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Abstract

Dimensionality reduction (DR) of high-
dimensional data is of theoretical and practical
interest in machine learning. However, there exist
intriguing, non-intuitive discrepancies between
the geometry of high- and low-dimensional
space. We look into such discrepancies and
propose a novel visualization method called
Space-based Manifold Approximation and
Projection (SpaceMAP). Our method establishes
an analytical transformation on distance metrics
between spaces to address the ‘“crowding
problem” in DR. With the proposed equivalent
extended distance (EED), we are able to match
the capacity of high- and low-dimensional space
in a principled manner. To handle complex data
with different manifold properties, we propose
hierarchical manifold approximation to model the
similarity function in a data-specific manner. We
evaluated SpaceMAP on a range of synthetic and
real datasets with varying manifold properties,
and demonstrated its excellent performance in
comparison with classical and state-of-the-art
DR methods. In particular, the concept of space
expansion provides a generic framework for
understanding nonlinear DR methods including
the popular t-distributed Stochastic Neighbor
Embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP).

1. Introduction

Real-world data, including images, videos, genetic expres-
sions, natural languages, etc., commonly have a high ambi-
ent dimension (i.e. number of pixels or measurements). The
intrinsic dimension of these data, however, is typically much
lower, which fact is recognized as a fundamental reason for
modern machine learning to work well (Levina & Bickel,
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2004; Pope et al., 2021; Wright & Ma, 2022). Effective and
accurate dimensionality reduction (DR) to discover the in-
trinsic low-dimensional data structure is of significant value
for machine learning research.

DR is also essential for data visualization, which provides
valuable intuition for researchers from different disciplines
dealing with high-dimensional data. A space with a di-
mensionality higher than 3, however, is already beyond our
accustomed way of seeing data. Here we enumerate a num-
ber of challenges in visualizing high-dimensional data onto
a drastically reduced dimension (2 or 3):

Firstly, our intuition of geometry in 2- or 3-dimensional
space often does not generalize to high-dimensional space.
Theories on high-dimensional geometry revealed a number
of intriguing, non-intuitive phenomena (Giraud, 2021), one
of which is “concentration on crust”. Imagine a ball with
a radius r in a d-dimensional Euclidean space. Consider
a “crust” of the d-dimensional ball, which is between the
surfaces of this ball and a slightly smaller concentric ball
with radius (1 — €)r, where € is small (Fig.1 a.1). The
ratio of the volume of between the “crust” Cy(r) to the ball

is Va(r) is T4 = 1 — (1 — )%, Take € = 0.0, it is
intuitive to see that the ratio is tiny with small d, however
this ratio grows fast to near 100% when d increases, as
illustrated in Fig.1 a.2. The mass of a high-dimensional
ball is therefore counter-intuitively concentrated on a crust.
Such concentration underlies the “crowding problem” of DR
(van der Maaten & Hinton, 2008): a faithful preservation of
distances of high-dimensional space would lead to crowded
data points in low-dimensional space (all pairwise distances
become similar as shown in Fig.1 a.3). This suggests that
distances need to be defined differently in high- and low-
dimensional spaces to mitigate the crowding.

Secondly, many real-world high-dimensional datasets ex-
hibit hierarchical structures, with sub-manifolds on large
manifolds, governed by the underlying data generation pro-
cess (Bengio, 2013; Abdolali & Rahmati, 2019). The state-
of-the-art DR methods, such as Barnes-Hut t-distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten,
2014) and Uniform Manifold Approximation and Projec-
tion (UMAP) (MclInnes et al., 2018), commonly consider a
restricted k—nearest neighborhood, hence part of the mani-
fold. Isomap (Tenenbaum et al., 2000), on the other hand,
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Figure 1. Left panel a: counter-intuitive high-dimensional geometry. (a.1) The “crust” of a ball in 3-dimensional spaces with Euclidean
distance metric. (a.2) The fraction of volume between crust and ball, as a function of the dimensionality of the ball. As the dimensionality
grows, the mass concentrates on the crust. (a.3) Distributions of the pairwise distances in a 2-dimensional (gray) and 300-dimensional
(red) spaces. Right panel b: visualization results of three synthetic datasets (2D concentric rings, 3D Gaussian distributed point cloud, and
Swiss roll with a hole), by PCA, SNE, t-SNE, UMAP, and the proposed SpaceMAP.

takes the entire manifold into account by inferring geodesic
distances on a connected graph. Empirically, t-SNE and
UMAP work well on data of disjoint manifolds such as
MNIST and ImageNet, while Isomap works on data of con-
tinuous manifold such as Swiss roll dataset. It remains
challenging, nevertheless, for one method to succeed in
both disjoint and continuous data manifolds.

A third concern is related to the first observation, which
shows that to mitigate the “crowding problem” one must
define distances differently in high- and low-dimensional
space. This essentially means a geometrical distortion be-
tween two spaces. By using a “heavier tail” similarity func-
tion in low-dimensional space, t-SNE and UMAP realize
such distortion implicitly. However, the underlying distor-
tion of distance metric has never been analytically expressed
or validated. The implicity in turn deters us from integrating
prior information on data when it is known. For example,
for the Swiss roll dataset, we know a priori that the intrinsic
dimensionality of data is 2. Even for real-world datasets
such as MNIST or ImageNet, a meaningful estimation of
the intrinsic dimensionality can often be made (Pope et al.,
2021; Ansuini et al., 2019).

We strive to tackle the three challenges by the pro-
posed Space-based Manifold Approximation and Projection
(SpaceMAP) method. We made three contributions:

* Space Expansion: We explicitly define, and match
the “capacity” of high- and low-dimensional space, by
analytical transformation of distances, and show that
this transformation is justified by previous theory of

intrinsic dimensionality estimation;

* Hierarchical Manifold Approximation: We propose
dataset-specific, hierarchical modeling of similarity, to
accommodate both disjoint and continuous manifolds.

 Prior Information for DR: The hyper-parameters of
SpaceMAP are explainable, and amendable to integrat-
ing data prior.

2. Related Work
2.1. Mini Review

We follow the categorization in van der Maaten et al. 2009
and divide DR method into full spectral and sparse spectral
methods.

Full Spectral Methods: Full spectral methods are based
on eigen-decomposition of a completed matrix that captures
the covariances between dimensions or pairwise similarities
among all data points. The most well-known method is
the principal component analysis (PCA) (Pearson, 1901),
which finds a low number of principle directions that ac-
count for the largest variations in data. PCA also has nonlin-
ear versions called kernel PCA (Ross et al., 2007; Tipping &
Bishop, 1999; Zou et al., 2006). Alternatively, the similarity
matrix can be based on geodesic distance (Isomap, landmark
Isomap) on a manifold (Tenenbaum et al., 2000; Chen et al.,
2006). Maximum variance unfolding (MVU) (Weinberger
& Saul, 2006) also belongs to this category of methods.

Sparse Spectral Methods: Different from full spectral
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methods, sparse spectral methods only focus on retaining
local structure of data and solve a sparse eigen-problem. In
general, preserving only local properties allows for better
embedding of nonlinear manifolds (van der Maaten et al.,
2009). Important work in this category include locally linear
embedding (LLE), modified LLE, Hessian LLE (HLLE),
Laplacian eigenmaps(LE), diffusion maps (Coifman & La-
fon, 2006), local tangent space alignment (LTSA), locally
linear coordination (LLC), etc (Roweis, 2000; Donoho &
Grimes, 2003; Belkin & Niyogi, 2001; Weinberger & Saul,
2006; Zhang & Zha, 2004; Coifman & Lafon, 2006; Roweis
et al., 2002).

Non-convex Extensions: Instead of solving eigen-
decomposition problems, both category of methods extends
to non-convex variants, which can be solved by gradient
descent. This significantly enriches the possibilities of
DR. Most of today’s popular DR methods are non-convex
sparse spectral methods, including the t-distributed stochas-
tic neighbor embedding (t-SNE) (van der Maaten & Hinton,
2008) originated from stochastic neighbor embedding (SNE)
(Hinton & Roweis, 2002), and its variants: Barnes-Hut t-
SNE, fast Fourier-transform-accelerated interpolation-based
t-SNE) (van der Maaten, 2013; Linderman et al., 2019).
More methods are proposed in recent years to re-formulate
the similarity and loss functions, including among others
LargeVis (Tang et al., 2016), uniform manifold approx-
imation and projection (UMAP) (Mclnnes et al., 2018),
TriMAP (Amid & Warmuth, 2019) and PaCMAP (Wang
et al., 2021). PHATE (Moon et al., 2019) and multiscale
PHATE (Kuchroo et al., 2022) were proposed based on
diffusion probability (Coifman et al., 2005). We will ex-
pand specifically on UMAP in Section 2.2, as our proposed
SpaceMAP largely inherits its framework.

Finally, we briefly note that there also exist parametric DR
methods, which amortize the computation on parameters
of neural networks (NN) instead of directly on embedding.
This category includes the early parametric t-SNE method
(van der Maaten, 2009), autoencoder (Hinton & Salakhutdi-
nov, 2006), deep learning multidimensional projection (Es-
padoto et al., 2020), and deep recursive embedding (Zhou
etal., 2022).

2.2. UMAP: A Contrastive Learning Perspective

UMAP is a newly established visualization method which
has gained popularity in recent years (Mclnnes et al., 2018).
In its original presentation UMAP is rooted in the theory of
Riemannian geometry and algebraic topology. The mathe-
matical savviness however casts certain degree of opaque-
ness, and has initiated many discussions and debates in
the community (Damrich & Hamprecht, 2021a; Kobak &
Linderman, 2021; Wang et al., 2021). The core question
is: what has led to UMAP’s unique success in visualiza-

tion? Here we take a fresh look on UMAP from the lens
of contrastive learning, a category of unsupervised learning
methods that effectively learns representations without la-
bels (Wu et al., 2018; Ye et al., 2019; He et al., 2020; Tian
et al., 2020; Chen et al., 2020; Chen & He, 2021).

Like t-SNE, UMAP starts from computing similarities, de-
noted as w;; representing the similarity between x; and x;
in the high-dimensional space, and v;; between y; and y;
in the low-dimensional space. The original loss function of
UMAP is defined as:

Wi 1 — Wjj
£umap = Z Z (wij IOg vi]]' + (1 - wij) IOg 1— vzj)

i g
(1)

Given that w;; is only dependent on x, not on y, the effec-
tive loss to derive gradient on y is:

Limap == > Y (wijlogvi; + (1 — wi;) log(1 — vy))
(2

Here the first term can be interpreted as attractive force,
and the second term repulsive force, realized by negative
sampling (e.g. sampling the non-neighbors ourside KNN)
(McInnes et al., 2018)." Negative sampling is the essence of
contrastive learning: if x; belongs to the KNN of x; (cate-
gory similar), the first term asserts that their representations
y; and y; are also close; if x; is outside of the KNN of
x; (category dissimilar), the second term asserts that their
representations are distant. Here the representation is the
2D output y, instead of intermediate tensors in neural net-
works for representation learning. This hidden contrastive
mechanism likely underlies the success of UMAP to a large
extent.

3. Method

3.1. Overview

We follow the generic framework of graph matching:
first define the pairwise similarities F;; among the high-
dimensional data points «;, ¢ = 1,..., N, and ();; among
the low-dimensional data points y;, then optimize a con-
trastive loss function £(P;;, Q;;) with respect to y;’s. The
framework resembles that of UMAP; the major novelty of
this work, however, is a principled and explainable way to
compute similarities that construct the two graphs.

"'We note that by using negative sampling to compute the re-
pulsive force, UMAP’s true loss is different from the one in the
original form, as closely examined in (Damrich & Hamprecht,
2021b).
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3.2. SpaceMAP

Space Expansion: The mismatch of capacity (expressive-
ness of data) between high- and low-dimensional space is
the fundamental difficulty of DR. Here we define “capacity”
as a Hausdorff measure of volume in the D-dimensional
space:

Definition 3.1 (Space Capacity). Let R;; = [(x;, ;) € R
be the distance between data point x; and x; in the D-
dimensional space. The space capacity Vp(R;;) from point
1 to point j is defined as the volume of a D-dimensional ball
with a radius of R;;.

I(x;, x;) can be any valid distance metric such as Euclidean,
Manbhattan, cosine, etc. Throughout this paper we use Eu-
clidean distance for simplicity. In Euclidean space, the
capacity Vp(R;;) is simply the volume of a D-dimensional
hyper-sphere Sp(R;;):

<D/2 5
Rij)=——  _RP 3
Vo (Fi) T(D/2+1) " ©)
where T'(+) is the gamma function.

To match capacity between two spaces of different dimen-
sionality, we can change the definition of “distance”. We
hence introduce the concept of equivalent extended distance
(EED):

Definition 3.2 (Equivalent Extended Distance: EED). Let
R;; = l(x;, z;) € R be the distance between data point x;
and x; in the D-dimensional space. The equivalent extended
distance (EED) 7éz‘j,D—>d is defined as the equivalent dis-
tance between x; and x; in d-dimensional space such that
the Space Capacity matches: Vd(ﬁij,p_ml) = Vp(Rij)

Example 3.1 (2-dimensional EED of Euclidean distance).
Consider a D-dimensional Euclidean space, the distance
between two points i and j is R;; = ||@; — x;||. To match
capacity, the 2-dimensional EED of R;; is: 7~?,” Do =

\/@:aRg/Qwherea:\/ﬂ%.

It is straightforward to prove that when embedding D-
dimensional Euclidean space into d-dimensional space,
EED can be expressed in a simple form:

Rpa = aR7 €]

where « is a constant determined by D and d. In the special
case of d = D, the distance definition is unchanged.

Intrinsic Dimension Estimation: Most natural high-
dimensional data lie on or near to a low-dimensional man-
ifold M, with its intrinsic dimension (ID) d < D, where
D is the ambient dimension. Here we briefly describe two
ID estimation methods (Levina & Bickel, 2004; MacKay &
Ghahramani, 2005).

Levina & Bickel 2004 proposed the Maximum Likelihood
Estimation (MLE) method to estimate the ID based on con-
stant density assumption in a small neighborhood and the
Poisson process to model the random sampling in this neigh-
borhood. The MLE method provides a way to estimate
ID at point z; in its k—neighborhood. Let R be the dis-
tance metric (e.g. Euclidean) and Iz;; € R be the distance
between point &; and x; under this metric, the maximum
likelihood estimation (MLE) of the ID around point x;, with
the distance metric of R, is computed as:

-1
k—1

A 1 R;

d(zi; R) = m;:l log i

®)

k
ij

where the summation is over the k-nearest neighbors of
point ;. We note that dy(z;; R) is point-specific, depen-
dent on £ and the distance metric R. ID therefore uniquely
characterizes the sub-manifolds around .

MacKay & Ghahramani 2005 proposed a robust way to
estimate global ID of the whole dataset:

1
d, = (}V Zcik(xi)l) ©)

where N is the number of data points. We use Equation 5
to estimate the point-specific local IDs and Equation 6 to
estimate the global ID.

Our proposed EED fits in this framework of MLE ID estima-
tion. By applying EED to the distance metric on a manifold
of ID D, the following Proposition holds:

Proposition 3.1 (EED transforms ID provably). For any
neighborhood size k, if the MLE of the intrinsic dimension
around point x; under the distance metric R is dy, (x5 R) =
D, the MLE of the intrinsic dimension after applying EED
to the distance metric is d: dy, (245 7~€Dﬁd) =d.

Proof. By replacing metric R with the EED-transformed
metric R p_,4 (Equation 4) in Equation 5, we have:

-1

A ) L=
di (23 Rp—a) = p— > log ’1’;/(1
=1 ol
k—1 !
_ (L P log Rik
F-12d ®R,
d - d
= Edk(%;R) = ED =d )
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Figure 2. (a) Illustration of a hierarchical manifold: sub-manifolds
(dark blue) on a global manifold (light blue). (b) The high-
dimensional similarity functions P for SpaceMAP (b), UMAP
(c), and t-SNE (d). SpaceMAP has subtle perception of the neigh-
borhood in near and middle fields.

The same holds true for the global ID in Equation 6. There-
fore, when the targeted dimensionality d is set to 2 for
visualization, the MLE of ID under the EED-transformed
distance metric will change to be exactly 2. Essentially, the
validity of Proposition 3.1 is due to the exponential form
in EED transformation by Equation 4, while in the MLE
Equation 5 and 6 the distances are taken logarithmic.

Hierarchical Manifold Approximation: Real-world data
often exhibits a hierarchical structure, given the underlying
data generation process (Bengio, 2013). The data mani-
fold can be continuous, disjoint, or locally continuous and
globally disjoint. It is informative to analyze both the near
field (local neighborhood) and middle field (further range)
of data to capture a meaningful range of inter-relationship.
For SpaceMAP, we divide the space with respect to each
data point ¢ into the near field S; jcqr, middle field S; middies
and far field S; ¢,,. Given unknown scaling of data, a com-
mon approach is to set the neighborhoods by the number (or
percentage in the whole dataset) of nearest neighbors. Two
numbers are empirically set: kpear = 20, and kpiqqle = 50.
Beyond the middle field, data points are usually so distant
that their similarity is trivial.

We subsequently estimate two IDs: djoca is computed using
Equation 5 for each data point using Kpcar, and dgiobal US-
ing Equation 6 for the entire dataset using kpear + Kmiddle-
Pseudo code for calculating djoca1 and dgiobar is provided in
Appendix A.2. The two IDs characterize the hierarchical
manifold M, and enable us to analytically compute EED.
Different from t-SNE or UMAP where similarity is defined
in an implicit manner, the similarities in SpaceMAP are com-
puted from explicitly transformed distances, which provably
reduces the intrinsic dimension (Proposition 3.1). Alterna-
tively, both djoca1 and dgiobal can also be set manually with
prior knowledge on data, to impose strong regularization on
the DR results.

Similarity: Similarity is typically modeled as a nonlinear
function of distance. Suppose the similarity function is de-
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Figure 3. The low-dimensional similarity functions () for (a) SNE
(Gaussian), (b) t-SNE (t-distribution), (c) UMAP (inverse polyno-
mial) and (d) SpaceMAP (exponential). SpaceMAP alters the tail
based on dataset-specific ID.

fined as P = S(+) in the D-dimensional space, which is to
be matched by @ = S’(+) in the d-dimensional space. With
EED (Equation 4), matching P and () leads to distortion
of the similarity function:S’(R) = S ((g) 7
the distance metric (here Euclidean) in the D-dimensional
space. Given the exponential coefficient % < 1, such an
operation amounts to deforming the high-dimensional sim-
ilarity function towards a heavier-tail one (Fig. 3 d). This
is exactly the same principle as t-SNE, where the use of
t-distribution with heavier tail fundamentally underlies its
success. In SNE, in contrast, both spaces are treated equally
in terms of distance metric.

), where R is

We take the Gaussian similarity function as in SNE, and
define P;; and Q;; for SpaceMAP:

2d)5cal/ dglobal

exXp | — i O near ) .’I/'j S Snear
P, = Rij—vi)?
e exp (—7(01 Jmi:dli ) ; Tj € Smiddle
0, T; € Star
P+ Py
jli T £l
Py = ®)

Qij = exp (— (||yz - yydgljb“l)z> 9

where P;|; denotes the conditional probability P(z;|z;),
R;; = H:cl — ||, diocar and dgobar are the estimated local
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and global ID, and ~; is a parameter to ensure continuity
from near field to middle field. Equation 8 symmetrizes the
conditional probability as in t-SNE (van der Maaten, 2014).
Q;; takes a simple exponential form (note that the EED
parameter o can be absorbed to y hence omitted), which
is favorable for gradient computation during optimization.
More details on how to set up 0 near» 04, middle, and 7y; are
found in Appendix A.1.

The resulting hierarchical similarity function is visually
simple, as illustrated in Fig. 2, where P of near, middle, and
far fields are plotted for SpaceMAP (b). It can be seen that
t-SNE makes no differentiation between the fields, with a
single Gaussian, while UMAP better differentiates them, but
with a uniform profile in the near field (1-nearest neighbor).
SpaceMAP has a subtle perception of near and middle fields:
the hierarchical modeling of manifold is reflected by the
field-wise similarity, where exponential coefficients of I2;;
differ depending on the dataset-specific local and global
ID. In the middle field, the exponential remains 2, same
as in SNE and t-SNE. In the near field, however, a scaling
of diocal/dglobal is applied depending on the data-specific
manifold property.

Fig. 3 shows the () function for SNE, t-SNE, UMAP, and
SpaceMAP. Heavier tails can be observed in the later three
methods. For SpaceMAP, heavier tail naturally arises from
EED.

Loss and Optimization: The loss function of SpaceMAP
is similar to that of UMAP:

P, 1—
czzz [Pijlog Q; + (1= P;)log 1—
[ g ;

P;;

ij
(10

where the first term exerts attractive force on similar points,
and the second term repulsive force on dissimilar points.
We used stochastic gradient descent and negative sampling
to optimize £ as in UMAP. For motivation of using this
loss we refer to Section 2.2 and the recent publication on
UMAP’s true loss function (Damrich & Hamprecht, 2021b).

4. Experiments and Results
4.1. Datasets and Evaluation Metrics

We benchmarked our SpaceMAP with other classical or
state-of-the-art methods including PCA, Laplacian Eigen-
maps, t-SNE, and UMAP. Experiments were performed on
a wide range of datasets, including the standard MNIST (Le-
Cun, 1998), Fashion-MNIST (Xiao et al., 2017), Swiss roll 1
(on the surface we dig a hole to test if visualization methods
can preserve the local property on a continuous manifold),
Swiss roll 2 (consisting of parallel lines to test the hierar-
chical manifold assumption), COIL-20 (Nene et al., 1996),
RNA-seq (Tasic et al., 2018). In addition, we also tested our

method on the extremely large GoogleNews Word2Vec 3
million dataset (Mikolov et al., 2013) and the prime-number-
divisibility 1 million dataset(Mclnnes et al., 2018) (Results
are presented in Appendix).

For quantitative evaluation, we computed the 20-fold cross-
validated KNN classification accuracy, trustworthiness, con-
tinuity, Shepard goodness, and normalized stress to evaluate
both local and global structure preservation (Espadoto et al.,
2021; Nonato & Aupetit, 2019). KNN accuracy measures
the local structure preservation along different neighbor-
hood size k. Trustworthiness and continuity evaluate the
local pattern of the embedding by calculating the true neigh-
bor rate and missing neighbor rate. The Shepard goodness
and the normalized stress are two measures of goodness in
global structure preservation. Details on how to compute
the metrics are found in (Espadoto et al., 2021). A newly
proposed metric called DeMAP (denoised manifold affinity
preservation) score (Moon et al., 2019) is also included and
reported in Appendix A.9.

4.2. Results

Fig. 1 (b) shows the results of different methods on 3 syn-
thetic datasets, on which the validity of visualization can
be checked.? The first row illustrates the simplest situation
where the ambient and intrinsic dimensionalities are both 2,
the second row shows a dataset with ambient and intrinsic
dimensionality 3, and the third row shows a Swill roll with
a hole, with the ambient dimensionality of 3 and intrinsic
dimensionality of 2. By correctly integrating prior infor-
mation into the formulation of similarity, the SpaceMAP
map achieves the best performance in all examples. We also
note that SNE surpasses t-SNE and UMAP in unfolding
the Swiss roll, as it correctly (albeit implicitly) assumes the
intrinsic dimensionality to be 2.

We further present the visualization results on two different
synthetic Swiss rolls in Fig. 4. The first Swiss roll consists
of parallel curves with disconnected dots, with djoca =
1 and dgiobar = 2. t-SNE in Fig. 4 (a.2) maintains the
local parallelism but fails to preserve the global continuity.
UMAP (a.4) enforces local connectivity but ignores the
parallelism between curves. The performance improves on
larger neighborhood (a.5) but remains non-ideal. Given
the local and global ID, SpaceMAP (a.6) correctly unfolds
both local and global structure, surpassing t-SNE (a.3) and
UMAP (a.5) with equivalent number of neighbors. For the
Swiss roll with a hole, SpaceMAP (b.6) remains the only
method that correctly unfolds local and global structures.
Both t-SNE and UMAP tend to break around the hole.

’Despite a number of quantitative evaluation metrics as de-
scribed in Section 4.1, it is typically difficult to know the ground-
truth manifold for real-world data. Therefore synthetic datasets
serve well to check the theoretical validity of the proposed EED.
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Figure 4. Visualization results of the synthetic datasets by t-SNE, UMAP and SpaceMAP. Upper panel: The synthetic Swill roll with
diocal = 1 and dgiobal = 2. Lower panel: Swiss roll with a hole, with diocal = 2 and dgiobal = 2.

Table 1. Quantitative measure of visualization performance by SpaceMAP and other reference methods: M:, M., M, and M, indicate
the trustworthiness, continuity, Shepard goodness and normalized stress, respectively. M; and M. are local metrics (left side of the table)
while M and M, are global metrics (right side of the table).

Local Metrics (M, and M)

Global Metrics (M, and M)

Experiments PCA Laplacian t-SNE UMAP SpaceMAP  Experi PCA Laplacian t-SNE UMAP SpaceMAP
2 am 074 081 098 096 097 £ . 050 023 035 032 035
S . 094 093 097 097 098 £ 1-um, 042 033 054 053 0.5
2 a0 091 089 098 098 099 2, 088 041 064 058 067
Z am 098 087 098 099 099 Z 1-m 065 036 066 062 0.67
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Figure 5. Visualization results by PCA, Laplacian eigenmaps, t-SNE, UMAP, and SpaceMAP, on the high-dimensional datasets MNIST,

Fashion-MNIST, COIL-20, and RNA-seq.

Fig. 5 presents 2D visualization of the real-world datasets,
comparing PCA, Laplacian Eigenmap, t-SNE, UMAP, and
SpaceMAP. SpaceMAP shows competitive performance on
data of disjoint manifolds. We also report the quantitative
metrics in Table 1, showing superior local and global metrics
by SpaceMAP. We also report the estimated global ID in Ta-
ble 3 for different real-world datasets. In Appendix A.6 we
present the visualization results of GoogleNews Word2Vec
3M and prime-number-divisibility 1M in Fig. 10 and 11,
where we observe interesting and interpretable hierarchies
in the 2 gigantic datasets. Runtime is reported in Table A.8.

4.3. Ablation Studies

We present the ablation study on the hierarchical manifold
assumption. By setting diocal = dglobal, We could remove
the hierarchical manifold assumption, imposing the same
similarity functions in near- and middle-fields. Fig. 6
shows the comparison between SpaceMAP visualization
with and without hierarchy. A close examination shows that

SpaceMAP with hierarchy reveals more subtle structures in
data: the sub-clusters within the same class (e.g. different
ways of writing a digit) are more pronounced. This subtle
improvement is also reflected by the quantitative measure
in Table 5, including the KL divergence of local similarity
(Mxr,) in Appendix A.5, which measures the preservation
of sub-manifolds in data, and local normalization stress
(M), alocal version of normalized stress (Espadoto et al.,
2021).

The hyper-parameters of kyear and kpyiqqle Were empirically
set to 20 and 50. We show in Appendix Fig. 7 that the results
are not particularly sensitive to the hyper-parameter choices,
because what essentially matters is diocal and dgiopal, see
Appendix A.2 for details. djoca1 is computed from kpea,-
NN, and the value of dj,c, can be stable over a range of
knear choices. dgiobal is a value over all data points, hence
stable by nature.
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Figure 6. Visualization results of the ablation study on hierar-
chical manifold assumption in SpaceMAP with MNIST and
Fashion-MNIST datasets. SpaceMAP with hierarchy reveal more
details of the local pattern (i.e. sub-clusters within a class), as also
quantitatively evaluated in Table 5.

Table 2. Quantitative results of the ablation study on hierarchi-
cal manifold assumption in SpaceMAP with two quantitative
metrics: KL divergence of local similarity (Mk1,) and local nor-
malization stress (M_). For both metrics, lower value is seen as
an indicator of better local structure preservation quality.

Local structure preservation quality

Experiments UMAP  SpaceMAP (no hierarchy) SpaceMAP
2 e 10014 0.9961 0.9915
= M, 09413 0.6714 0.6576
2 o 13239 1.2915 1.2594
£ M, 09277 0.9403 0.9218

5. Discussion and Conclusions

We proposed a new visualization method called SpaceMAP,
which visualizes data of any dimensionality on a 2-
dimensional map. Different from previous DR methods, we
analytically derived a transformation of distance between
high- and low-dimensional spaces to match their capacity.
We further show that the transformation provably reduces
the intrinsic dimension of high-dimensional data, within the
framework of maximum likelihood intrinsic dimensionality
estimation.

We argue that all successful DR methods, including t-SNE
and UMAP, make use of the rationale of space expansion
to realize high-dimensional data visualization on a drasti-
cally reduced dimension. However, previous methods did

such transformation in an implicit manner, with predefined
similarity function (as long as they have a heavy tail, e.g.
t-distribution for t-SNE). Despite their empirical success, it
is difficult to examine the optimality or impose prior knowl-
edge. For SpaceMAP, the capability to integrate useful data
prior explains the success on all synthetic datasets evaluated
in this work.

Furthermore, SpaceMAP models similarity in a hierarchical,
dataset-specific manner, hence compatible to both contin-
uous and disjoint manifolds. Data property should be an
integral part of DR methods, and SpaceMAP presents a way
to incorporate it into the construction of similarity functions.

Finally, we motivated the use of UMAP loss for SpaceMAP
by showing its hidden connection to contrastive learning.
Recently, contrastive learning has demonstrated substantial
success in representation learning. A 2-dimensional visual-
ization map can be regarded as representation of the original
high-dimensional data; the contrastive mechanism likely
explains the success of UMAP, as well as SpaceMAP.

In conclusion, we have proposed a novel visualization
method called SpaceMAP, based on a principled way to
transform distances between high- and low-dimensional
spaces. It further models the hierarchical structure in a
dataset-specific manner based on the local and global intrin-
sic dimensionalities of data. Our experiments demonstrated
its excellent performance on a wide range of synthetic and
real-world datasets, in comparison with other state-of-the-
art DR methods.
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A. Appendix
A.1. Parameters in SpaceMAP Similarity Functions

We provide more details on the computation of SpaceMAP similarity in Equation 8 and 9. In Equation 8, the border point
Ty, (the kq-nearest points to x;) at the intersection of near field and middle field satisfies Py, |i =1, where n € (0,1)isa
hyper-parameter representing the conditional probability differentiating near- and middle-fields. Therefore 0; ncar can be
computed as:

Rleocal/dglobal

O-inear:_ikli (11)
’ Inn

The computation of o; miqdie in Equation 8 follows similar rationales in UMAP (Mclnnes et al., 2018) to ensure that
middle-field neighbors take up certain probability mass: Zj:,;fil Pj\i(ai,middle) = nlog(ks), where k; is the number of
nearest neighbors in the near field, and k9 is the number of nearest neighbors in the middle field. v; in Equation 8 can be

accordingly computed to satisfy continuity of F;;:
i = Rik, — /—0i middle IN7 (12)

A.2. MLE Pseudo Code

Algorithm 1 describes the maximum likelihood estimation (MLE) of the intrinsic dimensions. The inputs of Algorithm 1 are
the distance function of the nearest neighbors of each point knn_dist, the number of nearest neighbors in the near field and
the middle field of each data k¢4, Emiddie- The outputs of the algorithm are the MLE of the intrinsic dimensions of the
local sub-manifolds and the global manifold, on which the data distributes.

Algorithm 1 Maximum likelihood estimation (MLE) of the intrinsic dimension
1: function MLEINTRINSICDIMENSION(knn_dist, Nyear, Mmiddle)
2: kl < knear
k? — kncar + kmiddlc
fori+ 1,...Ndo
R; i, < knn_dist[i, k1]
R; k, < knn_dist[i, ko]
diocal[i] < (ﬁ Zf;l log %)_1
dmidaie[i] < (755 262:711 log %)_1
end for

—1
7 N 3 g
10: dglobal <~ (% Zi:l dmiddle [Z] 1)

11: return dlocah dglobal
12: end function

R A A S

A.3. SpaceMAP hyper-parameters

SpaceMAP has a small set of hyper-parameters, including the number of nearest neighbor in the near field ky¢ar, number of
nearest neighbor in the middle field kpiqdie, and the similarity 1 € (0, 1) at the border of near- and middle-field. We present
the visualization results for SpaceMAP at different number of these three hyper-parameters Fig. 7 and Fig. 8. We observe
that the final visualization results are not particular sensitive to the choice of parameters.

A 4. Quantitative Evaluation of KNN Accuracy

We compare the 20-fold cross-validated KNN classification accuracy as a function of neighborhood size k on different
datasets, namely, MNIST, COIL-20, RNA-seq. In general, SpaceMAP outperforms UMAP in different neighborhood sizes,
while t-SNE is competitive to SpaceMAP when the neighborhood size is small. See the results in Fig. 9.
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Figure 7. Hyper-parameter selection in SpaceMAP. The influence of ny,cqr and nmiqdie, the two main hyper-parameters of SpaceMAP.
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Figure 8. Hyper-parameter selection in SpaceMAP. The influence of 7, similarity at the intersection of near- and middle field.

A.5. KL Divergence of Local Similarity

We introduce a new metric, called KL divergence of local similarity, to evaluate the preservation of local sub-manifolds
in data. It computes the KL divergence between the KNN pairwise similarities (modeled as posterior probability) in the
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Figure 9. 20-fold cross-validated KNN classification accuracy as a function of neighborhood size k on different datasets. From left to
right: MNIST, COIL-20, and RNA-seq.

high-dimensional space and the embedded low-dimensional space:

R;;
Mgr, = KL(R|[r) = > > Rijlog T}? (13)
i g K
(14)
where R;; = % and r;; = % are the pairwise similarities in high-dimensional space and their
kAl kst

embedding in low-dimensional space. This metric characterizes the local data structure preservation, better than other local
metrics such as the KNN accuracy, trustworthiness, and continuity. We selected all the KNN neighbors in SpaceMAP
(default setting is k = Npeqr + Nmiddie = 20 + 50 = 70) and set UMAP with npeighbors = 70 as the baseline in Table 5.
‘We note that this metric is defined independent of our loss function, hence unbiased.

A.6. Visualizing 3 Million Data

Like UMAP, SpaceMAP has the ability to embed millions of data with high dimensionality. Figure ?? shows the embedding
result of the GoogleNews Word2Vec 3 million dataset by UMAP and SpaceMAP. The dataset contains 3 million pre-
trained word vectors with 300 dimensions, widely used in the natural language processing (NLP) community. In the
SpaceMAP result, several clear semantic clusters emerge. Zooming in the cluster with geographic words, we observed
a hierarchical structure based on geographic meaning like the continental location. Some clusters even demonstrated a
profound understanding on the cultural relationship among countries. For example, the South American country names are
in the same sub-cluster as Spain and Portugal, and the North African country names are in the same sub-cluster as other
Islamic countries. Figure 11 shows the embedding result of integers from O to 1,000,000 represented as binary vectors
indicating their prime divisibility, inspired by Mclnnes et al. (2018). The result has a subtle fractal structure.

A.7. Intrinsic Dimensions of Real-world Datasets

Here we provide the intrinsic dimensions of the datasets (MNIST, Fashion-MNIST, COIL-20 and RNA-Seq) as calculated
by Eq. 6 in Table 3. Further information is provided in Pope et al. 2021.

Table 3. The global intrinsic dimensions of the datasets (MNIST, Fashion-MNIST, COIL-20 and RNA-Seq) calculated by Eq. 6.

MNIST Fashion-MNIST COIL-20 RNA-Seq

ID 8.8 9.3 33 16.7
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Figure 10. The Word Map: visualization of the GoogleNews Word2Vec 3 Million Dataset by UMAP (left) and SpaceMAP (middle).
The SpaceMAP result is zoomed in for better visualization of the word semantics (right). The same data points are also marked in UMAP.
We observed a better hierarchical embedding by SpaceMAP compared with UMAP. Remarkable, SpaceMAP demonstrated a profound
understanding on the cultural relationship among countries.

. |
1 M 1
odd numbers even numbers

Divisible by
2’3!

/ Divisible by
23,
S

Divisible by |
23,5,

ivisible by
23,17 =

Divisible by |
23,5, !

Divisible by
2,35,/ °

SpaceMAP

Figure 11. The Prime Number Divisibility: SpaceMAP embeds integers from 0 to 1,000,000, as represented by the sparse binary vectors
of prime number divisibility. Details are found in the original UMAP paper (Mclnnes et al., 2018). Sub-structures of data can be identified,
which corresponds to divisibility of multiple prime numbers (zoomed-in windows). The map has a beautiful fractal structure.

A.8. Runtime and Implementation

The runtime of the visualization methods (t-SNE, UMAP and SpaceMAP) are provided in Table 5. We implemented all the
DR methods on a Ubuntu 20.04 LTS workstation platform with AMD 3900x 4.2GHz 12-core CPU, 64GB DDR4 RAM and
NVidia RTX 3090 24GB GPU. For t-SNE, we use Scikit-learn Barnes-Hut t-SNE implementation with PCA initialization
and the default perplexity is 30. For UMAP, we use the original umap-learn implementation with spectral embedding
initialization, the default number of neighbors for each point is n-neighbors=15.



SpaceMAP: Visualizing High-dimensional Data by Space Expansion

Table 4. Runtime of the methods (t-SNE, UMAP and SpaceMAP)

dataset t-SNE UMAP SpaceMAP
MNIST 210s 34s 85s
Fashion-MNIST  202s 43s 88s
COIL-20 3s 3s 2s
RNA-Seq 44s 12s 39s

A.9. Manifold Preservation

We additionally report the DeMAP (denoised manifold affinity preservation) score proposed in (Moon et al., 2019) to
evaluate the manifold preservation quality by different DR methods.

Table 5. The DeMAP score of different DR methods (PCA, t-SNE, UMAP and SpaceMAP). Higher DeMAP score indicates better
manifold preservation. The synthetic Swiss roll dataset is shown in Fig. 4 a.1

dataset PCA t-SNE UMAP SpaceMAP
RNA-Seq 0.8415 0.6012 0.6315 0.7250
COIL-20 0.5080 0.6066 0.4086 0.8022

Swiss roll with a hole 0.4153 0.5717 0.8513 0.9111
synthetic Swiss roll  0.3929 0.4360 0.2969 0.9579




