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Abstract
In cross-device Federated Learning (FL), the com-
munication cost of transmitting full-precision
models between edge devices and a central server
is a significant bottleneck, due to expensive, unre-
liable, and low-bandwidth wireless connections.
As a solution, we propose a novel FL frame-
work named QSFL, towards optimizing FL uplink
(client-to-server) communication at both client
and model levels. At the client level, we design a
Qualification Judgment (QJ) algorithm to sample
high-qualification clients to upload models. At
the model level, we explore a Sparse Cyclic Slid-
ing Segment (SCSS) algorithm to further compress
transmitted models. We prove that QSFL can con-
verge over wall-to-wall time, and develop an op-
timal hyperparameter searching algorithm based
on theoretical analysis to enable QSFL to make
the best trade-off between model accuracy and
communication cost. Experimental results show
that QSFL achieves state-of-the-art compression
ratios with marginal model accuracy degradation.

1. Introduction
In traditional FL, participating clients upload local full-
precision models to the server for aggregating without local
data sharing. When thousands of clients collaboratively
train one GB-level model, uplink transmission can reach
TB-level (Sattler et al., 2019b). However, expensive and un-
reliable wireless connections between edge devices and the
server often have a lower rate than the Ethernet connection
in a data center (Yao et al., 2019; Zhang et al., 2020). And
large-scale deep networks often have lots of redundant pa-
rameters (Kairouz et al., 2019; Chen et al., 2018b; Yi et al.,
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Figure 1: Left: insights of QSFL. Right: QSFL outperforms
alternatives in the compression ratio under 50%, 60% and
70% target mAP on the FEMINIST dataset, respectively.

2020), transmitting all local full-precision models leads to
communication overhead being a major bottleneck. Besides,
the uploading and downloading speed of internet connection
are highly asymmetrical: the former is slower at least five
times than the latter (Konečný et al., 2016), so compressing
client-to-server transmission traffic yields greater benefits.

Existing communication-effective FL schemes mainly in-
volve: delaying communication, sampling clients, encoding
models, sparsification, quantization. Since these methods
either have no theoretical convergence guarantee or have lim-
ited compression ratios, more advanced schemes should be
designed to balance communication cost and convergence.

In this work, we propose a novel communication-efficient
framework named QSFL, which optimizes FL’s uplink com-
munication cost by: a) first sampling high-qualification
clients to upload model updates (QJ algorithm), and b) fur-
ther compressing each uploaded model to one segment in
each round (SCSS algorithm). We prove its convergence and
explore how to search its optimal hyperparameters based
on theoretical analysis. As shown in Fig. 1, QSFL ful-
fills the state-of-the-art compression ratio than advanced
communication-efficient methods when achieving the same
target accuracy, promoting a better trade-off between com-
munication cost and model accuracy.

Contributions. Our main contributions are as follows:

• We propose a novel FL framework named QSFL to
reduce FL uplink communication overhead at both
client-level and model-level.
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• We prove the convergence rate of QSFL and develop a
hyperparameter searching algorithm to configure opti-
mal hyperparameters for QSFL.

• Extensive experimental results verify the advance of
QSFL in uplink communication overhead optimization.

2. Related Work
At present, existing FL communication optimization meth-
ods can be summarized into the following categories:

(A) Delaying Communication. FedAvg (McMahan et al.,
2017) delays communication by increasing local iterations
to accelerate the whole training process. FedPAQ (Rei-
sizadeh et al., 2020) aggregates periodically local quantized
model updates to reduce communication cost.

(B) Sparsification. Sparsification replaces full-precision
models with appropriate sparse representations. Strom
(2015); Tsuzuku et al. (2018) select parameters with mag-
nitudes greater than a threshold to transmit, but it’s hard
to set an appropriate threshold. Gradient dropping (Aji
et al., 2017) samples parameters with top-p% magnitudes.
Wangni et al. (2018) introduces one convexity formula to
ensure that compressed gradients are unbiased estimates of
true gradients. The variance-based sparsification in Tsuzuku
et al. (2018) only uploads gradients with magnitudes greater
than variances. Slim-DP (Sun et al., 2018) samples parame-
ters with top-p% magnitudes and randomly selects ϵ% from
remaining parameters. HeteroFL (Diao et al., 2021) allows
each client to upload its local model’s sub-network adaptive
to system resources to the server, implementing the com-
patibility with heterogeneous sub-networks and improving
uplink communication’s efficiency. Although top-p% sparsi-
fication is robust to non-iid data (Sattler et al., 2019b), model
accuracy drops obviously as the compression ratio rises, and
it also lacks theoretical guarantees for convergence.

(C) Quantization. Quantization represents model param-
eters with fewer bits. SignSGD (Bernstein et al., 2018)
quantizes gradients into binary symbols, it performs poorly
with non-iid data (Sattler et al., 2019b). FTTQ (Xu et al.,
2020) quantizes 32-bit model parameters into 2-bit ternary
symbols. Compared with binary and ternary quantization,
multi-bit quantization (Cai et al., 2019; Guo et al., 2017;
Leng et al., 2018; Lin et al., 2017; Zhou et al., 2016) has
lower quantization errors. Caldas et al. (2018a) introduces
lossy compression with quantization and FL-dropout to re-
duce communication cost. Cnat (Horvath et al., 2019) quan-
tizes each parameter t to sgn(t) ∗ 2n and only uploads the
symbol sgn(t) and exponent power n. TernGrad (Wen et al.,
2017), QSGD (Alistarh et al., 2017) and ATOMO (Wang
et al., 2018) quantize parameters in an unbiased manner. Al-
though quantization has theoretical convergence guarantee,
its upper bound of compression ratio is only 32×.

(D) Combinations of Sparsification and Quantization.
STC (Sattler et al., 2019b) proposes a combination of top-
p% sparsification, ternary quantization, and Golomb coding
to realize two-way compression. SBC (Sattler et al., 2019a)
combines communication delay, sparsification, and binary
quantization to compress two-way transmitted models.

(E) Parameters Encoding. SKETCHED-SGD (Ivkin
et al., 2019) compresses local gradients into sketches, but
secondary communication yields extra cost. FetchSGD
(Rothchild et al., 2020) introduces momentum and error ac-
cumulation on the server to alleviate the impacts of sketched
representation. DiffSketch (Li et al., 2019) takes a better
trade-off among accuracy, privacy, and communication cost.
Alistarh et al. (2017) encodes quantized gradients with Elias
coding. Weightless (Reagen et al., 2018) combines clus-
tering quantization and compact coding of bloom filters
to achieve model compression. PowerSGD (Vogels et al.,
2019) decomposes models into smaller matrices through
low rank while using a hierarchical “all-reduce” aggrega-
tion. Chen et al. (2021) proposes a combination of sampling
client, random lattice quantization, and wireless resource
allocation to optimize FL communication.

(F) Client Sampling. AFL (Goetz et al., 2019) actively sam-
ples clients with large model loss to speed up convergence.
CMFL (Wang et al., 2019) calculates each client’s relevance
to the global model and forbids clients with relevance lower
than a threshold to upload parameters. LAG (Chen et al.,
2018a) skips selecting redundant clients whose gradients
during two consecutive rounds have little change. LAQ (Sun
et al., 2019) quantizes the gradients before applying LAG.

Our Insights. Inspired by client sampling and sparsifica-
tion, we propose QSFL to sample clients with high qualifica-
tions judged by designing a more comprehensive judgment
(QJ) rule, and further compress uploaded models through
designing a sparse cyclic sliding segment (SCSS) algorithm.
Limited to client-to-server bandwidths in parameter-server
(PS) FL, Hu et al. (2019) proposes a decentralized (P2P) FL
framework, which designs a segmented gossip approach to
maximize bandwidth utilization between workers (clients).
It allows each worker to randomly pull replica segments
from multiple other workers. Whereas, our SCSS aims to
minimize communication cost by allowing each client to
upload only one well-specified segment based on the sliding
rule in PS FL. Hence, the development scenarios, optimiza-
tion goals and transmission protocols of them are all distinct.

3. Methods
In this section, we first formulate the communication-
efficient FL problem, then present our QSFL framework,
finally prove the convergence of QSFL and propose a hyper-
parameter searching algorithm based on theoretical analysis.
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Figure 2: A complete workflow of QSFL framework in one round. 1⃝: clients train local models on local datasets, 2⃝: clients
compute and upload the three key parameters for qualification judgment, 3⃝: the server calculates and sends qualification
flags back to clients, 4⃝: clients with uploading qualification (flag is set to true) upload one particular sparse segment to the
server, 5⃝: the server aggregates segments with same id, 6⃝: the server broadcasts the updated global model to all clients.

3.1. Problem Formulation

Background with FedAvg (McMahan et al., 2017), we as-
sume that C clients join in FL and the objective of traditional
FL is to minimize the mean loss of local models:

min
ω∈Rd

F (ω) =

C∑
k=1

nk

n
fk(ωk), (1)

where nk is the k-th client’s data volume, n is the total data
volume held by all clients, ω is the global model, ωk is the
local model of the k-th client, fk(ωk) is the loss function
of ωk and can be computed by:

fk(ωk) =
1

nk

∑
i∈Dk

fk
i (ωk), (2)

where Dk is the local dataset of the k-th client, fk
i (ωk) is

the loss of i-th data instance on ωk, i.e.,

fk
i (ωk) = ℓ(xk

i , y
k
i ;ωk). (3)

With the above formulation, we approach a communication-
efficient FL by: a) sampling partial clients to upload
models (reducing C), and b) compressing uploaded ωk.

3.2. QSFL Framework

This section describes how to optimize client-to-server com-
munication in our two-level QSFL framework. In each
round, it first uses a QJ algorithm based on contribution
and relevance to select high-qualification clients to upload
model updates. Second, each qualified client uploads one
particular sparse segment controlled by the SCSS algorithm
to the server. Fig. 2 displays the complete training and
communication pipeline of QSFL in one round.

3.2.1. QUALIFICATION JUDGMENT (QJ)

We assume that the server and clients joining in FL are both
honest and trustworthy. Clients with different numbers and
distributions of instances make different contributions to the
global model. We regard clients with low contribution as
“redundant clients” and forbid them from uploading model
updates. Dropping models of redundant clients has marginal
effects on the accuracy of the aggregated global model but
effectively saves uplink communication bandwidth at the
client level. Next, we detail how to judge redundant clients.

Definition. We define one client’s uploading qualification
from accelerating FL training and ensuring the convergence
of the global model as follows:

qk = β · contributionk + (1− β) · relevancek

= β · lossk/nk∑C
i=1 lossi/ni

+ (1− β) ·
∑|ωl

k|
j=1 I(sgn(ωl

k,j) == sgn(ωg
j ))

|ωl
k|

,

(4)

where I(·) is an indicator function, sgn(·) is a sign func-
tion, ωl

k,j is the j-th parameter of the k-th client’s local
model, ωg

j is the j-th parameter of the global model. Since
contributionk and relevancek belong to [0,1], qk ∈ [0,1].

The qualification judgment process is executed by the server.
As shown in Fig. 2, all clients upload three key parameters
relevancek (a.k.a Ik), nk, lossk to the server after local
training, then the server updates the qualification list Q =
[q1, . . . , qk, . . . , qC ] with received parameters and Eq. (4),
and sorts items of Q in descending order. The last (1−α%)
of the clients are judged as redundant, and their qualification
flags q flagk are set to false, otherwise true. Only clients
with q flagk= true are allowed to upload model updates.
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Computing Contribution. We measure each client’s con-
tribution through normalized lossk/nk. The larger mean
loss makes the training process gain more by gradient de-
scent optimizer (Goetz et al., 2019). FL training aims to
reduce the mean loss of all clients, so choosing clients with
larger loss can speed up convergence, while dropping sev-
eral clients with low loss has marginal impacts on the loss
of the aggregated global model.

Computing Relevance. We compute the relevance between
the received global model and trained local models by (num-
ber of parameters with the same signs on the same coordi-
nates) / (total number of model parameters). Wang et al.
(2019) has proved that sign consistency of local models and
the global model can guarantee consistent gradient direc-
tions, so the higher relevance indicates the local model’s
gradient direction tends more to the global model. Hence,
sampling high-relevance clients can ensure convergence.

Communication Cost. Each client communicates three 32-
bit floating points (Ik, nk, lossk) and one integer (q flagk)
with the server, so it has negligible communication cost.

Computational Cost. For local computation, nk is the k-th
client’s data volume, lossk is the byproduct of local train-
ing, both of the two requires no extra computation. Only
Ik is computed by comparing the signs of parameters be-
tween the k-th client’s local model and the global model.
We take one fully connected layer of a LeNet model as
an example, its input and output dimensions are x, y, then
one forward operation during training consumes 64xy1 bits
FLOPs. Whereas, computing the relevance of this layer
between the k-th local model and the global model only
consumes xy2 bits FLOPs, since relevance is computed
through comparing parameters’ signs (1 bit) by ordinate.
The computational cost of one forward operation on convo-
lutional layers are even higher than computing relevance.
Hence, the computational cost of Ik can be neglected and
marginally affects on QJ’s efficiency and practicality.

3.2.2. SPARSE CYCLIC SLIDING SEGMENT (SCSS)

Client Uploading. SCSS first flattens each local model of
clients with uploading qualification to one-dimensional vec-
tor representation, and evenly divides it into NS segments
with the same size, where 1 ≤ NS ≤ NC (the number
of qualified clients), NS = 1 means the full model vector
is transmitted. Then each client uploads only one specific
segment per round, and the uploaded segment’s id is con-
trolled by (client id + round)%NS, which guarantees
the uploaded seg id always cyclically slides one segment
forward relative to that in the last round. To ensure that

1Here (x+(x−1)+1)·y = 2xy times calculations are required,
and parameters are 32-bit floats, so consuming 2xy · 32 = 64xy
bits FLOPs.

2xy is the total number of parameters in this FC layer.
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Figure 3: A toy example of SCSS.

segments with any id are uploaded by at least one client in
a round, NS should be no more than NC, e.g., assuming
that 8 clients upload models and 9 segments with different
seg id are required to be uploaded, one segment of all will
not be uploaded by any client, leading to partial informa-
tion missing. Due to only uploading one segment per client
per round, SCSS requires more rounds to achieve the same
convergence rate with FedAvg.

Sparse Trick. Each uploaded segment still involves redun-
dant parameters, top-p% sparsification (Aji et al., 2017) can
be exploited as a trick to further compress each segment.

Server Aggregating. The server first decodes received
sparse segments, then averages segments with the same
seg id, finally splices NS averaged segments to reassemble
the updated global model. The novel aggregation rule can
be defined as follows:

ωt
g = [

∑
c∈c0

segtc,0

|c0| ,

∑
c∈c1

segtc,1

|c1| , ...,

∑
c∈cNS−1

segtc,NS−1

|cNS−1| ], (5)

where ωt
g is the aggregated global model in the t-th round,

and ci is a set of clients who upload the i-th segment. The
whole SCSS algorithm is described in Algo. 1.

Toy Example. For ease of understanding SCSS, we take 5
clients (NC = 5) and 3 segments (NS = 3) as an example
shown in Fig. 3. segtc,s denotes the c-th client uploads its
s-th segment in the t-th round. In the 0-th round, client0
uploads the segment with seg id = (0 + 0)%3 = 0, i.e.,
seg00,0. Similarly, client1 uploads seg01,1, client2 uploads
seg02,2, client3 uploads seg03,0, and client4 uploads seg04,1.
seg 0s are provided by client0 and client3, seg 1s are up-
loaded by client1 and client4, and seg 2 is only provided
by client2. The server then averages seg00,0 and seg03,0 as
the updated seg 0, and so on. Finally, the server splices
updated seg 0, seg 1 and seg 2 as the latest global model
and sends it to all clients. In the next round, each client’s
uploaded segment cyclically slides forward by one segment,
which ensures that each client can upload all of its segments
after multiple rounds.
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Algorithm 1 SCSS Algorithm
Client k does:
Receive the global model ωt from the server
ωt
k ← local training on ωt

s← (k + t)%NS // k: client id; t: round; s: segment id
segk,s ← flatten(ωt

k)[s · |ωt
k|/NS : (s+ 1) · |ωt

k|/NS]
masks, values of ssegk,s ← top-p(segk,s)
Return masks, values of ssegk,s

Server does:
Receive masks, values of ssegk,s from qualified clients
Initialize SEG = [[sseg0], . . . , [ssegNS−1]] to be empty
for k = 0 to NC − 1 do

ssegk,s ← decode(masks, values of ssegk,s)
SEG[s].append(ssegk,s)

end for
for s = 0 to NS − 1 do

SEG[s] = avg([ssegk1,s
], [ssegk2,s

], · · · )
end for
ωt+1 ← reshape(SEG, shape of original ωt)
Return ωt+1

3.3. Convergence Analysis and Proof

3.3.1. INTUITIVE ANALYSIS

There are two points of SCSS worthy to note that: 1) Each
client receives the complete global model from the server
and then updates it locally, so all segments are always the
latest. 2) The id of the segment uploaded by each client
cyclically slides forward one as rounds rise, ensuring all
parameters of one client’s local model can be aggregated
after multiple rounds. The above two points can ensure
model convergence even if uploading sparse information.

Specifically, each client has uploaded NS segments with
different id to the server after NS rounds, and the accumu-
lated segments on the server during NS rounds are:

NS−1∑
r=0

ωr
g = ω0

g + ω1
g + ...+ ωNS−1

g

= [seg00,0, seg
0
1,1, ..., seg

0
NC−1,(NC−1)%NS ]

+ [seg10,1, seg
1
1,2, ..., seg

1
NC−1,NC%NS ] + ...

+ [segNS−1
0,NS−1, seg

NS−1
1,0 , ..., segNS−1

NC−1,(NC+NS−2)%NS ].

(6)

On the whole, the number of parameters server received
during NS rounds in SCSS is the same as FedAvg in one
round (e.g., in the 0-th round):

ω0
g = [seg00,0, seg

0
0,1, ..., seg

0
0,NS−1]

+ [seg01,0, seg
0
1,1, ..., seg

0
1,NS−1] + ...

+ [seg0NC−1,0, seg
0
NC−1,1, ..., seg

0
NC−1,NS−1].

(7)

Each column in Eq. (6) corresponds to each row in Eq. (7),
both of them represent the uplink communication traffic of
the same client. In SCSS, the uploaded segments of each
client during NS rounds cyclically slide forward, and cor-
responding gradients continuously decrease, which ensures

convergence. In essence, SCSS has more local computation
than FedAvg by delaying uploading remain segments.

3.3.2. PROOF

The loss function of k-th client can also be represented
by: fk(ωk) = EB⊆Dk

fk(ωk, B), B is a batch of dataset
Dk and the batch size is B. We first refer to the following
assumptions made in Wang et al. (2020):

Assumption 3.1. Lipschitian gradient. The k-th client’s
local model gradient∇fk(ωk) is L-Lipschitian, i.e.,

∥∇fk(ωt+1
k )−∇fk(ωt

k)∥ ≤ L∥ωt+1
k − ωt

k∥. (8)

Assumption 3.2. Bounded gradient. Each client’s local
stochastic gradient variance is bounded, i.e.,

EB⊆Dk
∥∇fk(ωk; B)−∇fk(ωk)∥2 ≤ σ2, ∀k, ∀ωk,

1

C

C−1∑
k=0

∥∇fk(ωk)−∇F (ω)∥2 ≤ B2, ∀k, ∀ωk,
(9)

Assumption 3.3. Initializing model weights to 0.

Based on the above assumptions and the principle of SCSS,
we denote k-th client’s local model update by:

ωt+1
k,s − ωt

k,s = gt(·,s)W
t
s ,

gt(·,s) := ((gt(0,s))
T , ..., (gt(k,s))

T , ..., (gt(NC−1,s))
T ).

(10)

where ωt
k,s is k-th client’s s-th segment in t-th round, and

gt(k,s) is its gradient vector. W t
s is the weight matrix, and

[W t
s ]i,j weights the s-th segment’s gradients received by

clientj from clienti. [W t
s ]i,j = 0 means that clientj does

not receive s-th segment’s gradients from clienti, [W t
s ]i,j =

1/NC means all qualified clients upload their local s-th
segments to the server. Fig. 4 shows the weight matrices of
the above toy example during 0-1 rounds.
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Figure 4: Weight matrices of the toy example in 0-1 rounds.
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Yu et al. (2019); Wang et al. (2020) have proved that the
following properties are satisfied in the case of randomly
discarding a fraction of the gradients/parameters:

(E[W t
s ])ANC = ANC ,

E[W t
s (W

t
s )

T ] = α1INC + (1− α1)ANC ,

E[W t
sANC(W

t
s )

T ] = α2INC + (1− α2)ANC ,

(11)

where α1, α2 are constants and 0 < α2 < α1 < 1; INC

is an identity matrix; ANC is a NC × NC matrix with
all elements as 1/NC. If each client uploads no duplicate
seg id within a round, then α1 = 1; if all clients upload the
full model involving all seg ids, then α1 = 0.

Since our SCSS algorithm transmits only one spe-
cific segment per client per round, αs,t

1 , αs,t
2 vary

with seg id (s) and round (t). Based on the de-
rived convergence rate of Theorem 1 in Yu et al.
(2019); Wang et al. (2020), we replace αs,t

1 , αs,t
2 with

α1max(maxs,tα
s,t
1 ), α2max(maxs,tα

s,t
2 ). Hence, we can

further derive the following theorem:
Theorem 3.4. SCSS can converge over wall-to-wall time.

Proof. Based on Assumption 3.1, we set the learning rate
η sufficiently small to satisfy 1 − 6L2η2

(1−
√
βmax)2

> 0, so the
convergence rate of SCSS is:

1

T

T−1∑
t=0

(E∥∇f(ω̄t)∥2 + (1− Lη)E∥∇̄f(ϖt)∥2)

≤ 2f(0)− 2f(ω∗)

ηT
+

ηLσ2

NC
+ 4α2maxLη(σ

2 + 3B2)

+
(2α2maxLη + L2η2 + 12α2maxL

3η3)σ2M1

(1−
√
βmax)2

+
3(2α2maxLη + L2η2 + 12α2maxL

3η3)B2M1

(1−
√
βmax)2η3)

,

(12)

where ∇f(ω̄t) = ∇f(nk

n

∑NC−1
k=0 ωt

k), ∇f(ϖt) =∑NC−1
k=0 ∇fk(ωt

k), βmax = maxs,t(α
s,t
1 − αs,t

2 ) < 1, and
M1 = (1− 6L2η2

(1−
√
βmax)2

)−1.

When choosing the appropriate learning rate η =
(1−

√
βmax)

2

6L+3(σ+B)
√
α2maxT+σ

√
T√
C

, we get:

1

T

T−1∑
t=0

E∥∇f(ω̄t)∥2 ≤ (2f (⃗0)− 2f(ω∗) + L)σ√
NC · T (1−

√
βmax)

+
(2f (⃗0)− 2f(ω∗) + L)(σ + B)

1−
√
βmax

√
α2max

T

+
L2(σ2 + B2)

( T
NC

+ α2maxT )σ2 + α2maxTB2

+
(2f (⃗0)− 2f(ω∗))L

T

(13)

From the first main term, we can see that the convergence
rate of SCSS is approximately 1/

√
NC · T , which is con-

sistent with distributed SGD (Lian et al., 2017).

3.4. Searching Optimal Hyperparameters

3.4.1. PROBLEM DEFINITION

Based on the 1/
√
NC · T convergence rate, we further

make the following assumptions:

Assumption 3.5. Assuming the loss of the global model is
bounded, i.e., it satisfies:

E∥f (⃗0)− f(ω∗)∥2 ≤ δ2. (14)

Assumption 3.6. Assuming the global model can reach the
maximum convergence rate ε, i.e.,

1

T

T−1∑
t=0

E∥∇f(ω̄t)∥2 ≤ ε. (15)

Lemma 3.7. The training rounds required by the global
model to reach ε convergence rate are:

T =
(2δ + L)2σ2

ε2(1−
√

1− (NC%NS)+(NC/NS)NC

NC2 )2αC

= O(
1

(1−
√

1− (αC%NS)+(αC/NS)αC

(αC)2
)2αC

).

(16)

where C is the total number of clients, α is the fraction of
sampled clients, NC = αC.

We prove lemma 3.7 in Appendix A. Based on lemma 3.7,
we can further derive the uplink communication traffic re-
quired to reach convergence rate ε:

ϕ(α,NS, p) =
|ω|
NS

(32p+ 1) · αC · T

=
|ω|(32p+ 1)αCµ

NS(1−
√

1− (αC%NS)+(αC/NS)αC

(αC)2
)2αC

=
|ω|(32p+ 1)µ

NS · (1−
√

1− (αC%NS)+(αC/NS)

(αC)2
)2αC

,

(17)

µ is a constant for approximating the big-O in lemma 3.7.

Definition. We define the purpose of the hyperparameter
searching algorithm as: minimizing the communication
traffic when reaching ε convergence rate, i.e.,

minϕ(α,NS, p), (18)

where NS ∈ [1, αC], |ω|%NS = 0; p ∈ (0, 1], α ∈ (0, 1].

3.4.2. PROBLEM SOLVING

Formula (18) is a typical single-objective optimization prob-
lem. Since the three independent variables NS, p, α are
discrete, this problem can be converted into a combinatorial
optimization problem. We exploit Genetic Algorithm (GA)
to seek the optimal combination of the three hyperparam-
eters iteratively, and the detailed optimal hyperparameter
searching algorithm is displayed in Appendix B, Algo. 2.
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4. Experiments
We implement QSFL3 on the FL framework developed in
Luo et al. (2019) and use 4 NVIDIA GeForce RTX 3090
GPUs to execute QSFL parallelly. We evaluate QSFL in an
image classification task and an object detection task.

4.1. Setup

Model and Dataset. CNN on FEMINIST: we train a CNN
network (2Conv + 1FC) with 110526 parameters on a real-
world FEMINIST4 dataset (Caldas et al., 2018b). Since
the 62-class handwritten characters in FEMINIST have dif-
ferent writing styles, these images show naturally non-iid
distribution. We assign the images of the first 36 writers to
36 clients. Each client’s local dataset is divided into train-
ing/testing sets with a ratio of 8:2. YOLOv3 on Street:
we train a YOLOv3 model with 61556044 parameters on a
real-world Street5 dataset (Luo et al., 2019), which involves
956 images with 7 objects (table, chair, etc.) from 26 streets’
cameras. Due to different street locations, the classes and
numbers of objects in multiple images are quite different,
i.e., naturally non-iid. Referring to Luo et al. (2019), we as-
sign a shared testing set to all clients, which involves images
from 6 cameras and several images randomly sampled from
other cameras, and the unextracted images of the remaining
20 cameras are allocated as training sets to 8 clients.

Baselines. We compare the following methods: a) Dis-
tributed SGD (Lian et al., 2017); b) Delaying communi-
cation: FedAvg (McMahan et al., 2017); c) Sparsifica-
tion: top-p% sparsification (Aji et al., 2017), Slim-DP (Sun
et al., 2018), HeteroFL (Diao et al., 2021); d) Quantization:
signSGD (Bernstein et al., 2018), Deep Compression (Han
et al., 2016), Cnat (Horvath et al., 2019); e) Combinations of
sparsification and quantization: STC (Sattler et al., 2019b),
SBC (Sattler et al., 2019a), random subsampling & 2-bit
quantization (Caldas et al., 2018a), top-p% sparsification &
signSGD; f) Parameter encoding: SKETCHED-SGD (Ivkin
et al., 2019), FetchSGD (Rothchild et al., 2020); g) Client
sampling: AFL (Goetz et al., 2019), CMFL (Wang et al.,
2019), LAG (Chen et al., 2018a), LAQ (Sun et al., 2019).

Evaluation Metrics. a) mAP: we use mean Average Pre-
cision (mAP) to evaluate the performance of the global
model, it can be computed by mAP =

∑n
i=1 APi

n , APi =
1
mi

∑mi

j=1 I(f(xj) = yj), where AP is the average predic-
tion accuracy of each class, n and mi are the total number
of classes and instances, I(·) is an indicator function. b)
Compression Ratio: Distributed SGD requires R0 rounds
to attain the target accuracy, hence consuming 32|ω|R0C
bits in uplink communication. The compression ratio can

3https://github.com/LipingYi/QSFL
4https://github.com/TalwalkarLab/leaf/tree/master/data/FEMINIST
5https://dataset.fedai.org

Table 1: Results of QSFL and baselines on FEMINIST.
We execute multiple experiments for each algorithm with
different hyperparameters, and compute compression ratio
when algorithms reach 70% target mAP (most of them can
reach it). We report two typical cases: a) When reaching
maximum compression ratios (column-3), the mAP reached
in the last (200-th) round (column-4). b) When reaching
maximum mAP (column-5), compression ratio achieved by
algorithms (column-6). ‘-’: not reaching 70% mAP.

CNN on FEMINIST, 200 Rounds

Type Algorithm max CR
(70%)

mAP
(200)

max mAP
(200)

CR
(70%)

No Optimization Distributed SGD 1.00× 78.87% 78.87% 1.00×
Communication
Delay FedAvg (E=10,B=1) 19.00× 86.54% 86.54% 19.00×

Quantization
signSGD 32.00× 70.09% 70.09% 32.00×
Deep Compression - 8.43% 8.43% -
Cnat 86.86× 75.31% 75.31% 86.86×

Sparsification Top-p (%) 95.00× 75.55% 85.93% 10.56×
Slim-DP 54.29× 79.26% 85.42% 13.57×
HeteroFL 85.30× 76.25% 86.07% 10.35×

Combination of
Quantization and
Sparsification

Top-p (%) & signSGD 368.48× 70.73% 70.74% 10.24×
Random subsample - 8.67% 8.67% -
SBC - 6.07% 6.07% -
STC - 66.41% 66.41% -

Client Sampling

AFL 126.67× 82.42% 84.85% 38.00×
CMFL 42.22× 77.65% 83.60% 30.40×
LAG 19.00× 84.30% 84.30% 19.00×
LAQ 32.33× 72.25% 82.73% 24.42×

Parameter Encoding SKETCHED-SGD 81.25× 74.28% 85.12% 10.15×
FetchSGD 237.52× 72.35% 83.65% 4 1.50×

Ours QSFL 889.76× 78.08% 86.63% 157.79×

Table 2: Results of QSFL and baselines on Street dataset.
YOLOv3 on Street, 300 Rounds

Type Algorithm max CR
(70%)

mAP
(300)

max mAP
(300)

CR
(70%)

No Optimization Distributed SGD 1.00× 84.00% 84.00% 1.00×
Communication
Delay FedAvg (E=5,B=1) 1.49× 83.20% 84.20% 1.24×

Quantization signSGD 32.00× 10.60% 10.60% 32.00×
Cnat - 69.30% 75.20% 0.84×

Sparsification Top-p (%) 1.08× 81.60% 81.60% 1.08×
HeteroFL 1.05× 82.20% 82.20% 1.05×

Combination of
Quantization and
Sparsification

Top-p (%) & signSGD - 8.20% 9.50% -

Client Sampling

AFL 1.49× 83.20% 84.10% 1.37×
CMFL 1.49× 83.20% 84.00% 1.31×
LAG 1.15× 81.08% 82.79% 1.13×
LAQ 1.32× 79.22% 81.32% 1.04×

Parameter Encoding SKETCHED-SGD 1.03× 82.28% 82.28% 1.03×
FetchSGD 1.58× 76.65% 80.60% 1.42×

Ours QSFL 6.35× 83.21% 84.50% 3.58×

be computed by (the communication traffic of algorithms)
/ 32|ω|R0C when reaching the same target accuracy. All
experimental results are measured only for the uplink com-
munication after convergence.

4.2. Experimental Results

4.2.1. COMPARISONS WITH BASELINES

Tab. 1 and Tab. 2 record the results of all algorithms when
respectively achieving the highest compression ratio and
highest mAP in two tasks. From Tab. 1, we can see that
QSFL owns the highest compression ratio (889.76×) and
also has a similar mAP with Distributed SGD. Besides,
QSFL achieves the highest mAP (86.63%) while also main-
taining the highest compression ratio (157.786×). QSFL
also outperforms alternatives in the object detection task.
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We also choose the above each type of algorithms which
perform best in the two cases of Tab. 8, and report how the
loss and mAP range over rounds in Appendix D, Fig. 9.
In the case of achieving maximum compression ratio, as
shown in Fig. 9 (a-b), we can see: a) Owing to the non-iid
distribution, distributed SGD shows the worst convergence
rate. b) QSFL sharply shakes in the early training stage
due to only uploading one segment per client. But it finally
converges to a better mAP than most baselines. c) Although
FedAvg achieves better mAP than QSFL, it only achieves
19× compression ratio while QSFL reaches 889.76×. In
the case of achieving the maximum mAP shown in Fig. 9
(c-d), we can see QSFL has a stable convergence rate and
performs similar model accuracy with FedAvg while having
8.3× higher compression ratio. Both of the two typical cases
display that QSFL converges over wall-to-wall time, which
is consistent with the convergence analysis in Sec. 3.3.

4.2.2. PERFORMANCE EVALUATION OF QSFL

(A) Searching Optimal (E, B) for FedAvg. We first search
optimal (E,B) for FedAvg to maintain minimum commu-
nication cost. From preliminary experiments recorded in
Appendix C, we find FedAvg (E = 10, B = 1) on FEMINIST
achieves the highest 19× compression ratio with 86.54%
mAP, FedAvg (E = 5, B = 1) on Street attains the highest
1.49× compression ratio with 83.23% mAP, which are the
default (E,B) settings in subsequent experiments. We also
report other hyperparameters of FL in Appendix C.

(B) Results of QJ. From Tab. 3, we can see that mAP
decreases, and the compression ratio rises as α (the ratio of
qualified clients) decreases for each fixed β (hyperparameter
of QJ), which is reasonable since fewer qualified clients
lead to less local information sent to the server. Besides, for
each fixed α, different values of β almost achieve similar
compression ratios. β = 0.9 in both tasks keeps relatively
high mAP and compression ratio. So we can conclude
that removing redundant clients by QJ keeps the model
performance while improving communication efficiency.

(C) Results of SCSS. We evaluate SCSS with different
(NS, p) in two tasks. On the FEMINIST dataset, 36 clients
join in FL, so NS ∈ [1, 36]. Furthermore, we take the fac-
tors (1, 2, 6, 13, 26) of 110526 (the CNN model’s parameter
capacity) as the values of NS for uniform segmentation.
On the Street dataset, 8 clients participate in FL, so NS ∈
[1, 8]. We also choose the factors (1, 2, 4) of 61556044 (the
YOLOv3 model’s parameter capacity) for NS.

From Fig. 5 (a-b), we can see: a) for fixed NS, decreasing
p makes mAP drop and compression ratio increase; b) for
fixed p, mAP drops and compression ratio increases as NS
grows since shorter segment carries less information. NS =
6, 13 achieve better trade-offs; c) p = 0.3 is an approximate
inflection point of four curves, i.e., mAP and compression

Table 3: Results of QJ. mAP (200/300) means the mAP in
the 200/300-th round, CR (70%) denotes the compression
ration measured in 70% target mAP.

CNN on FEMINIST (200 rounds) YOLOv3 on Street (300 rounds)
α β mAP (200) CR (70%) α β mAP (300) CR (70%)

0.9

0.9

85.28% 28.15× 0.9
0.9

85.7% 1.71×
0.7 84.48% 36.19× 0.7 79.5% 0.68×
0.5 85.72% 38.00× 0.5 79.9% 0.75×
0.3 85.42% 76.00× 0.9

0.8
84.5% 1.30×

0.1 85.34% 95.00× 0.7 85.1% 0.89×
0.05 84.82% 80.00× 0.5 76.5% 0.91×
0.5

0.8
85.07% 38.00× 0.9

0.7
86.8% 1.40×

0.1 84.95% 95.00× 0.7 83.9% 1.00×
0.05 83.62% 116.92× 0.5 78.6% 0.84×
0.5

0.7
85.10% 38.00× 0.9

0.6
83.9% 1.57×

0.1 84.27% 108.57× 0.7 86.7% 1.21×
0.05 82.86% 76.00× 0.5 80.3% 0.83×
0.5

0.6
84.45% 30.40× 0.9

0.5
85.7% 1.47×

0.1 83.67% 69.09× 0.7 84.1% 0.84×
0.05 82.19% 89.41× 0.5 83.6% 1.27×
0.5

0.5
85.02% 30.40× 0.9

0.1
86.2% 1.19×

0.1 83.97% 84.44× 0.7 70.9% 0.68×
0.05 82.91% 76.00× 0.5 61.9% -

ratio change more smoothly when p ≥ 0.3 and otherwise
show significant fluctuations; d) the compression ratio of
p = 0.05 is less than p = 0.1, because too low p makes the
uploaded parameters carry little information and requires
more rounds to achieve 70% target mAP. So p = [0.1, 0.3]
takes good trade-offs between mAP and compression ratio.

Fig. 5 (c-d) display that (NS = 2, p = 0.5) achieves both
great mAP and compression ratio on the Street dataset.

(D) Results of QSFL. Based on the conclusions of (B), we
evaluate QSFL with QJ (β = 0.9) in both two tasks.

On FEMINIST dataset, we find that NS = 13 (64.92%)
doesn’t attain 70% target mAP even if α = 0.9 and p = 0.9 in
200 rounds. Also considering optimal values (6,13) of NS
concluded in (C), we evaluate QSFL with NS = 6. From
Fig. 6 (a), we can see that mAP changes smoothly when
α ≥ 0.7 and otherwise drops quickly as α decreases for
fixed p. Since the settings of α ≤ 0.3 with any p do not
achieve 70% target mAP, so these points are not displayed
in Fig. 6 (b). Fig. 6 (b) shows that the settings of any
fixed p except p ≤ 0.3 performs higher compression ratio
as α drops. Especially, (p = 0.1, α = 0.5) generate the
highest compression ratio (889.76×) with 78.08% mAP
which is only 0.79% lower than Distributed SGD (78.87%).
Fig. 6 (c-d) indicate that decreasing p slightly affects mAP
but effectively improves the compression ratio for fixed α.
Therefore, QSFL (β = 0.9, NS = 6, α = 0.7, p = 0.4) makes
the best trade-off between communication and accuracy, it
achieves 311× compression ratio with 5.24% mAP rise.

On the Street dataset, we also test QSFL with α ∈ [0.1, 0.9]
and p ∈ [0.1, 0.9] when NS = 2, and find that QSFL (β =
0.9, NS = 2, α = 0.9, p = 0.5) achieves highest 6.35× com-
pression ratio and 83.21% mAP (Distributed SGD: 84%).

As shown in Appendix B, the above (α∗, NS∗, p∗) in two
tasks are both close to the searching results of Algo. 2.
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Figure 5: (a-b) display the results of SCSS on FEMINIST
dataset, (c-d) show the results on Street dataset.

4.2.3. QSFL WITH MORE CLIENTS

When more clients join in FL, segments with any id are
provided by more clients, in which more enough infor-
mation contributes to aggregation and the convergence
rate will be improved. To verify this conjecture, we test
C ∈ {10, 20, 30, 40, 50} clients on the FEMINIST dataset.
We also configure QSFL with (β = 0.9, NS = 6, α = 0.7, p
= 0.4), and the results are presented in Appendix F, Fig. 10.

As shown in Fig. 10 (a), we find that QSFL presents oscilla-
tion when the number of clients is less than 40, otherwise
it stably converges over wall-to-wall time, which verifies
our conjecture. To clarify oscillation, we test SCSS (i.e., QJ
(α = 1)) with the above settings. As shown in Fig. 10 (b),
oscillation disappears in all settings, which indicates that the
oscillation is probably caused by QJ sampling quality-poor
clients in some rounds. SCSS shows robustness to number
of clients, since it guarantees that any segment of the global
model is provided by at least one client.

4.2.4. ABLATION EXPERIMENTS

We conduct ablation experiments to test the importance of
each part in QSFL. From Tab. 8 in Appendix E, we can see
that the combination of any two-part has a higher compres-
sion ratio than any single part, and the combination of three
parts shows the best compression ratio, which indicates both
QJ and SCSS promote a communication-efficient QSFL.

Summary. Extensive experiments verify that QSFL takes
a great trade-off between compression ratio and model ac-
curacy, so users can control its hyperparameters for varying
requirements of communication cost and model effect.

Broader Impact. QJ and SCSS can be used as two indepen-
dent approaches to reduce FL uplink communication costs.
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Figure 6: Effects of QSFL vary with client sampling rate α
and sparsification rate top-p on the FEMINIST dataset.

QSFL with QJ and SCSS is applicable in a cross-device FL
scenario with numerous participating clients, while QSFL
with only SCSS can be used in a cross-device or cross-silo
FL scenario without limitation of number of clients.

5. Concluding Remarks and Future Work
In this paper, the proposed QSFL framework optimizes FL
uplink communication overhead from two levels: rejecting
redundant clients uploading model updates (client-level)
and compressing models to unique segments for uploading
(model-level). Theoretical proof and extensive experiments
verify that QSFL can effectively reduce uplink communi-
cation costs with marginal model accuracy degradation. In
future work, (a) we will explore an effective downlink com-
munication optimization solution to couple with QSFL’s
existing superiority in uplink communication, so as to con-
duct a two-way communication-efficient FL framework. Be-
sides, (b) we will also develop current SCSS with dynamic
segments, which allows each client to upload one segment
with size adaptive to system resources. In this way, QSFL’s
robustness to heterogeneous devices will be enhanced.
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A. Proof for Lemma 3.7
Proof. According to the first main term on the right-hand
side of the inequality in Eq. 13 and Assumptions 3.5 and
3.6, let

ε =
(2f (⃗0)− 2f(ω∗) + L)σ√

NC · T (1−
√
βmax)

=
(2δ + L)σ√

NC · T (1−
√
βmax)

,

(19)

where NC = αC. Then we can further get:

T =
(2δ + L)2σ2

ε2(1−
√
βmax)2αC

. (20)

We refer to the approximation of βmax in Yu et al. (2019),
i.e., the mean drop probability of segments. We first derive
the mean uploading probability of segments:

Pup =
NC%NS

NC
· (NC/NS) + 1

NC

+ (1− NC%NS

NC
) · NC/NS

NC

=
(NC%NS) + (NC/NS)NC

NC2
.

(21)

We show two examples to help understand how the above
formula works, as shown in Fig. 7.
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Figure 7: Examples of computing uploading probability.

So we can get βmax = 1− Pup, i.e.,

βmax = 1− Pup = 1− (NC%NS) + (NC/NS)NC

NC2
. (22)

Substituting βmax of formula 19 with formula 22,

T =
(2δ + L)2σ2

ε2(1−
√
1− (NC%NS)+(NC/NS)NC

NC2 )2αC

= O(
1

(1−
√

1− (αC%NS)+(αC/NS)αC
(αC)2 )2αC

).

(23)

B. Optimal Parameter Searching Algorithm
The following algorithm is the optimal hyperparameter
searching algorithm.

Algorithm 2 Optimal Hyperparameter Searching Algorithm

Input: C, the total number of clients; |ω|, the number of
model parameters; µ, approximation term
output: NS∗, p∗, α∗

// Setting bounds with the constrains in formula (18)
boundup = [NSub, pub, αub]
boundlow = [NSlb, plb, αlb]
ϕ(NS, p, α)← according to formula (17)
ga = GA(ϕ(NS, p, α), dim=3, boundlow, boundup)
x⃗∗, y∗ = ga.run()
Return x⃗∗ = [NS∗, p∗, α∗]

We execute the above optimal parameter searching algo-
rithm in two tasks respectively and report the actual itera-
tions in Fig. 8. It’s obvious to observe that our searching
algorithm can converge to the stable and optimal solution.
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Figure 8: Practical convergence of the optimal parameter
searching algorithm.

We report hyperparameters found by the above searching
algorithm in Tab. 4. We can see that the searching results are
close to the optimal parameters evaluated in experiments.

Table 4: Optimal hyperparameters found by the searching
algorithm and experiments.

Task Experimental Results Searching Results
NS p α NS p α

CNN on FEMINIST 6 0.4 0.7 5.71 0.43 0.70
YOLOv3 on Street 2 0.5 0.9 1.94 0.45 0.86
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C. Results of Searching Optimal FedAvg(E,B)
Limited to memory (24G) of one NVIDIA GeForce RTX
3090 GPU, B (batch size) is set up to 20 in the image
classification task and up to 1 in the object detection task.
The results of two tasks are reported in Tab. 5 and Tab. 6
respectively. We find that (E = 10, B = 1) on FEMINIST
dataset and (E = 5, B = 1) on Street dataset take better
trader-off between compression ratio and model accuracy.

Table 5: FedAvg with different (E,B) in the image classifi-
cation task. Rounds (70%): required rounds when reaching
70% target mAP, CR (70%): compression ratio when reach-
ing 70% target mAP, mAP (200): mAP in the 200-th round.

FedAvg (E, B), CNN on FEMINIST
E B Rounds (70%) CR (70%) mAP (200)
1 20 76 1.00× 78.87%
1 10 24 3.17× 84.97%
1 1 24 3.17× 84.97%

10 20 12 6.33× 85.24%
10 10 8 9.50× 83.31%
10 1 4 19.00× 86.54%
20 20 8 9.50× 84.79%
20 10 6 12.67× 84.98%
20 1 4 19.00× 84.40%

Table 6: FedAvg with different (E, B) in the object detection
task. Rounds (70%): required rounds when reaching 70%
target mAP, CR (70%): compression ratio when reaching
70% target mAP, mAP (300): mAP in the 300-th round.

FedAvg(E,B), YOLOv3 on Street
E B Rounds (70%) CR (70%) mAP (300)
1 1 103 1.00× 84.00%
5 1 69 1.49× 83.23%

10 1 74 0.93× 82.70%

We also report detailed hyperparameters settings of FL in
the two tasks, as shown in Tab. 7.

Table 7: Hyperparameters settings of FL. C: total number
of clients, η: learning rate; E: epoch, B: batch size.

CNN on FEMINIST YOLOv3 on Street
C η E B C η E B
36 0.01 10 1 8 0.01 5 1

D. Experimental Results of Convergence
Experimental results reported in Fig. 9 show QSFL can
converge over wall-to-wall time.

E. Results of Ablation Experiments
We show detailed results of ablation experiments in Tab. 8.
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Figure 9: The training loss and test mAP of Six types of
advanced communication-efficient algorithms and QSFL
vary with rounds in the two typical cases of Tab. 1.

Table 8: Results of ablation experiments with QSFL (β =
0.9, NS = 6, α = 0.5, p = 0.1) on FEMINIST dataset and
QSFL (β = 0.9, NS = 2, α = 0.9, p = 0.5) on Street dataset.

QJ SCSS SCSS FEMINIST Street
@α @NS @p CR (70%) mAP (200) CR (70%) mAP (300)
✓ × × 38.00× 85.72% 1.71× 85.70%
× ✓ × 57.00× 84.73% 1.62× 83.73%
× × ✓ 63.33× 78.98% 2.35× 83.50%
✓ ✓ × 130.29× 74.04% 2.54× 83.29%
✓ × ✓ 197.72× 79.01% 2.95× 84.69%
× ✓ ✓ 593.17× 79.01% 3.48× 83.46%
✓ ✓ ✓ 889.76× 78.08% 6.35× 83.21%

F. Results of QSFL with More Clients
Here we report the results of QSFL and SCSS with different
number of participating clients on the FEMINIST dataset.
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Figure 10: The effects of QSFL and SCSS vary with the
number of participating clients on the FEMINIST dataset.


