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Abstract
Robust overfitting widely exists in adversarial
training of deep networks. The exact underlying
reasons for this are still not completely under-
stood. Here, we explore the causes of robust over-
fitting by comparing the data distribution of non-
overfit (weak adversary) and overfitted (strong
adversary) adversarial training, and observe that
the distribution of the adversarial data generated
by weak adversary mainly contain small-loss data.
However, the adversarial data generated by strong
adversary is more diversely distributed on the
large-loss data and the small-loss data. Given
these observations, we further designed data ab-
lation adversarial training and identify that some
small-loss data which are not worthy of the adver-
sary strength cause robust overfitting in the strong
adversary mode. To relieve this issue, we propose
minimum loss constrained adversarial training
(MLCAT): in a minibatch, we learn large-loss
data as usual, and adopt additional measures to
increase the loss of the small-loss data. Tech-
nically, MLCAT hinders data fitting when they
become easy to learn to prevent robust overfit-
ting; philosophically, MLCAT reflects the spirit
of turning waste into treasure and making the best
use of each adversarial data; algorithmically, we
designed two realizations of MLCAT, and exten-
sive experiments demonstrate that MLCAT can
eliminate robust overfitting and further boost ad-
versarial robustness.
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1. Introduction
Adversarial examples easily mislead deep neural networks
(DNNs) to produce incorrect outputs, which raises security
concerns in various real-world applications since adversarial
noise is usually small and human-imperceptible (Szegedy
et al., 2013; Goodfellow et al., 2014). The vulnerability of
DNNs has attracted extensive attention and led to a large
number of defense techniques. Across existing defenses,
adversarial training (AT) (Goodfellow et al., 2014; Madry
et al., 2017) is one of the strongest empirical defenses (Atha-
lye et al., 2018). AT incorporates adversarial examples into
the training process and can be viewed as solving a min-max
optimization problem (Madry et al., 2017).

Unfortunately, robust overfitting seems inevitable in adver-
sarial training of deep networks: after a certain point in AT,
i.e., shortly after the first learning rate decay, the robust per-
formance on test data will continue to degrade with further
training (Rice et al., 2020). More pessimistically, conven-
tional remedies for overfitting in deep learning, including
explicit regularizations, data augmentation, etc., cannot gain
improvements upon early stopping (Rice et al., 2020). Nev-
ertheless, early stopping might not be our desideratum since
the expectation of double descent phenomena occurred in
adversarial training (Nakkiran et al., 2019).

Robust overfitting widely exists in adversarial training of
deep networks, and the exact underlying reasons for this are
still not completely understood. To explore the causes of
robust overfitting, we compare the data distribution of non-
overfit adversarial training (weak adversary) and overfitted
adversarial training (strong adversary). We observed that
the training data of non-overfit adversarial training mainly
contains small-loss data; while the distribution of training
data of overfitted adversarial training is more divergent, usu-
ally mixed with a considerable proportion of small-loss data
and large-loss data. Given these observations, we conduct
a range of data ablation adversarial training experiments.
By removing training data from various loss ranges, we
study the impact of small-loss data and large-loss data on
robust overfitting. Our results show that robust overfitting is
actually caused by some small-loss data in overfitted adver-
sarial training. Adversarial data that are not worthy of the
adversary strength make adversarial training worse, which
might be explained by the fact the network becomes more
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robust as the adversarial training progresses, making some
generated adversarial data relatively less aggressive, and
when their loss drops to a certain level, these adversarial
data eventually lead to robust overfitting.

To relieve this issue of robust overfitting due to the small-
loss data, we propose minimum loss constrained adversarial
training (MLCAT). Specifically, MLCAT works in each
mini-batch: it learns large-loss data as usual, and if there are
any small-loss data, it implements additional measures on
these data to increase their loss. It is a general adversarial
training prototype, where small-loss data and large-loss data
can be separated by a threshold. The implementation of
additional measures to increase data loss can be versatile.
For instance, we designed two representative methods for
the realizations of MLCAT: loss scaling and weight per-
turbation. They adopt different strategies to improve data
loss, e.g., manipulating the learning rate or model param-
eters, respectively. Extensive experiments show that they
not only eliminate robust overfitting, but also further boost
adversarial robustness.

MLCAT can be justified as follows. It is of vital impor-
tance to distinguish small-loss data and large-loss data in
the context of adversarial training. The inner maximization
in min-max optimization is to generate worst-case adversar-
ial example that maximizes the classification loss (Madry
et al., 2017; Wang et al., 2019a). However, the adversarial
data generated by the adversary are not always qualified
since the model become more robust during training. In
strong adversary mode, there are some data, even if they
are attacked by adversary, they are still easy to be fitted to
the network, which not only fails to enhance the adversarial
robustness, but also leads to robust overfitting. Therefore, if
the network can be trained on the data with a minimum loss
constrained, then robust overfitting may not occur. Techni-
cally, MLCAT is a specially designed adversarial training
prototype to hinder data fitting when they become easy to
learn, which provides a novel viewpoint on the adversary in
adversarial training.

Furthermore, it is known that the sample complexity of ro-
bust generalization in adversarial training is significantly
larger than that of standard generalization in natural train-
ing (Schmidt et al., 2018). A substantially larger dataset
is required to achieve the double descent phenomena in
AT (Carmon et al., 2019; Uesato et al., 2019; Zhai et al.,
2019). However, the cost of collecting and training addi-
tional data should not be neglected. Unlike them, we delve
into the causes of robust overfitting and aim to eliminate
robust overfitting without exploiting additional training data.
Nevertheless, simply removing small-loss data which causes
robust overfitting might not be a good choice, due to the
benefit of sample size (Schmidt et al., 2018). Therefore,
we adopt additional measures to increase their loss to take

full advantage of each adversarial data. In this sense, philo-
sophically, MLCAT reflects the spirit of turning waste into
treasure and making the best use of each adversarial data.

2. Related Work
This section briefly reviews relevant adversarial learning
methods from two perspectives: adversarial training and
robust overfitting.

2.1. Adversarial Training

Adversarial training (AT) has been demonstrated to be the
most effective method for defending against adversarial
attacks (Athalye et al., 2018; Croce et al., 2022). Let X and
Y be the input and output domains. Let D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1
be the training dataset with n samples, and B 𝑝

𝜖 (𝑥𝑖) = {𝑥 ′𝑖 ∈
X : | |𝑥 ′

𝑖
− 𝑥𝑖 | |𝑝 ≤ 𝜖} be their adversarial regions, where 𝜖

is the maximum perturbation constraint. In AT, the training
data are all sampled from adversarial regions. Madry et al.
(2017) formulated AT as a min-max optimization problem:

min
𝑤

∑︁
𝑖

max
𝑥′
𝑖
∈B𝑝

𝜖 (𝑥𝑖)
ℓ( 𝑓𝑤 (𝑥 ′𝑖), 𝑦𝑖), (1)

where 𝑓𝑤 is the DNN classifier with weight 𝑤, and ℓ(·) is
the loss function. The inner maximization pass is to find
adversarial example 𝑥 ′

𝑖
that maximizes the loss. The outer

minimization pass is to optimize network parameters 𝑤 that
minimize the loss on adversarial examples. The commonly
used technique to solve the inner maximization problem
is Projected Gradient Descent (PGD) (Madry et al., 2017),
which perturbs normal example 𝑥𝑖 for multiple step 𝐾 with
step size 𝛼:

𝑥𝑘𝑖 = ΠB𝑝
𝜖 (𝑥𝑖) (𝑥

𝑘−1
𝑖 + 𝛼 · sign(∇𝑥𝑘−1

𝑖
ℓ( 𝑓𝑤 (𝑥𝑘−1

𝑖 ), 𝑦𝑖))), (2)

where 𝑥𝑘
𝑖

denotes the adversarial example at step 𝑘 , and
ΠB𝑝

𝜖 (𝑥𝑖) is the projection operator.

Another typical AT variant is TRADES (Zhang et al., 2019),
which optimizes a regularized surrogate loss that is a trade-
off between the natural accuracy and adversarial robustness:

min
𝑤

∑︁
𝑖

{
CE( 𝑓𝑤 (𝑥𝑖), 𝑦𝑖)

+ 𝛽 · max
𝑥′
𝑖
∈B𝑝

𝜖 (𝑥𝑖)
KL( 𝑓𝑤 (𝑥𝑖) | | 𝑓𝑤 (𝑥 ′𝑖))

}
,

(3)

where CE is the cross-entropy loss that encourages the net-
work to maximize the natural accuracy, KL is the Kullback-
Leibler divergence that encourages to improve the robust
accuracy, and 𝛽 is the hyperparameter to control the tradeoff
between natural accuracy and adversarial robustness.

Based on AT, subsequent works have been developed to
further improve its performance, such as adversarial regular-
ization (Kannan et al., 2018; Wang et al., 2019b), curriculum
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learning (Cai et al., 2018; Wang et al., 2019a; Zhang et al.,
2020a), input denoising (Wu et al., 2021), modeling ad-
versarial noise (Zhou et al., 2021; Xia et al., 2019; 2020),
feature alignments (Yan et al., 2021; Bai et al., 2021) and
AT tricks (Pang et al., 2020; Gowal et al., 2020).

2.2. Robust Overfitting

Robust overfitting widely exists in AT, but the cause of ro-
bust overfitting remains unclear (Rice et al., 2020). Schmidt
et al. (2018) theoretically proposes that a substantially large
dataset is required to achieve robust generalization, which
is supported by empirical results in derivative works, such
as AT with semi-supervised learning (Carmon et al., 2019;
Uesato et al., 2019; Zhai et al., 2019), robust local feature
(Song et al., 2020) and data interpolation (Zhang & Xu,
2019; Lee et al., 2020; Chen et al., 2021). Different from
these works, we eliminate robust overfitting without exploit-
ing more training data. Separate works have also attempt
to mitigate robust overfitting by sample reweighting (Wang
et al., 2019b; Zhang et al., 2020b), weight perturbation (Wu
et al., 2020; Yu et al., 2022) and weight smoothing (Chen
et al., 2020). Although robust overfitting has been widely
investigated, there still lacks an explanation of why it oc-
curs. Dong et al. (2022) explores the memorization effect in
AT and thinks large-loss data induces robust overfitting. In
contrast, we delve into the causes of robust overfitting by in-
vestigating the data distribution of AT and identify that some
small-loss data caused robust overfitting in the strong adver-
sary mode. Then, the proposed MLCAT prototype explicitly
adjusts the training data based on their loss to avoid robust
overfitting. Finally, experiments on two specific realizations
of MLCAT demonstrate the effectiveness on eliminating
robust overfitting and robustness improvement.

3. Understanding Robust Overfitting in AT
In this section, we first study the robust overfitting by com-
paring the data distribution of non-overfit (weak adversary)
and overfitted (strong adversary) adversarial training (Sec-
tion 3.1). Based on our observations, we further propose
data ablation adversarial training to identify the specific
causes of robust overfitting (Section 3.2). Finally, we de-
velop a novel adversarial training prototype, MLCAT, to
eliminate robust overfitting (Section 3.3).

3.1. Non-overfit AT vs. Overfitted AT: Data Distribution
Perspective

We compare the data distribution of non-overfit (weak adver-
sary) and overfitted (strong adversary) adversarial training.
Specifically, we change the strength of the adversary by
adjusting the maximum perturbation size 𝜖 . We train PreAct
ResNet-18 on CIFAR10 under 𝐿∞ threat model using vari-
ous 𝜖 from 0, 1, 2, 4, 6, 8 to 10. In each setting, we evaluate

the accuracy of trained model on CIFAR10 test data which
are attacked with the same 𝜖 . The test robustness of adver-
sarial training with different adversary is shown in Figure
1(a). We can observe that there is no robust overfitting in
the case of weak adversary (𝜖 is small). However, in the
case of strong adversary (𝜖 is large), robust overfitting is a
dominant phenomenon. For each case, we then visualize the
distribution of training data in different loss ranges, which
are shown in Figure 1(b) and Figure 1(c).

From Figure 1(b) and Figure 1(c), we can observe that the
data distribution of overfitted adversarial training is obvi-
ously mismatched with that of the non-overfit adversarial
training: the training data of non-overfit adversarial training
mainly contains small-loss data. In contrast, the data distri-
bution of overfitted adversarial training is more divergent,
usually containing a considerable proportion of small-loss
data and large-loss data. Given this observation, we wonder
(Q1): if we suppress the large-loss data in overfitted adver-
sarial training to align the data distribution of non-overfit
adversarial training, will it eliminate robust overfitting?

On the other hand, robust overfitting occurs when the adver-
sary becomes stronger. For strong adversary, the large-loss
data is expected. In other words, for adversarial training
with strong adversary, these large-loss data are good data,
while these small-loss data may be bad data. From this per-
spective, we may ask another question (Q2): if we suppress
the small-loss data in overfitted adversarial training that
does not match the strength of adversary, will it eliminate
robust overfitting?

It is worth noting that the robust overfitting behaviors and
their data distribution can commonly be observed across
a variety of datasets, model architectures, and threat mod-
els (shown in Appendix A), indicating that it is a general
phenomenon in adversarial training. Considering the two
questions above, we conduct further analysis in the next sub-
section to identify the specific causes of robust overfitting.

3.2. Causes of Robust Overfitting

To answer the two questions in Section 3.1, we conduct
adversarial training with fixed perturbation size (𝜖 = 8) in a
data ablation manner. Specifically, we train PreAct ResNet-
18 on CIFAR10 under 𝐿∞ threat model by removing training
data from various loss ranges. To answer Q1, we remove the
large-loss data within the specified loss range before robust
overfitting occurs (for example, at 100th epoch), which is
for the stability of optimization. To answer Q2, we remove
small-loss data within the specified loss range from the be-
ginning of training. As shown in Figure 2(a) and Figure 2(b),
we can observe that adversarial training without large-loss
data still has a significant robust overfitting phenomenon,
which indicates the strategy of aligning with the data dis-
tribution of non-overfit adversarial training is invalid. In
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(b) Data distribution under perturbation size of 0, 1, and 2 (from left to right)
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(c) Data distribution under perturbation size of 4, 6, 8, and 10 (from left to right)

Figure 1. (a): The test robustness of adversarial training with various perturbation size 𝜖 ; (b) and (c): The distribution of training data in
different loss ranges under various perturbation size 𝜖 .

contrast, adversarial training without small-loss data can
eliminate robust overfitting, which indicates that adversar-
ial data which is not match the strength of adversary make
adversarial training worse. Notice that similar experimental
results can be obtained across a variety of datasets, model
architectures, and threat models (shown in Appendix B).
These empirical results clearly verified that the small-loss
data causes robust overfitting in strong adversary mode.

It is worth noting that the small-loss data contains two
sources. As shown in Figure 1(b) and Figure 1(c), one is the
original data before the learning rate decay (before 100th
epoch), and the other is transformed from other loss ranges
(after 100th epoch). We further investigate the respective ef-
fects on robust overfitting of the two parts of small-loss data,
as shown in Figure 2(c). It is observed that robust overfitting
is mainly due to these transformed small-loss data, which
might be explained by the fact that as adversarial training
progresses, the network becomes more robust, so some gen-
erated adversarial data are relatively less aggressive, and
when they weaken to a certain extent, these adversarial data
eventually lead to robust overfitting. In this paper, we take
measures to eliminate robust overfitting based on general
data loss. Thus we make no distinction between them and
refer to them together as small-loss data. Given existing
results, it does not seem to be a wise choice to remove the
small-loss data directly in order to eliminate robust overfit-

ting, because this will reduce the training sample size. In the
next subsection, we introduce a novel adversarial training
prototype to address this issue.

3.3. A Prototype of MLCAT

As mentioned in Section 3.2, the small-loss data causes ro-
bust overfitting in adversarial training with strong adversary.
To relieve this issue, we propose to train network on adver-
sarial data under a minimum loss constraint, dubbed as min-
imum loss constrained adversarial training (MLCAT). We
adopt additional measures to increase the loss of small-loss
data, so as to ensure that there is neither robust overfitting
nor sample size decline.

For now, let us omit the technical details, and assume that we
have a base AT method that is implemented as an algorithm
with a inner maximization pass and a outer minimization
pass. The inner maximization pass generates adversarial
data that maximizes the loss, and then the outer minimiza-
tion pass returns the gradient by backward propagating the
average loss. With this algorithmic abstraction, we can
present MLCAT at a high level.

The MLCAT prototype is given in Algorithm 1. Since it
is only a prototype, it serves as a versatile approach where
the loss adjustment strategy S and minimum loss condition
ℓ𝑚𝑖𝑛 can be flexibly implemented depend on the base AT
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Figure 2. The test robustness of adversarial training (a) without small-loss data in various loss ranges; (b) without large-loss data in various
loss ranges, and (c) without original small-loss data and transformed small-loss data.

algorithm A. Algorithm 1 runs as follows. Given the mini-
batch B, the inner maximization pass of A is called in Line
2. Then the loss values are manipulated in Line 3-13 where
they are reduced to a scalar for backpropagation. Before the
for loop, the loss accumulator ℓB′ is initialized in Line 4.
Subsequently, in Line 7, ℓ𝑖 is added to ℓB′ if 𝑥𝑖 is regarded as
large-loss data, which will result in normal gradient descent
by 𝔒 in Line 15; in Line 9-10, ℓS

𝑖
is adjusted by strategy

S and then added to ℓB′ if 𝑥𝑖 is regarded as small-loss data,
which will lead to adjusted gradient descent by 𝔒 in Line
15. After the for loop, the accumulated loss ℓB′ is divide
by the batch size 𝑚 in Line 13 to obtain the average loss.
Finally, the outer minimization pass of A is called in Line
14, and the optimizer 𝔒 updates the model 𝑓𝑤 in Line 15.

Last but not least, notice that MLCAT is extremely general.
MLCAT becomes standard AT if S is identical mapping;
it becomes data ablation adversarial training if S always
returns 0. In AT, the sample size plays an important role
in robust generalization (Schmidt et al., 2018). Hence, we
use S to convert the small-loss data into the large-loss data.
This converting behavior makes the network learn all the
training data without robust overfitting, which is the key of
MLCAT and what we meant by turning waste into treasure
in the abstract. Moreover, the hyperparameter ℓ𝑚𝑖𝑛 controls
the range of small-loss data: when ℓ𝑚𝑖𝑛 ≤ 0, it becomes
standard adversarial training again; when ℓ𝑚𝑖𝑛 → ∞, all
data will be adjusted by strategy S. Nevertheless, forcibly
adjusting the loss of all data will inevitably have negative im-
pacts on network optimization. In MLCAT, ℓ𝑚𝑖𝑛 is closely
related to the perturbation size 𝜖 and specific tasks. For
example, when 𝜖 is small, the degradation of adversarial
attack is very limited, thus ℓ𝑚𝑖𝑛 may not needed since robust
overfitting does not occur. Consequently, ℓ𝑚𝑖𝑛 should be
carefully tuned in practice in consideration of the elimina-
tion of robust overfitting as well as robustness improvement.

Algorithm 1 MLCAT-prototype (in a mini-batch).
Require: base adversarial training algorithm A, optimizer
𝔒, network 𝑓𝑤 , training data D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1, mini-batch
B, batch size 𝑚, minimum loss conditions ℓ𝑚𝑖𝑛 for A, loss
adjustment strategy S

1: Sample a mini-batch B = {(𝑥𝑖 , 𝑦𝑖)}𝑚𝑖=1 from D
2: B ′ = A.inner maximization( 𝑓𝑤 ,B)
3: {ℓ𝑖}𝑚𝑖=1 ← ℓ( 𝑓𝑤 ,B ′)
4: ℓB′ ← 0 # initialize loss accumulator
5: for 𝑖 = 1, ..., 𝑚 do
6: if ℓ𝑖 ≥ ℓ𝑚𝑖𝑛 then
7: ℓB′ = ℓB′ + ℓ𝑖
8: else
9: ℓS

𝑖
← S( 𝑓𝑤 , 𝑥 ′𝑖 , ℓ𝑚𝑖𝑛) # adjust loss

10: ℓB′ = ℓB′ + ℓS𝑖 # accumulate adjusted loss
11: end if
12: end for
13: ℓB′ ← ℓB′/𝑚 # average accumulated loss
14: ∇𝑤 ← A.outer minimization( 𝑓𝑤 , ℓB′)
15: 𝔒.step(∇𝑤)

4. Two Realizations of MLCAT
In this section, we illustrate what S can be used in MLCAT.
We realize MLCAT through loss scaling that belongs to
the loss-correction approach and weight perturbation that
belongs to the parameter-correction approach. Loss scaling
and weight perturbation are two representative and more
importantly orthogonal methods, which spotlights the great
versatility of MLCAT.

MLCAT through loss scaling. The loss-correction ap-
proach creates a corrected loss from original loss ℓ𝑖 and
then trains the model 𝑓𝑤 based on the corrected loss.
Misclassification-aware (Wang et al., 2019b) is the most
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primitive method in this direction. It introduces a regular-
izer to enhance the effect of misclassified examples on the
final robustness of adversarial training.

In order to increase the loss of small-loss data. We adopt a
straightforward scaling technique to correct the loss of small-
loss data. Since we aim to eliminate robust overfitting, we
leverage the minimum loss conditions ℓ𝑚𝑖𝑛 as a constraint
and scale the loss ℓ𝑖 as follows:

ℓS𝑖 =
ℓ𝑚𝑖𝑛

ℓ𝑖
· ℓ𝑖 = ℓ𝑚𝑖𝑛, (4)

where ℓ𝑚𝑖𝑛

ℓ𝑖
is the scaling coefficient, which is always greater

than 1. The smaller the original loss ℓ𝑖 , the larger the scaling
coefficient, and vice versa. Previous works (Zhang et al.,
2020b; Hitaj et al., 2021) show that scaling loss makes the
trained model more sensitive to the logit-scaling attack. It
does not matter since our aim is to verify the cause of robust
overfitting, and the realization of MLCAT based on loss
scaling is just designed for this purpose. Note that there is
no difference between scaling losses and scaling gradients,
since scaling coefficient has the same effects in increasing
losses and increasing the learning rate inside 𝔒. Therefore,
loss scaling can be regarded as learning small-loss data
with a larger learning rate to effectively prevent the network
from fitting these data. We refer the implementation method
based on loss scaling as MLCATLS.

MLCAT through weight perturbation. On the other hand,
the parameter-correction approach generates perturbation
to the model weights, and trains the network on the per-
turbative parameters. AWP (Wu et al., 2020) is the most
primitive method in this direction. It develops a double-
perturbation mechanism that adversarially perturbs both
inputs and weights to reduce the robust generalization gap:

min
𝑤

max
𝑣∈𝑉

∑︁
𝑖

max
𝑥′
𝑖
∈B𝑝

𝜖 (𝑥𝑖)
ℓ( 𝑓𝑤+𝑣 (𝑥 ′𝑖), 𝑦𝑖), (5)

where 𝑣 is the adversarial weight perturbation, which is
generated by maximizing the classification loss:

𝑣 = ∇𝑤
∑︁
𝑖

ℓ𝑖 . (6)

In order to increase the loss of small-loss data. We adopt
the weight perturbation technique to generate perturbation
noise for the small-loss data in a targeted manner. Similarly,
since we aim to eliminate robust overfitting, we leverage the
minimum loss conditions ℓ𝑚𝑖𝑛 as a constraint and generate
the perturbation noise 𝑣 as follows:

𝑣 = ∇𝑤
∑︁
𝑖

𝟙(ℓ𝑖 ≤ ℓ𝑚𝑖𝑛) ℓ𝑖 , (7)

where 𝟙(ℓ𝑖 ≤ ℓ𝑚𝑖𝑛) is an indicator function, which will
output 1 if ℓ𝑖 ≤ ℓ𝑚𝑖𝑛 and 0 if ℓ𝑖 > ℓ𝑚𝑖𝑛. After obtaining

the perturbation noise 𝑣, we scale the perturbation noise ac-
cording to the norm of 𝑤 to get the final weight perturbation
𝑣 = 𝛾

| |𝑤 | |
| |𝑣 | | 𝑣, where 𝛾 is the weight perturbation size. Then,

the adjusted loss of small-loss data can be expressed as:

ℓS𝑖 = ℓ( 𝑓𝑤+𝑣 (𝑥 ′𝑖), 𝑦𝑖). (8)

Note that although weight perturbation technique can in-
crease the loss of these small-loss data, it can not guarantee
that they all satisfy the minimum loss condition ℓ𝑚𝑖𝑛, as
the goal of Eq.(7) is to maximize the overall loss of the
small-loss data in the entire mini-batch rather than instance
level. Anyway, the perturbation noise generated by Eq.(7)
will effectively prevent the network from fitting these small-
loss data. Therefore, weight perturbation can be regarded
as preventing robust overfitting by manipulating the model
parameters, which is different from loss scaling and is or-
thogonal in implementation. We refer the implementation
method based on weight perturbation as MLCATWP.

5. Experiment
In this section, we conduct extensive experiments to verify
the effectiveness of MLCATLS and MLCATWP including
their experimental settings (Section 5.1), performance eval-
uation (Section 5.2) and ablation studies (Section 5.3).

5.1. Experimental Settings

Our implementation is based on PyTorch and the code is
publicly available1. We conduct extensive experiments
across three benchmark datasets (CIFAR10 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011) and CIFAR100
(Krizhevsky et al., 2009)) and two threat models (𝐿∞ and
𝐿2). We use PreAct ResNet-18 (He et al., 2016) and Wide
ResNet-34-10 (Zagoruyko & Komodakis, 2016) as the net-
work structure following (Rice et al., 2020). For training,
the model is trained for 200 epochs using SGD with momen-
tum 0.9, weight decay 5 × 10−4, and an initial learning rate
of 0.1. The learning rate is divided by 10 at the 100-th and
150-th epoch, respectively. Standard data augmentation in-
cluding random crops with 4 pixels of padding and random
horizontal flips are applied for CIFAR10 and CIFAR100,
and no data augmentation is used on SVHN. For adversary,
10-step PGD attack is applied: for 𝐿∞ threat model, pertur-
bation size 𝜖 = 8/255, step size 𝛼 = 1/255 for SVHN, and
𝛼 = 2/255 for both CIFAR10 and CIFAR100; for 𝐿2 threat
model, perturbation size 𝜖 = 128/255, step size 𝛼 = 15/255
for all datasets, which is a standard setting for PGD-based
adversarial training (Madry et al., 2017). For testing, model
robustness is evaluated by measuring the accuracy on test
data under different adversarial attacks, including 20-step
PGD (PGD-20) (Madry et al., 2017) and Auto Attack (AA)

1https://github.com/ChaojianYu/
Understanding-Robust-Overfitting

https://github.com/ChaojianYu/Understanding-Robust-Overfitting
https://github.com/ChaojianYu/Understanding-Robust-Overfitting
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Table 1. Test robustness (%) on CIFAR10. We omit the standard deviations of 5 runs as they are very small (< 0.6%).

Network Threat Model Method PGD-20 AA

Best Last Diff Best Last Diff

PreAct ResNet-18

𝐿∞
AT 52.29 44.43 -7.86 47.99 42.08 -5.91
MLCATLS 56.90 56.87 -0.03 28.12 26.93 -1.19
MLCATWP 58.48 57.65 -0.83 50.70 50.32 -0.38

𝐿2
AT 69.27 65.86 -3.41 67.70 64.64 -3.06
MLCATLS 73.16 72.48 -0.68 49.7 48.94 -0.76
MLCATWP 74.38 73.86 -0.52 70.46 70.15 -0.31

Wide ResNet-34-10

𝐿∞
AT 55.57 47.37 -8.20 52.13 46.09 -6.04
MLCATLS 64.73 63.94 -0.79 35.00 34.51 -0.49
MLCATWP 62.50 61.91 -0.59 54.65 54.56 -0.09

𝐿2
AT 71.57 69.99 -1.58 70.44 68.92 -1.52
MLCATLS 75.05 74.97 -0.08 55.31 55.11 -0.20
MLCATWP 76.92 76.55 -0.37 74.35 73.97 -0.38

Table 2. Test robustness (%) on SVHN. We omit the standard deviations of 5 runs as they are very small (< 0.6%).

Network Threat Model Method PGD-20 AA

Best Last Diff Best Last Diff

PreAct ResNet-18

𝐿∞
AT 52.88 45.29 -7.59 45.09 40.36 -4.73
MLCATLS 64.28 62.30 -1.98 34.48 32.33 -2.15
MLCATWP 60.34 57.79 -2.55 51.90 49.76 -2.14

𝐿2
AT 66.68 64.75 -1.93 63.55 62.14 -1.41
MLCATLS 75.32 74.06 -1.26 53.35 52.29 -1.06
MLCATWP 72.58 71.59 -0.99 67.21 66.27 -0.94

Wide ResNet-34-10

𝐿∞
AT 55.72 50.44 -5.28 48.00 42.41 -5.59
MLCATLS 78.96 77.38 -1.58 34.66 34.21 -0.45
MLCATWP 63.18 61.71 -1.47 54.29 53.93 -0.36

𝐿2
AT 67.29 65.18 -2.11 62.88 61.06 -1.82
MLCATLS 85.00 83.47 -1.53 55.74 54.15 -1.59
MLCATWP 75.43 74.08 -1.35 68.91 68.12 -0.79

(Croce & Hein, 2020b). AA is regarded as the most reliable
robustness evaluation to date, which is an ensemble of com-
plementary attacks, consisting of three white-box attacks
(APGD-CE (Croce & Hein, 2020b), APGD-DLR (Croce
& Hein, 2020b), and FAB (Croce & Hein, 2020a)) and a
black-box attack (Square Attack (Andriushchenko et al.,
2020)). The degree of robust overfitting is evaluated by the
robust accuracy gap during training. For hyperparameter in
MLCATLS and MLCATWP, we set the minimum loss condi-
tions ℓ𝑚𝑖𝑛 = 1.5 for CIFAR10 and SVHN, and ℓ𝑚𝑖𝑛 = 4.0
for CIFAR100. Other hyperparameters of the baselines are
configured as per their original papers.

5.2. Performance Evaluation

In this part, we report the experimental results of MLCATLS
and MLCATWP, and more experimental results are provided
in Appendix C.1.

CIFAR10 Results. The evaluation results on CIFAR10
dataset are summarized in Table 1, where “Best” is the high-

est robustness that ever achieved during training; “Last” is
the test robustness at the last epoch checkpoint; “Diff” de-
notes the robust accuracy gap between the “Best” and “Last”.
First, it is observed that both MLCATLS and MLCATWP
achieve superior robustness performance under PGD-20
attack. Then, for AA attack, MLCATWP can still boost ad-
versarial robustness, while MLCATLS achieves the worse
robustness performance than AT. This is because loss scal-
ing technique make network sensitive to the logit scaling
attack (Hitaj et al., 2021). Finally and most importantly,
MLCATLS and MLCATWP significantly narrow the robust-
ness gaps under both PGD-20 attack and AA attack, which
indicates they can effectively eliminate robust overfitting in
adversarial training across different network architectures
and threat models.

SVHN Results. We further report results on the SVHN
dataset, which are summarized in Table 2. Experimental
results show that the proposed method improve adversarial
robustness and narrow the robustness gap by a large margin
under both PGD-20 attack and AA attack, demonstrating
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Table 3. Test robustness (%) on CIFAR100. We omit the standard deviations of 5 runs as they are very small (< 0.6%).

Network Threat Model Method PGD-20 AA

Best Last Diff Best Last Diff

PreAct ResNet-18

𝐿∞
AT 28.01 20.39 -7.62 23.61 18.41 -5.20
MLCATLS 20.09 18.14 -1.95 13.41 11.35 -2.06
MLCATWP 31.27 30.57 -0.70 25.66 25.28 -0.38

𝐿2
AT 41.38 35.34 -6.04 37.94 33.58 -4.36
MLCATLS 31.23 30.80 -0.43 22.06 21.72 -0.34
MLCATWP 45.49 44.84 -0.65 41.22 41.15 -0.07

Wide ResNet-34-10

𝐿∞
AT 30.74 24.89 -5.85 26.98 23.07 -3.91
MLCATLS 22.86 22.18 -0.68 14.61 14.05 -0.56
MLCATWP 34.97 34.64 -0.33 29.49 29.25 -0.24

𝐿2
AT 44.12 41.29 -2.83 41.39 39.34 -2.05
MLCATLS 34.09 33.66 -0.43 25.06 24.31 -0.75
MLCATWP 50.17 49.51 -0.66 46.05 45.77 -0.28
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Figure 3. The ablation study experiment results on CIFAR10 dataset.

the effectiveness of the proposed MLCAT prototype.

CIFAR100 Results. We also conduct experiments on CI-
FAR100 dataset. Note that this dataset is more challenging
than CIFAR10 as the number of classes/training images
per class is ten times larger/smaller than that of CIFAR10.
As shown by the results in Table 3, the proposed methods
are still able to eliminate robust overfitting and improve
adversarial robustness even on more difficult datasets. It
verifies that MLCAT prototype eliminates robust overfitting
reliably and is general across different datasets, network
architectures and threat models.

5.3. Ablation Studies

In this part, we investigate the impacts of algorithmic com-
ponents using PreAct ResNet-18 on CIFAR10 under 𝐿∞
threat model following the same experimental setting as
Section 5.1.

The Impact of Minimum Loss Condition ℓ𝑚𝑖𝑛. To validate
the effectiveness of introducing minimum loss constraint in
our MLCAT prototype, we investigate the effect of differ-
ent ℓ𝑚𝑖𝑛 for the robustness performance and robustness gap

(the gap between “best” and “last” robust accuracy). The
value of minimum loss condition ℓ𝑚𝑖𝑛 vary from 0 to 3.0,
and the results are summarized in Figure 3(a). As expected,
increasing ℓ𝑚𝑖𝑛 leads to the smaller robustness gap. For ro-
bustness performance, when ℓ𝑚𝑖𝑛 is small, increasing ℓ𝑚𝑖𝑛

leads to the higher robust accuracy than AT. When ℓ𝑚𝑖𝑛 is
greater than 1.5, it is observed increasing ℓ𝑚𝑖𝑛 makes model
robustness decrease and even leads to the training collapses,
implying that the additional measures, such as loss scaling
and weight perturbation, are inherently detrimental to robust-
ness improvement. It sheds light on the importance of ℓ𝑚𝑖𝑛,
whose responsibility is to distinguish between small-loss
data and large-loss data in the MLCAT prototype. Simi-
lar pattern can also be observed in SVHN and CIFAR100
dataset (shown in Appendix C.2). Therefore, we uniformly
adopt ℓ𝑚𝑖𝑛 = 1.5 for CIFAR10 and SVHN, and ℓ𝑚𝑖𝑛 = 4.0
for CIFAR100 in consideration of the elimination of robust
overfitting as well as robustness improvement.

The Role of Loss Adjustment Strategy S. We further
investigate the role of loss adjustment strategy within the
MLCAT prototype by comparing several different schemes:
1) additive mapping, which increases the loss of small-loss
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data by Eq.(4) and Eq.(8). We denote them as MLCATLS↑
and MLCATWP↑, respectively; 2) identical mapping, which
keeps the loss of small-loss data unchanged (equivalent to
standard AT); 3) subtractive mapping, which decreases the
loss of small-loss data. They are implemented by divid-
ing the scaling coefficient ℓ𝑚𝑖𝑛

ℓ𝑖
in Eq.(4) and subtracting

the weight perturbation 𝑣 in Eq.(8), which are denoted as
MLCATLS↓ and MLCATWP↓, respectively. Their robust-
ness performance and test accuracy curves are summarized
in Figure 3(b). It is observed that decreasing the loss of
small-loss data not only fails to suppress robust overfitting
but also leads to worse adversarial robustness. In contrast,
increasing the loss of small-loss data not only eliminate
robust overfitting but also facilitates models to learn these
data and further improve adversarial robustness. These com-
parisons echo our approach’s philosophy of turning waste
into treasure and making full use of each adversarial data.

6. Conclusion
In this paper, we investigate robust overfitting from the
perspective of data distribution and identify that some small-
loss data lead to robust overfitting under strong adversary
modes. Following this, we propose minimum loss con-
strained adversarial training (MLCAT) prototype. The
proposed prototype distinguish itself from others by using
additional measures to increase the loss of small-loss data,
which prevents the model from fitting these data, and thus
effectively avoid robust overfitting. We further provide two
specific MLCAT implementations: loss scaling derived from
loss correction and weight perturbation derived from param-
eter correction. Comprehensive experiments show that two
realizations of MLCAT can eliminate robust overfitting and
improve adversarial robustness across different network ar-
chitectures, threat models and benchmark datasets.
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A. More Evidences for Robust Overfitting and Data Distribution
In this section, we provide more empirical evidences for the robust overfitting behaviors and their data distributions across
different datasets, model architectures and threat models. We use the same strategy in Section 3.1 to adjust the strength of
adversary. Specifically, for 𝐿∞ threat model, we vary 𝜖 from 0, 1, 2, 4, 8 to 10; for 𝐿2 threat model, we vary 𝜖 from 0, 16,
32, 64, 128 to 160. As shown in Figure 4 to Figure 7, we can always observe that there is no robust overfitting when the
adversary is weak, and the robust overfitting phenomenon is particularly significant when the adversary is strong. Moreover,
it can be seen that the data distribution of adversarial training with weak adversary mainly contains small-loss data, and the
data distribution of adversarial training with strong adversary usually contains a considerable proportion of small-loss data
and large-loss data. These evidences suggest that the observed robust overfitting behaviors and data distributions are general
in adversarial training.
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(b) Data distribution under perturbation size of 0, 1, and 2 (from left to right)
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(c) Data distribution under perturbation size of 4, 6, 8, and 10 (from left to right)

Figure 4. Robust overfitting behaviors and data distribution on CIFAR100 using PreAct ResNet-18 under 𝐿∞ threat model. (a): The test
robustness of adversarial training with various perturbation size 𝜖 ; (b) and (c): The distribution of training data in different loss ranges
under various perturbation size 𝜖 .

B. More Evidences for the Causes of Robust Overfitting
In this section, we further provide more evidences to verify that the small-loss data causes robust overfitting in strong
adversary mode. We conduct data ablation adversarial training experiments across different datasets, network architectures
and threat models. Specifically, we use 𝜖 = 8 for 𝐿∞ threat model and 𝜖 = 128 for 𝐿2 threat model. We remove training
data from various loss ranges during adversarial training. As shown in Figure 8, robust overfitting phenomenon is basically
unchanged after removing the large-loss data. However, the robust overfitting phenomenon can be eliminated after removing
the small-loss data. These evidences clearly show that the robust overfitting in adversarial training is caused by these
small-loss data.
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(b) Data distribution under perturbation size of 0, 1, and 2 (from left to right)
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(c) Data distribution under perturbation size of 4, 6, 8, and 10 (from left to right)

Figure 5. Robust overfitting behaviors and data distribution on SVHN using PreAct ResNet-18 under 𝐿∞ threat model. (a): The test
robustness of adversarial training with various perturbation size 𝜖 ; (b) and (c): The distribution of training data in different loss ranges
under various perturbation size 𝜖 .

C. More Experimental Results
C.1. Performance Evaluation

In this part, we provide more performance evaluations of MLCATLS and MLCATWP on CIFAR10 dataset using PreAct
ResNet-18 under 𝐿∞ threat model.

Natural Accuracy. The natural accuracy of AT, MLCATLS and MLCATWP are summarized in Table 4. It is observed that
both MLCATLS and MLCATWP can achieve a fairly small performance gap between “Best” and ”Last” on natural accuracy.
Notably, MLCATWP is able to maintain the comparable natural accuracy to AT.

Extension of MLCAT to TRADES. We extend the proposed prototype to another well-recognized adversarial training
variant TRADES. Specifically, for MLCAT-based TRADES (MLCTRADES), the inner maximization pass and outer
minimization pass are in accordance with the TRADES method. In MLCTRADESLS and MLCTRADESWP, we adopt the
same ℓ𝑚𝑖𝑛 = 1.5 to distinguish small-loss data from large-loss data. As shown by the results in Table 5, it is evident that the
proposed prototype significantly narrows robustness gap and MLCTRADESWP outperforms the baseline method with a
clear margin, demonstrating its effectiveness.

Comparison with AWP. Although both methods use the weight perturbation technique, MLCATWP and AWP are fun-
damentally different. First, their optimization objectives are different. MLCAT adopts an implicit adversarial example
scheduling technique to eliminate robust overfitting, while AWP adopts the weight loss landscape. Besides, the algorithm
stability of MLCATWP is better than AWP. MLCATWP can work on both global and layer-wise perturbation scaling, while
AWP suffers from training collapse on global perturbation scaling. Last but not least, we perform robustness comparison
between MLCATWP and AWP, and the comparison results are summarized in Table 6. MLCATWP consistently outperforms
AWP on all types of attacks, which fully demonstrates that our MLCAT can avoid robust overfitting and boost the robustness
of adversarial training.
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(b) Data distribution under perturbation size of 0, 16, and 32 (from left to right)
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(c) Data distribution under perturbation size of 64, 96, 128, and 160 (from left to right)

Figure 6. Robust overfitting behaviors and data distribution on CIFAR10 using PreAct ResNet-18 under 𝐿2 threat model. (a): The test
robustness of adversarial training with various perturbation size 𝜖 ; (b) and (c): The distribution of training data in different loss ranges
under various perturbation size 𝜖 .

Table 4. Natural accuracy (%) of AT, MLCATLS and MLCATWP.

Method Natural

Best Last Diff

AT 82.11 ± 0.45 84.72 ± 0.85 2.61
MLCATLS 78.73 ± 0.77 79.48 ± 0.91 0.75
MLCATWP 84.1 ± 0.23 84.77 ± 0.35 0.67

C.2. Ablation Studies

In this part, we provide the complete experimental results of ablation studies about the impact of minimum loss condition
ℓ𝑚𝑖𝑛 on CIFAR100 and SVHN datasets. Specifically, we vary the value of ℓ𝑚𝑖𝑛 from 0 to 5.0 for CIFAR100, and from 0 to
3.0 for SVHN. The experimental results for the robustness performance and robustness gap are summarized in Figure 9. It is
observed that increasing ℓ𝑚𝑖𝑛 consistently leads smaller robustness gap on CIFAR100 and SVHN datasets, and MLCATWP
with a wide range of ℓ𝑚𝑖𝑛 achieves better adversarial robustness than AT, demonstrating the importance of minimum loss
condition ℓ𝑚𝑖𝑛 in the MLCAT prototype.
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(b) Data distribution under perturbation size of 0, 1, and 2 (from left to right)
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(c) Data distribution under perturbation size of 4, 6, 8, and 10 (from left to right)

Figure 7. Robust overfitting behaviors and data distribution on CIFAR10 using Wide ResNet-34-10 under 𝐿∞ threat model. (a): The test
robustness of adversarial training with various perturbation size 𝜖 ; (b) and (c): The distribution of training data in different loss ranges
under various perturbation size 𝜖 .

Table 5. Test robustness (%) under PGD-20 attack on TRADES.

Method PGD20

Best Last Diff

TRADES 52.56 ± 0.43 49.12 ± 0.39 -3.53
MLCTRADESLS 42.82 ± 0.25 41.4 ± 0.38 -1.42
MLCTRADESWP 55.28 ± 0.21 54.99 ± 0.19 -0.29

Table 6. Robustness comparison with AWP.

Method PGD20 AA

Best Last Diff Best Last Diff

AWP 55.54 ± 0.20 54.64 ± 0.25 -0.9 49.94 ± 0.08 49.69 ± 0.10 -0.25
MLCATWP 58.48 ± 0.39 57.65 ± 0.19 -0.83 50.70 ± 0.11 50.32 ± 0.09 -0.38
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(a) CIFAR100 - PreAct ResNet-18 - 𝐿∞
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(b) SVHN - PreAct ResNet-18 - 𝐿∞

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 50 100 150 200

R
o
b
u
st

n
es

s

Epoch

Remove-[0, 0)
Remove-[0, 0.5)
Remove-[0, 1.0)
Remove-[0, 1.5)
Remove-[0, 2.0)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200

R
o
b
u
st

n
es

s

Epoch

Remove-[2.0, ∞)

Remove-[2.5, ∞)

Remove-[3.0, ∞)

Remove-[3.5, ∞)

Remove-[4.0, ∞)

Remove-[4.5, ∞)

Remove-[5.0, ∞)

(c) CIFAR10 - PreAct ResNet-18 - 𝐿2
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(d) CIFAR10 - Wide ResNet-34-10 - 𝐿∞

Figure 8. The data ablation experimental results on (a) CIFAR100 dataset using PreAct ResNet-18 under 𝐿∞ threat model; (b) SVHN
dataset using PreAct ResNet-18 under 𝐿∞ threat model; (c) CIFAR10 dataset using PreAct ResNet-18 under 𝐿2 threat model; (d)
CIFAR10 dataset using Wide ResNet-34-10 under 𝐿∞ threat model.
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Figure 9. The experiment results of ablation study about minimum loss condition ℓ𝑚𝑖𝑛 on (a) CIFAR100 dataset; (b) SVHN dataset.


