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Abstract

Mapping the functional connectome has
the potential to uncover key insights
into brain organisation. However, ex-
isting workflows for functional connec-
tomics are limited in their adaptabil-
ity to new data, and principled work-
flow design is a challenging combina-
torial problem. We introduce an an-
alytic paradigm that implements com-
mon operations used in functional con-
nectomics as fully differentiable pro-
cessing blocks. Under this paradigm,
workflow configurations exist as repa-
rameterisations of a differentiable func-
tional that interpolates them. The
differentiable program that we ulti-
mately envision occupies a niche mid-
way between traditional pipelines and
end-to-end neural networks, combin-
ing the glass-box tractability and do-
main knowledge of the former with the
amenability to optimisation of the lat-
ter. In this preliminary work, we pro-
vide a proof of concept for differen-
tiable connectomics, demonstrating the
capacity of our processing blocks across
three separate problem domains criti-
cally important to brain mapping. We
also provide a software library to facili-
tate adoption. Our differentiable frame-
work is competitive with state-of-the-
art methods in functional brain parcel-
lation, time series denoising, and covari-

ance modelling. Taken together, our
results demonstrate the promise of dif-
ferentiable programming for functional
connectomics.

Keywords: fMRI, brain connectiv-
ity, differentiable programming, self-
supervised, parcellation

1. Introduction

Many scientific disciplines depend on com-
plex analytic workflows to extract salient in-
formation from data. In the health sciences,
and in large-scale brain mapping in particu-
lar, the development of these workflows has
grown to become a subdiscipline in its own
right. Although the introduction of better
tools is a necessary vector of progress, in-
formatic practice also comes at the cost of
increased analytic flexibility, or “researcher
degrees of freedom” (Carp, 2012; Botvinik-
Nezer et al., 2020). In other words, the
development of new informatic instruments
presents researchers with the combinatorial
challenge of selecting, from among the grow-
ing set of available tools, an analytic work-
flow conditioned on their dataset and scien-
tific question.

This challenge is significant for two rea-
sons. First, many reported results fail to
replicate across the space of workflow config-
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Figure 1: Problem setting and aspirational overview. Details in text.

urations (Carp, 2012; Botvinik-Nezer et al.,
2020). Second, publication bias obscures
the often iterative process of tool develop-
ment, and a skewed scientific incentive struc-
ture motivates informaticians to refine al-
gorithms until they outperform state-of-the-
art (SOTA) methods on benchmark datasets.
Anecdotally, this is often accompanied by
either improper or incomplete implementa-
tion of the SOTA baselines, or insufficient
consideration of benchmark dataset proper-
ties that might lead to inflated performance
(e.g., Gorman and Bedrick, 2019; Lipton and
Steinhardt, 2019).

The problem of designing a data trans-
formation workflow in a principled way is
thus of interest to many scientific disciplines,
particularly areas such as medical imaging
and brain mapping where ground truths are
largely unknown or inaccessible.  Differ-
entiable programming promises one poten-
tial resolution to this workflow design prob-
lem. In traditional informatic practice, re-
searchers must select each block of a data
processing workflow from a set of predefined
algorithms or models. By contrast, a dif-
ferentiable program instantiates each work-
flow block as a parameterised (and differen-
tiable) function (or neural network module),

whose reparameterisation (approximately or
exactly) realises each predefined workflow
option. In other words, the differentiable
program is a functional that interpolates over
existing workflow configurations, thereby re-
laxing the combinatorial problem of princi-
pled workflow design into one that can be op-
timised locally using gradient methods and
automatic differentiation libraries (Baydin
et al., 2015).

Functional connectomics is the enterprise
of creating, refining, and explaining whole-
brain maps of synchrony and statistical de-
pendence in order to develop an understand-
ing of how neuronal populations communi-
cate with one another (Smith et al., 2013).
The standard functional connectivity work-
flow (Figure 1, Top) begins with a pre-
processed blood oxygenation level-dependent
(BOLD) time series—a proxy for underlying
neural activity (Logothetis et al., 2001). A
parcellation block first reduces the dimension
of this input by mapping whole-brain activ-
ity, which is measured across tens or hun-
dreds of thousands of image voxels or sur-
face vertices, to a much smaller set of func-
tionally independent regions or parcels. The
estimated parcel-wise time series are then de-
noised to mitigate the influence of artefacts
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resulting from physiological processes, sub-
ject movement, and scanner noise that occur
during fMRI acquisition. Next, some mea-
sure of connectivity among the denoised time
series is estimated before it is passed to a
final model that is fit to some research ob-
jective. Differentiable programming enables
gradients to propagate back from the model
to reconfigure the parameters of the work-
flow itself. While our aspirational objective
is an end-to-end differentiable workflow, in
the current work we focus on the near-term
goals of solving specific subproblems within
each block of the workflow.

Functional connectomics is an attractive
test bed for prototyping differentiable pro-
grams because nearly all atoms of the work-
flow described above are either immediately
differentiable or have differentiable relax-
ations. Here, we developed a JAX- and
Equinox-based (Frostig et al., 2018; Kidger
and Garcia, 2021) open source software li-
brary, hypercoill, to facilitate differentiable
programming for functional connectomics.
Using this library, we then conducted a series
of experiments, detailed below, as a proof of
concept for the differentiable programming
paradigm in functional connectomics. In ad-
dition to the open source library, our spe-
cific contributions include a fully differen-
tiable framework for functional brain parcel-
lation, an adaptive model for denoising fMRI
data, and a differentiable system for mod-
elling the dynamics of covariance-based com-
munity structure.

2. Related work

Parameterising the entire neuroimaging soft-
ware stack as a neural network was first pro-
posed by Vilamala et al. (2016). Our cur-
rent work was directly inspired by systematic
evaluations of functional connectivity work-
flows in the prediction setting (Pervaiz et al.,

1. https://hypercoil.github.io/

2020; Dadi et al., 2019). Churchill et al.
(2017) introduced an algorithm for adaptive
neuroimaging workflow optimisation using a
cross-validation framework. Dafflon et al.
(2020) developed a learning method for ef-
ficiently estimating an approximate map of
the space of workflow configurations and of
their performance on a prediction objective.
Differentiable programming is not the only
promising approach for resolving the prob-
lem of principled workflow design. A com-
plementary paradigm, multiverse analysis
(Botvinik-Nezer et al., 2020), is based on ev-
idence that, although results gleaned from
individual workflow configurations are often
brittle and workflow-sensitive, meta-analytic
aggregation across the “multiverse” of work-
flow configurations can separate workflow-
sensitive results from those that are ro-
bust and reproducible (Botvinik-Nezer et al.,
2020). Differentiable programming enables a
complementary kind of aggregation: ensem-
bling across parallel program blocks param-
eterised to exploit complementary sources of
information (Figure 1, Bottom).

3. Experiments

Functional parcellation The delineation
of functional subunits of the brain is among
the longest standing problems in neuro-
science (Eickhoff et al., 2018). Practically,
brain parcellation is also a critical dimension-
reducing step that reduces the computa-
tional requirements of all downstream work-
flow blocks: functional MR data typically
have a very large spatial dimension (hun-
dreds of thousands of voxels or vertices) and
a much smaller temporal dimension (typi-
cally up to the order of 1000 sampled times,
or frames). For BOLD fMRI data, the objec-
tive of the parcellation problem is essentially
to learn a “good” lower-dimensional embed-
ding for each frame of the fMRI time series.
In detail, a “good” parcellation is a map-
ping A € RP*Y from the vertex-wise time se-
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Table 1: The four loss terms of the differentiable temporal-spatial clustering (dTSC) objec-

tive. Detailed definitions in Appendix A.
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ries T; € RV*! to the parcel-wise time series
T, € RP*! that satisfies two desiderata: (i)
minimal loss of information and (ii) parcels
that are neuroscientifically relevant and/or
anatomically plausible.

In practice, this mapping is usually oper-
ationalised as either a direct linear parcella-
tion map (To = AT;) or a least-squares lin-
ear projection (To = (AAT) ™' AT;) (Beck-
mann et al., 2009; Dadi et al., 2020). Here
we take the former approach for its simplic-
ity, although our method is easily extended
to the latter. Each entry A;; in the parcella-
tion matrix encodes the model’s estimate of
the probability that vertex j is assigned to
parcel i. We initialise each column of A (cor-
responding to a single vertex) by first sam-
pling from a Dirichlet distribution and then
log-transforming the Dirichlet samples. Dur-
ing each forward pass, the parcellation logits
are projected to the probability simplex us-
ing a softmax mapping.

To learn the parcellation matrix A, we
combine four terms into a differentiable
temporal-spatial clustering (dT'SC) objective
(Figure 2, Top left; Table 1; detailed for-
mulae and variable definitions in Appendix
A). We use two spatial loss terms to pro-
mote parcels that are spatially contiguous
and evenly distributed over the cortex. First,
a compactness loss penalises the distance
from each vertex in a parcel to the parcel’s
centre of mass using vertex coordinates C €

RY*3 thereby promoting compact parcels.
A complementary dispersion objective pro-
motes separation of the parcels’ centres of
mass. All distances are computed as spheri-
cal geodesics after projecting data from each
cortical hemisphere onto a spherical mesh
(Fischl et al., 1999; Robinson et al., 2014).

To minimise information loss and learn
functionally uniform parcels, we wish to
assign vertices with similar signals to the
same parcel and vertices with different sig-
nals to different parcels. Accordingly, in ad-
dition to the two spatial terms, two tem-
poral loss terms promote parcel homogene-
ity. A second moment objective quadrati-
cally penalises the difference between a par-
cel’s mean time series and the time series
of each vertex assigned to that parcel. Fi-
nally, we promote temporally independent
parcels by placing a penalty on the nega-
tive log-determinant of the correlation ma-
trix among parcel time series. The dTSC
objective that we introduce also has another
notable advantage: it is readily modified
to produce comparable null parcellations for
building reference distributions. In particu-
lar, ablating the temporal loss terms leaves a
model that learns entirely from spatial re-
lationships, without using any information
from the fMRI time series.

We supplement the dTSC objective with
three simple regularisations (detailed in Ap-
pendix A). First, to obtain parcels of sim-
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Figure 2: dTSC parcellatlon. ( Top left) Schematlc of the dTSC model. ( Top) The model
recovers reference functional boundaries (Yeo et al., 2011) with success relative to a null
model. (Middle) Quantitative assessment of parcellation homogeneity (vertical axis) as a
function of parcel size (horizontal axis) (higher is better). The dTSC method is compared
against three different parcellations from the literature, as well as a spatial null model. The
point clouds show the mean homogeneity (across the test sample) of all individual parcels
from the designated algorithm, and the red density in the background similarly represents
the mean homogeneity of parcels from the null model. The curves are least-squares fits of
homogeneity as a logarithmic function of parcel size, adjusted via subtraction so that the
fit to the null model is zero. (Bottom) Consistency and difference across five parcellation
resolutions in four representative regions.

ilar size, we impose an L2 parcel equilib-
rium penalty. Second, we promote analogy
across cortical hemispheres by tethering each
parcel’s centroid to an analogue in the op-
posite hemisphere. Third, to obtain deter-
ministic parcels, we penalise the entropy of
each vertex’s parcel assignment distribution.
Because a strong entropy penalty can lead
the model to fixate irreversibly on each ver-
tex’s maximum parcel assignment, we be-
gin with a small multiplier for the entropy
term and progressively cascade it upward

over the course of training. The cascading
entropy loss induces parcel probabilities to
converge toward a deterministic assignment,
at the cost of worsening parcel homogene-
ity as reflected by a growing second-moment
term (Figure 3a, Top), with boundary re-
gions slowest to converge (Figure 3a, Bottom,
entropy multipliers denoted in black boxes).
Because the boundaries of brain subsystems
vary substantially between individuals (Lau-
mann et al., 2015; Gordon et al., 2017), we
smooth the objective using a modification of
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(b) The learned parcellation proceeds from dis-
tributed functional modes to deterministic
areal parcels. Here, we show four exemplar
parcels from the right cortical hemisphere of
a 666-region parcellation at the end of each
of four stages of the entropy cascade.
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Figure 3: Overview of the parcellation learning process using the dTSC model.

the stochastic weight averaging (SWA; Iz-
mailov et al. (2019)) algorithm, which we
have modified for better compatibility with
entropy penalties (Appendix A).

We used the dT'SC objective to train par-
cellation models corresponding to 5 spatial
scales (300, 400, 666, 800, 1000 cortical
parcels) using 2457 images from 618 subjects
from the Human Connectome Project (HCP)
dataset (Van Essen et al., 2013) (Dataset
details in Appendix A; training details in
Appendices A and F). For each parcellation
granularity, we also created a reference null
parcellation by training a similar model with
the temporal loss terms ablated. In compari-
son with these null models, the dTSC parcel-
lations qualitatively better reflected the con-
tours of the brain’s canonical functional sub-
systems (Figure 2, Top; Yeo et al. (2011)),
with starkest differences at coarser resolu-
tions (e.g., 300 parcels). Across spatial res-
olutions, we observed consistency and differ-
ence in parcel structure (Figure 2, Bottom).
Although some areal boundaries (notably of
the occipital visual cortex and medial V1)
were reproduced with high fidelity across res-
olutions, we qualitatively found greater con-

sistency in the orientation of local axes of sig-
nal similarity and difference, as reflected in
the eccentricities and orientations of parcel
contours. This pattern suggests a limitation
of areal parcellation schemes such as dTSC;
parcellations informed by connectopic gradi-
ents (e.g., Tian et al., 2020) offer a potential
direction for future improvement.

We then quantitatively evaluated the qual-
ity of the dTSC parcellation by compar-
ing the signal homogeneity of dT'SC parcels
against the homogeneity of comparably sized
null parcels and comparably sized parcels
from three preexisting SOTA functional par-
cellations (Schaefer et al., 2018; Gordon
et al., 2016; Glasser et al., 2016). The
signal homogeneity of a parcel was opera-
tionalised by first discretising the parcella-
tion and then finding the average correlation
among all vertices assigned to that parcel
(Appendix A; Schaefer et al. (2018)). Be-
cause smaller parcels are a priori likely to be
more homogeneous, we used our null model
to calibrate the expected homogeneity of a
parcel conditioned on its size. On average,
across all parcel sizes, we found that the
deterministic parcels learned by our dTSC
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model achieved better signal homogeneity
than comparably sized parcels from the null
model and performed competitively with
state-of-the-art methods (gwMRF: gradient-
weighted Markov Random Field, Schaefer
et al. (2018); MMP: multimodal parcellation,
Glasser et al. (2016); Grad. BM: gradient
boundary mapping, Gordon et al. (2016)) in
held-out data (Figure 2, Middle).

Increasing the entropy penalty in tan-
dem with the compactness multiplier (Fig-
ure 3b) lends our scheme another interesting
characteristic: the spatial extent of parcels
decreases, and their maximum assignment
probability increases toward unity over the
course of training. Qualitatively, this is re-
flected in a shift from spatially overlapping,
probabilistic modes of brain activity (e.g.,
Dadi et al., 2020) toward deterministic areal
assignments. In particular, the shown areal
parcels 351 and 356 (from a 666-region par-
cellation) begin with near complete overlap
and substantially differentiate only in the
late stages of training. The progression of
parcel differentiation during training could
be used to investigate hierarchically nested
modes of brain function in future work (Pines
et al., 2022). As complementary information
might be offered by overlapping probabilistic
modes and circumscribed parcels, the stop-
ping entropy also becomes a hyperparame-
ter of the differentiable program. Further-
more, it is possible to use connectomes com-
puted using these complementary parcella-
tions as separate input channels to a down-
stream model, thereby effectively ensembling
over the workflow multiverse. We defer any
investigation of the potential benefits and
drawbacks of this approach to future work.

Our approach differs from previous work
in that it is both fully differentiable and de-
signed to fit entirely in the memory of a sin-
gle consumer-grade GPU. We satisfy these
desiderata principally using functional trans-
formations that serialise the most expensive

loss computations over sub-blocks of the in-
put dataset. However, we find that (even
subject to the constraints of GPU memory)
we can achieve parcel homogeneities that
are competitive with SOTA in held-out data
(Figure 2, middle row).

Artefact removal The movement of sub-
jects during fMRI acquisition introduces
artefactual fluctuations into the BOLD sig-
nal (Power et al., 2012), which typically in-
flate estimates of functional connectivity. To
make matters worse, in-scanner movement is
correlated with measures of scientific or clini-
cal interest, such as age and diagnostic labels
(Satterthwaite et al., 2012). Consequently,
early studies of the functional connectome re-
ported effects that consensus now holds to be
at least partially artefactual in origin (e.g.,
Fair et al., 2009; Satterthwaite et al., 2019).
In response to broad recognition of the seri-
ous confounds introduced by movement and
other artefactual processes, denoising has be-
come an indispensable step in neuroimaging
workflows. In functional connectivity, de-
noising is typically implemented by residu-
alising the BOLD time series with respect to
a confound model that is thought to approxi-
mately explain structured sources of artefact.
We adopt this framework here.

In particular, let Y xx be the covariance
matrix of BOLD time series, Xyy be the co-
variance matrix of confound time series, and
Y xy be the matrix of covariances between
BOLD and confound time series. We opera-
tionalise the residual functional connectivity
as the conditional covariance

Sxiy = Exx — Sxvy Iy Shy

This is equivalent to the covariance of BOLD
data that have been residualised with respect

to a linear least-squares fit of the confounds.

Although the need for denoising in func-
tional connectomics is widely acknowledged,
there is less agreement over how best to
model artefact—that is to say, what form
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Figure 4: A shallow denoising model (RFNN) trained on the QC-FC loss outperforms SOTA

methods in held-out data.

Null

GSR

36P

RFNN

Conn. Distr.

Connectome

QC-FC Distr.

Sig. Edges

(a) The RFNN model learned to remove a sin-
gle nuisance regressor from BOLD images
so as to reduce motion-related variance.

the confound model should take. Differ-
ent teams of researchers have proposed a
number of candidate time series that pur-
portedly index latent artefact. These in-
clude inter alia direct estimates of sub-
ject movement; mean signals from high-noise
tissue compartments (white matter—WDM,
cerebrospinal fluid—CSF); the overall global
signal (GS) across the entire brain; and lo-
calised signals obtained using singular value
decompositions of WM and CSF (CompCor;
Behzadi et al. (2007)). To define a con-
found model, researchers select some sub-
set of these time series and then residualise
the fMRI data with respect to the model
as described above. While systematic eval-
uations have demonstrated the efficacy of
certain model configurations (in particular,
those that include GS; Ciric et al. (2017);
Parkes et al. (2018)), denoising practices re-
main heterogeneous across research groups.
Differentiable programming offers a potential
path forward by enabling (i) automated se-
lection of a confound model (ii) that is adap-
tively learned to match the characteristics of
individual datasets.

Model Abs. Med. Corr. N. Sig. Edges
Null 0.16640 50765
GSR 0.09036 14558
36P 0.07487 11099
RFNN 0.07185 6439

(b) QC-FC benchmark results (lower is better).

bbbblilLsl

< \(a“ Co(w"‘ rLUa“S mpco‘ st

(C) Top a priori confounds that loaded onto the RFNN

model were global signal (GS)-related.

Ceteris paribus, a more parsimonious con-
found model—one with fewer time series—
is thought to be better because it removes
fewer degrees of freedom from the BOLD
data (Pruim et al., 2015). Thus, in our ex-
periment, our objective is to remove as much
motion-related variance as possible from the
BOLD data using only a minimal confound
model comprising a single learned confound
time series. We pursue this objective by pa-
rameterising a simple, shallow neural net-
work model (RFNN: response function neu-
ral network) to learn a single linear combi-
nation of 57 candidate confound time series
selected a priori for their demonstrated effi-
cacy in denoising (Ciric et al., 2017, further
details in Appendix B). These include the
candidate signals discussed above: 3 trans-
lational and 3 rotational motion estimates;
mean WM and CSF time series; 5 CompCor
time series from each of WM and CSF; and
GS. Additionally, following previous conven-
tion (Satterthwaite et al., 2013), we include
backwards differences and quadratic expan-
sions of motion estimates, mean WM, mean

CSF, and GS. We parameterise the RFNN to
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also learn 5 response functions; the RFNN is
permitted to select any linear combination of
the 57 a priori confound time series and their
285 = 5 x 57 response function convolutions.

To train the RFNN to optimally remove
motion artefact, we introduce the QC-FC
loss function, a differentiable implementa-
tion of the widely used QC-FC benchmark
for residual motion artefact (Power et al.,
2014). The QC-FC loss computes the cor-
relation between a gross estimate of subject
motion (QC, detailed in Appendix B) and
each edge of the functional connectivity ma-
trix (FC) across the batch dimension. Thus,
QC-FC loss goes to zero when subject move-
ment and functional connectivity are uncor-
related in the denoised (residualised) data.
We trained the RFNN model on a dataset
of 1393 images from 356 subjects (Appendix
B).

In a held-out sample of 351 BOLD im-
ages from the HCP dataset (Figure 4),
the RFNN model outperformed both the
top-performing a priori one-confound model
(GSR, global signal regression) and a 36-
confound model (36P, a superset of GSR)
that has previously been shown to give
SOTA performance (Ciric et al., 2017). Both
the number of connections significantly re-
lated to motion (Sig. Edges; p < 0.01, uncor-
rected) and the median of the size of motion
effects (QC-FC Distr.) were reduced rela-
tive to all evaluated a priori models. We
repeated this evaluation with fairly conver-
gent results across 12 different splits of the
HCP dataset (Appendix B; Figure 7).

While these results show promise, further
research is required to understand potential
limitations: the functional connectome de-
noised using the RFNN did not feature the
zero-centred correlations that are a hallmark
of successful GSR-based denoising (Murphy
et al., 2009). It is possible that this re-
flects the specificity of the learned model
for removing motion-related variance—by

contrast, GSR-based models also effectively
remove respiratory and cardiac artefacts,
which typically inflate global estimates of
connectivity (Power et al., 2017). With
this and additional benefits of GSR in con-
sideration (Li et al., 2019), we recommend
use of GSR in functional connectivity work-
flows; future work will explore integration of
RFNN-like models with GSR. Notably, when
we computed the extent to which a prior:
confounds captured variance in the RFNN
confound, the top three loaded a priori con-
founds were all GSR-related: the global sig-
nal (GS), its square (GS?), and the temporal
derivative of the square (ag—tSQ) (Figure 4C,
distribution across held-out images).

Covariance modelling The functional
connectome is typically estimated using a
derivative of covariance, such as Pearson cor-
relation, among all pairs of denoised parcel
time series. The usual definition of empiri-
cal covariance among a set of time series T
can be generalised via parameterisation by
the (positive semidefinite, typically diagonal)
weight matrix ©:

Co= -1 (T-T)© (T -T)".

In this proof of concept, we use this param-
eterisation to track the dynamics of commu-
nity structure in the brain. The objective of
community detection is to learn a partition
of graph vertices (here, brain parcels) into
communities whose members preferentially
connect to one another (e.g., Blondel et al.,
2008). In connectomics, this corresponds to
identification of modular subsystems of brain
function. When combined with a commu-
nity detection model, the covariance param-
eterisation ® can be trained to represent dy-
namic time courses that track the modular-
isation and demodularisation of these func-
tional subsystems.

Early algorithms for community detection
were not differentiable, although more re-
cently neural networks have been applied
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Figure 5: A community detection model learns to track the modularisation and demodu-

larisation of brain subsystems.

to this problem domain (Su et al., 2022).
Here, we opt for a simpler approach, be-
cause parcellated connectomes typically have
fewer vertices than the large-scale graphs for
which deep methods were developed. Our
approach also differs from dynamic commu-
nity detection algorithms (e.g., Thompson
et al., 2019; Martinet et al., 2020) in that
existing algorithms typically aim to charac-
terise the temporal evolution of community
boundaries, whereas the objective of our ap-
proach is to delineate epochs during which
communities coalesce and dissipate.

We train our model using a differentiable
relaxation of the Girvan-Newman modular-
ity objective (Newman and Girvan, 2004),
which indexes the potential of a proposed
community structure to explain the arrange-
ment of edges in a real graph relative to a null
model. Formally, let A € R"*" be the graph
adjacency matrix and C € RY*¢ be a pro-
posed assignment of v vertices to ¢ commu-
nities. The modularity matric B = A — P
expresses the extent to which edges in the
observed graph deviate from expectation un-
der the null model P, subject to a resolu-
tion hyperparameter v. Here, we use v = 5
and the original Girvan-Newman null model,

Pony = Aﬁgf, which can be interpreted as

the expected weight of connections between
each pair of vertices if all existing edges are
cut and then randomly rewired. The mod-
ularity objective is then Lo = 17(H o B)1,
where o denotes the Hadamard product and
H = CCT is the community coaffiliation ma-
trix. Our goal is to learn a C that maximises
the modularity objective. If we constrain all
entries in C to {0,1}, this relaxation con-
verges to the original definition of modularity
(Newman and Girvan, 2004). To maintain
differentiability, we instead learn the logits
of C, which we pass through a softmax, per-
mitting the community assignment of each
vertex to vary continuously in the probabil-
ity simplex.

The modularity objective is applied to
the time-averaged connectome and combined
with time-selective modularity objectives ap-
plied separately for each community. Specif-
ically, let C; be the ith community, and let
C; be the corresponding column of the as-
signment matrix C. Now, let A¢, be the co-
variance parameterised by a learnable time
course ®¢, of the community’s modularisa-
tion; B¢, be the corresponding modularity
matrix; and He, = CiC,LT. The overall modu-
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larity loss then comprises a static term vsLg
and a dynamic term vq Y, Lo,

L=uLly+va) Lo

=17 (ysHoB—i—deHCioBCi) 1
)

with static and dynamic multiplier hyperpa-
rameters v5 and vy respectively. The learn-

able parameters of the model thus include
the community affiliation matrix C € RV*¢
and the ¢ community time series O¢, € R’
A separate ©c;, is learned for each image in
the dataset.

Training this unsupervised model on 30
parcellated time series from the Midnight
Scan Club (MSC) dataset (Gordon et al.,
2017), we identify a set of dynamic commu-
nities that accord well with previously char-
acterised brain subnetworks (dataset details
in Appendix D; hyperparameter details in
Appendices D and F). At the top of Figure
5, we show the learned cortical distributions
C; of each community and an example time
course ®¢, of the community’s modularisa-
tion (grey: present, black: absent) in a sin-
gle BOLD image. Relative to a null model
obtained by randomly shifting modularisa-
tion time courses, the learned model consis-
tently attained better modularity (Figure 5,
Bottom left: the purple shows the learned
model, and the grey silhouette the modular-
ity distribution of all null models relative to
the learned model).

We also find that communities tend to co-
alesce and dissipate in tandem, with no neg-
ative correlations among the learned com-
munity time series after concatenating the
learned time series @©¢, across all images
(Figure 5 Right, correlation matrix). This
is also reflected in Figure 5 Bottom Right,
which shows, for 3 example images, the total
number of communities that are modularised
across the duration of the scan. Across time,

the number of communities often qualita-
tively appears to be either close to 0, close
to 10, or switching quickly between these
extreme configurations. This result accords
well with previous work that characterised
the presence of transient and global “excur-
sions” of connectivity (Betzel et al., 2016).

4. Discussion

Our experimental results demonstrate the
promises of fully differentiable methods
across several domains of functional connec-
tomics. However, there exists a central philo-
sophical objection against the differentiable
programming paradigm. The argument goes
as follows: differentiable programming does
not in fact resolve the problem of workflow
design; instead, it is merely a re-delegation of
the workflow design burden from selection of
analytic options to specification of workflow
hyperparameters. Different hyperparame-
ter configurations (e.g., the balances of loss
and regularisation multipliers) are inherently
going to produce different “optimal” work-
flows. Although it can be argued that the
hyperparameter selection process sometimes
offers researchers more transparent control
over workflow design, because a numerical
objective is more intuitively related to a re-
search objective, this is often not the case.

Although responses to this argument (e.g.,
mapping and understanding the most rele-
vant subsets of the hyperparameter space;
strides in automating the process of hyperpa-
rameter optimisation, e.g. He et al. (2021))
are under active development in the machine
learning world, this does not fully address
doubts. Nevertheless, even if a differentiable
program does not completely address the
problem of principled workflow optimisation,
it has the potential to provide both an engine
for new discoveries and an informative com-
plement to multiverse analysis.
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Appendix A. Parcellation

Dataset, preprocessing, and compu-
tational resources The openly available
Human Connectome Project (HCP) dataset
comprises scans from 1200 participants per-
forming a number of in-scanner tasks. For
each participant, the study acquisition proto-
cols included 4 separate resting-state (task-
free) scans, each acquired over the course
of approximately 15 minutes of scanning us-
ing an accelerated multiband sequence with
a sampling rate of 0.72 seconds (Van Essen
et al., 2012, 2013). In practice, the proto-
cols were incomplete for many participants,
resulting in fewer than 4 scans for a subset
of participants.

To obtain our training and evaluation
datasets, we first performed a random 12-
way split on 1098 HCP subjects with resting-
state fMRI data. Note that our dataset split
was performed across subjects rather than
images, such that data from subjects in test
and validation splits would not be seen dur-
ing training. We then selected the first 7 of
these splits, comprising 2457 total resting-
state BOLD time series from 618 subjects,
to train our model. To create an evaluation
set, we selected another split, from which a
single data shard of 69 time series was ran-
domly selected for homogeneity evaluation.

Data were preprocessed according to the
minimal preprocessing pipeline of the Hu-
man Connectome Project (Glasser et al.,
2013), and were acquired following a stan-
dardised protocol in accordance with the
host institution’s IRB (Van Essen et al.,
2012). To better respect the topology of
the cortex and to reduce the effects of inter-
subject variability, we used time series pro-
jected onto a spherical surface (Fischl et al.,
1999) and aligned using the MSMAIl algo-
rithm (Robinson et al., 2014). Before each
time series was passed to the model, we
performed several additional preprocessing

steps. First, we projected each time series
to the orthogonal complement of a subspace
defined as the span of (i) a quadratic poly-
nomial (to mitigate scanner drift artefact)
and (ii) the average global signal across all
voxels (following previous parcellation work,
and in accordance with the overall demon-
strated benefits of this approach; Schaefer
et al. (2018); Li et al. (2019)). Next, we nor-
malised each time series to a mean of 0 and a
variance of 1. Finally, to reduce the memory
footprint, we selected a random 500-sample
window from each time series as input to the
model.

The model was trained on a computer
running Ubuntu Linux, using only a single
commercial-grade (RTX 2080 Ti) GPU with
11 GB of RAM. Memory usage was reduced
through block-wise serialisation of expensive
loss computations (details in Loss function
section below). Each of the 5 parcellations
required approximately 18-24 hours of GPU
time to train. Data were stored as tar shards
for compatibility with the webdataset for-
mat (Aizman et al., 2019). Due to the large
size of each BOLD time series, the most sig-
nificant bottleneck during training was read-
ing from the disk. Unfortunately, we found
that data loaders were not well equipped to
expedite this process for the large data in-
stances used, although it is likely that this
was due to insufficient optimisation in shard-
ing and worker deployment. We used a fixed
batch size of 3 time series for training. To
reduce disk I/O operations, we trained the
model for 5 steps with each batch before sam-
pling the next batch. The model was trained
for a total 6000 steps using the Adam opti-
miser (Kingma and Ba, 2017). On account of
the substantial overhead incurred when read-
ing a large BOLD time series from disk, we
do not use an epoch-based training regime.
This does mean that only a small subset of
all images are seen at every stage of training,
but our quantitative and qualitative assess-

435



CIrIC THOMAS ESTEBAN POLDRACK

ments suggest that this approach is neverthe-
less sufficient to produce a good, representa-
tive group-level parcellation.

Loss function As detailed in the main
text, the loss function we use comprises
four clustering terms (spatial compactness
of parcels, spatial dispersion among parcel
centroids, second moment of parcel time se-
ries, and negative log determinant of the cor-
relation among parcel time series), as well
as three regularisation terms (parcel equilib-
rium, vertex-wise distribution entropy, and
inter-hemispheric spatial tether).

A detail of loss function definitions and
considerations follows. Across all definitions,
we use the following notation for dimensions:
v denotes the number of vertices in the input
BOLD time series, p denotes the total num-
ber of parcels, and ¢ denotes the number of
time points in the BOLD time series.

Compactness. The spatial compactness
loss for a single parcel is defined as
atC
)

Let a € RY be the assignment of all vertices
to a single parcel, let C € R"*3 be a ma-
trix containing the three spatial coordinates
of each vertex, and let 1 denote a vector of
all ones. The term puc = 21(13 € R? is then
the weighted mean of vertex coordinates as-
signed to the parcel —i.e., it is a matrix con-
taining the centre of mass (centroid) of the
parcel. We then compute the vector of dis-
tances between the parcel’s centre of mass co-
ordinates and the coordinates of all vertices.
With some abuse of notation, we denote this
vector above as d € RY = ||C = puc|lrows,
where we implicitly broadcast the centre of
mass and where we use the “rows” subscript
to denote that the distance is computed over
each row separately. In our setting, we ap-
proximate the cortical surface as a sphere
and operationalise the distance as a spher-
ical geodesic. We finally define the loss by

L=a'd (C,

weighting each distance according to the cor-
responding vertex’s assignment to the parcel
to obtain the compactness loss aTd.

It is clear that the compactness loss of a
parcel decreases as the weights in its assign-
ment vector a are concentrated on vertices
close to its centre of mass pc, i.e., vertices
whose corresponding entries in d are small.
The compactness score can also be loosely in-
terpreted as a weighted error loss where the
“predictions” are the vertex coordinates and
the “target” is the centre of mass. We com-
pute the compactness score independently
for each parcel and scalarise using the mean
over parcels.

Dispersion. We define the vector disper-
sion loss between a pair of parcels as

TC alC
L=-d (alT ) JT )
a; 1 a; 1

where we have used a;,a; € R” to denote the
vertex assignment vectors of the two parcels.
Analogously to the compactness loss, let C €
R?*3 be a matrix containing the three spa-
tial coordinates of each vertex, and let 1 de-

alC
The terms =
ajl

note a vector of all ones.

ajC
aJ.Tl
tres of mass of parcels ¢ and j, respectively,
and the dispersion is simply a negation of
some notion of distance between those cen-
tres of mass. (It is also possible to use a
similarity measure rather than a negated dis-
tance.) In our work, we again use a spherical
geodesic distance for d. The total dispersion

is the sum of all unique pairwise distances

. TCc alC
between parcels, i.e. —Zj>id <a‘ L >

all’ all
i i

and € R? then correspond to the cen-

As the mutual separation among parcels in-
creases, the dispersion loss decreases; this
loss can therefore be used to promote spa-
tially separated parcels whose centroids are
distributed approximately evenly across the
cortical hemispheres. The dispersion is con-
strained from decreasing without bound be-
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cause all coordinates and their centroids are
bounded to a spherical manifold that approx-
imates the cortical surface.

Second moment. The temporal second
moment loss for a single parcel is defined as

£= () (-]

Let a € RY be the assignment of all ver-
tices to a single parcel, let T, € RY*! be
a matrix containing the vertex-wise BOLD
time series, and let 1 denote a vector of
all ones. We have also defined t, € R as
the time series of parcel p. In our work,
we operationalise each parcel’s time series
as the weighted mean of the time series as-
signed to that parcel, i.e. tp = a;a". (Note
that, when we use this definition, the paral-
lels between the spatial compactness loss and
the temporal second moment loss become
evident.) With implicit broadcasting, the
term D € Rt = (T — t,)? represents the
square deviation of all voxel time series from
the parcel time series. The rationale for the
“second moment” moniker is now evident:
the weighting term _%3 can be framed as the
probability mass assigned to each vertex, and
the deviation term (Ty — tp)? is the squared
deviation of each observed time point from
the mean. The last part of the second mo-
ment term is the scalarisation; here we use
the mean % but the sum or another scalari-
sation would also be valid. (Note the analogy
to the compactness if the square root of the
sum is used.)

The second moment loss is minimised by
concentrating a parcel’s weight a on ver-
tices whose deviation from the parcel mean
time series is small. This loss term will
thereby promote learning of parcels that
have internally homogeneous activation pat-
terns across all subjects. As with the com-
pactness, we can loosely interpret the second
moment term as a weighted error loss where
the “predictions” are the vertex-wise time

series and the “target” is the parcel mean
time series. Through experimentation, we
also made one further change to the second
moment loss term: we removed the normali-
sation afll, the use of which we found could
yield a small number of very large parcels
that did not correspond with any well-known
functional systems of the brain. We com-
pute the second moment loss independently
for each parcel and scalarise using the mean.

Determinant. Given a set of parcel time
series Tp, € RP*!, the negative log determi-
nant loss is defined as

L = —logdet K(Tp)

where K is an appropriately selected kernel
function and K(Tp) € RP*? is the Gram ma-
trix of time series vectors that is induced by
that kernel function. Note that the parcel
time series are again the weighted means of
input BOLD time series: Tp = % for the
parcellation matrix A € RP*Y whose rows
are the parcel vectors a € RY that we have
been dealing with until now. Here, for rea-
sons that we will shortly elaborate, we let the
Pearson correlation among time series oper-
ationalise the kernel. Apart from its positive
definiteness (and the attendant convexity of
its log determinant), the Pearson correlation
matrix has the favourable property of a de-
terminant that ranges from a minimum of 0
for a nonsingular matrix up to a maximum
of 1 for fully orthogonal time series (corre-
sponding to an identity matrix). The nega-
tive log determinant, therefore, goes to infin-
ity for a singular matrix and to zero for an
identity matrix. Placing a strong multiplier
on this loss term can be used to obtain or-
thogonal parcel time series. As this is likely
undesirable in the brain mapping context, we
instead use a weaker multiplier to promote
independence of parcel time series.

As stated, the negative log determinant
term has the potential to go to infinity if
parcel-wise time series are not independent.
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While the purpose of this term is to promote
parcel independence, an exploding loss can
irreversibly cause parameter values to go out
of bounds when it is propagated back. To
minimise the risk of this occurrence while
preserving the efficacy of the determinant
term, we added a small reconditioning term
to the correlation matrix. For each entry
along the diagonal of the correlation ma-
trix, we randomly sampled i.i.d. noise from
Uniform(0,0.001) and added this noise to
the diagonal. Although this reconditioning
added further stochasticity to the determi-
nant term, we observed an overall downward
trend of the determinant loss during training
as seen in Figure 3.

The entropy of our parcellation matrix
A € RP*V ig defined as

L=1TAolog Al

where 1 is again the vector of all ones, log
denotes the elementwise (not matrix) loga-
rithm, and o denotes the Hadamard (elemen-
twise) product. In general, the entropy is a
concave function that can decrease without
bound. However, we use a softmax to project
each column of A onto the probability sim-
plex such that 1TA = 1. Over this restricted
domain, the entropy is a bounded function
that attains its minimum when all probabil-
ity mass is concentrated in a single outcome
— i.e., when each vertex is deterministically
assigned to a single parcel.

The equilibrium loss for a single parcel is
here defined simply as the squared sum (or
mean) of that parcel’s assignment vector a €
R'U

L= (aT1)?

The total equilibrium loss is then de-
fined as the mean equilibrium across parcels,
<%)T (Alo A1) for A € RP*Y. This quan-
tity attains its minimum when the total as-
signment weight of all parcels is equal, i.e.,

when all parcels are the same size. (Note
that newer versions of our software library
by default use a different formulation of the
equilibrium that has a more intuitive rela-
tionship to the notion of equilibrium; please
consult our online documentation hub for de-
tails.)

Finally, the inter-hemispheric tether loss
has a similar definition to the dispersion loss,
but is defined pairwise and acts in the op-
posite direction. For a pair of parcels, one
in the left cortical hemisphere and another
in the right cortical hemisphere, the inter-
hemispheric tether is

T T
r—d ai,leftcleft f ai,rightcright
al, .1’ al...1

i,left ,right

We let a;jeft, @i right € RY be the vertex
assignment vectors of the ith parcel in the
left and right hemispheres respectively, be-
tween which we wish to promote analogy or
approximate symmetry. Correspondingly, let
Cietts Cright € R?*3 be the spatial coordi-
nates of all vertices in the left and right hemi-
spheres and again let 1 denote the vector of

all ones. Thus, expressions of the form 2;(13
denote the centre of mass of the ith parczel.
Next, define a transformation f such that ap-
plying f to a coordinate in the right hemi-
sphere returns an analogous coordinate in
the left hemisphere. Here, we operationalise

f as a simple negation of the x-coordinate,
e, f(x) = (_81 g %) x. (Note that the for-
mulation is still valid if the left and right
hemispheres have different numbers of ver-
tices, since only the centres of mass are re-
quired for the computation.)

Null model To construct a null model for
brain parcellation, we used a loss function
ablation. Specifically, we removed the two
temporal loss terms: the second moment and
the negative log determinant. In addition to
the spatial clustering terms based on com-
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pactness and dispersion, entropy, equilib-
rium, and interhemispheric tethering terms
were retained. Also retained was the soft-
max projection of parcel assignments onto
the probability simplex. This null model
scheme resulted in a model that learned from
only spatial information without reference to
any patterns of synchrony or homogeneity
in the brain image dataset. The null model
was trained using a combination of these loss
functions for 1000 epochs without any in-
put data. We created an ensemble of null
models that matched the resolutions of all
pre-existing and learned parcellations: 200,
300, 333, 400, 500, 600, 666, 700, 800, and
1000 parcels. The homogeneity of null model
parcels was then used to calibrate our quan-
titative evaluation of parcel homogeneity; see
the Fvaluation section below for details.

SWAPR algorithm SWAPR is a simple
modification of Stochastic Weight Averaging
(SWA; Izmailov et al. (2019)) that adds rev-
olution of parameters between the averaged
model and the data-facing model. The ra-
tionale for this modification follows: when
entropy is sufficiently penalised, as it is in
the final stages of the entropy cascade that
we use, a data-facing model will eventually
converge to a deterministic solution that re-
ceives weak gradients and negligible param-
eter updates. Given sufficient training steps,
any model that averages over this data-facing
model will converge to the same determinis-
tic solution, thereby obviating it altogether.
To allow for some useful weight averaging in
this high-negentropy setting (while also al-
lowing for an averaged model that is eventu-
ally approximately deterministic), we revolve
parameters from the averaged model into the
data-facing model at the end of each cascade
stage. Practically, the average parameters
from the previous stage of the cascade be-
come the new data-facing parameters at the
current stage, and a new averaged model is

initialised (although it is also possible to de-
crease the weight of the running average in-
stead of initialising a completely new aver-
aged model). We use a large, constant learn-
ing rate of 0.05 during SWA steps.

Multiplier schedules and hyperparam-
eters To train the parcellation model, we
scheduled changes in the relative balance
of loss multiplier hyperparameters over the
course of training. We highlight the most
critical aspect of this schedule, the entropy
cascade, in the main text: we periodically
increase the penalty on each vertex’s par-
cel assignment distribution entropy to tran-
sition the parcellation solution from dis-
tributed and overlapping functional modes
to compact and circumscribed determinis-
tic parcels. Here, we discuss several addi-
tional scheduling decisions; the exact values
of all multiplier hyperparameters and sched-
ules are included in the associated code.

First, the loss terms that favour spa-
tial and temporal separation of parcels—the
dispersion and determinant terms—are ini-
tialised with large multipliers of 10 and .005
respectively in order to achieve rapid differ-
entiation of parcels at the beginning of train-
ing. We anneal these multipliers to 0.5 and
0.0001 respectively before the 400th train-
ing step. Second, approximately following a
practice established in previous parcellation
efforts (e.g., Schaefer et al., 2018), we pro-
gressively increase the compactness multi-
plier to collapse the spatial extent of parcels;
we find that this increase works synergisti-
cally with the entropy cascade. Third, to re-
duce the chances of immediate fixation and
convergence at the start of each entropy cas-
cade step, we temporarily pump the multi-
pliers for two terms that tend to compete
with the entropy, the parcel equilibrium and
second moment. These terms decay expo-
nentially back to a baseline over the course
of the cascade stage. Future work will more
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comprehensively evaluate the roles of these
schedules in order to streamline the parcel-
lation training regime.

Evaluation The quality of the learned
parcellation was evaluated using a measure
of parcel homogeneity, operationalised as fol-
For fairer comparison with reference
parcellations, which are defined determinis-
tically, we first took the arg max over vertex
probability assignments to create a determin-
istic parcellation at each of the 5 evaluated
parcel scales. (In practice, the final stages
of the entropy cascade already yielded maxi-
mum assignment probabilities close to unity
for nearly all vertices.) For each parcel at
each scale, we then computed the pairwise
Pearson correlation among all of that par-
cel’s assigned vertex-wise time series for each
BOLD image in the held-out test set. For
each BOLD image, the parcel homogeneity
was operationalised as the mean of these cor-
relations:

lows.

1 044

(X0 Lper (), 52p V1055

h =

where 1[,ep)(v) is the indicator function de-
noting membership of vertex v in parcel P
and o;; denotes the covariance between the
time series of vertices ¢ and j.

We then defined the overall homogeneity of
that parcel as its mean homogeneity across
all images in the test set. We note that the
homogeneity scores we obtained here were
low in relation to many previous reports; this
might be attributable in part to the lack of
spatial smoothing in our data. Addition-
ally, of the reference parcellations, only the
MMP parcellation (Glasser et al., 2016) was
defined using the HCP dataset; because of
differences between datasets, acquisition pro-
tocols, and coordinate spaces in which the
different parcellations were defined, compar-
ison results should be interpreted with cau-
tion. As an additional note of caution, it is

possible that the “unseen” data used for eval-
uation were not held out for the MMP par-
cellation. Furthermore, it should be noted
that the reference gwMRF parcellation that
we evaluated, like the dTSC parcellation, is
in fact a set of parcellations defined across
different spatial scales (all multiples of 100
parcels between 100 and 1000, inclusive).

Parcel homogeneity is related to parcel
size—it is more likely for a smaller parcel
to be more homogeneous. Accordingly, af-
ter computing homogeneity scores for each
parcel, we also computed the best logarith-
mic least-squares fit of parcel size to par-
cel homogeneity. This fit was computed for
all evaluated parcellations, including the null
model. To generate the Relative Homogene-
ity plots in the main text, we subtracted
the null model’s best fit from all other fits
and homogeneity scores. As a reference, we
also plot the analogous figures without this
adjustment here (Figure 6, Right). Parcels
with a size of under 20 vertices were ex-
cluded from evaluation. We also include
KDE plots to facilitate visualisation of size
distributions for different parcellations (Fig-
ure 6, Left). The parcel size distribution
for our method reveals a tighter distribu-
tion than for other methods, likely due to
a fairly stringent parcel equilibrium regular-
isation. In future work, we will explore the
impact of relaxing this regularisation, partic-
ularly in consideration of the desirability for
more variable parcel sizes across the brain
in certain applications. More flexible alter-
natives to a parcel equilibrium penalty, such
as a unilateral L2 loss imposed on parcels
whose total weight is less than some mini-
mum, could also be explored.

Appendix B. Denoising

Dataset characteristics We again use
the minimally preprocessed Human Connec-
tome Project dataset detailed in the parcel-
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Figure 6: Parcellation evaluation. Left, distributions of parcel sizes for different evaluated
parcellations. Background colour indicates maximum scoring parcellation for that size ac-
cording to log fit. Right, Absolute homogeneity evaluation without adjustment for null.

lation section above; however, we make a few
adjustments. First, we use BOLD time series
whose dimension has already been reduced
via a mapping to parcels. We use the popular
400-region gwMRF parcellation introduced
by Schaefer et al. (2018), which is based on a
Markov random field approach and recapitu-
lates previously characterised boundaries of
functional subsystems. Second, we use a dif-
ferent data split, training on 4 of the 12 ran-
dom splits, selecting another 4 for validation,
and setting the last 4 aside for evaluation.
Following this split, we train on a subset
of 356 subjects and 1393 images. Due to
computational limitations (because all data
must fit into memory simultaneously for eval-
uation), we use a 351-image subset of the
test split for the main evaluation results. In
the supplement, we report benchmark results
separately using each of the 12 data splits
(Figure 7).

QC measures Assessing denoising perfor-
mance in fMRI data is challenging because
researchers do not have access to a noise-
free ground truth. Instead, the typical ap-
proach involves first quantifying the pres-
ence of artefact in some way and then mea-
suring the extent to which that quantifica-
tion of artefact relates to measurements of
interest obtained from the data. Here, fol-
lowing the corpus of previous work (Power
et al., 2014), we derive our quantification
of motion-related artefact from head realign-

ment estimates. To further elaborate, sub-
jects move their heads while in the scanner,
and this motion introduces spurious, largely
non-neural variance into the functional MR
image. When subjects move, the relative po-
sitions of their heads accordingly change in
successive images acquired by the scanner.
As part of the fMRI preprocessing workflow,
their heads are realigned to a common refer-
ence frame using a rigid-body transformation
matrix admitting a combination of transla-
tions and rotations. It is then possible to
use these rigid-body transformation matri-
ces to quantify how much subjects move their
heads along the three axes of translation and
three axes of rotation. This provides gross,
incomplete estimates of motion, but these es-
timates have nevertheless proven highly ef-
fective in demonstrating the influence of mo-
tion artefact in previous work (Power et al.,
2012; Satterthwaite et al., 2012; Ciric et al.,
2017; Parkes et al., 2018). We accordingly
use a derivative of these estimates here.

In particular, it is standard practice to
obtain a single scalar summary measure of
the amount a subject moves in a single time
frame by summing the absolute values of
these motion estimates. This summary mea-
sure is called framewise displacement (FD;
Power et al. (2012)). Following reports that
head motion estimates can be contaminated
by respiratory artefact (Fair et al., 2020),
we applied a notch filter to the 6 gross esti-
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mates of head motion included with the HCP
dataset. We then used these filtered esti-
mates to compute the FD that we used as
our main QC metric: the sum of the abso-
lute values of the 6 filtered motion estimates
(Power et al., 2012).

Confound time series The standard ap-
proach for removal of motion artefact in
fMRI is called “confound regression” (Sat-
terthwaite et al., 2013). Confound regression
is a two-step process: in the first stage, the
researcher curates a confound model, com-
piling a collection of time series that they
hypothesise index artefactual processes (but
not signal of interest). The second step is the
restdualisation step, in which the observed
BOLD time series are residualised with re-
spect to the selected confound model, usu-
ally by means of a least-squares fit. Select-
ing a good confound model has proven to
be a source of considerable ambiguity for re-
searchers (Ciric et al., 2017; Parkes et al.,
2018), and it is this problem that our ap-
proach aims to address. In particular, we
will use a simple neural network to learn
a maximally parsimonious confound model
(ultimately comprising only a single nuisance
regressor) that is also highly effective in arte-
fact removal.

We now take a brief detour to highlight
several of the candidate time series (or nui-
sance regressors) that researchers frequently
use when building a confound model for de-
noising fMRI data. We provide each of these
time series as an input to the neural net-
work that we will shortly introduce. First
are the gross head motion estimates them-
selves, which include reconstructions of both
head position and head motion, the latter
obtained as the backward difference of head
position estimates. Next are representative
signals associated with white matter (WM)
and cerebrospinal fluid (CSF) regions of the
brain. We obtained these in two ways: first,

we computed the mean time series across
voxels in binary masks indicating member-
ship in WM and cerebrospinal CSF com-
partments; these masks were included with
the HCP dataset. We also computed singu-
lar value decompositions of WM and CSF
voxels, yielding orthogonal sets of principal
component time series (aCompCor; Behzadi
et al. (2007)); we included the first 10 from
each compartment in the input to our model.
We also computed a commonly used con-
found measure called the DVARS, defined
as the standard deviation across all voxels
in temporal difference images (Afyouni and
Nichols, 2018). Finally, we included the
mean time series across all brain voxels — the
global signal (GS). The global signal is the
most effective and most controversial of can-
didate confounds. Although it is singular in
its ability to remove artefact related to both
motion and respiration (Power et al., 2017)
and its use has additional benefits (Li et al.,
2019), use of the global signal in confound
models remains controversial (i) on account
of its clear inclusion of signal from grey mat-
ter voxels and (ii) because a mathematically
necessary consequence of its inclusion is that
the distribution of correlations among resid-
ualised time series becomes zero-centred.

We also computed an expansion of the
6 gross head motion estimates (translation
and rotation along the x-, y-, and z- axes)
and 3 compartment mean signals (GS, WM,
and CSF); this expansion consisted of tem-
poral derivatives obtained via backward dif-
ferences, quadratic terms, and squares of
derivatives. This expansion resulted in 36
terms, which together comprised the 36P
model we used that has previously been
demonstrated to give excellent performance
among a priori confound models (Satterth-
waite et al., 2013; Ciric et al., 2017; Parkes
et al., 2018). Together with the 20 Comp-
Cor time series and the single DVARS time
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series, we presented a total 57 candidate time
series to our neural network model.

Preprocessing and computational re-
sources Because of incomplete acquisi-
tions, data might be missing for some im-
ages. To address this, we created a miss-
ing data mask for each batch of time se-
ries. We then synthesised data to impute the
missing time frames while minimally impact-
ing actual time frames in downstream anal-
yses. We used a hybrid approach for time
series imputation: any missing epochs com-
prising 3 or fewer frames were imputed us-
ing a weighted average of the closest frames,
while longer missing epochs were imputed
using a periodographic approach. To elab-
orate, we created a basis of sine and cosine
functions, selected the frames of each basis
function that corresponded to seen epochs
in the data, and fit each basis function to
the data. We then used the estimated coef-
ficients from all basis function fits to recon-
struct unseen data as a linear combination
of basis functions. This approach is inspired
by a previous method introduced by Power
et al. (2014), which in turn draws inspiration
from the Lomb-Scargle periodogram (Lomb,
1976). (We did not apply censoring to de-
noise the data for this experiment because,
for this proof of concept, we were inter-
ested in optimising denoising model perfor-
mance without censoring.) After this impu-
tation step, time series were filtered to retain
frequencies between 0.01 and 0.1 Hz using
a brick-wall ideal filter applied multiplica-
tively in the frequency domain. The selected
low-frequency band is relatively artefact-free
(Satterthwaite et al., 2013) and corresponds
reasonably with the frequency of the haemo-
dynamic BOLD response. Filter weights
were frozen and not configured to be learn-
able. To prevent reintroduction of previously
orthogonalised signals during the denoising
step (Hallquist et al., 2013), identical im-

putation and filter transformations were ap-
plied to BOLD and confound time series. For
the denoising experiment, we used approxi-
mately 4 hours of compute time, again on
a single RTX 2080 Ti GPU on a machine
running Ubuntu Linux to train the RFNN
model.

In order to obtain relatively stable QC-
FC correlations, the model was trained with
a large batch size of 100 time series. Af-
ter parcellation, data were further prepro-
cessed as follows. First, BOLD data and a
priori confounds were normalised such that
each time series had a mean of 0 and a vari-
ance of 1. Next, at training and validation
time (but not evaluation time) data were
randomly windowed to select 500 contiguous
time frames.

RFNN architecture, denoising, and
loss The model we used for denoising is a
minimal, shallow neural network with a sin-
gle hidden convolutional layer. The hidden
layer takes one channel of dimension ¢ x t—
the ¢ = 57 a priori confound time series—
as its input. It has a total f = 5 learn-
able filters, each of dimension 1 x 9. With
appropriate padding and a stride of 1, the
output of the convolutional layer is thus a
set of f ¢ x t time series, which are the in-
put time series convolved with each of the
f “response functions”. These are passed
through a thresholding leaky ReLU nonlin-
earity (subtracting a bias term, applying the
nonlinearity, and adding back the bias term)
before they are concatenated together with
the input confound time series. The result is
a (f+1)cxt model matrix. The output layer
of the RFNN linearly combines the (f + 1)c
confound time series into a single model con-
found.

To obtain a denoised connectome, we com-
pute the covariance of the parcellated BOLD
time series conditioned on this confound as
defined in the main text. Weights of any im-
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puted observations were set to 0, so denoised
connectomes were based only on actual, seen
data. We then normalised the conditional
covariance to a Pearson correlation before
computing the loss function. This symmet-
ric correlation matrix is our estimate of the
functional connectome. As described in the
main text, the loss function (QC-FC) is a
“second-order” correlation computed across
the batch dimension between the correlation
that represents each connectome edge and a
measure of artefact, in this case the mean fil-
tered framewise displacement across all time
frames. Because an edge with an inverse re-
lationship to motion is just as undesirable
as one with a direct relationship, the loss is
operationalised as the mean of the absolute
value of QC-FC correlations. Formally, let n
be the batch size and let p be the number of
regions. The QC-FC loss for a single edge of
the connectome is then defined as:

_ loFD,FC|
\/OFD,FD+/0FC,FC

where oy is the covariance between vectors
i, j € R®. FD € R" is the vector of QC mea-
sures — here, the framewise displacements
(averaged across time) measured for each im-
age in the batch. FC € R" is the vec-
tor of functional connectivity estimates for
that edge, estimated for each image in the
batch. The total QC-FC loss is obtained
as the average or sum of edge-wise QC-FC
losses. The QC-FC loss goes to zero when
there is no linear relationship between frame-
wise displacement and functional connectiv-
ity in the batch. We train the RFNN model
for 200 epochs using stochastic gradient de-
scent (SGD), sampling 10 batches randomly
per epoch. We also create a null model by
randomly initialising a RFNN without train-
ing it. Hyperparameters are summarised in
Appendix F.

Evaluation We evaluate model perfor-
mance using standard benchmarks derived

Model Dist. Dep.
Null -0.083395
GSR -0.121429
36P -0.138829
RFNN  -0.117902

Table 2: Distance dependence of QC-FC cor-
relations (lower absolute value is better).

from edge-wise QC-FC correlations (Power
et al., 2014). Benchmarks are computed on
a held-out dataset of 351 BOLD time series.
Benchmarks include the number of edges for
which a significant relationship with motion
is detected across subjects and the median of
the absolute value of all QC-FC correlations.

Although it is not a focus of the cur-
rent proof of concept, QC-FC correlations
also tend to be distance-dependent: motion
artefactually inflates estimates of short-range
connections more than it does estimates of
long-range connections. Furthermore, meth-
ods that remove the global signal are es-
pecially effective at removing widespread
artefact that acts over longer ranges, so
this distance-dependence is apparently ex-
acerbated after GSR (e.g., Satterthwaite
et al., 2013; Power et al., 2014). We report
the “third-order” correlation between QC-
FC correlations and inter-node separation in
Supplemental Table 2.

There is arguably some circularity in us-
ing QC-FC correlations as the outcome mea-
sure after directly training our model to min-
imise the mean of absolute QC-FC correla-
tions. We leave to future work any inves-
tigation of the limitations of QC-FC mea-
sures and a more complete characterisation
of the reasons that the RFNN was able to os-
tensibly outperform or compete with SOTA
methods on these benchmarks without con-
comitant zero-centring of connectome edges.
In the interim, we reiterate our tentative rec-
ommendation from the main text against use
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Figure 7: Denoising evaluation across all 12 data splits, each comprising around 350 images.
The results shown in the main text are from the first test split. If the QC-FC benchmarks
are taken at face value, the single-confound RFNN model outperforms other single-confound
models with substantial consistency and performs competitively with the SOTA 36-confound

model.

of this new method until a more thorough in-
vestigation is conducted.

Appendix C. Covariance clustering

The parameterised form of the covariance
also finds an application in data augmenta-
tion: setting the weights 6;; along the diag-
onal to random nonnegative integers whose
sum is the total number of observations is
equivalent to a resample. Relaxing this con-
straint to require only a nonnegative sup-
port and a mean of 1, satisfied inter alia
by noise sampled from an appropriately cho-
sen gamma or truncated normal distribution,
leads to a simple method for augmenting co-
variance datasets that complements random
windowing of the input time series (Figure 8,
Left).

We performed additional experiments us-
ing the parameterised covariance in the clus-
tering setting. Specifically, we asked, how
can we cluster observations such that the
covariance matrices estimated from different
clusters are, for some measure of separation,
maximally different? This nonconvex max-
imisation problem has two immediate appli-
cations in functional connectomics: subnet-
work detection and state detection. To fur-
ther elaborate, given the time series matrix

T € RP*!, we can obtain two covariance ma-
trices, the p X p connectome matrix of inter-
parcel correlations and the ¢ x t matrix of cor-
relations among brain activity profiles across
time (e.g., Medaglia et al., 2018). For the
p X p connectome, observations correspond
to time points, and clustering them to pro-
duce maximally distinct connectomes can be
interpreted as brain state detection. For the
t x t matrix, observations correspond to dif-
ferent brain parcels; clustering them is a form
of subnetwork detection.

For each problem setting, we train a clus-
tering model to learn © € R*P or Rt
where c¢ is the number of clusters, here se-
lected a priori. We instantiate a cluster-
ing loss to maximise the total L2 disper-
sion among the covariance matrices corre-
sponding to different detected clusters. As
in the parcellation problem, we penalise the
entropy to promote deterministic assignment
of each parcel or time point to a single
subnetwork or state. For the state detec-
tion problem, we also encourage the model
to learn persistent states by imposing an
L2 smoothness penalty on the backward
difference of ®. Because state detection
(and numerous other neuroimaging applica-
tions, such as subject-specific parcellation)
requires learning a unique time course for
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Figure 8: Results of covariance experiments. Left, Methods for augmenting covariance data.
Centre, Clustering on the time-by-time covariance matrix partitions the brain into unimodal
and higher-order subnetworks with distinct temporal reconfiguration profiles. Right, Clus-
tering on the parcel-by parcel covariance matrix partitions each time series into connectivity

states.

each data instance, the hypercoil package
also includes extensions of optimisers that
accept ephemeral, instance-specific parame-
ter groups for optimisation and optionally
clear them from memory after they have
been updated.

The results of the clustering experiment in
subsamples of the HCP dataset are shown in
Figure 8. Clustering ¢ X ¢ covariances into
¢ = 2 subnetworks divides the brain along
a unimodal (blue) to higher-order (red) axis
(Figure 8, Centre); this clustering is repli-
cable across data splits. We show the ¢ x ¢
covariance matrices for 2 example subjects,
illustrating the distinct dynamic profiles of
the two subnetworks. Clustering p X p covari-
ances into ¢ = 3 states yields three whole-
brain connectivity states that are each dis-
tinct both from one another and from the
time-averaged connectome (Figure 8, Right).
The learned assignment of time frames to the
three states is plotted for an example subject.
In contrast with the most commonly used
state detection methods (e.g., Allen et al.,
2014), the method we apply does not require
estimating the covariance over a sliding win-
dow; it instead directly learns to assign time
frames to states.

Methodological details: Time-by-time
covariance (subnetwork detection)
We again used the HCP dataset for the
time-by-time covariance clustering exper-
Of our 12 HCP dataset splits, we
selected 4 for training and 4 for evaluation.
Vertex-wise BOLD data were mapped onto
400 parcel-wise time series using the 400-
parcel dTSC parcellation that we trained
in our first experiment. Because of the
hemispheric tether regularisation that we
used when learning the parcellation, we
were able to impose a soft inter-hemispheric
symmetry constraint on the subnetwork
detection problem.

We used a batch size of 20 and selected
a random window of 800 time frames from
each parcellated time series when sampling
a batch. Further preprocessing steps in-
cluded imputation, filtering, and denoising,
each implemented as described in Denois-
ing above. Denoising was performed using
a 36-confound model with demonstrated ef-
ficacy at removing structured artefact from
fMRI data (Satterthwaite et al., 2013; Ciric
et al., 2017; Parkes et al., 2018). The model
was trained for 600 epochs, each of which
consisted of 15 training steps, using SGD.
Training required approximately 3 hours per

iment.

446



DIFFERENTIABLE PROGRAMMING FOR FUNCTIONAL CONNECTOMICS

replicate on a single RTX 2080 Ti GPU on a
machine running Ubuntu Linux.

The objective of the clustering is to learn a
¢ X p covariance parameter ©: an assignment
of p parcels to ¢ clusters, which we interpret
as subnetworks of the brain. For this proof
of concept, we selected as our learning ob-
jective the minimal nontrivial clustering into
¢ = 2 subnetworks. During each forward
pass through the covariance layer, a soft-
max mapped the 2-dimensional cluster as-
signment of each parcel to the set of Bernoulli
distributions. Next, we computed the two
time-by-time covariances parameterised by
the matrices ® obtained by embedding the
elements of each row of © along the main di-
agonal. These time-by-time covariances can
be interpreted as dynamic profiles of the two
detected subnetworks. Finally, the covari-
ances were normalised to time-by-time Pear-
son correlations.

To perform the clustering, we used a loss
function consisting of 5 terms. First, a dis-
persion term, equal to the negative L2 dis-
tance between the vectorised upper triangles
of time-by-time matrices, promoted separa-
tion between dynamic profiles. To favour
structured dynamics with larger correlations,
we also imposed a symmetric L2 term that
penalised distance of each entry in the cor-
relation matrix from either -1 or 1. Entropy
and equilibrium terms were used as in the
parcellation experiment to promote eventual
deterministic assignment to each of 2 approx-
imately equal-sized subnetworks. As in the
parcellation experiment, we started with a
weak entropy term that we increased at the
500th step. The final term was a Jensen-
Shannon divergence penalty placed on the
distance between a parcel’s subnetwork as-
signment distribution, and the assignment
distribution of that parcel’s analogue in the
opposite hemisphere. This penalty resulted
in a relatively symmetric subnetwork assign-
ment.

Because of the substantial autocorrelation
between temporally proximal BOLD frames,
which is further inflated by the temporal fil-
ter that we apply, each time-by-time corre-
lation matrix typically features large values
near its main diagonal. To downweight the
importance of these autocorrelations in the
clustering, we took the Hadamard product
of each time-by-time correlation matrix with
a Toeplitz-structured exponential discount-
ing matrix. Specifically, before it was passed
to the loss function, each entry of the correla-
tion matrix was scaled by the factor 1 —e =,
where t denotes its offset from the main diag-
onal and A = 0.1 is a discount hyperparam-
eter. To smooth training and improve clus-
tering repeatability, we also used stochastic
weight averaging (Izmailov et al., 2019). We
tuned model and training hyperparameters
by repeating the analysis on our training set
until we found hyperparameters that yielded
a repeatable solution.

We then assessed the out-of-sample repli-
cability of the learned subnetwork structure
by training the model on a held-out evalu-
ation set and assessing the convergence be-
tween the results across samples. Although
there were subtle differences, the subnet-
work assignments detected in the two sam-
ples were approximately the same after align-
ment (mean JS divergence over 400 parcels:
0.0052; 3 parcels’ maximum assignments dif-
fered per hemisphere). In Figure 8, we
show maps of each parcel’s maximum sub-
network assignment, together with examples
of dynamic profiles for two subjects from the
training set. The dynamic profiles are win-
dowed time-by-time correlation matrices pa-
rameterised by subnetwork assignments.

Here, we also run a further evaluation of
the subnetwork detection (Figure 9, Top).
We used the subnetworks detected in the
training set as a reference, and we created
200 null subnetwork models by randomly as-
signing each hemisphere’s parcels to subnet-
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works while preserving the number of parcels
per subnetwork and inter-hemispheric sym-
metry. We selected 300 subjects from the
evaluation set and computed for each sub-
ject the L2 distance between the dynamic
profiles of the learned subnetworks, as well
as the L2 distance between the dynamic pro-
files of each null model’s subnetworks. Fig-
ure 9 compares the separation between dy-
namic profiles for the learned subnetworks
(red) against null distributions (black) for
each subject. In all cases, we find that the
learned subnetwork assignments yield a su-
perior separation to all null models.

Methodological details: Regional co-
variance (state detection) For the state
detection experiment, we used small subsam-
ples of HCP data. Each of the 12 data splits
we created was further divided randomly into
5 shards, each consisting of approximately
50-80 resting-state BOLD time series. The
results in the main text are for one shard
with 59 time series; we found this to be suf-
ficient for stable state detection. We show
these results together with 9 replicates in
Figure 9.

Preprocessing followed a standard func-
tional connectivity pipeline. The first
stage was parcellation using the 400-parcel
gwMRF atlas (Schaefer et al., 2018), which
we selected because its parcels are ordered
to follow the brain’s large-scale community
structure and would thus be conducive to vi-
sualisation of differences between states. The
400 parcel-wise time series were then pro-
cessed through imputation, filtering, and de-
noising as described in the Denoising sec-
tion. We again denoised the time series us-
ing the proven 36-confound model, which
has demonstrated efficacy in removing struc-
tured artefact due to motion and respiration
from BOLD time series (Satterthwaite et al.,
2013; Ciric et al., 2017; Parkes et al., 2018).
The state detector model was trained for

50 epochs. Training required approximately
15 minutes per replicate on a 12-core first-
generation Threadripper CPU on a machine
running Ubuntu Linux.

We used k-means clustering to initialise
k = 3 learnable state templates. For this
proof of concept, we select k = 3 because it is
the smallest number of clusters that does not
produce only simple high-connectivity and
low-connectivity states. The templates are
initialised by first computing sliding-window
correlations (as in Allen et al. (2014)) with a
window size of 50 and a sliding step size of
25 for each of 1180 total images that consti-
tute 4 splits of the HCP dataset. All windows
are submitted as observations to the k-means
clustering algorithm. We use the L2 dis-
tance to cluster in this proof of concept be-
cause it is compatible with various common
implementations of k-means; however, a co-
sine distance might better capture differences
in connectivity configurations that are not
simply due to connection magnitude. Each
of the k-means states that we detected us-
ing k-means clustering approximately corre-
sponded with a single state that we later de-
tected using our differentiable approach. The
k-means initialisations additionally formed a
baseline for model evaluation.

The learnable parameters of the clustering
model include the templates thus initialised
and instance-specific ¢ X ¢t covariance param-
eters ©, where we chose ¢ = k = 3. Each
of the ¢ parameter vectors of length ¢ can be
interpreted as the time course of a state; we
interpret a value close to 0 as the absence
of the state, and a value close to 1 as the
presence of the state at some time point. We
require an instance-specific parameterisation
for each state because the presence or ab-
sence of a state is likely to occur at differ-
ent times for each subject under the uncon-
strained conditions of the resting state. The
use of instance-specific parameterisations is
not handled natively by optimisers included
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Figure 9: Top, Compared with random symmetric subnetwork assignments, the subnetworks
detected by clustering consistently achieved greater separation of time-by-time dynamic

covariance matrices.

Bottom, The detected states were relatively consistent across both

subsamples used for the initialisation and entirely unseen data.

with many existing deep learning software
libraries. This is likely in part because of
the ambiguity over how to handle buffers
associated with instance-specific parameters
(such as parameter-specific moments). For
this proof of concept, we take the most direct
approach of maintaining a separate buffer for
each instance. We thus implemented new op-
timiser classes to handle parameter groups
that exist ephemerally in memory. (This
applies to the instance-specific parameters
that we use here, but could also be extended
to parameters specific to subgroups of the
dataset—for instance, subjects with several
runs.)

To train the state detection model, we used
an instance-specific extension of SGD with
a loss function consisting of 5 terms. First,
an L2 penalty was applied to the backwards
temporal difference of the instance-specific
state time courses © in order to promote
state persistence and increase the evidence

required for the model to predict a transi-
tion between states. Second, an equilibrium
loss was imposed to ensure that all states
were represented in each instance. Third,
a dispersion penalty was used to promote
separation of each instance’s detected states.
The two remaining loss terms used the learn-
able templates to align detected states across
instances. One term, another dispersion
penalty, was used to promote separation of
templates, and the final term was a penalty
on the L2 distance between each instance’s
three detected states and the three tem-
plates. This final term encouraged the learn-
able templates to function as population-
level representations of the states detected
across instances. We did not use an entropy
penalty for this clustering problem.

The main text figure shows the learned
parameters © and the learned templates,
and compares the L2 distance between the
states detected by the k-means initialisation
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and the averages (across instances) of analo-
gous states detected by the differentiable ap-
proach. We also repeated the state detection
experiment in 4 additional subsamples of the
HCP dataset, each comprising between 50
and 80 instances, which were used in comput-
ing the k-means initialisation, and 5 similar
subsamples that were not used in computing
the initialisation. We qualitatively observed
consistent detection of three analogous states
across all subsamples (Figure 9, Bottom).

Appendix D. Community detection

Dataset and preprocessing We use the
Midnight Scan Club dataset (MSC) for the
community detection analysis. The MSC
dataset includes a total 10 subjects each
densely scanned over 10 sessions, both at rest
and performing a number of directed cogni-
tive tasks (Gordon et al., 2017). MSC data
are openly available and were acquired in ac-
cordance with the guidelines of the host in-
stitution’s IRB. In this proof of concept, we
limit our analysis to resting-state data. We
use the first three scans from each subject for
the community detection analysis.

Data were parcellated using the 400-parcel
gwMRF parcellation (Schaefer et al., 2018),
filtered, and denoised using a 36-confound
model with demonstrated efficacy at remov-
ing structured artefact associated with mo-
tion and respiration from BOLD data (Sat-
terthwaite et al., 2013; Ciric et al., 2017;
Parkes et al., 2018). The denoised, parcel-
lated BOLD time series were inputs to the
community detection model.

The learnable parameters of the model
were (i) the p x ¢ community affiliation ma-
trix C of p parcels to ¢ communities and
(ii) the instance-specific ¢ X ¢ time courses
O of each community. The community affil-
iation of each parcel was mapped through
a softmax function that ensured it was a
valid probability distribution, and each com-

munity time course was mapped through a
sigmoid that constrained it to (0,1). Each
community time course could thus be in-
terpreted as the extent to which the corre-
sponding community was modularised dur-
ing each time frame of the scan. Each of
these community time courses thereafter pa-
rameterised a separate covariance matrix.

Model details We thus computed ¢ = 10
parameterised 400 x 400 covariance matri-
ces A¢, and 1 unparameterised (standard or
“time-averaged”) 400 x 400 covariance ma-
trix A among the 400 parcel-wise BOLD
time series. (All covariance matrices were
normalised to Pearson correlations for the
purpose of further analysis.) Next, we used
the community affiliation C to estimate the
relaxed Girvan-Newman modularity (New-
man and Girvan, 2004) on the unparame-
terised covariance matrix A as described in
the main text. We then considered each
column of C separately. Each column C;
of C corresponds to a single community C;,
and the entries of the rank-one outer prod-
uct Cl-CiT indicate the extent to which each
edge of the connectome graph connects two
vertices in C;. We used each of these rank-
one outer products as coaffiliation matrices
H¢, to compute the relaxed Girvan-Newman
modularity on the corresponding parame-
terised covariance Ag,.

We thus sought to optimise the ¢+ 1 mod-
ularities by jointly learning the affiliation of
each parcel to a community and the extent to
which the community was modularised dur-
ing each time frame. To achieve this ob-
jective, we trained the model using a loss
function with four main terms.
tipliers controlled the balance between static
communities parameterised only by C and
dynamic communities parameterised by C
and ©. The remaining two multipliers reg-
ularised the learned parameters: one modu-
lated an L2 penalty on the minimum distance

Two mul-
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between each entry in © and either 0 or 1,
thereby steering the model to make a binary
decision for each time point as to whether a
community was modularised or not, and the
other modulated a backward difference L2
penalty on © that promoted persistence of
modularisation and demodularisation states
for each community. The model was trained
for 500 epochs using the Adam optimiser
(Kingma and Ba, 2017). Training required
under 1 hour on a 12-core, 24-thread CPU.

Evaluation To evaluate the validity of the
learned community time courses ©, we cre-
ated, for each instance, a distribution of 500
null community time courses by randomly
shifting that instance’s learned time courses.
Time frames that the shift displaced over
the end of each time course were wrapped
back to its start. We then computed, for
each of the null covariances Aci parame-
terised by a randomly shifted time course,
the corresponding modularity. We created
the main text plot of learned and null mod-
ularities for each community by subtracting
each of the 500 null modularities computed
for each instance from the learned modular-
ity for that instance. We generally found
that the learned modularity outperformed
random-shift nulls. (We remark that small
random shifts, and even random shifts of
zero, are likely to occur because 500 ran-
dom shifts are selected for each subject, and
each time course is 814 frames long. Due
to factors including the persistence imposed
on each community’s modularisation state
and the substantial autocorrelation of fil-
tered BOLD time series, these small random
shifts will likely have modularity very close
to that of the learned model.)

Appendix E. Selected advances in
differentiable
programming

(i) The data throughput problem,
rebatching, and local accumulator
nodes

The parcellation module in general operates
on vertex- or voxel-wise time series data,
whose dimension v typically numbers in the
tens of thousands. Because the parcellation
module is a dimension-reducing map from
vertices to parcels, any downstream work-
flow steps can operate in a much lower-
dimensional space (in practice, not greater
than the order of 1000). Loss functions on
the parcellation module can have a space
complexity that scales linearly or quadrat-
ically in v, and the capacity of hardware
accelerators vis-a-vis the parcellation mod-
ule consequently bottlenecks the overall data
throughput of the differentiable workflow. In
practical terms, these expensive loss func-
tions set an effective ceiling on the maxi-
mum batch size of the training procedure. In
our experiments on cortical HCP data in the
vertex-wise fSLR coordinate space, we were
frequently limited to a batch size not exceed-
ing 5 BOLD time series.

This is not a problem when the workflow is
optimised using block coordinate-style train-
ing loops that limit learning to one module at
a time, as in the current manuscript. How-
ever, it becomes a significant challenge in
the context of end-to-end connectome work-
flow optimisation. This is because the QC-
FC loss function used to train the denoising
module relies on stable estimation of corre-
lations across the batch dimension, which is
clearly untenable for a batch size of 5 or less.
(Recall that the QC-FC loss function is sim-
ply the correlation between a QC measure
such as gross subject motion and edge-wise
estimates of functional connectivity. This
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correlation is computed across the batch di-
mension. )

In summary, a data throughput problem
arises because the parcellation module re-
quires a small batch size, while the denois-
ing module requires a large batch size. We
resolve this mismatch between data through-
put demands by implementing a local back-
ward pass accumulator node in the computa-
tional graph. This accumulator node wraps
a throughput-limited operation (here, parcel-
lation) to (in essence) support rebatching the
data. It requires explicitly defining (i) a pa-
rameterised vector-Jacobian product (VJP)
rule corresponding to the wrapped operation,
which is accumulated over (in our case, the
parcellation step), and (ii) an update proce-
dure for this VJP rule that is called on each
forward pass through the accumulator node.
For our use case, the accumulator node is
configured to progressively update a running
mean of the parameters of the VJP rule for
matrix multiplication. When the backward
pass is run on the graph, this VJP rule is
applied, and the accumulator’s local param-
eterisation is cleared. (Note that this accu-
mulator has not at the time of publication
been ported to the latest version of the public
software release, but it is available publicly
in a deprecated branch.)

We remark that research centres with ac-
cess to a large number of hardware acceler-
ators can resolve this problem without re-
sort to an accumulator, by simply calling an
appropriate map-reduce that parallelises the
relevant part of the program to execute over
different input datasets.

(ii) Serial mapping for
memory-intensive operations

Yet another related challenge also arises as
a consequence of the memory constraints of
hardware accelerators vis-a-vis loss functions
for parcellation. As mentioned, the space

complexity of these loss functions scales with
the voxel or vertex dimension of the input
time series in a linear or quadratic fashion.
As a result of this scaling, the full compu-
tation of these loss functions cannot feasi-
bly fit into accelerator memory. Fortunately,
the same loss functions can be partitioned
over data chunks without changing the re-
sults of computation, as long as the rela-
tion f(A : B,x) = f(A,*) : f(B,x*) is sat-
isfied for forward and backward passes f, ar-
bitrary chunks A and B, any additional non-
chunked arguments *, and the infix : denot-
ing the concatenation operation. We accord-
ingly implement functionality to perform the
forward and backward passes through these
chunked computations and immediately free
the computational graphs in order to satisfy
the memory ceiling imposed by the hardware
accelerator.

In principle, a single general solution
(which we call a “serialisation map”) might
be implemented for both this problem and
the throughput/rebatching problem (i) de-
scribed above, since the rebatching prob-
lem is essentially an instance of this prob-
lem where the chunking is performed over
the batch axis. Our implementations are cur-
rently not sufficiently general to accomplish
this: our solution to problem (i) requires ex-
plicit specification of a parameterised VJP
and a parameter update rule, which can be
extremely tedious to derive for complicated
models, while our solution to (ii) obligatorily
deletes the entire computational graph for
each chunk, leaving it impractical for many
use cases.

(iii) Incorporating state-of-the-art
domain knowledge as parameter
initialisations

Because a differentiable workflow is de-
signed to interpolate existing workflow con-
figurations, each existing configuration corre-
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sponds to some parameterisation of the dif-
ferentiable workflow. We demonstrate this
in our introduction, where we instantiate 18
pre-existing workflow configurations as dif-
ferently parameterised neural networks.

This feature of the differentiable workflow
paradigm implies that state-of-the-art meth-
ods and domain knowledge can be opera-
tionalised as initialisation schemes. This en-
ables the learning process to theoretically be-
gin in a relatively “good” neighbourhood of
the parameterisation space. These initiali-
sation schemes can also be combined with
noise and dropout sources to perturb the
pipeline slightly away from an existing so-
lution, which is useful for instance when the
existing solution corresponds to a region with
weak gradients.
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Appendix F. Hyperparameter and training summary tables

Name Value Notes

Learning rate 0.05 Weakened by a factor of 0.45 at epochs 500
and 1000, and then reset at SWA begin

Max step 6000

Batch size 3

Num. subjects 618

Num. images 2457

Data interval ) To reduce the overhead of reading from disk,
a new batch of data is loaded every 5 steps.

Window length 500  Number of time frames in random window
applied to data during training.

SWA begin 1600 First epoch of SWAPR model

Vdispersion 10 Annealed to 0.5 by step 300

Vdeterminant .005  Annealed to 0.0001 by step 400

Vequilibrium le6  Scheduled to alternately spike and decay in
synchrony with entropy cascade steps. Max-
imum value 3e7 at step 1500, final value 1eb
at step 6000.

Ventropy 0.1 Cascaded upward progressively. 0.5 at 1500,
1 at 2000, 1.5 at 2500, 2 at 3000, 2.5 at 3500,
3 at 4000, 3.5 at 4500.

Veompactness 2 Strengthened to 20 at step 600 and 30 at step
2500.

Vtether 0.2

Vond moment 5 Multiplier alternated between 10, 7, and 5:
increased in synchrony with each entropy cas-
cade step, and then decayed back to 5.

Parameter revolu- 6 Parameters revolved from the SWA model to

tions

the main model 6 times, at steps 2050, 2550,
3050, 3550, 4050, 4550.

Table 3: Table of hyperparameters for

parcellation experiments.

We use the

designation v, to denote the loss multiplier
for loss function £. Some details have been
elided; consult the training script for infor-
mation about the workflow structure.
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Name Value Notes

Learning rate 0.05

Max epoch 200

Batch size 100

Weight decay 0.001

Num. subjects 356

Num. images 1393

Window length 500  Number of time frames in random window

applied to data during training.

Table 4: Table of hyperparameters for denoising experiments. The denoising ex-
periments used only a single loss function, the QC-FC, with a multiplier of 1. Some details
have been elided; consult the training script for information about the workflow structure.

Name Value Notes

Learning rate 0.02

Max epoch 500

Batch size 30 Trained using transformed batch gradient de-
scent

Num. subjects 10

Num. images 30 First 3 sessions from MSC dataset

Num. communi- 10

ties

Vmodularity 10

Vdynamic 0.002 Dynamic analogue of modularity

Vsmoothness 2 Penalises transitions

Ubimodal 1 Penalises trajectory with value other than 0
or 1

ol ) Community resolution parameter

Table 5: Table of hyperparameters for community detection experiments. We use
the designation v, to denote the loss multiplier for loss function £. Some details have been
elided; consult the training script for information about the workflow structure.
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