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Proof of Lemma 1:

Proof. Let Ty, = {T1,T5, ..., i} be a partition of the
variables in V' and ¢(V) = Hle pi(T;). Now assume
= [x1,70,..., 2% and y = [y1,¥y2,...,yx|’ are two
random vectors partitioned according to T (note that
x;’s and y;’s are sub-vectors). Then we will have:
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Therefore, ¥*(x) is an eigenfunction of A} with eigen-
value \(®). O

m, (@) = XDyt (z)

Proof of Lemma 2:

Proof. Suppose ¢ is the m-th eigenfunction of A;, asso-
ciated with the m-th largest eigenvalue A\ constructed
using Lemma 1. That is, we have that ¢ = Hf;l P;
and A = Hle Ai where 1; is an eigenfunction of A
in the subspace T; associated with eigenvalue \;. Now
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suppose, 1 consists of eigenfunctions from only ¢ < k
subspaces; that is, only ¢ of the eigenfunctions in
the product above are non-constant (non-trivial) with
eigenvalues strictly less than 1, while the rest of them
are constant with eigenvalues equal to 1. Now if any
of these /£ eigenfunctions is replaced by the constant
eigenfunction (and its corresponding eigenvalue with
1) we will have a new valid pair of eigenvalue and eigen-
function (X', ¢’) for Al where X > X. Using this re-
placement method, we can generate 2¢ new pairs with
eigenvalues all greater than A\. However, since A is the
m-th largest eigenvalue of AL, we must have m > 2¢
or equivalently ¢ < [lgm]. On the other hand, the
number involved subspaces ¢ cannot be greater than k
which means that ¢ < min(k, [lgm]). O

Proof of Theorem 1:

Proof. From [2], we have that:
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On the other hand we have the following inequality [1]:
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Therefore, we have:
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Proof of Theorem 2:

Proof. Let Ty, = {11, T, ..., Tk} be a partition of the
variables in V' into k subspaces. Also, let AL = {)\E?n |
1 <m < oo} be the set of eigenvalues of the marginal
diffusion operator Afn on subspace T; for all 1 <7 < k.
Assume the members of Af are sorted in the decreasing

order with the first (the largest) eigenvalue )\E? =1
associated with the constant eigenfunction w;l =1.

Using Lemma 1, the eigenvalues (and their associated
eigenfunctions) of Afl are constructed by picking one
eigenvalue from each set Aﬁ for all 1 < 4 < k and

multiply them together; that is, the )\((f;ln = Hle )\EtJ)
is the m-th largest eigenvalue of Atq. For each m, we
can find the index tuple (j1,...,jx) indicating which
eigenvalue is exactly picked in each subspace to con-
struct the m-th largest eigenvalue of Afl. If we know
the index tuple (j1, ..., ji) for the m-th eigenfunction,
we can find the upper bound on the estimation error

as follows:
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Using the above derivation recursively, we get:
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The second equality in Eq. (6) comes from the fact
that for j; = 1, ¢}, = Afm = 1. Since we don’t
know the true eigenvalues in each subspace, we cannot
identify the index tuple (j1,...,Jji) for a given index
m. As a result the above bound is replaced by the
worst case scenario across all possible index tuples,

that is:
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largest eigenvalue of A (i.e. )\Et{), not all combina-
tions for the index tuple should be considered in tak-
ing the maximum. More precisely, if we replace any
of the indices j; in the index tuple (j1,...,jk) with
a smaller index j/ < j;, the resulted multiplicative
eigenvalue will become larger; this is because of the
fact that smaller indices in each set Aﬁ correspond
to larger eigenvalues. The total number of such re-
placements for the index tuple (ji,...,Jk) is Hle -
This means that if the index tuple for the m-th largest
eigenvalue of AZ is (j1,- .., Jk), m must be greater than

However, because

Hle 7i- In other words, the valid index tuples for the

m-th largest eigenvalue must satisfy Hle ji < m. If
S, denotes the set of such tuples, we can improve the
bound as:
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Now, using Eq. (5) in the paper we get:
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Moreover, using Lemma 2, there at most
min(k, [lgm]) non-constant eigenvectors contributing
in constructing w};,m which means the sum in the
above bound has at most min(k, [lgm]) terms. O
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