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Abstract: As robots are deployed in complex situations, engineers and end users
must develop a holistic understanding of their behaviors, capabilities, and limita-
tions. Some behaviors are directly optimized by the objective function. They often
include success rate, completion time or energy consumption. Other behaviors—
e.g., collision avoidance, trajectory smoothness or motion legibility—are typically
emergent but equally important for safe and trustworthy deployment. Designing
an objective which optimizes every aspect of robot behavior is hard. In this paper,
we advocate for systematic analysis of a wide array of behaviors for holistic un-
derstanding of robot controllers and, to this end, propose a framework, ROCUS,
which uses Bayesian posterior sampling to find situations where the robot con-
troller exhibits user-specified behaviors, such as highly jerky motions. We use
ROCUS to analyze three controller classes (deep learning models, rapidly explor-
ing random trees and dynamical system formulations) on two domains (2D nav-
igation and a 7 degree-of-freedom arm reaching), and uncover insights to further
our understanding of these controllers and ultimately improve their designs.

Keywords: Debugging and Evaluation, Algorithmic Transparency

1 Introduction
In 2018, after a confluence of failures, an autonomous vehicle (AV) struck and killed a pedestrian
for the first time. In the run-up to this fateful event, the responsible company had reportedly been
trying to improve the AV “ride experience” by emphasizing non-critical behaviors—such as the
smoothness of the ride [1]. This event reflects the long-standing challenge in robotics: designing an
appropriate objective which considers both safety-critical and non-critical behaviors. When crafting
an objective, it is virtually impossible to proactively account for all potential controller behaviors,
and some priorities may even be in conflict with one another [2]. In practice, any given robot
behaviors may be specified, unspecified, or even misspecified [3], so extensive testing and evaluation
is a critical component of designing and assessing robot controllers—especially those using black-
box models such as deep neural networks.

A common testing procedure focuses on finding extreme and edge cases of controller failure. For
example, a tester might use this procedure to find that the AV swerves very badly when encounter-
ing a farm animal while traveling at 60mph. Finding such extreme and edge cases is well-studied
within both traditional software testing paradigms [4] and more recent adversarial perturbation test-
ing methods [5]. However, we argue that an equally, if not more, important form of testing should
focus on representative scenarios, which considers the likelihood of encountering these scenarios.
For example, if this AV is going to be deployed exclusively in New York City, the above example is
largely unhelpful: cars rarely travel at 60mph in the city, and are very unlikely to encounter farm an-
imals. Instead, the tester may prefer to know that the car swerves—though not as substantively—at
lower speeds when a pedestrian steps toward it. Finding representative scenarios is often overlooked,
but is especially useful for robotics. This is the focus of this paper.

Explicit mathematical analysis of robot controllers is implausible given the high dimensionality of
the configuration space and the potential black-box representation of a learned controller. With
access to an environment simulator, though, a straightforward testing approach is to roll out the
robotic controller on various environments (e.g. road conditions under different weather and con-
gestion, with or without farm animals or pedestrians, etc.), and analyze those rollouts that exhibit
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a specified behavior—like excessive swerving. However, with too few environments, we risk miss-
ing the condition(s) that triggers the target behavior most saliently. With too many environments,
all the most salient rollouts would be close to the global maximum at the expense of diversity and
coverage. For example, if a farm animal causes the most swerving, followed by a pedestrian and a
dangling tree branch, using too few environments may only find the pedestrian and the tree branch
while using too many would result in an exclusive focus on the farm animal. Neither case helps the
human develop a correct mental model of the AV’s behavior.

Figure 1: Two use case demos of ROCUS: 2D
navigation (left) and 7DoF arm reaching (right).

To address this, we introduce Robot Con-
troller Understanding via Sampling (ROCUS),
a method to enable systematic behavior inspec-
tion. ROCUS finds scenarios that are both in-
herently likely and elicit specified behaviors by
formulating the problem as one of Bayesian
posterior inference. Analyzing these scenarios
and the resulting trajectories can help develop-
ers better understand the robot behaviors, and
allow them to iterate on algorithm development
if undesirable ones are revealed.

We use ROCUS to analyze three controllers on two common robotics tasks (Fig. 1). For a 2D
navigation problem, we consider imitation learning (IL) [6], dynamical system (DS) [7], and rapidly-
exploring random tree (RRT) [8]. For a 7DoF arm reaching problem, we consider reinforcement
learning (RL) [9], as well as the same DS and RRT controllers. For each problem and controller,
we specify several behaviors and visualize representative scenarios and trajectories that elicit those
behaviors. Through this analysis, we uncover insights that would be hard to derive analytically and
thus complement our mathematical understanding of the controllers. Moreover, we include a case
study on how to improve a controller based on new insights from ROCUS. As such, ROCUS is a
step towards the broader goal of building more accurate human mental models and enabling holistic
evaluation of robot behaviors.

2 Related Work

Our work lies at the intersection of efforts to understand complex model behaviors and those to
benchmark robot performance. Methods to understand, interpret, and explain model behaviors are
now commonplace in the machine learning community. Mitchell et al. [10] introduced Model Cards,
a model analysis mechanism which breaks down model performance for data subsets. In natural
language processing, Ribeiro et al. [11] introduced a checklist for holistic evaluation of model capa-
bilities and test case generation. Booth et al. [12] introduced BAYES-TREX, a Bayesian inference
framework for sampling specified classifier behaviors. In robotics, Fan et al. [13] introduced a ver-
ification framework for assessing machine behavior by sampling parameter spaces to find temporal
logic-satisfying behaviors. Other efforts aim to summarize robot policies, trading off factors like
brevity, diversity and completeness [14, 15]. All of these works have a shared underlying theme:
treating the black box as immutable and performing downstream analyses of machine behavior [16].
ROCUS shares this theme and, similar to BAYES-TREX [12], searches for instances which exhibit
target behaviors to inform accurate human mental models.

While the need for benchmarking robot performance is often expressed [17, 18, 19], these efforts
usually operate on distributions of trajectories or randomly selected trajectories, and the accompa-
nying metrics are typically task-completion based without consideration of implicit performance
factors. Anderson et al. [20] put forth a recommendation of using success weighted by path length
for navigation tasks—a task-completion metric. Cohen et al. [21] and Moll et al. [22] introduced
suites of metrics for comparing motion planning approaches, and Lagriffoul et al. [23] presented
a set of task and motion planning scenarios and metrics. Again, all of these proposed metrics are
based solely on task completion. Lemme et al. [24] proposed a set of performance measures for
reaching tasks, which are either task-completion based or require a costly human motion ground
truth. Our contribution is distinct in two ways. First, we propose to sample specific trajectories
which communicate controller behaviors instead of reporting metrics averaged over distributions
of trajectories. Second, we introduce metrics which draw on these prior works while also including
essential alternative and typically emergent quality factors, like motion jerkiness and legibility [25].
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Figure 2: The graphical model for the
inference problem of finding tasks t and
trajectories τ which exhibit specific be-
haviors b. The dashed box indicates the
relaxed formulation (Eq. 2).

At a high level, ROCUS helps users understand robotic
controllers via representative scenarios that exhibit vari-
ous specified behaviors. It solves this by directly incorpo-
rating the distribution of scenarios, formally called tasks,
into a Bayesian inference framework as shown in Fig. 2.
A robotic problem is represented by a distribution π(t)
of individual tasks t. For example, a navigation problem
may have π(t) representing the distribution over target
locations and obstacle configurations. Given a specific task t, the controller under study induces a
distribution p(τ |t) of possible trajectories τ . If both the controller and the transition dynamics are
deterministic, p(τ |t) reduces to a δ-function at the induced trajectory τ . Stochasticity in either the
controller (e.g., RRT) or the dynamics (e.g., uncertain outcome from an action) can result in τ be-
ing random. Finally, a behavior function b(τ, t) computes the behavior value of the trajectory—for
example, the motion jerkiness. Some behaviors only depend on the trajectory and not the task, but
we use b(τ, t) for consistency. Sec. 4 presents a list of behaviors.

The discussion on behavior in Sec. 1 is informal and implicitly combines two related but different
concepts. The first concept is the behavior function b(τ, t) discussed above. The second is the spec-
ified target: for the swerving example, we are particularly interested in maximal behavior values.
Thus, the target value can be thought of as +∞. This inference problem uses the maximal mode of
ROCUS. In other cases, we are also interested in tasks and trajectories whose behaviors matches a
target. For example, we want to find road conditions that lead to a daily commute time of an hour,
where the behavior is the travel time. This inference problem uses the matching mode. Since match-
ing mode is conceptually simpler, we present it first, followed by maximal mode. The sampling
procedure is the same for both modes and presented last in Alg. 1.

3.1 Matching Mode
The exact objective is to find tasks and trajectories that exhibit user-specified behaviors b∗:

t, τ ∼ p(t, τ |b = b∗) ∝ p(b = b∗|t, τ)π(τ |t)π(t). (1)
In most cases this posterior does not admit direct sampling, and an envelope distribution is not
available for rejection sampling. Markov-Chain Monte-Carlo (MCMC) sampling does not work
either: since the posterior is only non-zero on a very small or even measure-zero set, a Metropolis-
Hastings (MH) sampler [26] can get stuck in the zero-density region. Similar to the BAYES-TREX
formulation [12], we relax it using a normal distribution formulation as shown in Fig. 2:

b̂|b ∼ N (b, σ2) t, τ ∼ p(t, τ |̂b = b∗) ∝ p(̂b = b∗|t, τ)p(τ |t)π(t). (2)
This relaxed posterior is non-zero everywhere π(t) is non-zero and provides useful guidance to an
MH sampler. While σ is a hyper-parameter in BAYES-TREX [12], we instead choose σ such that∫ b∗+

√
3σ

b∗−
√
3σ

p(b) db = α, with p(b) =

∫
t

∫
τ

p(τ |t)π(t)1b(τ,t)=b dτ dt (3)

being the marginal distribution of b(τ, t), which can be estimated by trajectory roll-outs. This formu-
lation has two desirable properties. First, it is scale-invariant with respect to b(τ, t), e.g. measured
under different units like meters vs. centimeters. Second, the hyper-parameter α ∈ [0, 1] has the
intuitive interpretation of the approximate “volume” of posterior samples t, τ | b̂ = b∗ under the
marginal p(t, τ) = p(τ |t)π(t), a notion of their representativeness. Details are derived in App. A.

3.2 Maximal Mode
In this mode, ROCUS finds trajectories that lead to maximal behavior values: b∗ → ±∞. It can also
be used for finding minimal behavior values by negating the behavior. The posterior formulation is:

b0 =
b− E[b]√

V[b]
, β =

1

1 + e−b0
, β̂ ∼ N

(
β, σ2

)
, t, τ ∼ p(t, τ |β̂ = 1), (4)

where E[b] and V[b] are the mean and variance of the marginal p(b). σ is chosen such that∫ 1

1−
√
3σ

p(β) dβ = α, (5)
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where p(β) is the marginal distribution similar to Eq. 3. If p(b) is normal, p(β) is logit-normal. This
formulation is again scale-invariant and has the same “volume” interpretation for α (App. A).

3.3 Posterior Sampling
Algorithm 1: MH Sampling Procedure

Input: “Posterior volume” α, number of
samples N , optional burn-in NB
and thinning period NT .

1 samples← [ ];
2 Get σ from α by Eq. 3 (matching) or 5

(maximal);
3 Randomly initialize t;
4 for i = 1, ..., N do
5 tnew, pfor, prev = propose(t)
6 Get p from t by Eq. 2 (match) or Eq. 4

(max)
7 Get pnew from tnew by Eq. 2 or Eq. 4;
8 a← (pnew · prev)/(p · pfor);
9 Sample u ∼ U [0, 1];

10 if u < a then
11 t← tnew;
12 Append t to samples;
13 Optionally, discard the first NB burn-in

samples and thin the samples by only
keeping every NT samples;

14 return samples

The posterior sampling mechanism depends on
the stochasticity of the controller and dynamics.

Deterministic Controller & Dynamics: When
both the controller and the dynamics are de-
terministic, so is τ |t, denoted as τ(t). Eq.
2 reduces to t ∼ p(t|̂b = b∗) ∝ p(̂b =
b∗|t, τ(t))π(t), and similarly for Eq. 4.

Alg. 1 presents the MH sampling procedure.
First, σ is computed from α (Line 2). Then we
start with an initial task t (Line 3). For each of
the N iterations, we propose a new task tnew
according to a transition kernel and compute
the forward and reverse transition probabilities
pfor, prev (Line 5). We evaluate the posteriors
under t and tnew (Line 6 and 7) and calculate
the acceptance probability using the MH de-
tailed balance principle (Line 8). Finally, we
accept or reject accordingly (Line 9 – 11). Note
that if the proposal is rejected, the current t is
left unchanged and appended to the samples.
We can discard the first NB samples as burn-
in, and/or thin the samples by a factor of NT to
reduce auto-correlation.

t τ b b̂

u

Figure 3: The same graphical model as in Fig. 2,
but with the addition of stochasticity u in the con-
troller such that τ |t, u is now deterministic.

Stochastic Controller: When the controller
and p(τ |t) are stochastic, the controller can
usually be implemented by sampling a random
variable u (independent from t), and then pro-
ducing the action based on the realization of
u, as shown in Fig. 3. For instance, a Normal
stochastic policy π(s) ∼ N (µ(s), σ(s)2) can
be implemented by first sampling u ∼ N (0, 1)
and then computing π(s) = µ(s) + u · σ(s).
In this case, we sample in the combined (t, τ)-space, with Eq. 2 being p(t, τ |̂b = b∗) ∝ p(̂b =
b∗|t, τ(e, u))p(u)π(t), where we overload τ(t, u) to refer to the deterministic trajectory given the
task t and controller randomness u. It is crucial that for any u, we can evaluate p(u). Concretely,
modifying Alg. 1, unew is proposed alongside with tnew (Line 5), the detailed balancing factor (Line
8) is multiplied by pu,rev/pu,for, and tnew, unew are accepted or rejected together (Line 10 – 12).

Stochastic Dynamics: Using the same logic, ROCUS can also accommodate dynamics stochastic-
ity, as long as it can be captured in a random variable v and p(v) can be evaluated. We leave the
details to App. B and use deterministic dynamics in our experiments.

3.4 The Bayesian Posterior Sampling Interpretation
ROCUS uses Bayesian sampling concepts of prior, likelihood, and posterior quite liberally. Specif-
ically, the task distribution is defined as the prior, and thus the notion of a task being likely in the
deployment context refers to high probability under the prior. Likelihood refers to the behavior
saliency: how much the exhibited behavior matches the behavior specification. The act of posterior
sampling then finds tasks that strike a balance between these two objectives.

The choice of explicitly modeling the task distribution is intentional, as it is not unlikely that the
deployment environment will be different than the development environment. Such a domain mis-
match may cause catastrophic failures, especially for learned controllers whose extrapolation be-
haviors are typically undefined. With a suitable task distribution, ROCUS allows more failures to
surface during this testing procedure.
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4 Behavior Taxonomy
Robot behaviors broadly belong to one of two classes: intentional and emergent. Intentional be-
haviors are those that the controller explicitly optimize with objective functions. For example, the
controller for a reaching task likely optimizes to move the end-effector to the target, by setting the
target as an attractor in DS, using a target-reaching objective configuration in RRT, or rewarding
proximity in RL. Thus, the final distance between the end-effector and the target is an intentional
behavior for all three controllers. By contrast, emergent behaviors are not explicitly specified in the
objective. For the same reaching problem, an RL policy with reward based solely on distance may
exhibit smooth trajectories for some target locations and jerky ones for others. Such behaviors may
emerge due to robot kinematic structure, training stochasticity, or model inductive bias.

For trajectory τ , many behavior metrics b(τ, t) can be expressed as a line integral
∫
τ
V (x) ds of a

scalar field V (x) along τ or its length-normalized version 1
||τ ||

∫
τ
V (x)ds, where ds is the infinites-

imal segment on τ at x and ||τ || is the trajectory length. x and τ can be in either joint space or task
space. We introduce six behaviors: length, time derivatives (velocity, acceleration and jerk), straight-
line deviation, obstacle clearance, near-obstacle velocity and motion legibility, whose mathematical
expressions are in App. C. In addition, custom behaviors can also be used with ROCUS.

5 ROCUS Use Case Demos
In this section, we demonstrate how ROCUS can find “hidden” properties of various controllers for
two common tasks, navigation and reaching. We also uncover a suboptimal controller design due to
bad hyper-parameter choices, which is improved based on ROCUS insights.

5.1 Controller Algorithms
We consider four classes of robot controllers. The imitation learning (IL) controller uses ex-
pert demonstrations to learn a neural network policy which maps observations to deterministic ac-
tions. The reinforcement learning (RL) controller implements proximal policy gradient (PPO)
[27]. While a mean and a variance is used to parameterize a PPO policy during training, the policy
deterministically outputs the mean action during evaluation. The dynamical system (DS) controller
modulates the linear controller u(x) = x∗−x, for the task-space target x∗, into uM (x) = M ·u(x)
using the modulation matrixM derived from obstacle configuration, as proposed by Huber et al. [7].
We give a self-contained review in App. D. The rapidly-exploring random tree (RRT) controller
finds a configuration-space trajectory via RRT and then controls the robot through descretized seg-
ments. Notably, RRT is stochastic, and we discuss the use of controller stochasticity u (c.f. Fig. 3)
in App. E. The MCMC sampling uses a Gaussian drift kernel, as detailed in App. F.

5.2 2D Navigation Task Experiments

RRT

Tree
Path

Smoothing and Lidar

Original
Smoothed

DS Modulation

Figure 4: RRT, IL and DS controllers on 2D navi-
gation domain. Left: the RRT controller tree. Mid-
dle: smoothed RRT trajectory and lidar sensor (orange
lines) for IL controller training. Right: the modulation
by the DS controller.

Setup In a rectangular arena with irregu-
larly shaped obstacles, a point mass robot
needs to move from the lower left to the
upper right corner (Fig. 1 left). App. G
details the obstacle generation and robot
simulation procedures and contains more
environment visualizations.

We consider three controllers for this en-
vironment: an RRT planner, a deep learn-
ing IL policy, and a DS (Fig. 4). The RRT
planner implements Alg. 2 and discretizes
the path to small segments as control signals at each time step. The IL controller uses smoothed RRT
trajectories as expert demonstrations, and learns to predict heading angle from its current position
and lidar readings. The DS controller finds an interior reference point for each obstacle, and converts
each obstacle in the environment to be star-shaped. Γ-functions are then defined for these obstacles
and used to compute the modulation matrix M . App. H contains additional implementation details.

Straight-Line Deviation In most cases, the robot cannot navigate directly to the target in a straight
line. Thus, the collision-avoidance behavior is a crucial aspect for navigation robots. To understand
it, we sample obstacles that lead to trajectories minimally deviating from the straight line path. Since
the deviation is always non-negative, we use the matching mode in Eq. 2 with target b∗ = 0.
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Dynamical System Rapidly-Exploring
Random Tree

Imitation Learning
Dynamical System Rapidly-Exploring

Random Tree
Imitation Learning

Figure 5: Top: Posterior trajectories in orange
vs. prior in blue for minimal straight-line devia-
tion behavior for three controllers. Bottom: Pos-
terior obstacle distribution relative to the prior.
Higher obstacle density regions are painted in red
and lower ones in blue.

In Fig. 5, the top row plots posterior trajecto-
ries in orange, with prior trajectories in blue.
The bottom row plots the obstacle distributions
compared to the prior, with red regions being
more likely to be occupied by obstacles and
blue ones less likely to be obstructed.

For DS and RRT, the posterior trajectories and
obstacle configurations are mostly symmetric
with respect to the straight-line connection, as
expected since both methods are formulated
symmetrically with respect to the x- and y-
coordinates. The obstacle distribution under
RRT is also expected, since it seeks straight-
line connections whenever possible and thus
favor a “diagonal corridor” with obstacles on
either side. For DS, however, obstacles are
slightly more likely to exist at the two ends of
the above-mentioned corridor. This behavior is
an artifact of the DS tail effect, which drags the
robot around the obstacle (details in App. D). By taking advantage of anchor-like obstacles at the
ends of the corridor, the modulation can reliably minimize the straight-line deviation.

By comparison, the IL controller saliently exhibits trajectory asymmetry: it mostly takes paths on
the left. It is possible that the asymmetry is due to “unlucky” samples by the MH sampler, but many
independent restarts all confirm its presence, indicating that the asymmetry is inherent in the learned
model. Since the neural network architecture is symmetric, we conclude that the stochasticity in
the dataset generation and training procedure (e.g. initialization) leads to such imbalanced behav-
iors. Furthermore, the obstacle map suggests that obstacles are distributed very close to the robot
path. Why does the robot seem to drive into obstacles? The answer lies in dataset generation: the
smoothing procedure (Fig. 4 middle) results in most demonstrated paths navigating tightly around
obstacles, and it is thus expected that the learned IL controller displays the same behavior.

Takeaways ROCUS reveals two unexpected phenomena. First, IL trajectories are highly asym-
metric toward the left of the obstacle due to dataset and/or training imbalance. Second, both DS
and IL models exhibit certain “obstacle-seeking” behaviors, the former due to the “tail-effect” and
the latter due the dataset generation process. In both cases, such behavior may be undesirable in
deployment due to possibly imprecise actuation, and the controller design may need to be modified.
Additional studies on legibility and obstacle clearance behaviors are presented in App. I.

5.3 7DoF Arm Reaching Task Experiments
Setup A 7DoF Franka Panda arm is mounted on the side of a table with a T-shaped divider (Fig. 1
right). Starting from the same initial configuration on top of the table, it needs to reach a random
location on either side under the divider. We simulate this task in PyBullet [28]. We consider three
controllers: an RRT planner, a deep RL PPO agent, and a DS formulation.

RRT again implements Algorithm 2, but uses inverse kinematics (IK) to first find the joint config-
uration corresponding to the target location. The RL controller is a multi-layer perceptron (MLP)
network trained using the PPO algorithm. The DS model outputs the end-effector trajectory in the
task space, which is converted to joint space via IK, with SVM-learned obstacle definitions. App. J
contains additional implementation details for each method. Overall, RRT and RL are quite suc-
cessful in reaching the target while the DS is not due to the bulky robot structure, close proximity to
the divider, and the task-space only modulation.

End-Effector Movement We find configurations that minimize the total travel distance of the end-
effector for RRT and RL (DS omitted due to high failure rate). Fig. 6 (left two) shows the posterior
target locations and trajectories. Notably, unlike RL, RRT trajectories are highly asymmetric, since
there are straight-line connections in the configuration space from the initial pose to some target
regions on the left, while every right-side goal requires at least an intermediate node.

DS Improvement with ROCUS Our initial DS implementation frequently fails to reach the target.
This is understandable, as the DS convergence guarantee [7] is only valid in task space, in which
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RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

Figure 6: Left: Minimal end-effector movement samples for RRT and RL. Right: Posterior samples
for minimal distance from end-effector to target for the original and improved DS controllers. Top:
posterior targets locations, with tabletop + divider in green and target region in orange. Bottom:
posterior trajectories in red, prior trajectories in blue. Robot is mounted on the near long edge.

the modulation is defined. When the full-arm motion is solved via IK, it is possible that some body
parts may collide and get stuck because of the table divider. To understand the DS behaviors, we use
ROCUS to sample target locations that result in minimal final distance from the end-effector to the
target (i.e., most successful executions, Fig. 6 center-right). Similar to the RRT case, the samples
show strong lateral asymmetry, with all posterior target locations on the left, due to the same cause
of asymmetric kinematic structure. The result points to a clear path to improve the DS controller
such that it can succeed with right-side targets: increase the collision clearance of the divider so
that the end-effector navigates farther away from the divider, thus also bringing the whole arm to be
farther away. As detailed in App. K, this modification greatly improves the controller performance as
confirmed by the new symmetry in Fig. 6 (rightmost). In addition, since the issue with DS controller
mainly lies in obstacle avoidance in joint-space or on the body of the robot, additional techniques
[29, 30, 31, 32] could be used and we leave them to future directions.

Takeaway The set of studies reveal an important implication of the robot’s kinematic structure: the
left side is much less “congested” with obstacles than the right side in the configuration space. While
the RL controller is able to learn efficient policies for both sides, the design of certain controllers
may need to explicitly consider such factors. App. K includes an additional study on legibility.

5.4 Quantitative Summary
We studied other additional behaviors on both tasks, and Tab. 1 summarizes prior vs. posterior mean
behavior values and shows that ROCUS consistently finds samples salient in the target behavior.

Domain Behavior Target Prior (DS) Post. (DS) Prior (IL/RL) Post. (IL/RL) Prior (RRT) Post. (RRT)

2D Nav

Avg. Jerk 0 1.84e-3 1.46e-3 6.95e-4 3.19e-4 4.24e-4 2.79e-4
Straight 0 0.256 0.084 0.378 0.301 0.470 0.162
Legibility min 0.819 0.650 0.877 0.784 0.798 0.669
Obstacle 0 0.309 0.229 0.262 0.218 0.312 0.241
Obstacle max 0.309 0.611 0.262 0.387 0.312 0.442

Arm Straight 0 0.980 0.913 0.858 0.762 1.223 0.897
EE Dist 0 0.934 0.623 0.958 0.691 3.741 1.192

Table 1: Quantitative results on additional tasks for two domains.

6 MCMC Sampling Evaluation

0 5000 10000
MCMC Iteration

0.1

0.2
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or

 V
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Figure 7: 2D navigation DS min
straight-line deviation samples.

After confirming that ROCUS can indeed uncover significant
and actionable controller insights, we evaluate the sampling
procedure itself, using tasks described above as examples.

Mixing Property A potential downside of MCMC sam-
pler is the slow mixing time, which causes the chain to take
a long time to converge from initialization and causes consec-
utive samples to be highly correlated. Does this phenomenon
happen for our sampling? Fig. 7 plots the behavior along the
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MCMC iterations for the DS minimal straight-line deviation behavior, showing that the chain mixes
well quite fast (additional ones in Fig. 10 of App. F). Thus, a modest amount of samples, such as
several thousand, is typically sufficient to model the target posterior distribution well.

Baseline: Top-k Selection To the best of our knowledge, ROCUS is the first work that applies the
transparency-by-example formulation [12] to robotic tasks, and we are not aware of existing meth-
ods for the same purpose. Notably, adversarial perturbation algorithms [5] are not feasible, since
stepping in simulator (or real world) is not typically differentiable. Sec. 1 discusses a straightforward
alternative that runs the controller on N different scenarios and pick the top-k with respect to the
target behavior. We demonstrate its shortcomings on the minimal straight-line deviation behavior
for the 2D navigation DS controller (ROCUS samples shown in Fig. 5 left).

Fig. 8 (left) shows the trajectories of different values of k for the same fixed N , and vice versa.
While a bigger N/k ratio leads to more salient behaviors in the top-k samples, these examples
become more concentrated around the global maximum and less diverse, making this approach
especially myopic. Further, it is not easy to find the optimal N to trade off between diversity and
saliency of the top-k samples. By contrast, ROCUS offers the intuitive α hyper-parameter. Fig. 8
(middle) shows that a smaller N fails to highlight the “corridor” pattern while a larger N makes it
completely open and misses the “tail-effect anchors” at the two ends.

In addition, the hard cut-off at the k-th salient behavior threshold has two undesirable implications:
first, every trajectory more salient than the threshold is kept but is given equal importance; second,
a trajectory even slightly under the threshold is strictly discarded. By comparison, ROCUS gives
more importance to more salient samples in a progressive manner, as shown in Fig. 8 right.

Finally, top-k selection is very computationally inefficient. It discards all of the unselected N − k
samples, while ROCUS is much more efficient in that all samples after the burn-in up to the thinning
factor can be kept since the posterior concentrated on the salient behavior is directly sampled.

Different k, same N=10000

k=3000
k=1000
k=100
k=10

Same k=50, different N
N=50
N=100
N=1000
N=10000

k=50, N=100 k=50, N=10000

0.0 0.2 0.4
0

5

10

15

20
Behavior value p.d.f.

Prior
Top-k
RoCUS

Figure 8: Top-k selection baseline. Left two: trajectory distribution; middle two: obstacle distribu-
tion; right one: probability density function of behavior values.

7 Discussion and Future Work
ROCUS enables humans to build better mental models of robot controllers. Compared to existing
evaluations on task-completion metrics for hand-designed tasks, ROCUS generates tasks and tra-
jectories that highlight any given behavior in a principled way. We used it to uncover non-obvious
insights in two domains and help with debugging and improving a controller.

While ROCUS is mainly a tool to analyze robot controllers in simulation as part of comprehensive
testing before deployment, it can help understanding (anomalous) real world behaviors as well.
When an anomaly is observed, ROCUS can find more samples with the anomaly for developers to
identify patterns of systematic failures. Furthermore, ROCUS is not inherently limited to simulation:
it only requires trajectory roll-out on specific tasks. For the arm reaching task, this is easy in the real
world. For autonomous driving, “recreating” a traffic condition that involves other vehicles may be
hard. However, a key feature of ROCUS is the decoupling of the task and the controller algorithm,
which allows testing on simpler task variants (e.g. with props instead of real cars).

There are multiple directions for future work, including evaluation of model updates [33] by defining
behavior functions on two controllers, better understanding the samples with explainable artificial
intelligence (XAI) methods, and an appropriate interface to facilitate the two-way communication
between ROCUS and end-users, as discussed in detail in App. L.

Overall, ROCUS is a framework for systematic discovery and inspection of robotic controller be-
haviors. We hope that the demonstrated utility of ROCUS sparks further efforts towards the devel-
opment of other tools for more holistic understanding of robot controllers.
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