Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits

A Self-normalized Martingale Tail Inequality

The self-normalized martingale tail inequality that we present here is the scalar-valued version of the more general
vector-valued results obtained by Abbasi-Yadkori et al. (2011b,a). We include the proof for completeness.

Theorem 7 (Self-normalized bound for martingales). Let {F;}22, be a filtration. Let T be a stopping time w.r.t.
to the filtration {Fiy1}52, i.e. the event {T < t} belongs to Fyy1. Let {Z:}32, be a sequence of real-valued
variables such that Z; is Fy-measurable. Let {n:}52, be a sequence of real-valued random variables such that n;
is Fyy1-measurable and is conditionally R-sub-Gaussian. Let V' > 0 be deterministic. Then, for any 6 > 0, with

probability at least 1 — 9,
T 2 / T
(Zt:l :]tZt)Q S 2R2 ln V + ZtZI th .
V+3, 7 SNV

Proof. Pick A € R and let

X, 1
Dt/\ = exp (mR L 2/\2th> ,

t
Sp =Y n\Zs,
s=1
M} = exp <>\St - 1/\2 ZZQ>

We claim that {M}}9°, is an {F;,;}5°,-adapted supermartingale. That M} € Fyy for t = 1,2, ... is clear from
the definitions. By sub-Gaussianity, E[D;' | F}] < 1. Further,

E[M}|F] = E[M D} | F}]
=M} E[D} | B < M},

showing that {M;}$°, is indeed a supermartingale.
Next we show that M) is always well-defined and E[M?}] < 1. First define M = M? and note that M(w) =
M T’\(w)(w). Thus, when 7(w) = oo, we need to argue about M2 (w). By the convergence theorem for nonnegative

supermartingales, lim; o, M*(w) is well-defined, which means M? is well-defined, independently of whether
7 < 00 holds or not. Now let Q) = Mr’r\lin{T 1 be a stopped version of M;*. We proceed by using Fatou’s Lemma

to show that E[M?] = E[liminf; ,. Q}] < liminf, ,, E[Q}] < 1.

Let Fy be the o-algebra generated by {F;}52, i.e. the tail o-algebra. Let A be a zero-mean Gaussian random
variable with variance 1/V independent of F.,. Define M; = E[M} | F.]. Clearly, we still have E[M,] =
E[MA] = E[E[M] | A] < B[1 | A] < 1.

Let us calculate M;. We will need the density A which is f(\) = ﬁ e VA2, Now, it is easy to write M;

explicitly

M, = E[M} | Fy)

- [ e
[ 2 t
ﬂ- o0

(2R2(V+ZS L Z}) > V+Z

where we have used that [*_exp(aX — bA?) = exp(a®/(4b))+/m /b.
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To finish the proof, we use Markov

’s inequality and the fact that E[M,] < 1:

(ZtT—l 77tZt)2 2 VvV + Zt—l ZtQ
Pr|-=“—F— >2R°In| ————"—
V3 Z¢ NV
[ 2 \/72
by £ (ELZ
2RV + Y, ZD) YV
[ 52 /V+Z _ Z2
:P e T _ > t=1“t
1P (2R2<v+zt=1 ZE)) RN
[ 1
=Pr | M, > -
qi= 5]
<4

The theorem can be “bootstrapped” to a “stronger” statement (or at least one, that looks stronger at the first
time steps ¢ as opposed to only a particular (stopping) time 7. The idea of

sight) that holds uniformly for all

the proof goes back at least to Freedman (1975).

Corollary 8 (Uniform Bound). Under the same assumptions as the previous theorem, for any 6 > 0, with

probability at least 1 — 9, for alln >0,

Proof. Define the “bad” event

By(4)

n
> mZ
=1

{weQ :

We are interested in bounding the probability that (J,~, B:(6) happens. Define 7(w) = min{t > 0 : w € B(d)},
with the convention that min () = oo D

VV 2, 2}
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n
<R 2(V+ZZ§> 1n<
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. Then, 7 is a stopping time. Further,

U Bi(0) ={w : 7(w) < oo}
>0
Thus, by Theorem 7 it holds that
Pr U B(8)| =Pr[r < o0
>0
T 2 i e
— Pr (Zt:l "ZtZt)Q > 2R2 ln V + thl Zt2
V> Z NV
T 2
— Pr (X1 VZtZt)z > 9R%In V312t
V+ > Z NV
<4.

B Some Useful Tricks

Proposition 9 (Square-Root Trick). Let a,b > 0. If 2> < a + bz then z < b+ \/a.

) andT<oo]
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Proof of the Proposition 9. Let q(z) = 2® — bx — a. The condition 22 < a+ bz can be expressed as ¢(z) < 0. The
quadratic polynomial g(x) has two roots
b+ Vb% +4a
T19—=—"T_—".

o 2
The condition ¢(z) < 0 implies that z < max{z1,22}. Therefore,

b+ Vb2 +4a

z < max{xy,x2} = — <b++a,

where we have used that vu + v < \/u + /v holds for any u,v > 0. O

Proposition 10 (Logarithmic Trick). Let ¢ > 1, f > 0, § € (0,1/4]. If z > 1 and z < ¢+ f+/In(z/0) then

z<c+f’/21n<c+f)

Proof of the Proposition 10. Let g(x) = x — ¢ — f/In(x/d) for any « > 1. The condition z < ¢+ f+/In(z/0)
can be expressed as g(z) < 0. For large enough z, the function g(z) is increasing. This is easy to see, since
¢ (x) =1 — —~L—. Namely, it is not hard see g(z) is increasing for # > max{1, f/2} since for any such z,

22+/In(z/8)

¢’ (x) is positive.

Clearly, ¢+ f1/2In (C+f) > max{1, f/2} since ¢ > 1 and § € (0,1/4]. Therefore, it suffices to show that

g<c+f 2ln(c+5f>> >0.

This is verified by the following calculation

g<c+f 21n<cgf>>:c+f m(C;f)_c_f 1n<6+f 21n6((c+f)/5)>
_fm_f 1n<c+f 21n6((c+f)/5)>
\/W_f <c+f 2In (( +f/6>

=f
> f

<c+f V2In((c+ f)/8) (c+f)/6)>
= VI (4%) - fy/n (V21 4)

>0,

where have defined A = (c + f)/§ and the last inequality follows from that A% > Av/2In A for any A >0. O

C Proof of Theorem 3

In this section we will need the following notation. For a given positive definite matrix A € R%*? we denote
by (z,y), = =" Ay the inner product between two vectors z,y € R? induced by A. We denote by |z|/4 =

V/(,x) , = VaT Az the corresponding norm.

The following lemma is a from Dani et al. (2008). We reproduce the proof for completeness.
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Lemma 11 (Elliptical Potential). Let z1,xs,...,2, € R? and let V; = I + 22:1 rlag fort =0,1,2,...,n
Then it holds that

me{1 2, }<21n(dct( ) .

Furthermore, if |||l < X for allt =1,2,...,n then

In(det(V,,)) < dln (1 + ”if) .

Proof of Lemma 11 . We use the inequality < 2In(1 + ) valid for all « € [0,1]:

in {1 2,}< 21 (1 2,):21 (1 2,) .
;mln{ ’thHthl _; n —|—||91775||th1 n H +||$t||vtj1

We now show that det(V;,) = [}, (1+ ||xt||v_ ):
det(V,,) = det(V,,—1 + :U,,,:cT)
= det ( (I + (Vo 1/2xn)(vg_1{2xn)T)
= det (V,_1) det (1+ (VY (V12 n)T)

= det (V1) - (14 2?1 )

n
H (1+ thHV (since Vo = 1)
t=1

In the above calculation we have used that det(I +zz") = 1+|z||3 since all but one eigenvalue of I +zz ' equals
to 1 and the remaining eigenvalue is 1 + ||z||2 with associated eigenvector z.

To prove the second part, consider the eigenvalues oy, as, ..., aq of V,,. Since V,, is positive definite, the eigen-
values are positive. Recall that det(V},) = H?Zl a;. The bound on |z¢|| < X implies a bound on the trace of

Vi
Trace V,, = Trace(]) + Z Trace(zix, ) = d + Z llzel3 < d+nX?.
t=1 t=1
Recalling that Trace(V,,) = Zle a; we can apply the AM-GM inequality:

art+as+ -+ a Trace(V,
d/a1a2...ad§ 1 2d d: d( )7

from which the second inequality follows by taking logarithm and multiplying by d. O

Proof of Theorem 3. Consider the event A when 6, € (2, C;. By Corollary 2, the event A occurs with proba-
bility at least 1 — 4.

The set C;_; is an ellipsoid underlying the covariance matrix V;_1 = I + 22;11 XSTXS and center

t—1
b, = argmln <||e||2 +) (Y. - (0. X.)) ) .

s=1
The ellipsoid Cy_; is non-empty since 6, lies in it (on the event A). Therefore é; € Cy_1. We can thus express
the ellipsoid as

t—1

Ci1 = {9 eRY: (0-0)Viea(0-0) + B3+ Y (V- (8.X.)) < 5“(5)} .

s=1
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The ellipsoid is contained in a larger ellipsoid
CaC{0eR s (0-0)TVia(0-0) < Bra(®)} = {0 R+ 0-Bilv_, < VB ()} -

First, we bound the instantaneous regret using that (X, gt) = argmax(, g)ep, xc,_; (&, 0):

< - Xi,0 > <.’L‘*,9*> <Xt79 >

<Xt,€t> (X,,0,)
(Xe.00-0.)
(X000~ 8.) — (X080, - 0.)
<[ a) (o)

I IA

<Xl 16— @‘ Xl (8 - (Cauchy-Schwarz)
t—1 Vica t—-1 Viea
< 24/B¢-1(0) - ||X,5||Vt:11 . (because 0,0, € Cy_1)

Since we assume that |(z,0.)| < G for any € D; and any t = 1,2,...,n, we can upper bound (x, — Xy, 6.) <
2min{G, v/Bi—1(0) - HXt||V—11}~ Summing over all ¢ we upper bound regret

n

Rn:Z< _Xt70*>

t=1

<23 win {G./Ba @) - [ Xilly, 1 )

t=1

SQZ v Be—1(0) - mln{G HXtHV } (since Br—1(0) > 1)

t=1

max m) imin{G, HXt”Vt:ll}

(e
(

<2

< i -1
<2 Jnax. Bt(é)) max{1, G} ;—1 min {1, ||Xt||vt_1}
: 2
<2 (Oréltagcn Bt(5)> max{1,G} x ,|n ;zl min {1, ||Xt||‘/t,11} (Cauchy-Schwarz)

nX?2
< 2max{1, G} 2ndlog 1+T max [;(0),

0<t<n

where the last inequality follows from Lemma 11. O

Proof of Theorem 4. Summing over all ¢ we upper bound regret
n

R, = Z(m — Xy, 0. z": (" — X4,0.)7,

t=1

where the last inequality follows from the fact that either (z* — X¢,0,) = 0 or (z* — X¢,0.) > A. Then we take
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similar steps as in the proof of Theorem 3 to obtain

R, <—Z — Xy, 0,

4 2 - . 2
< — 1
<2 (Orgtagnﬁt(é)) max{1,G }t§_1jmm{1, 1Xel13 - }

2
SKd ( max Bt(é)) max{1,G*}log <1 + nf) ,

0<t<n

IN

finishing the proof of the problem dependent bound.





