, Y (t) = 1(Y ≥ t), us-
ing the Bron-Kerbosch algorithm (Bron and Kerbosch,
1973). The resulting cumulative collection of Kc max-
imal cliques found in the sequence of networks Y (t)

is then turned into candidate basis elements, P ci , for
i = 1 . . .Kc. Algorithm 1 details this procedure.

Bc = empty basis set
For t = max(Y ) to min(Y )

Y (t) = 1(Y ≥ t)
C = maximal cliques(Y (t)) using Bron-Kerbosch
Bc = Bc ∪ C

Algorithm 1: Estimate a basis matrix, Bc, encoding
candidate elements, P c, from a weighted network, Y .

Algorithm 1 allows us to avoid dealing with permuta-
tions of the input adjacency matrix Y by inferring the
basis elements Pi independently of such permutation.

In Section 3.1 we show that, under certain conditions
on the true underlying basis matrix B, Algorithm 1
finds a set of candidate basis elements that contains
the true set of basis elements. In addition, in Section
3.2 we show that, under the same conditions on B and
additional realistic assumptions, we expect to have a
number of candidate basis elements of the same order
of magnitude of the true number of basis elements,
Kc = O(K), as the network size N grows, given that
the maximum weight is stationary, max(Y ) = O(1).

2.1.2 Sparse Poisson deconvolution

Given the candidate set of basis elements encoded in
Bc, we develop an EM algorithm to estimate the corre-
sponding coefficients µ1:Kc . Under certain conditions
on the true basis matrix B, this algorithm consistently
estimates the coefficients by zeroing out the coefficients
associated with the unnecessary basis elements.

Recall that we have Kc candidate basis elements
P c1:Kc . Let’s define a set of statistics Tk =

∑
ij P

c
k,ij
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Figure 1: An illustration of the two-stage estimation algorithm for the graphlet decomposition.

for k = 1 . . .Kc, and let’s introduce a set of latent
N×N matrices Gk with positive entries, subject to the
only constrain that

∑
kGk = Y . Algorithm 2 details

the EM iterative procedure that will lead to maximum
likelihood estimates for the coefficients µ1:Kc .

Initialize µ(0)

While ||µ(t+1) − µ(t)|| > ε
For k=1 to K

E-step: G
(t+1)
k,ij = µ

(t)
k

YijP
c
k,ij

Tk
∑
m µ

(t)
m P cm,ij

M-step: µ
(t+1)
k =

∑
i,j G

(t+1)
k,ij ;

t=t+1;

Algorithm 2: Estimate non-negative coefficients, µ,
for all candidate elements, P c, in the basis matrix Bc.

This is the Richardson-Lucy algorithm for Poisson de-
convolution (Richardson, 1972). The truncated Pois-
son likelihood can also be maximized directly, using
a KL divergence argument (Csiszar and Shields, 2004)
involving the discrete probability distribution obtained
by normalizing the data matrix, Ȳ , and a linear combi-
nation of discrete probability distributions obtained by
normalizing the candidate basis matrices,

∑
k ωkP̄k.

3 Theory

Here we develop some theory for graphlets when the
graph Y is generated by a non-expandable collection
of basis matrices. The extent to which these results
extend to the general case is unclear, as of this writing,
however, the results help form some intuition about
how graphlets encode information. See the Appendix
for details of the proofs. We begin by establishing
some notation.

Definition 2. Given two adjacency matrices P1 and
P2 both binary define P1 ⊆ P2 to mean P2(j, k) = 1
whenever P1(j, k) = 1; i.e. the induced graph by P1 is
a subgraph of P2.

Definition 3. Define P =
∨
i∈I Pi to mean P (j, k) =

1 whenever any Pi(j, k) = 1 and zero otherwise.

Definition 4. Given {Pk}, we say that P ′ is an ex-
pansion of Pk if both 2 and 3 are satisfied.

Definition 5 (non expandable basis). A collection of
{Pk} is non-expandable if for any expansion P ′ of Pk
we can find j such that P ′ ⊂ Pj.

3.1 Identifiability

The first result asserts that the collection of Poisson
rates Λ can be uniquely decomposed into a collection
of basis matrices P1:K , here encoded by the equivalent
binary matrix B, with weights W = diag(µ1:K).

Theorem 1. Let Λ be a symmetric N×N nonnegative
matrix which is generated by a non-expandable basis.
Then there exists a unique N×K matrix B and K×K
matrix W such that Λ = BWB′.

This implies that, in the absence of noise, the set of
parameters B,W,K are estimable from the data Y .
The proof of Theorem 1 is constructive by means of
Algorithm 3, which is fast but sensitive to noise. In
practice, we propose a more robust algorithm that uses
non-expandability to identify a collection of candidate
basis elements Bc, which provably includes the unique
non expandable basis B that generated the graph.

Theorem 2. Let Λ = BWB′, where W is a diagonal
matrix with nonnegative entries and B encodes a non-
expandable basis, both unknown. If Bc is the output of
Algorithm 1 with Λ as input, then B ⊆ Bc.

These two theorems, with Bij ’s IID Bernoulli random
variables, may be used to generate random cliques.

3.2 Redundancy and complexity

Here, we derive an upper bound for the maximum
number of basis elements encoded in Bc in a network
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with at most K = c log2N cliques. Networks with this
many cliques include networks generated with most
exchangeable graph models (Goldenberg et al., 2010),
and are the largest networks with an implicit repre-
sentation (Kannan et al., 1988).

Theorem 3. Let the elements Bik of the basis matrix
for a network Y be IID Bernoulli random variables
with parameter pN . Then an asymptotic upper bound
for the number of candidate basis elements, denoted
CN,pN , identified by Algorithm 1 is

CN,pN ≤ Q(2KH(pN ) +K)

= Q(N c1H(pN ) + c log2N), (2)

where Q is the number of thresholds in Algorithm 1.

While Theorem 3 applies in general, a notion of redun-
dancy of the candidate basis set is well defined only
for networks generated by a non expandable basis, in
which Bc ⊆ B. In this case, we define redundancy
as the ratio RN ≡ CN,pN /K. Theorem 2 states that
number of candidate basis elements is never smaller
than the true number of basis K. Thus Theorem 3
leads to the following upper bound on redundancy

RN,pN ≤ Q
(

1 +
N c1H(pN )

c log2N

)
. (3)

In a realistic scenario pN = O(1/ log2N), the complex-
ity of the candidate basis set is O(Q log2N), and the
implied redundancy is at most O(Q). Alternatively,
if pN = O(1/K), the implied redundancy is at most
O(QK). These are regimes we often encounter in prac-
tice. These limiting behaviors of pN arise whenever the
nodes in a network can be assumed to have a capacity
that is essentially independent of the size of the net-
work, e.g., individuals participate in the activities of a
constant number of groups over time.

These calculations are only suggestive for networks
generated by an expandable basis. However, non ex-
pandability tends to be a reasonable approximation
in many situations, including whenever exchangeable
graph models are good fit for the network. In the anal-
ysis of messaging patterns on Facebook in Section 4.3,
for instance, we empirically observe CN,p ≈ 2K̂.

3.3 Accuracy with less than K basis elements

The main estimation Algorithm 2 recovers the correct
number of basis elements K and the corresponding
coefficients µ and basis matrix B, whenever the true
weighted network Y is generated from a non expand-
able basis matrix. Here we quantify the expected loss
in reconstruction accuracy if we were to use K̃ < K
basis elements to reconstruct Y . To this end we intro-
duce a norm for a network Y , and related metrics.

Definition 6 (τ -norm). Let Y ∼ Poisson(BWB′),
where W = diag(µ1 . . . µK), define the statistics ak ≡∑N
i=1Bik for k = 1 . . .K. The τ -norm of Y is defined

as τ(Y ) ≡ |∑K
k=1 µkak|.

Consider an approximation Ỹ = BW̃B′ characterized
by an index set E ⊂ {1 . . .K}, which specifies the basis
elements to be excluded by setting the corresponding
set of coefficients µE to zero. Its reconstruction error
is τ(Y − Ỹ ) = |∑k/∈E µkak|, and its reconstruction

accuracy is τ(Ỹ )/τ(Y ). Thus, given a network matrix
Y representable exactly with K basis elements, the
best approximation with K̃ basis elements is obtained
by zeroing out the lowest K − K̃ coefficients µ.

We posit the following theoretical model,

µk · ak/N ∼ Gamma(α, 1), (4)

for k = 1 . . . K̃. This model may be used to compute
the expected accuracy of an approximate reconstruc-
tion based on K̃ < K basis elements, since the mag-
nitude of the ordered µk coefficients that are zeroed
out are order statistics of a sample of Gamma variates
(Shawky and Bakoban, 2009). Given K and α, we can
compute the expected coefficient magnitudes and the
overall expected accuracy τ0.

Theorem 4. The theoretical accuracy of the best ap-
proximate Graphlet decomposition with K̃ out of K

basis elements is: τ0(K̃,K, α) =
∑K̃
j=1

f(j,K,α)
αK ; where

f(j,K, α) =
(
K
j

)∑j−1
q=0(−1)q

(
j−1
q

) f(1,K−j+q+1,α)
K−j+q+1 , and

f(1,K, α) = K
Γ(α)

∑(α−1)(K−1)
m=0 cm(α,K−1)Γ(α+m)

Kα+m , in

which the coefficients cm are defined by the recursion
cm(α, q) =

∑i=α−1
i=0

1
i!cm−i(α, q−1) with boundary con-

ditions cm(α, 1) = 1
i! for i = 1 . . . α.

Figure 2 illustrates this result on simulated networks.
The solid (red) line is the theoretical accuracy com-
puted for K = 30 and α = 1, the relevant parameters
used to to simulate the sample of 100 weighted net-
works. The (blue) boxplots summarize the empirical
accuracy at a number of distinct values of K̃/K.

4 Results

We evaluate graphlets on real and simulated data.
Simulation results on weighted networks in Section 4.1
show that the estimation problem is well-posed and
both the binary matrix B and the coefficients µ are
estimable without bias, while results on binary net-
works in Section 4.2 enable the analysis of the com-
parative performance with existing methods for binary
networks. We also develop an analysis of messaging
patterns on Facebook for a number of US colleges and
an analysis of historical crime data in Sections 4.3–4.4.
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Figure 2: Theoretical and empirical accuracy for dif-
ferent fractions of basis elements K̃/K with α = 0.1.
The ratio K̃/K also provides a measure of sparsity.

Overall, these results suggest that graphlets encode a
new quantification of social information; we provide a
concrete illustration of this idea in Section 5.1.

4.1 Parameter estimation

We set out to evaluate whether the parameters under-
lying graphlets—the entries of binary matrixB, its size
K, and the non-negative coefficients µ—are estimable
from one weighted network sample Y .

We simulated M = 100 networks from the model, each
with 50 nodes, using random values for the parameters
µ,B and K. For the i-th network, the number of basis
elements Ki was sampled from a Poisson distribution
with rate λ = 30. The coefficients µji were sampled
from a Gamma distribution with parameters α = 1
and β = 10. The entries of the basis matrix B were
sampled from a Bernoulli distribution with probability
of success p = 0.04. The index i = 1 . . .M runs over
the networks and the index j = 1 . . .Ki runs over the
basis elements for the i-th network.

Algorithms 1–2 were used to estimate the parameters
B,µ and K, for each synthetic network. The estima-
tion error of K̂ is |K̂−K|. Since the estimated matrix
B̂ is unique only up to a permutation of its columns,
the Procrustes transform (Kendall, 1989) was used to
identify the optimal rotation of the matrix B̂ to be
compared to the true matrix B. The estimation er-
ror of B̂ is computed as the normalized L2 distance
between B and B̂ after Procrustes. The estimation
error of µ̂ is computed as the normalized L2 distance
between µ and µ̂. The average error in reconstructing
the simulated networks is computed as the L1 distance
between Y and Ŷ normalized to the total number of
counts in the network, averaged over 100 simulations,

denoted |Ỹ |1. This metric gives more weight to larger
cliques, since the clique size enters as a quadratic term.
We also provide the average error in reconstructing the
simulated networks based on the τ -norm, which is less
sensitive to incorrectly estimating larger cliques. In
addition, we compute the average error in reconstruct-
ing whether or not edges have positive weights, rather
than their magnitude, denoted error in 1(Ỹ > 0).

Table 1 summarizes the simulation results for weighted
network reconstructions obtained by setting a target
accuracy τ0, ranging from 0.20 to 1.00—no error. The
last row of Table 1 supports the claim that the es-
timation problem is well-posed; the estimation algo-
rithm stably recovers the true parameter values. The
only sources of non-zero error are the estimation of
the number of basis elements and the estimation of
the basis elements themselves, as encoded by the ma-
trix B. However, these errors are negligible and do
not seem to impact the estimation of the coefficients
µ, nor to propagate to the network reconstruction in-
dependently of the metric we use to quantify it.

The average bias in estimating the optimal number of
basis elements K is 0.07, with a standard deviation
of 0.256. Column K̃/K̂ provides the fraction of the
estimated optimal number of basis elements K̂ that
is necessary to achieve the desired target accuracy, in
terms of the τ -norm, using Theorem 4. Column two
provides the empirical τ(Ỹ ) error, defined as one minus
the accuracy, corresponding to the reported fraction of
basis elements. The empirical accuracy matches the
expected accuracy given by Theorem 4 well. For in-
stance, the Theorem 4 implies that we need 45% of the
basis elements in order to achieve an accuracy of 0.85,
and the empirical accuracy is slightly in excess of 0.85,
on average. Figure 2 shows similar results, for a larger
set of 29 values for the target accuracy τ0.

The first two columns of Table 1 report the average
L1 error and the average τ -based error, properly nor-
malized to have range in zero to one. Cliques in the
simulated networks range between 2 and 5 nodes, for
most networks. The differences in the reconstruction
error are due to the weight of these larger cliques. For
instance, the empirical L1 accuracy obtained by using
45% of the basis elements is around 0.65, as opposed
to a τ accuracy of around 0.85, on average.

The accuracy in reconstructing the presence or absence
of edges in the network, rather than the magnitude of
the corresponding weights, is in between the L1 accu-
racy and the τ accuracy, for any fraction K̃/K̂.

4.2 Link reconstruction

Graphlet is a method for decomposing a weighted net-
work. However, here we evaluate how graphlet fares
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Table 1: Performance of the estimation algorithm for a target accuracy τ0, on synthetic data.

|Ỹ |1 error τ(Ỹ ) error error in 1(Ỹ > 0) error in B error in µ K̃/K̂ τ0
0.97± 0.012 0.65± 0.074 0.76± 0.062 50.75± 10.893 0.55± 0.082 0.08± 0.035 0.20
0.92± 0.016 0.46± 0.026 0.61± 0.053 42.40± 8.134 0.32± 0.041 0.16± 0.039 0.50
0.79± 0.036 0.23± 0.012 0.40± 0.057 29.14± 5.536 0.10± 0.015 0.33± 0.050 0.75
0.56± 0.063 0.09± 0.006 0.24± 0.048 17.04± 3.757 0.02± 0.004 0.54± 0.062 0.90
0.00± 0.000 0.00± 0.000 0.00± 0.000 0.67± 0.618 0.00± 0.000 1.01± 0.033 1.00

in terms of the computational complexity versus ac-
curacy trade-off when compared to the performance
current methods for binary networks can achieve.

For this purpose, we generated 100 synthetic networks
from the model, each with 100 nodes, choosing ran-
dom values for the parameters as we did in Section
4.1. The number of basis was sampled from a Pois-
son with rate λ = 12. The coefficients were sampled
from a Gamma with parameters α = 2 and β = 10.
The entries of the basis matrix were sampled from a
Bernoulli with probability of success p = 0.1. We then
obtained the corresponding binary networks by reset-
ting positive edge weights to one, 1(Y > 0).

We compute comparative performance for a few pop-
ular models of networks that can be used for link pre-
diction. These include the Erdös-Rényi-Gilbert ran-
dom graph model (Erdös and Rényi, 1959; Gilbert,
1959), denoted ERG, a variant of the degree distribu-
tion model fitted with importance sampling (Blitzstein
and Diaconis, 2010), denoted DDS, the latent space
cluster model (Handcock et al., 2007), denoted LSCM,
and the stochastic blockmodel with mixed membership
(Airoldi et al., 2008), denoted MMSB. A comparison
with singular value decomposition in terms binary link
prediction is problematic, since using a few singular
vectors would not lead to binary edge weights.

Table 2 summarizes the comparative performance re-
sults. The accuracy of graphlet is reported for different
fractions of the estimated optimal number of basis el-

Table 2: Link reconstruction accuracy and runtime for
a number of competing methods, on simulated data.
The graphlet decomposition is denoted Glet, with the
fraction of basis elements used quoted in brackets.

Method Runtime (sec) Accuracy
Glet (25%) 0.0636 92.7± 0.30
Glet (50%) 0.0636 94.7± 0.15
Glet (75%) 0.0636 97.0± 0.08
Glet (90%) 0.0636 98.9± 0.05
Glet (100%) 0.0636 100.0± 0.00
ERG 0.0127 86.0± 1.20
DDS 11.1156 89.0± 0.85
LSCM 6.3491 90.0± 0.70
MMSB 2.8555 93.0± 0.40

ements K̂, ranging from 25% to 100%—no error. The
accuracy is consistently high, while the running time
is a only a fraction of a second, independent of the
desired reconstruction accuracy. This is because the
complexity of computing the entire graphlet decom-
position is linear in the number of edges present in
the network. Thus specifying a smaller fraction of the
number of basis elements is a choice based on storage
considerations, rather than on runtime. The compara-
tive performance results suggest that graphlet decom-
position is very competitive in predicting links.

This binary link prediction simulation study is one way
to compare graphlet to interesting existing methods,
which have been developed for binary graphs.

4.3 Analysis of messaging on Facebook

Here we illustrate graphlet with an application to mes-
saging patterns on Facebook. We analyzed the number
of public wall-post on Facebook, over a three month
period, among students of a number of US colleges.
While our data is new, the US colleges we selected
have been previously analyzed (Traud et al., 2011).

Table 3 provides a summary of the weighted network
data and of the results of the graphlet decomposition.
Salient statistics for each college include the number
of nodes and edges. The table reports the number of
estimated basis elements K̂ for each network and the
runtime, in seconds. The τ(Ỹ ) error incurred by us-
ing a graphlet decomposition is reported for different
fractions of the estimated optimal number of basis el-
ements K̂, ranging from 10% to 100%—no error.

Overall, these results suggest that the compression of
wall-posts achievable on collegiate network is substan-
tial. A graphlet decomposition with about 10% of the
optimal number of basis elements already leads to a
reconstruction error of 10% or less, with a few excep-
tions. Using 25% of the basis elements further reduces
the reconstruction error to below 5%.

4.4 Analysis of historical crime data

More recently, we have used the graphlet decompo-
sition to analyze crime associations records from the
19th century. These records are available at the
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Table 3: τ(Ỹ ) error for different fractions of the estimated optimal number of basis elements K̂.

college nodes edges K̂ sec 10% 25% 50% 75% 90% 100%
Amherst 2235 181907 10151 124 6.5 2.3 .84 .33 .14 0
Caltech 769 33311 3735 51 5.7 1.8 .65 .27 .11 0
CMU 6637 499933 11828 169 14.9 5.2 1.89 .73 .34 0
MIT 6440 502503 13145 191 11.5 4.7 1.68 .65 .30 0
Rice 4087 369655 12848 155 8.7 3.2 1.25 .51 .22 0
Swarthmore 1659 122099 7856 96 6.3 2.6 1.06 .44 .20 0

South Carolina Department of Archives and History
(Columbia, SC), Record Group 44, Series L 44158,
South Carolina, Court of General Sessions (Union
County) Indictments 1800-1913. Nodes in the net-
work are 6221 residents of Union County, during the
years 1850 to 1880. Edge weights indicate the number
of crimes involving pairs of residents. Details on the
structure of this data set and its historical relevance
may be found in Frantz-Parsons (2005, 2011).

A first step in the analysis was to explore the degree to
which there is an optimal level of granularity, for the
observed associations, at which a non-trivial criminal
structure emerges. We pursued this analysis by fit-
ting graphlets to the raw criminal association network
raised to different powers, Y k for k = 1 . . . 5. We found
that Y 2 contained a substantial degree of criminal so-
cial structure. At this resolution, k = 2, two residents
are associated with crimes in which they are either
directly involved, or in which they are involved indi-
rectly through their direct criminal associates. The
results suggest that there are several tight pockets of
criminality scattered throughout Union County.

We were interested in developing an interpretation for
these pockets of criminality. One compelling hypoth-
esis is that each pocket captures a gang or a clan. If
this holds, we might expect the variation in the gangs’
relations to be explained by the spatial organization
of the townships they operate in, to a large degree.

To test this hypothesis, we built a meta network of
criminal associations, in which each gang identified in
the first step of the analysis is represented by a meta
node. Two or more gangs were connected in the meta
network whenever a criminal record involved at least
one of their members. A graphlet decomposition of
the meta network identified pockets criminal activity
at the gang level. Plotting these gang level criminal
associations reveals the townships’ spatial organiza-
tion, to a large degree. Figure 3 shows the pockets of
criminality identified by the graphlet analysis of the
original criminal associations, Y 2, as green nodes as-
sociated with numbers, as well as the pockets of crim-
inality identified by the graphlet analysis of the meta
network, as purple nodes associated with letters.

In summary, we were abel to successfully use graphlets
as an exploratory tool to capture and distill an in-
teresting, multi-scale organization among criminals in
19th century Union County, from historical records.

5 Discussion

Taken together, our results suggest that the graphlet
decomposition implies a new notion of social informa-
tion, quantified in terms of multi-scale social structure.
We explored this idea with a simulation study.

5.1 A new notion of “social information”

Graphlet quantifies social information in terms of com-
munity structure (i.e., maximal cliques) at multiple
scales and possibly overlapping. To illustrate this no-
tion of social information, we simulated 200 networks:
100 Erdös-Rényi-Gilbert random graphs with Poisson
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Figure 3: A two-step analysis of the Union County
criminal association network using graphlets reveals
tight pockets of criminality (the numbered nodes) and
local criminal communities (the lettered nodes).
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Figure 4: Comparison between graphlet and SVD decompositions. Panels 1–2 report results for on the networks
simulated from the model underlying graphlets. Panels 3–4 report results on the Poisson random graphs.

weights and 100 networks from the model described
in Section 2. While, arguably, the Poisson random
graphs do not contain any such information, the data
generating process underlying graphlets was devised
to translate such information into edge weights.

As a baseline for comparison, we consider the singu-
lar value decomposition (Searle, 2006), applied to the
symmetric adjacency matrices with integer entries en-
coding the weighted networks. The SVD summarizes
edge weights using orthogonal eigenvectors vi as basis
elements and the associated eigenvalues λi as weights,
YN×N =

∑N
i=1 λi vi v

′
i. However, SVD basis elements

are not interpretable in terms of community structure,
thus SVD should not be able to capture the notion of
social information we are interested in quantifying.

We applied graphlets and SVD to the two sets of net-
works we simulated. Figure 4 provides an overview of
the results. Panels 1–2 report results for on the net-
works simulated from the model underlying graphlets.
Panels 3–4 report results on the Poisson random
graphs. Panels 1 and 3 show the box plots of the co-
efficients associated with each of the basis elements,
for graphlets in blue and for SVD in red. Panels 2
and 4 show the box plots of the cumulative repre-
sentation error as a function of the number of basis
elements utilized. Graphlets coefficients decay more
slowly than SVD coefficients on Poisson graphs (panel
3). Because of this, the error in reconstructing Poisson
graphs achievable with graphlets is consistently worse
then the error achievable with SVD (panel 4). In con-
trast, graphlets coefficients decay rapidly to zero on
networks with social structure, much sharply then the
SVD coefficients (panel 1). Thus, the reconstruction
error achievable with graphlets is consistently better
then the error achievable with SVD (panel 2).

These results support our claim that graphlets is able
to distill and quantify a notion of social information in
terms of social structure.

5.2 Concluding remarks

The graphlet decomposition of a weighted network is
an exploratory tool, which is based on a simple but

compelling statistical model, it is amenable to theoret-
ical analysis, and it scales to large weighted networks.

SVD is the most parsimonious orthogonal decomposi-
tion of a data matrix Y (Hastie et al., 2001). Graphlets
abandon the orthogonality constraint to attain inter-
pretability of the basis matrix in terms of social infor-
mation. In the presence of social structure, graphlet
is a better summary of the variability in the observed
connectivity. SVD always achieves a lower reconstruc-
tion error, however, when a few basis elements are con-
sidered (see Figure 4) suggesting that orthogonality in-
duces a more useful set of constraints whenever a very
low dimensional representation is of interest.

Graphlets provide a parsimonious sumary of complex
social structure, in practice. The simulation studies in
Sections 4.1 and 5.1 suggest that graphlets are leverag-
ing the social structure underlying messaging patterns
on Facebook to deliver the high compression/high ac-
curacy ratios we empirically observe in Table 3.

The information graphlets utilize for inference comes
exclusively from positive weights in the network. This
feature is the source of desirable properties, however,
because of this, graphlets are also sensitive to missing
data; zero edge weights cannot be imputed. More re-
search is needed to address this issue properly, while
maintaining the properties outlined in Section 3. Em-
pirical solutions include considering powers of the orig-
inal network, as in Section 4.4, or cumulating weights
over a long observation window, as in Section 4.3. In-
tuitively, cumulating messages over long time windows
will reveal a large set of basis elements. Algorithm 2
can then be used to project message counts over a
short observation window onto the larger set of basis
elements to estimate which elements were active in the
short window and how much. Recent empirical stud-
ies suggest three months as a useful cumulation period
(Cortes et al., 2001; Kossinets and Watts, 2006).
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A Proofs of theorems and lemmas

In the following, Λ ◦ C denotes the element-wise
(Hadamard) product of two matrices Λ and C.

A.1 Proof of Theorem 1

Proof. We will show B can be recovered from Λ using
the deterministic algorithm 3.

Set Λ′ = Λ
While(There is at least one non-zero element in Λ′)

µc = mini,j(Λ ◦ C)(i, j)
ijc=argminij(Λ ◦ C)(i, j)
C=largest clique in Λ′ that includes the edge ijc
Λ′=Λ′ − µcC
Add (C, µc) to (B,W ) respectively.

Algorithm 3: Algorithm in theorem 1 for uniqueness
of non expandable basis

In each step, due to non-expandability, the maximal
clique of Λ′, C, will not be a subset of any other clique
and will contain an edge which only belongs to C, us-
ing Lemma 1 below. The weight of this edge in Λ′

will be µc the coefficient of clique C in the composi-
tion. Also, edges of clique C in the network will not
have weights less than µc because all the coefficients
in composition(µs) are positive. So, in each step, the
weight corresponding to the edge(s) unique to C will
be correctly detected and subtracted from the network.

Hence, using algorithm 3 we can find basis B and co-
efficients W of matrix in Λ′ = BWBT . Since the algo-
rithm is deterministic given Λ, it will provide us only
one set of unique NEB.

Lemma 1. If B generates a nonexpandable basis set
S, any clique C ∈ S will contain an edge that does not
belong to any other clique in S.

Proof. Proof by contradiction: If every edge in C
overlaps with another clique in S, then C can be
decomposed to other cliques, which contradicts non-
expandability of S.

A.2 Proof of Theorem 2

Proof. Recall that Pk = b.kb
′
.k and Λ =

∑
l µlPl. For

any k ∈ {1, 2, ..,K}, setting a threshold on the edge
weights of the network Λ, such that edges with weights
above the threshold are selected, obtains a binary net-
work. Define Gk to be those indices ` for which B`
covers Bk. If the above mentioned threshold is set to
thk =

∑
l∈Gk µl, then a binary network Λth=thk will

be revealed. Below we will prove that Pk is a maximal
clique for Λth=thk using Lemma 2.

To show that Pk is a maximal cliques of Λth=thk we
need to prove the following two statements:

(1) Pk ⊆ Λth=thk which means clique Pk should be
included in Λth=thk . This statement is true because
the weights of the edges in Λ that correspond to Pk,
are greater than thk since µs are positive.

(2) Pk can not be part of a larger clique in Λth=thk .
By contradiction, assume such a larger clique exists
and name it P ′ then Pk ⊂ P ′ ⊆ Λth=thk . Considering
that the basis is non-expandable, given lemma (2) and
P ′ ⊆ Λth=thk ⊆

∨
i∈T\G Pli then we can find j ∈ T\G

that P ′ ⊆ Pj . Hence, we have Pk ⊂ P ′ ⊆ Pj which
leads to Pk ⊂ Pj for a j ∈ T\G. This is clearly a
contradiction since such j’s are excluded in G.

With Pk’s being one of the maximal cliques of thresh-
olded binary networks at thk and considering the fact
that the threshold level will be equal to

∑
i∈I µi for any

I ∈ {G1, G2, ..., GK} (because minij Λij ≤
∑
l∈I µl ≤

maxij Λij ), it is clear that B ⊆ Bc. This ends the
proof of theorem (2).

Lemma 2. Λth=thk ⊆
∨
i∈T\Gk Pi, for T = 1 . . .K.

Proof. We will prove this by contradiction. Assume
the above claim is not true. In that case, an edge in
Λth=thk can be found which belongs to complementary
set:

∨
i∈Gk Pi\

∨
i∈T\Gk Pi. However, the weight for

this edge is more than thk =
∑
l∈Gk µl which is not

possible for edges included in
∨
i∈Gk Pi\

∨
i∈T\Gk Pi

because the maximum weight for edges obtained from
this group of cliques is at most thk =

∑
l∈Gk µl. End

of proof of the lemma (2).

A.3 Proof of Theorem 3

Proof. Using the definition of Graphlet, P1, .., PK are
cliques generated from matrix B. Considering that
Y =

∑
l µlPl, any clique P ′ detected at different

thresholds will be in the form of P ′ =
∧
l∈I Pl for an

I ⊆ {1, 2, ..,K}. Each clique will be detected at most
Q times. Then the total number of detected cliques
will not be more than Q times 2K , the total number
of possible Is. However, based on the distribution of
elements of matrix B we know the typical set for Is
have size of 2KH(pN ), asymptotically for large n, where
H(.) is entropy function. This follows the fact that the
bit strings for nodes will be in a typical set where each
bit-string has KpN bits of one. Hence, the number of
nonempty common intersections among a nontypical
set of cliques will converge to zero and we will have
CN,p = Q2KH(pN ) +QK.
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