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Abstract

Bootstrap is a principled and powerful frequentist
statistical tool for uncertainty quantification. Un-
fortunately, standard bootstrap methods are com-
putationally intensive due to the need of drawing
a large i.i.d. bootstrap sample to approximate the
ideal bootstrap distribution; this largely hinders
their application in large-scale machine learning,
especially deep learning problems. In this work,
we propose an efficient method to explicitly opti-
mize a small set of high quality “centroid” points
to better approximate the ideal bootstrap distri-
bution. We achieve this by minimizing a simple
objective function that is asymptotically equiva-
lent to the Wasserstein distance to the ideal boot-
strap distribution. This allows us to provide an
accurate estimation of uncertainty with a small
number of bootstrap centroids, outperforming the
naive i.i.d. sampling approach. Empirically, we
show that our method can boost the performance
of bootstrap in a variety of applications.

1. Introduction
Bootstrap is a simple and principled frequentist uncertainty
quantification tool and can be flexibly applied to obtain data
uncertainty estimation with strong theoretical guarantees
(Hall et al., 1988; Austern & Syrgkanis, 2020; Chatterjee
et al., 2005; Cheng et al., 2010). In particular, when com-
bined with the maximum likelihood estimator or more gen-
eral M-estimators, bootstrap provides a general-purpose,
plug-and-play non-parametric inference framework for gen-
eral probabilistic models without case-by-case derivations;
this makes it a promising frequentist alternative to Bayesian
inference.

However, the standard bootstrap inference is highly expen-
sive in both computation and memory as it typically requires
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drawing a large number1 of i.i.d. bootstrap particles (sam-
ples) to obtain an accurate uncertainty estimation. In the con-
text of this paper, as each bootstrap particle/sample/centroid
is a machine learning model, we might directly call a model
as particle/sample/centroid. With a small number of par-
ticles, bootstrap may perform poorly. As a consequence,
when applied to deep learning, we need to store a large
number of neural networks and feed the input into a tremen-
dous number of networks every time we make inference,
which can be quite expensive and even unaffordable for
deep learning problems with huge models. While training
cost is an extra burden, it is small compared with the cost
of making prediction as we only need to train the model
once but make countless predictions at deployment. For ex-
ample, in autonomous driving applications, our device can
only store a limited number of models and we need to make
decisions within a short time, which makes the standard
bootstrap with a large number of models no more feasible.
Typical ensemble methods in deep learning, such as Laksh-
minarayanan et al. (2017); Huang et al. (2017); Vyas et al.
(2018); Maddox et al. (2019); Liu & Wang (2016), can only
afford to use a small number (e.g., less than 20) of models.

Therefore, to make bootstrap more accessible in modern ma-
chine learning, it is essential to develop new approaches that
break the key computation and memory barriers mentioned
above. We are motivated to consider the following problem:

How to improve the accuracy of bootstrap when the number
of particles at inference is limited?

Here we emphasis that our main goal is not reducing the
training time but improve the particle quality for inference.
We attack this challenge by presenting an efficient centroid
approximation for bootstrap. Our method replaces the i.i.d.
bootstrap particles with a set of carefully optimized centroid
particles that are guaranteed to provide an accurate and
compact approximation to the ideal bootstrap distribution so
that only a smaller number of particles is needed to obtain
good performance.

Our method is based on minimizing a specially designed
objective function that is asymptotically equivalent to the
Wasserstein distance between the ideal bootstrap distribution

1For example, thousands of, as suggested by Statistics text-
books such as Wasserman (2013).
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Figure 1. The solid lines represent the density of the target dis-
tribution. Left figure: Typical i.i.d. particles that are randomly
distributed on the domain. Right figure: The learned diversified
centroids that are well distributed on the domain. The centroids
partition the domain into several disjoint regions (separated by the
dashed lines in the figure) and each centroid can be viewed as the
‘K-means’ center of the region it belongs to.

and the particle distribution formed by the learned centroids.
During the training, each centroid adjusts its location being
aware of the locations of the others so that centroids are
diversified and well distributed on the domain. Our method
is similar to doing K-means on the ideal bootstrap distribu-
tion, finding K representative centroids that well represent
K separate parts of the target distribution’s domain in an
optimal way. As centroids are optimized to better approxi-
mate the distribution, our approach naturally improves over
the vanilla bootstrap with i.i.d. particles. See Figure 1 for
illustration.

Empirically, we apply the centroid approximation method to
various applications, including confidence interval estima-
tion (DiCiccio et al., 1996), bootstrap method for contextual
bandit (Riquelme et al., 2018), bootstrap deep Q-network
(Osband et al., 2016) and bagging method (Breiman, 1996)
for neural networks. We find that our method consistently
improves over the standard bootstrap.

Notation We use ∥·∥ to represent the ℓ2 norm for a vector
and the operator norm for a matrix. We denote the integer
set {1, 2, ...., N} by [N ]. Given any m, we define the prob-
ability simplex Cm := {[v1, ..., vm] ∈ Rm : vi ≥ 0, ∀i ∈
[m] and

∑
i∈[m] vi = 1}. For a symmetric matrix M , we

denote its minimal eigenvalue by λmin(M). For a positive-
definite matrix M , if M = A⊤A, then we denote A by
M1/2. We denote the Wasserstein distance between two
distribution ρ1 and ρ2 by W2[ρ1, ρ2]. We use O and o to
denote the conventional big-O and small-o notation and use
Op to denote the stochastic boundedness. We use d→ to
denote convergence in distribution.

2. Background
Suppose we have a model fθ parameterized by θ in a pa-
rameter space Θ ⊆ Rd. Let {xi}ni=1 ⊂ X be a training set
with n data points on X . Assume ℓ(x, fθ) is the negative
log-likelihood of data point x with model fθ. A standard

approach to estimate θ is maximum likelihood estimator
(MLE), which minimizes the negative log-likelihood func-
tion (loss) over the training set

θ̂ = argmin
θ∈Θ
L(θ), L(θ) =

∑n
i=1ℓ(xi, fθ)/n.

Here the MLE θ̂ provides a point estimation without any
information on the data uncertainty. Bootstrap is a simple
and effective frequentist method to quantify the uncertainty.
The bootstrap loss is a randomly perturbed loss defined as

Lw(θ) =
∑n

i=1wiℓ(xi, fθ)/n,

where w = [w1, ..., wn]
⊤ is a set of random weights of data

points drawn from some distribution π. A typical choice of
π is the multinomial distribution with uniform probability,
which corresponds to resampling on the training set with
replacement. Given w, one can calculate its associated
bootstrap particle by minimizing the bootstrap loss:

θ̂w = argmin
θ∈Θ
Lw(θ). (1)

Let ρπ be the distribution of θ̂w when w ∼ π. Bootstrap
theory indicates that we can quantify the data uncertainty
of θ or any function g(θ) using ρπ. We call ρπ the ideal
bootstrap distribution and it is the main object we want to
approximate.

Denote δθ as the delta measure centered at θ. Standard
bootstrap method approximates ρπ by the particle distri-
bution ρ̂π(·) =

∑m
j=1δθ̂wj

(·)/m formed by m i.i.d. parti-

cles {θ̂wj
}mj=1, which can be obtained by drawing m i.i.d.

weights {wj}mj=1 from π and calculating each θ̂wj
based on

(1). However, for deep learning applications, as discussed
in the introduction, storing and making inference using a
large number m of bootstrap particles can be quite expen-
sive. On the other hand, if m is small, ρ̂π tends to be a poor
approximation of ρπ. In this paper, we aim to improve the
approximation of the particle distribution when m is small.

3. Method
Our idea is simple. Instead of using i.i.d. particles, in which
the location of each particle is independent from that of the
others, we try to actively optimize the location of each par-
ticle so that particles are diversified, better distributed and
eventually providing a particle distribution with improved
approximation accuracy. A natural way to achieve this goal
is to explicitly optimize a set of points {θj}mj=1 (called cen-
troids) jointly such that the Wasserstein distance between
ρπ and the induced particle distribution is minimized:

{θ∗j , v∗j }mj=1 = argmin
θ1,...,θm∈Θ,[v1,...,vm]∈Cm

W2

 m∑
j=1

vjδθj , ρπ


(2)
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Here we consider a Wasserstein distanceW2 equipped with
a data-dependent distance metric || · ||D that will be intro-
duced later in (5). Note that here we also optimize the
probability weights {vj}mj=1 of the centroids. Finding the
optimal centroids and probability weights can be decom-
posed into two steps: the centroid learning phase and the
probability weights learning phase, based on the facts in
(3,4).

W2
2

[∑
j∈[m]v

∗
j δθ∗

j
, ρπ

]
= Jπ({θj}mj=1), (3)

where Jπ({θj}mj=1) := Ew∼π

[
min
j∈[m]

||θj − θ̂w||2D
]

Here (3) implies that, to find the optimal particle distribution
in (2), we can start with the centroid learning phase where
we only need to optimize the centroids. It can be achieved by
minimizing Jπ({θj}mj=1), which is the averaged distance of
bootstrap particles to their closest centroid. After we obtain
the optimal centroids, the optimal probability weights can
be learned by (4):

v∗j = ṽ∗j /
∑

s∈[m] ṽ
∗
s , (4)

where ṽ∗j = Pw∼π

(
j = arg min

j∈[m]
||θ∗j − θ̂w||2D

)
Here v∗j is the proportion of bootstrap particles that are
closest to the centroid j. We emphasize that the optimal
solution to two-stage learning is guaranteed to be the global
minimizer of the loss in (2) (see Lemma 3.1 and 3.2 in
Canas & Rosasco (2012)).

However, the key issue is that the losses in both (2, 3) can
not be computed in practice, as they require us to access
ρπ (i.e., obtain θ̂w first in order to calculate the loss). To
handle this issue, we seek an easy-to-compute surrogate loss.
Our idea is based on the following observation. Assuming
the size of training data is large, which is usually the case
in deep learning, we can expect that θw will be centered
around a small region2. It implies that we should search the
centroid in this small region. Notice that when θ is close to
θ̂w, based on Taylor approximation, we have

Lw(θ) ≈ Lw(θ̂w) +∇⊤
θ Lw(θ̂w)(θ − θ̂w)

+
1

2
(θ − θ̂w)⊤∇2

θLw(θ̂w)(θ − θ̂w)

≈ L∞(θ0) + ||θ − θ̂w||2D, (5)

where ∥V ∥2D := V ⊤∇2
θL∞(θ0)V . Here L∞(θ) :=

Exℓ(x, fθ) denotes the population loss; θ0 is the minimizer
of L∞(θ). In (5), we use the facts3 that ∇⊤

θ Lw(θ̂w) =

2This can be formally characterized by central limit theorem
as discussed in Section 4.

3We defer the detailed analysis to Section 4.

0; and with large training set, the empirical distribution∑n
i=1δxi

/n well approximates the whole data popula-
tion, and hence the bootstrap resampling distribution, i.e.,∑n

i=1wiδxi
/n on the empirical distribution also well ap-

proximates the whole data population. This implies that
Lw(·) ≈ L∞(·) and∇2

θLw(·) ≈ ∇2
θL∞(·). As the loss are

close to each other, their minimizers are also close θ̂w ≈ θ0.
Since L∞(θ0) is some (unknown) constant independent
with θ, we can replace the ||θj − θ̂w||2D in (3) by Lw(θj) as
it only adds some constant into the loss.

Intuitively, we can expect that the centroid closest to θ̂w is
the one that gives the smallest loss on Lw. It motivates us to
learn the centroids via the modified centroid learning phase:

{θ∗j }mj=1 = arg min
θ1,...,θm∈Θ

Ew∼π

[
minj∈[m]Lw(θj)

]
. (6)

Similarly, the optimal probability weights can be learned
via the modified weight learning phase:

v∗j = ṽ∗j /
∑

s∈[m] ṽ
∗
s , (7)

where ṽ∗j = Pw∼π

(
j ∈ argminj∈[m]Lw(θ∗j )

)
We note that here we slightly abuse the notation of θ∗j and
v∗j in (3,4) and (6,7) for simplification. In the later context,
θ∗j and v∗j are used based on their definitions in (6,7).

Connection to K-means By viewing the target distribu-
tion as a set of particles that we want to cluster, in K-means
clustering, each centroid (i.e., K-means center) represents
one of the K disjoint groups4 of particles, which is formed
by assigning each particle in the whole set to the closest cen-
troid among all the K centroids. K-means learns the optimal
K centroids in the way that they can best approximate the
whole set. The ‘closeness’ for assigning the particles is mea-
sured by the distance between the two points. As pointed out
by Canas & Rosasco (2012), K-means essentially searches
the optimal particle distribution formed by the K centroids
that minimizes its Wasserstein distance to the target distri-
bution. Our centroid approximation idea follows the same
fashion of clustering but our key innovation is to measure the
‘closeness’ by examining the bootstrap loss of the centroids
so that we can still learn the optimal centroids without ob-
taining the i.i.d. bootstrap particles first. We also point out
that, while we share the same objective as K-means, the op-
timization algorithms differ. The Expectation-Maximization
type of algorithm used by K-means is not applicable to our
scenario.

Comparing with Other Particle Improving Approach
Intuitively, from a high level abstracted perspective, we pro-
vide an approach to use K-means type of idea to improve

4i.e. the regions separated by the dashed lines in the right plot
of Figure 1.
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the particle quality without accessing to the true target dis-
tribution. This is the key differentiator of this work to other
approaches that improve the particle quality, as they all re-
quire to access the target distribution. For example Claici
et al. (2018) requires that sampling from target distribution
is cheap and easy. Chen et al. (2012; 2018a); Campbell &
Beronov (2019) need to access the logarithm of the prob-
ability density function of the target distribution. In our
problem, neither sampling from the target distribution is
cheap nor the logarithm of the probability density function
is available, making those approaches no more applicable.

Comparing with m-out-of-n/bag-of-little Bootstrap
The m-out-of-n bootstrap (Bickel et al., 2012) and the bag-
of-little bootstrap (Kleiner et al., 2014) are designed to re-
duce the computational cost with the subsampling tech-
niques in the big data settings (large n). Our method and
m-out-of-n bootstrap/bag-of-little bootstraps are working to-
wards two orthogonal directions of improving the scalability
of bootstrap. m-out-of-n bootstrap/bag-of-little bootstraps
aim to decrease the training cost when the size of the dataset
is large while our paper improves the approximation ac-
curacy when a limited number of bootstrap particles are
allowed at inference is small (small m).

3.1. Training

The optimization of (6) can be solved by gradient descent.
Suppose θ∗j (t) is the j-th centroid at iteration t. We initialize
{θ∗j (0)}mj=1 by sampling from ρπ and at iteration t, we
update θ∗t by applying the gradient descent on the loss in
(6), which yields

θ∗j (t+ 1)← θ∗j (t)− ϵtg(θ
∗
j (t)),

g(θ∗j (t)) = Ew∼π

[
I{j ∈ uw(t)}∇θLw(θ∗j (t))

]
/v∗j (t),

(8)

where we define the index of the closest centroid to parti-
cle θ̂w as uw(t) = argminj∈[m] Lw(θ∗j (t)) and v∗j (t) =
Pw∼π (j ∈ uw(t)) denotes the probability that centroid j is
the one that gives the lowest bootstrap loss. The denomina-
tor v∗j (t) in g(θ∗j (t)) is optional. However, notice that the
magnitude of numerator in g(θ∗k(t)) decays with larger m,
which might require an adjustment of the learning rate when
m changes. This adjustment can be avoided by rescaling
with v∗k(t).

We note that {θ∗j (0)}mj=1 is just m i.i.d. bootstrap particles
which is not optimal for approximation and our algorithm
can be viewed as an approach for refining the m particles
by solving (6). In practice, we find that we can simply
use random initialization (e.g., draw θ from some Gaussian
distribution) instead.

Centroid Degeneration Phenomenon Naively applying
the updating rule (8) may cause a degeneration phenomenon:

When a centroid happens to give considerably worse perfor-
mance than others, which can be caused by the stochasticity
of gradient or worse initialization, the performance of this
centroid will remain considerably worse throughout the opti-
mization. The reason is simple. As this centroid (e.g. θ∗j (t))
gives a considerably worse performance, the probability that
it gives the lowest bootstrap loss, i.e., v∗j (t), is small. As a
consequence, the gradient that updates this centroid is only
based on aggregating information from a small low-density
region of π and hence can be unstable and further degrades
this centroid. Note that this mechanism is self-reinforced
since when this centroid cannot be effectively improved in
the current iteration, it faces the same issue in the next one.
As a result, this centroid is always significantly worse than
the others.

We call this undesirable phenomenon centroid degeneration
and we want to prevent this phenomenon because when it
happens, we have a centroid that is not representative and
contributes less to approximating ρπ. We solve this issue
with a simple solution and here is the intuition. The reason
that a centroid degenerates lies in that this centroid is far
from the good region where it gives a good performance.
And when this happens, we should push the centroid to
move towards this good region, which can be achieved by
using the common gradient over the whole training data.
Specifically, we define a threshold γ, indicating centroid
j is degenerated if v∗j (t) ≤ γ. And when it happens, we
update using the common gradient over the whole data:

θ∗j (t+ 1)← θ∗j (t)− ϵt∇θL(θ∗j (t)). (9)

In section 4, we give a theoretical analysis on why this
modification is important and is able to solve the centroid
degeneration issue.

Practical Algorithm In practice, we estimate the gradient
by replacing the expectation over w ∼ π in (8) with aver-
aging over M i.i.d. Monte Carlo samples {wh}Mh=1 drawn
from π:

ĝ(θ∗j (t)) =

∑M
h=1

[
I{j ∈ uwh

(t)}∇θLwh
(θ∗j (t))

]∑M
h=1 I{j ∈ uwh

(t)}
. (10)

Now it remains to compute wh and Lwh
for all h ∈ [M ],

which can be done very cheaply by firstly compute

L(θ∗j (t)) = [ℓ(x1, fθ∗
j (t)

), ..., ℓ(xn, fθ∗
j (t)

)]⊤ ∈ Rn (11)

and then compute Lwh
= w⊤

h L(θ∗j (t)) and

uwh
(t) = arg min

j∈[m]
w⊤

h L(θ∗j (t)). (12)

Taking the modified updating rule introduced to prevent the
centroid degeneration phenomenon into account, we update
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Algorithm 1 Ideal algorithm for centroid approximation
with full-batch gradient and wh updated every iteration.

1: Initialize θ∗j (0), j ∈ [m] by i.i.d. sampling from ρπ or
other distribution such as Gaussian.

2: for t ∈ iterations do
3: ∀j ∈ [m], calculate L(θ∗j (t)) defined in (11)
4: Sample {wh}Mh=1, i.i.d. from π.
5: ∀h ∈ [M ] and j ∈ [m], calculate Lwh

(θ∗j (t)) =

wT
h L(θ∗j (t)).

6: ∀h ∈ [M ], calculate uwh
defined in (12).

7: ∀j ∈ [m], update θ∗j by (13).
8: end for

θ∗j (t) by θ∗j (t+ 1)← θ∗j (t)− ϵtϕ(θ
∗
j (t)), where

ϕ(θ∗j ) =

{
ĝ(θ∗j (t)) if

∑
h∈[M ] I{uwh

(t) = j}/M > γ

∇θL(θ∗j (t)) otherwise.
(13)

Algorithm 1 summarizes the whole procedure. Note that as
L(θ∗j (t)) can be reused for computing all Lwh

and uwh
(t),

h ∈ [M ]. The computation overhead is hence very small
(O(nM) matrix multiplication for each centroid).

In practical implementation, as uwh
(t) do not change much

within a few iterations, we can update uwh
(t) every a few

iterations (e.g., every epoch). We can also replace the
∇θLwh

(θ∗j (t)) or ∇θL(θ∗j (t)) in (13) using a mini-batch
of data instead of the whole data, which leads to a stochas-
tic gradient version of our algorithm. Due to space limit,
we summarize the algorithm using stochastic gradient in
Algorithm 2 in Appendix A.

4. Theory
Recall that, as discussed in (5), our approach relies on the
intuition that bootstrap particles are nested in a small region
so that we can approximate the distance between the cen-
troid and a bootstrap particle by the bootstrap loss of that
centroid. The main goal of this section is to give a formal
theoretical justification of this intuition.

Before we proceed, we clarify several important setups
for establishing and interpreting the theoretical result. As
discussed in the introduction, we are mainly interested in the
scenerio that the number of available particles/centroids m
is small while the number of training data n is large, which
motivates us to establish theoretical result in the region of
small m and large n. This is significantly different from
conventional asymptotic analysis in which we aim to show
the behavior when m→∞. We assume that the parameter
dimension d is fixed and does not scale with n.

We are mainly interested in characterizing the approxima-
tion of the proposed loss in (6) to the ideal loss in (3),

given any small and fixed number m of centroids when
n→∞. This justifies why the proposed centroid approxi-
mation method can be viewed as minimizing the Wasserstein
distance between the particle distribution ρ∗π and the target
bootstrap distribution ρπ .

For simplicity, we build our analysis assuming the ideal
update rule (8,9) is used. We start with the following main
assumptions.
Assumption 1 (Smoothness and boundedness). Assume
that the following quantities are upper bounded by some
constant c <∞:

1. sup
θ1,θ2∈Θ

sup
x∈X

||∇2
θℓ(x, fθ1)−∇2

θℓ(x, fθ2)||
||θ1 − θ2||

; 2. sup
θ∈Θ
∥θ∥ ;

3. max
i,j,k∈[d]

sup
θ∈Θ,x∈X

∂3ℓ(x, fθ)

∂iθi∂θj∂θk
; 4. sup

x∈X ,θ∈Θ

∥∥∇2
θℓ(x, fθ)

∥∥ .
Assumption 1 is a standard regularity condition on the
boundness and smoothness of the problem.
Assumption 2 (Asymptotic normality). Assume
√
n
(
θ̂w − θ̂

)
d→ N (0, A) and

√
n
(
θ̂ − θ0

)
d→ N (0, A)

as n → ∞, where A is a positive-definite matrix with the
largest eigenvalue bounded.

Assumption 2 is a higher level assumption on the asymptotic
normality of the estimators. Such result is classic and can be
derived with some weak and technical regularity conditions.
See examples in Chatterjee et al. (2005); Cheng et al. (2010).
Assumption 3 (On the global minimizer). Suppose that
λmin

(
∇2

θL∞(θ0)
)
> 0.

Assumption 3 is also standard showing the locally strongly
convexity of the loss around the truth θ0.
Assumption 4 (On the learning rate). Suppose that
maxt ϵt = O(n−1).

Assumption 4 assumes that the learning rate of the algorithm
is sufficiently small such that its induced discretization error
is not the dominating term.

The key challenge of our analysis is to show that our dy-
namics is B(θ0, r)-stable (defined below in Definition 1)
for some small r, saying that {θ∗j (t)}mj=1 stay in a small
region that is close to θ0 for any iteration t. Combined
with the property5 that θ̂w are also close to θ0, the centroids
and the bootstrap particles are close to each other and thus
our approximation in (5) holds for all t ≥ 0. In this way,
optimizing the centroids by minimizing our loss is almost
equivalent to optimizing the centroids by minimizing the
Wasserstein distance.
Definition 1 (B(θ, r)-stable). Given some θ ∈ Θ and r ≥ 0,
we say our dynamics is B(θ, r)-stable if ∀t ≥ 0 and ∀j ∈

5This is implied by the asymptotic normality in assumption 2.
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m = 20 m = 50 m = 100 m = 200

α = 0.9

Normal Bootstrap 0.029± 0.010 0.031± 0.011 0.021± 0.010 0.017± 0.010
Centroid 0.027± 0.010 0.001± 0.009 0.012± 0.010 0.016± 0.010

Percentile Bootstrap 0.101± 0.013 0.036± 0.011 0.021± 0.010 0.014± 0.010
Centroid 0.081± 0.012 0.021± 0.010 0.020± 0.010 0.015± 0.010

Pivotal Bootstrap 0.106± 0.013 0.045± 0.011 0.025± 0.010 0.023± 0.010
Centroid 0.046± 0.011 0.013± 0.009 0.011± 0.010 0.020± 0.010

Table 1. Centroid approximation for confidence interval. The numbers in the table represent |α− α̂|, where α̂ is the estimated coverage
probability. The errors bar is the standard deviation.

[m], θ∗j (t) ∈ B(θ, r), where B(θ, r) := {θ′ : ∥θ′ − θ∥ ≤
r, θ′ ∈ Θ} is the ball with radius r centered at θ.

The key intuition to establish such B(θ0, r)-stable result is
to characterize that our optimization dynamics is implicitly
self-controlled: when some centroid approaches the bound-
ary of B(θ0, r), the updating mechanism automatically start
to push the centroid to move towards the center of the region.
Thus, if all the centroids are within B(θ0, r) at initialization,
they will alway stay in this region.

Thanks to assumption 2, 3, when the dataset is large, the
landscape of our loss is locally strongly convex around θ0.
When a centroid j is at the boundary of B(θ0, r), it has
v∗j (t) < γ and thus the updating direction is the gradient
of loss L. By the convexity, such gradient will push the
centroid move towards the center of B(θ0, r) where the em-
pirical minimizer locates at. On the other hand, for centroid
j with v∗j (t) ≥ γ, its updating direction aggregates informa-
tion from sufficient data point and thus behaves similarly
to that of the common gradient, pushing centroid to move
towards the center with the centroid is not close to the center.

Theorem 1. Under Assumptions 1-4 and suppose that we
initialize θ∗j (0), j ∈ [m] by sampling from ρπ, given any
m <∞ and γ > 0, when n is sufficiently large, we have

max
j∈[m]

sup
t≥0

∥∥θ∗j (t)− θ0
∥∥ = Op(

√
(log n)/n).

Here the probability is taken w.r.t. training data.

Theorem 1 implies our dynamics is B(θ0, rn)-stable with
rn = O(

√
log n/n). The condition that θ∗j (0) ∼ ρπ i.i.d.

can be replaced by the condition that θ∗j (0) is sufficiently
close to θ0. We need such condition as we uniformly bound
the distance between θ∗j (t) and θ0 at any iteration including
the first one. Theorem 1 implies that the approximation
stated in (5) holds with high probability and hence the pro-
posed loss in (6) is ‘almost as good as’ the ideal loss in
(3).

Theorem 2. Under the same assumptions as Theorem 1,
given any m <∞ and γ > 0, when n is sufficiently large,

we have

sup
t≥0

∣∣∣∣Ew∼π [ min
j∈[m]

Lw(θ
∗
j (t))] − B − Ew∼π [ min

j∈[m]
||θ∗

j (t) − θ̂w||2D]/2

∣∣∣∣
= Op(

√
logn/n3/2)

Here the probability is taken w.r.t. training data and B is
some constant independent from θ∗j (t) for any t ≥ 0 and
j ∈ [m].

Asymptotics when m also grows Although our main in-
terest is the asymptotics with a small, fixed m and growing
n, we discuss here on asymptotics when m also grows. As
shown in Section 3 and introduction, our method can be
viewed as an ‘approximated’ K-means on the target distri-
bution. From Theorem 5.2 in Canas & Rosasco (2012), the
particle distribution formed by the optimal centroids learned
by K-means gives improved O(m−1/d) convergence to any
general target distribution in terms of Wasserstein distance,
where d is data dimension. In comparison, the particle dis-
tribution of i.i.d. sample only gives O(m−1/(2d+4)) from
Theorem 5.1 in Canas & Rosasco (2012). This implies that
our approach potentially also has such a rate improvement.
Note that the results in Canas & Rosasco (2012) are for gen-
eral target distribution without any n involves. To rigorously
establish the large m asymptotic result for our problem, we
need to study the joint limit of n and m. This is indeed very
non-trivial: as discussed in Weed et al. (2019) (i.e. Proposi-
tion 14), when n→∞, the target distribution ρπ becomes
a sharp Gaussian and the convergence rate of i.i.d. bootstrap
particles will gradually improve to O(m−1/2) (in a way
that depends on n). It implies that when n ≫ m → ∞,
our improvement may become only constant level. We find
establishing such a theory is out the scope of this conference
paper and leave it as future work.

5. Experiment
We aim to answer the following questions:

Q1: Whether the proposed objective effectively approxi-
mates the Wasserstein distance between the particle distri-
bution and the target distribution? (Yes)



Centroid Approximation for Bootstrap

20 50 100 200
Num particles

0.05

0.10

0.15

0.20

W
as

se
rs

te
in

 D
is

t Bootstrap
Centroid

Figure 2. Wasserstein dis-
tance between the particle
distribution and the true
bootstrap distribution w.r.t.
the number of particles.

Q2: Whether our approach improves the quality of the
particle distribution when only a limited number of parti-
cles/centroids are allowed at inference time? (Yes)

Q3: While our main goal is not to decrease the training cost
but improve the quality of bootstrap particle distribution, as
discussed in Section 3, our method actually only introduces
a little training overhead, which is another advantage of our
method. Our third question is whether our approach truly
gives small training overhead in practice. (Yes)

Q4: Whether the modification in (13) improves the learning
by overcoming the centroid degeneration issue? (Yes)

To answer Q1, we show that when applied to confidence
interval estimation (section 5.1), compared with naive Boot-
strap, the particles learned by our centroid approximation
approach gives significantly smaller Wasserstain distance to
the target.

To answer Q2, we apply our approach to various applica-
tion including confidence interval estimation (section 5.1),
contextual bandit (section 5.2), bootstrap DQN (section 5.3)
and bagging (Appendix B.4, due to space limit) and we
demonstrate that with different choice of m (m is small),
our approach consistently gives improvement over the boot-
strap baseline.

To answer Q3, we compared the training time between
naive bootstrap and our centroid approximation for various
applications and show that the training overhead of our
approach is very small. Due to the space limit, we refer
readers to Appendix B.6 for details.

To answer Q4, we conduct ablation study on difference
choice of γ showing the improvement of applying the modi-
fication in (13). Due to the space limit, we refer readers to
Appendix B.5 for details.

Code is available at https://github.com/
lushleaf/centroid_approximation.

5.1. Bootstrap Confidence Interval

We start with a classic application of bootstrap: confidence
interval estimation for linear model with parameter θ. Fix
confidence level α, we consider three ways to construct
(two-sided) bootstrap confidence interval of θ: the Normal
interval, the percentile interval and the pivotal interval. And
we test m = 20, 50, 100, 200. For all experiments, we

repeat with 1000 independent random trials. We consider
the standard bootstrap as baseline. Detailed experimental
setup are included in Appendix B.1.

Figure 2 shows the Wasserstein distance between the true
target distribution ρπ and the empirical distributions ob-
tained by (a) i.i.d. sampling ρ̂π, (b) the proposed centroid
approximation ρ∗π . The centroid approximation significantly
reduces the Wasserstein distance by a large margin. We then
compare the quality of obtained confidence intervals, which
is measured by the difference between the estimated cover-
age probability and the true confidence level, i.e., |α̂ − α|
(the lower the better). Here we only consider confidence
intervals of the first coordinate of θ: θ1. Table 1 summa-
rizes the result with α = 0.9. We see that using more
particles is generally able to improve the constructed con-
fidence intervals. We also compare with two variants of
standard bootstrap: Bayesian bootstrap (Rubin, 1981) and
residual bootstrap (Efron, 1992). And we consider varying
α = 0.8, 0.95. These results are included in Appendix B.1.

5.2. Centroid Approximation for Bootstrap Method in
Contextual Bandit

Contextual bandit is a classic task in sequential decision
making, in which accurately quantifying the model uncer-
tainty is important in order to achieve good exploration-
exploitation trade-off. As shown in Riquelme et al. (2018),
tracking the model uncertainty using bootstrap is a strong
method for contextual bandit. However, it is costly to main-
tain a large number of bootstrap models and thus the number
of models is typically within 10 (Osband et al., 2016). We
find that applying the proposed centroid approximation here
can significantly improve the performance. Riquelme et al.
(2018) uses m = 3 bootstrap models and we give a more
comprehensive evaluation with m = 3, 4, 5, 10. We con-
sider three datasets: Mushroom, Statlog and Financial. We
set γ = 0.5/m. We randomly generate 20 different context
sequences, apply all the methods and report the averaged
cumulative reward and its standard deviation. Table 2 sum-
marizes the result and note that a large part of variance can
be explained by different context sequences. All results in
Table 2 are statistically significant under significant level
5% using matched pair t-test. Table 2 shows that using
more bootstrap models generally improves the accumulated
reward. And when using the same number of models, the
proposed centroid approximation method consistently im-
proves over standard bootstrap method. We refer readers to
appendix B.2 for more information on the background and
experiment. The detailed executed algorithm is summarized
in Algorithm 3 in Appendix B.2.

5.3. Centroid Approximation for Bootstrap DQN

https://github.com/lushleaf/centroid_approximation
https://github.com/lushleaf/centroid_approximation
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m = 3 m = 4 m = 5 m = 10

Mushroom Bootstrap 3282.1± 72.8 3307.9± 69.2 3311.6± 79.3 3397.4± 51.4
Centroid 3702.7± 89.8 3723.1± 78.7 3799.6± 84.2 3796.9± 36.1

Statlog Bootstrap 1864.3± 6.4 1869.2± 5.2 1877.2± 4.1 1877.0± 2.7
Centroid 1893.6± 6.0 1892.6± 3.6 1891.3± 3.5 1892.6± 2.8

Financial Bootstrap 2255.8± 58.4 2265.4± 58.2 2269.3± 56.4 2281.4± 56.6
Centroid 2313.3± 56.4 2315.3± 56.7 2323.9± 56.7 2325.5± 56.0

Table 2. Results on the contextual bandit experiment. The numbers in the table represent the averaged reward with its standard deviation.
Bolded value indicates that the better approach is statistical significant using matched pair t-test with p value less than 0.05.
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Figure 3. Wasserstein distance between the particle distribution
and the true bootstrap distribution w.r.t. the number of particles.
Left: result for LunarLander; Right: result for Catcher.

“Efficient exploration is a major challenge for reinforce-
ment learning (RL). Common dithering strategies such as
ϵ-greedy do not carry out temporally-extended exploration,
which leads to exponentially larger data requirements” (Os-
band et al., 2016). To tackle this issue, Osband et al. (2016)
proposes the Bootstrapped Deep Q-Network (DQN). We
apply our centroid approximation to improve Bootstrapped
DQN. We consider m = 2, 5 and similar to the experimen-
tal setting in contextual bandit, we set γ = 0.5/m. We
consider two benchmark environments: LunarLander-v2
and Catcher-v0 from GYM (Brockman et al., 2016) and
PyGame learning environment (Tasfi, 2016). We conduct
the experiment with 5 independent random trails and report
the averaged result with its standard deviation. We refer
readers to Appendix B.3 for more background and other
experiment details. Figure 3 summarizes the result. For
LunarLander-v2, Bootstrap DQN with 2 and 5 heads give
similar performance but both converge to a less optimal
model compared with the centroid approximation method.
Centroid approximation method with 2 and 5 heads per-
forms similarly at convergence but centroid approximation
method with 5 heads is able to converge faster than 2-head
model and thus has lower regret. For Catcher-v0, adding
more heads to the model is able to improve the performance
for both methods. The proposed centroid approximation
consistently improves over baselines.

6. Related Work
Bootstrap is an classical statistical inference method,
which was developed by Efron (1992) and generalized by,
i.e., Mammen (1993); Shao (2010); Efron (2012) (just to
name a few). Bootstrap can be widely applied to various sta-
tistical inference problem, such as confidence interval esti-
mation (DiCiccio et al., 1996), model selection (Shao, 1996),
high-dimensional inference (Chen et al., 2018b; El Karoui &
Purdom, 2018; Nie & Ročková, 2020), off-policy evaluation
(Hanna et al., 2017), distributed inference (Yu et al., 2020)
and inference for ensemble model (Kim et al., 2020), etc.

Bayesian Inference is a different approach to quantify
the model uncertainty. Different from frequentists’ method,
Bayesian assumes a prior over the model and the uncer-
tainty can be captured by the posterior. Bayesian infer-
ence have been largely popularized in machine learning,
largely thanks to the recent development in scalable sam-
pling method (Welling & Teh, 2011; Chen et al., 2014;
Seita et al., 2018; Wu et al., 2020), variational inference
(Blei et al., 2017; Liu & Wang, 2016), and other approx-
imation methods such as Gal & Ghahramani (2016); Lee
et al. (2018). In comparison, bootstrap has been much less
widely used in modern machine learning and deep learning.
We believe this is largely attributed to the lack of similarly
efficient computational methods in the small sample size m
region, which is the very problem that we aim to address
with our new centroid approximation method.

Uncertainty in Deep Learning In additional to the appli-
cations considered in this paper, uncertainty in deep learning
model can also be applied to problems including calibration
(Guo et al., 2017) and out-of-distribution detection (Nguyen
et al., 2015). The definition of uncertainty of neural network
is quite generalized (e.g., Gal & Ghahramani (2016); Ovadia
et al. (2019); Maddox et al. (2019); Van Amersfoort et al.
(2020)) and can be quite different from the uncertainty that
bootstrap inference want to quantify and can be approached
with various methods including drop out (Gal & Ghahra-
mani, 2016; Durasov et al., 2020), label smoothing (Qin
et al., 2020), designing new modules in the model (Kivara-
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novic et al., 2020), adversarial training (Lakshminarayanan
et al., 2017) and Bayesian modeling (Blundell et al., 2015),
etc. This paper focuses on improving the bootstrap method
and thus is orthogonal to those previous works. Pearce et al.
(2018); Salem et al. (2020) also try to refine the ensemble
models to improve the quality of prediction interval. Com-
pare with our method, their method can only be applied to
prediction interval and does not have theoretical guarantee.

7. Conclusion
We propose a centroid approximation method to learn an
improved particle distribution that better approximates the
target bootstrap distribution, especially in the region with
small particle size. Theoretically, when the size of train-
ing data is large, our objective function is surrogate to the
Wasserstein distance between the particle distribution and
target distribution. Thus, compared with standard bootstrap,
the proposed centroid approximation method actively opti-
mizes the distance between particle distribution and target
distribution. The proposed method is simple and can be
flexibly used for applications of bootstrap with negligible
extra computational cost.
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Nie, L. and Ročková, V. Bayesian bootstrap spike-and-slab
lasso. arXiv preprint arXiv:2011.14279, 2020.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. Advances in neural
information processing systems, 29:4026–4034, 2016.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? evalu-
ating predictive uncertainty under dataset shift. Advances
in Neural Information Processing Systems, 32:13991–
14002, 2019.

Pearce, T., Brintrup, A., Zaki, M., and Neely, A.
High-quality prediction intervals for deep learning: A
distribution-free, ensembled approach. In Interna-
tional Conference on Machine Learning, pp. 4075–4084.
PMLR, 2018.

Qin, Y., Wang, X., Beutel, A., and Chi, E. H. Improving
uncertainty estimates through the relationship with ad-
versarial robustness. arXiv preprint arXiv:2006.16375,
2020.

Riquelme, C., Tucker, G., and Snoek, J. Deep bayesian
bandits showdown: An empirical comparison of bayesian
deep networks for thompson sampling. In International
Conference on Learning Representations, 2018.

Rubin, D. B. The bayesian bootstrap. The annals of statis-
tics, pp. 130–134, 1981.

Salem, T. S., Langseth, H., and Ramampiaro, H. Prediction
intervals: Split normal mixture from quality-driven deep
ensembles. In Conference on Uncertainty in Artificial
Intelligence, pp. 1179–1187. PMLR, 2020.



Centroid Approximation for Bootstrap

Seita, D., Pan, X., Chen, H., and Canny, J. An efficient
minibatch acceptance test for metropolis-hastings. In
Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pp. 5359–5363, 2018.

Shao, J. Bootstrap model selection. Journal of the American
statistical Association, 91(434):655–665, 1996.

Shao, X. The dependent wild bootstrap. Journal of the Amer-
ican Statistical Association, 105(489):218–235, 2010.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Tasfi, N. Pygame learning environ-
ment. https://github.com/ntasfi/
PyGame-Learning-Environment, 2016.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.

Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Un-
certainty estimation using a single deep deterministic
neural network. In International Conference on Machine
Learning, pp. 9690–9700. PMLR, 2020.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 30, 2016.

Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul,
B., and Willke, T. L. Out-of-distribution detection using
an ensemble of self supervised leave-out classifiers. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 550–564, 2018.

Wasserman, L. All of statistics: a concise course in sta-
tistical inference. Springer Science & Business Media,
2013.

Weed, J., Bach, F., et al. Sharp asymptotic and finite-sample
rates of convergence of empirical measures in wasserstein
distance. Bernoulli, 25(4A):2620–2648, 2019.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 681–688. Citeseer, 2011.

Wu, T.-Y., Rachel Wang, Y., and Wong, W. H. Mini-batch
metropolis–hastings with reversible sgld proposal. Jour-
nal of the American Statistical Association, pp. 1–9, 2020.

Wyatt, J. Exploration and inference in learning from rein-
forcement. 1998.

Yu, Y., Chao, S.-K., and Cheng, G. Simultaneous infer-
ence for massive data: Distributed bootstrap. In Inter-
national Conference on Machine Learning, pp. 10892–
10901. PMLR, 2020.

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment


Centroid Approximation for Bootstrap

Algorithm 2 Practical implementation of centroid approximation with less frequent updating of wh and stochastic gradient
enabled.

1: Initialize θ∗j (0), j ∈ [m] by i.i.d. sampling from ρπ or other distribution such as Gaussian.
2: for t ∈ iterations do
3: // Update wh only every a few iterations.
4: if t mod freq == 0 then
5: ∀j ∈ [m], calculate L(θ∗j (t)) defined in (11)
6: Sample {wh}Mh=1, i.i.d. from π.
7: Calculate Lwh

(θ∗j (t)) = wT
h L(θ∗j (t)), ∀h ∈ [M ] and j ∈ [m],

8: ∀h ∈ [M ], calculate uwh
(t) defined in (12).

9: else
10: uwh

(t) = uwh
(t− 1)

11: end if
12: ∀j ∈ [m], update θ∗j (t) by (13). (May use mini-batch gradient defined in (16)).
13: end for

A. Algorithm Box
In practical implementation, we do not need to update wh every iteration and can also replace the full-batch gradient by
stochastic gradient. Specifically, notice that ˆg(θ∗j ) defined in (10) can be alternative represented as

ĝ(θ∗j (t)) =

∑M
h=1

∑n
i=1 [I{j ∈ uwh

(t)}]wh,i∇θℓ(xi, fθ∗
j (t)

)/n∑M
h=1 [I{j ∈ uwh

}]
=

1

n

n∑
i=1

qi,j∇θℓ(xi, fθ∗
j (t)

), (14)

where qi,j is defined by

qij :=

∑M
h=1 [I{j ∈ uwh

(t)}]wh,i∑M
h=1 [I{j ∈ uwh

(t)}]
. (15)

This allows us to use a stochastic gradient version of gradient

ĝsgd(θ
∗
j ) =

1

|B|
∑
i∈[B]

qi,j∇θℓ(xi, fθ∗
j
), (16)

where B is the set of mini-batch data. The detailed algorithm is summarized in Algorithm 2

B. Additional Experiment details
B.1. Bootstrap Confidence Interval

Given a model fθ parameterized by θ and a training set with n data points i.i.d. sampled from population, our goal is to
construct confidence interval for θ. Let ρ̃π be an empirical distribution approximating ρπ , which could be obtained by i.i.d.
sampling, or by our centroid method. Denote by Q[α, ρ̃π] the α-quantile function of ρ̃π with some α ∈ [0, 1]. We consider
the following three ways to construct (two-sided) bootstrap confidence interval of θ with confidence level α: the Normal
interval, the percentile interval and the pivotal interval which are defined below.

Methods to construct confidence interval The methods we used to construct confidence interval are – The Normal
interval:

[θ̂ − z((1 + α)/2)ŝeboot, θ̂ + z((1 + α)/2)ŝeboot],

where z(·) is the inverse cumulative distribution function of standard Normal distribution. And ŝeboot is the standard
deviation estimated from ρ̃π .

– The percentile intervals:
[Q[(1− α)/2, ρ̃π], Q[(1 + α)/2, ρ̃π]].
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– The pivotal interval:
[2θ̂ −Q[(1 + α)/2, ρ̃π], 2θ̂ −Q[(1− α)/2, ρ̃π]].

We consider the following simple linear regression: x ∼ N (0, I), y | x ∼ N (θ⊤x, I), where the features x ∈ R4 and we
set the true parameter to be θ0 = [1,−1, 1,−1]. We consider n = 50 and the number of particles m = 20, 50, 100, 200. We
compare the coverage probability and the confidence level α to measure the quality:

Measuring the quality of confidence interval With a large number N of independently generated training data (we use
N = 1000), we are able to obtain the corresponding confidence intervals {CI(α)s}Ns=1and thus obtain the probability that
the true parameter falls into the confidence intervals, which is the estimated coverage probability

α̂ =
1

N

N∑
s=1

I{θ0 ∈ CI(α)s}.

A good confidence interval should have α̂ close to α. Thus we measure the performance by calculating the difference
|α− α̂|.

As θ̂w is the least square estimator of the bootstrapped dataset, it has analytic solution and thus can be obtained via some
matrix multiplications. θ∗w is initialized using θ̂w and then updated for 2000 steps. For this experiment, we find that adding
the threshold γ does not gives further improvement for this experiment and thus we simply set γ = 0 and use M = 1. We
approximate the true bootstrap distribution by sampling 10000 i.i.d. samples.

More experiment result Table 3 all the result we have varying α = 0.8, 0.9, 0.95, m = 20, 50, 100, 200 and three
different approaches for constructing confidence interval. As we can see, centroid approximation gives the best performance
in most cases compared with the other three baselines.

B.2. Centroid Approximation for Bootstrap Method in Contextual Bandit

B.2.1. MORE BACKGROUND

Contextual bandit is a classic task in sequential decision making problem in which at time t = 1, ..., n, a new context xt

arrives and is observed by an algorithm. Based on its internal model, the algorithm selects an actions at and receives a
reward rt(xt, at) related to the context and action. During this process, the algorithm may update its internal model with the
newly received data. At the end of this process, the cumulative reward of the algorithm is calculated by r =

∑n
t=1 rt and

the goal for the algorithm is to improve the cumulative reward r. The exploration-exploitation dilemma is a fundamental
aspect in sequential decision making problem such as contextual bandit: the algorithm needs to trade-off between the best
expected action returned by the internal model at the moment (i.e., exploitation) with potentially sub-optimal exploratory
actions. Thompson sampling (Thompson, 1933; Wyatt, 1998; May et al., 2012) is an elegant and effective approach to
tackle the exploration-exploitation dilemma using the model uncertainty, which can be approached with various methods
including Bayesian posterior (Graves, 2011; Welling & Teh, 2011), dropout uncertainty (Srivastava et al., 2014; Hron et al.,
2017) and Bootstrap (Osband et al., 2016; Hao et al., 2019). The ability to accurately assess the uncertainty is a key to
improve the cumulative reward. Bootstrap method for contextual bandit maintains m bootstrap models trained with different
bootstrapped training set. When conducting an action, the algorithm uniformly samples a model and then selects the best
action returned by the sampled model.

B.2.2. MORE EXPERIMENT SETUP DETAILS

We set all the experimental setting including data preprocessing, network architecture and training pipeline exactly the same
as the one used in Riquelme et al. (2018) and adopt its open source code repository.

Network architecture Following Riquelme et al. (2018), we consider a fully connected feed forward network with two
hidden layers with 50 hidden units and ReLU activations. The input and output dimensions depends on the dimension of
context and number of possible actions.

Training For each dataset, we randomly generate 2000 contexts, and for each algorithm, we update the replay memory
buffer for each model every 50 contexts, and each model is also updated every 50 contexts. For the standard bootstrap, when
updating the replay buffer of each model, we sample 50 i.i.d. contexts with uniform probability from the latest 50 contexts
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Num Particle 20 50 100 200

α = 0.8

Normal

Bootstrap 0.033± 0.013 0.028± 0.013 0.026± 0.013 0.031± 0.013
Bayesian 0.084± 0.014 0.076± 0.014 0.082± 0..014 0.086± 0.014
Residual 0.033± 0.013 0.037± 0.013 0.029± 0.013 0.024± 0.013
Centroid 0.036± 0.013 0.003± 0.012 0.017± 0.013 0.030± 0.013

Percentile

Bootstrap 0.096± 0.014 0.050± 0.014 0.044± 0.013 0.024± 0.013
Bayesian 0.114± 0.015 0.079± 0.014 0.074± 0.014 0.071± 0.014
Residual 0.079± 0.014 0.032± 0.013 0.017± 0.013 0.010± 0.013
Centroid 0.066± 0.014 0.008± 0.013 0.019± 0.013 0.020± 0.013

Pivotal

Bootstrap 0.101± 0.015 0.053± 0.014 0.045± 0.014 0.033± 0.013
Bayesian 0.158± 0.015 0.110± 0.110 0.088± 0.014 0.078± 0.014
Residual 0.087± 0.014 0.044± 0.013 0.030± 0.013 0.023± 0.013
Centroid 0.026± 0.013 0.030± 0.012 0.018± 0.013 0.030± 0.013

α = 0.9

Normal

Bootstrap 0.029± 0.010 0.031± 0.011 0.021± 0.010 0.017± 0.010
Bayesian 0.076± 0.012 0.054± 0.011 0.048± 0.011 0.045± 0.011
Residual 0.043± 0.011 0.023± 0.010 0.025± 0.010 0.020± 0.010
Centroid 0.027± 0.010 0.001± 0.009 0.012± 0.010 0.016± 0.010

Percentile

Bootstrap 0.101± 0.013 0.036± 0.011 0.021± 0.010 0.014± 0.010
Bayesian 0.129± 0.013 0.077± 0.012 0.059± 0.012 0.054± 0.011
Residual 0.098± 0.013 0.030± 0.011 0.033± 0.011 0.025± 0.010
Centroid 0.081± 0.012 0.021± 0.010 0.020± 0.010 0.015± 0.010

Pivotal

Bootstrap 0.106± 0.013 0.045± 0.011 0.025± 0.010 0.023± 0.010
Bayesian 0.149± 0.014 0.093± 0.012 0.073± 0.012 0.056± 0.011
Residual 0.100± 0.013 0.044± 0.011 0.030± 0.011 0.023± 0.010
Centroid 0.046± 0.011 0.013± 0.009 0.011± 0.010 0.020± 0.010

α = 0.95

Normal

Bootstrap 0.018± 0.008 0.014± 0.008 0.012± 0.008 0.006± 0.007
Bayesian 0.053± 0.010 0.038± 0.009 0.031± 0.009 0.037± 0.009
Residual 0.036± 0.009 0.019± 0.008 0.011± 0.008 0.008± 0.007
Centroid 0.018± 0.008 0.005± 0.006 0.009± 0.007 0.005± 0.007

Percentile

Bootstrap 0.081± 0.010 0.047± 0.009 0.030± 0.008 0.017± 0.008
Bayesian 0.126± 0.012 0.072± 0.010 0.056± 0.010 0.042± 0.009
Residual 0.100± 0.011 0.040± 0.009 0.037± 0.009 0.021± 0.008
Centroid 0.077± 0.010 0.029± 0.008 0.020± 0.008 0.016± 0.008

Pivotal

Bootstrap 0.089± 0.011 0.043± 0.009 0.027± 0.008 0.015± 0.008
Bayesian 0.127± 0.012 0.091± 0.011 0.064± 0.010 0.056± 0.010
Residual 0.085± 0.011 0.051± 0.009 0.036± 0.009 0.029± 0.008
Centroid 0.046± 0.009 0.002± 0.007 0.014± 0.008 0.009± 0.007

Table 3. Complete result on comparing centroid approximation with various bootstrap methods. The bold number shows the best approach.
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Algorithm 3 Algorithm for Centroid Approximation Applied to Contextual Bandit.
1: Obtain a randomly initialized θ∗j (0), j ∈ [m].
2: Initialize a common replay buffer Rc = ∅ recording all the observed contexts.
3: For each model, initialize its own replay buffer Rj = ∅ that is used for training.
4: for t ∈ number of total steps do
5: Obtain the t-th context xt.
6: Sampling one model based on probability {v∗j (t)}mj=1 to make action at and get reward rt.
7: Update the common replay buffer by Rc ← Rc ∪ {(xt, at, rt)}
8: // Update wh and Rj and model every a few iterations.
9: if t mod freq == 0 then

10: ∀j ∈ [m], calculate L(θ∗j (t)) defined in (11) for all the contexts in Rc. // L(θ∗
j (t)) ∈ R|Rc|.

11: Generate M sets of random weights {wh}Mh=1 of contexts in Rc from π.
12: ∀h ∈ [M ] and j ∈ [m], calculate Lwh

(θ∗j (t)) = wT
h L(θ∗j (t)).

13: ∀h ∈ [M ], calculate uwh
(t) defined in (12) for each h.

14: ∀i ∈ [|Rc|] and j ∈ [m], calculate qi,j by (15)
15: ∀j ∈ [m], update v∗j (t) based on (7).
16: ∀j ∈ [m], if v∗j (t) ≤ γ, construct Rj = Rc, else, construct Rj by sample |Rc| contexts in Rc. The probability

that context i is being sampled is qi,j/
∑|Rc|

i=1 qi,j .
17: ∀j ∈ [m], train model j using the data in Rj for several iterations.
18: end if
19: end for

(each model have different realizations of the samples) and add the newly sampled contexts to each model’s replay buffer.
For the centroid approximation, we update the replay buffer of each model by applying resampling on all the observed
contexts up to the current steps. The resampling probability of each context for each model is different and determined
by the algorithm. We refer readers to Algorithm 3 for the detailed procedures. Here we choose freq = 50 and M = 100.
When at model updating, each model is trained for 100 iterations with batch size 512 using the data from its replay buffer.
Following Riquelme et al. (2018), we use RMSprop optimizer with learning rate 0.1 for optimizing. When making actions,
we sample the prediction head according to v∗k(t) obtained using the examples between the last two model updates.

Notice that in the implementation, we only need to maintain one common replay buffer and the replay buffer for each model
can be implemented by maintaining the number of each context. Thus when sampling batches of context, we simply need to
sample the index of the context and refer to the common replay buffer to get the actual data.

B.3. Centroid Approximation for Bootstrap DQN

B.3.1. MORE BACKGROUND

Similar to the bootstrap method in contextual bandit problem, Bootstrap DQN explores using the model uncertainty, which
can be assessed via maintaining several models trained with bootstrapped training set. Maintaining several independent
models can be very expensive in RL and to reduce the computational cost, Bootstrap DQN uses a multi-head network with a
shared base. Each head in the network corresponds to a bootstrap model and the common shared base is thus trained via
the union of the bootstrap training set of each head. We train the Bootstrap DQN with standard updating rule for DQN
and use Double-DQN (Van Hasselt et al., 2016) to reduce the overestimate issue. Notice that our centroid approximation
method only changes the memory buffer for each head and thus introduces no conflict to other possible techniques that can
be applied to Bootstrap DQN.

B.3.2. MORE EXPERIMENT SETUP DETAILS

Network Architecture Following Osband et al. (2016), we considered multi-head network structure with a shared base
layer to save the memory. Specifically, we use a fully connected layer with 256 hidden neurons as the shared base and stack
two fully connected layers each with 256 hidden neurons as head. Each head in the model can be viewed as one bootstrap
particles and in computation, all the bootstrap particles use the same base layer.

Training and Evaluation For LunarLander-v2, we train the model for 450 episodes with the first 50 episodes used to
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Algorithm 4 Algorithm for Centroid Approximation Applied to DQN.
1: Obtain a randomly initialized θ∗j (0), j ∈ [m]. (For the j-th particle, both of its target and policy network use the same

initialization.)
2: Initialize a common replay buffer Rc = ∅ recording all the observed contexts.
3: For each head, initialize its own replay buffer Rj = ∅ that is used for training.
4: for t ∈ number of total episodes do
5: while not at terminal state and the number of steps does not exceed the threshold do
6: Obtain the t-th context xt.
7: Sample an head based on {v∗j } to make action at and get Q(xt, at) using the reward rt and the prediction of the

corresponding target network.
8: Update the common replay buffer by Rc ← Rc ∪ {(xt, Q(xt, at))}
9: ∀j ∈ [m], update its policy network by one step gradient descent using the data from its reply buffer.

10: // Update wh and Rj and target network every a few iterations.
11: if t mod freq == 0 then
12: ∀j ∈ [m], calculate L(θ∗j (t)) defined in (11) for all the contexts in Rc.
13: Generate M sets of random weights {wh}Mh=1 of contexts in Rc from π.
14: ∀h ∈ [M ] and j ∈ [m], calculate Lwh

(θ∗j (t)) = wT
h L(θ∗j (t)).

15: ∀h ∈ [M ], calculate uwh
(t) defined in (12) for each h.

16: ∀i ∈ [|Rc|] and j ∈ [m], calculate qi,j by (15)
17: ∀j ∈ [m], update v∗j (t) based on (7).
18: ∀j ∈ [m], if v∗j (t) ≤ γ, construct Rj = Rc, else, construct Rj by sample |Rc| contexts in Rc. The

probability that context i is being sampled is qi,j/
∑|Rc|

i=1 qi,j .
19: ∀j ∈ [m], update the j-th target network by loading the weights of the j-th policy network.
20: end if
21: end while
22: end for

initialize the common memory buffer. The maximum number of steps within each episode is set to 1000 and we report
the moving average reward with window width 100. For Catcher-v0, we train the model for 100 episodes with the first 10
episodes used to initialize the common memory buffer. We set the maximum number of steps within each episodes 2000
and report the moving average reward with window width 25.

For training the Bootstrap DQN, given the current state xt, we sample one particle based on {v∗j }mj=1 and use its policy
network to make an action at and get the reward rt and next state xt+1. The Q-value of the state action pair Q(xt, at) is
estimated by rt + λ ∗ Q̂(xt+1), where Q̂(xt+1) is the predicted state value by the target network of the sampled particle and
λ is the discount factor set to be 0.99. At each step, the policy network of all particles are updated using one step gradient
descent with Adam optimizer (β = (0.9, 0.999) and learning rate 0.001) and mini-batch data (size 64) sampled from its
replay buffer. We update target model, each particle’s replay buffer and v∗j s every 1000 steps for LunarLander-v2 and every
200 steps for Catcher-v0. The update scheme for replay buffers of each particles and v∗j s is the same as the one in contextual
bandit experiment. As the model see significantly larger number of contexts than that in the contextual bandit experiment,
to reduce the memory consumption, we set the max capacity of the common replay buffer to 50000 (the oldest data point
will be pop out when the size reaches maximum and new data comes in). For training the shared base, following Osband
et al. (2016), we adds up all the gradient comes from each head and normalizes it by the number of heads. Algorithm 4
summarizes the whole training pipeline.

B.4. Bootstrap Ensemble Model

Ensemble of deep neural networks have been successfully used to boost predictive performance (Lakshminarayanan et al.,
2017). In this experiment, we consider using an ensemble of deep neural network trained on different bootstrapped training
set, which is also known as a popular strategy called bagging.

We consider image classification task on CIFAR-100 and use standard VGG-16 (Simonyan & Zisserman, 2014) with batch
normalization. We apply a standard training pipeline. We train the bootstrap model for 160 epochs using SGD optimizer
with 0.9 momentum and batchsize 128. The learning rate is initialized to be 0.1 and is decayed by a factor of 10 at epoch
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Figure 4. Results on ensemble modeling with bootstrap using Vgg16 on CIFAR-100.

#Particle γ = 0 γ = 0.5 γ = m
3 3480.0± 120 3702.7± 89.8 3467.7± 115
4 3461.9± 126 3723.1± 78.7 3600.0± 69.3
5 3586.5± 64.5 3799.6± 84.2 3647.3± 64.5

10 3785.0± 59.1 3796.9± 36.1 3742.7± 86.8

Table 4. Ablation study on γ.

80 and 120. We start to apply the centroid approximation at epoch 120 (thus the centroid is initialized with 120 epochs’
training). We generate the bootstrap training set for each centroid every epoch using the proposed centroid approximation
method. We consider m = 3, 4, 5, 10 ensembles and use γ = 0.5/m. We repeat the experiment for 3 random trials and
report the averaged top1 and top5 accuracy with the standard deviation of the mean estimator. Algorithm

Figure 4 summarizes the result. Overall, increasing m is able to improve the predictive performance and with the same
number of models, our centroid approximation consistently improves over standard bootstrap ensembles.

B.5. Ablation Study

We study the effectiveness of using (8) to modify the gradient of centroid with v∗k(t) ≤ γ. We consider the setting γ = 0 (no
modification) and γ = m (always modify, equivalent to no bootstrap uncertainty) and applied the method on the mushroom
dataset in the contextual bandit problem. Table 4 shows that (i) modifying the gradient of centroid with small v∗k(t) using do
improve the overall result; (2) bootstrap uncertainty is important for exploration.

B.6. Computation overhead

Our main goal is not to decrease the training cost but improve the quality of bootstrap partical distribution when m is small.
On the other hand, as discussed in Section 3, our method actually only introduces a little computation overhead while much
improves the quality of the particles, which is another advantage of our method. To demonstrate this, we summarize the
training time of our centroid approximation and naive bootstrap in Table 5 and 6. Results are based on the average of 3 runs.
Note that in the Bootstrap DQN application, as the number of iterations in each episode depends on the executed action by
the algorithm, our centroid approximation can have smaller training time in Catcher experiment. In summary, our method
only introduces about 7% computational overhead even with an naive implementation.

Wall clock time
m = 3 m = 4 m = 5 m = 10Bootstrap/Centroid

Contextual Bandit
Mushroom 33.0/34.9 40.7/42.6 47.4/51.8 101/108

Statlog 22.1/22.9 30.2/31.1 38.9/40.0 74.3/75.7
Financial 23.1/24.8 30.6/32.1 39.5/40.7 75.1/78.9

Ensemble CIFAR-100 187/199 245/262 303/332 571/563

Table 5. Training time comparison for contextual banidt and ensemble learning application. The time unit is second for Contextual Bandit
and minute for Ensemble model.
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Wall clock time
m = 2 m = 5Bootstrap/Centroid

Bootstrap DQN LunarLand 40.5/41.8 92.8/107
Catcher 141/121 286/264

Table 6. Training time comparison for bootstrap dqn. The time unit is minuts.

C. Proof
We also show Theorem 3, which gives a formal characterization of the Taylor approximation intuition introduced in (5).

Theorem 3. Under Assumption 1 and 2, when n is sufficiently large, we have

Lw(θ) = Lw(θ̂w) + 1
2

(
θ − θ̂w

)⊤
∇2

θL∞(θ0)
(
θ − θ̂w

)
+Op

(
||θ − θ̂w||2(n−1/2 + ||θ − θ̂w||)

)
.

Here the stochastic boundedness is taken w.r.t. the training data and w.

In the proof, we may use c to represent some absolute constant, which may vary in different lines.

C.1. Proof of Theorem 3

With the fact that∇wL(θ̂w) = 0 and under assumption 1, using Taylor expansion, we have

Lw(θ) = Lw(θ̂w) +
1

2

(
θ − θ̂w

)⊤
∇2

θLw(θ̂w)
(
θ − θ̂w

)
+O

(∥∥∥θ − θ̂w

∥∥∥3) .

Notice that ∣∣∣∣(θ − θ̂w

)⊤ (
∇2

θLw(θ̂w)−∇2
θL∞(θ0)

)(
θ − θ̂w

)∣∣∣∣
≤
∥∥∥θ − θ̂w

∥∥∥2 ∥∥∥∇2
θLw(θ̂w)−∇2

θL∞(θ0)
∥∥∥

≤
∥∥∥θ − θ̂w

∥∥∥2 (∥∥∥∇2
θLw(θ̂w)−∇2

θLw(θ0)
∥∥∥+

∥∥∇2
θLw(θ0)−∇2

θL∞(θ0)
∥∥)

≤
∥∥∥θ − θ̂w

∥∥∥2 (C ∥∥∥θ̂w − θ0

∥∥∥+
∥∥∇2

θLw(θ0)−∇2
θL∞(θ0)

∥∥
F

)
,

where we denote the Frobenius norm as ∥·∥F . With assumption 2, we have
∥∥∥θ̂w − θ0

∥∥∥ = Op(n
−1/2). By ap-

plying centroid limit theorem and delta method to
∣∣∣∇2

θij
Lw(θ0)−∇2

θij
L∞(θ0)

∣∣∣ for every pair i, j ∈ [d], we have∥∥∇2
θLw(θ0)−∇2

θL∞(θ0)
∥∥
F
= Op(n

−1/2). Thus we obtained the desired result.

C.2. Proof of Theorem 1

Given any radius r and ϵ > 0, with sufficiently large n, we have

P
(∥∥∥θ̂w − θ0

∥∥∥ ≥ r
)
≤ exp(−λnr2)+ϵ/m,

for λ = 1
4λmax(A)−1. Here the probability is the jointly probability of bootstrap weight and training data. Thus, given any

r, under the assumption that θ∗j (0) is initialized via sampling θ̂w, then we have

P
(
∪j∈[m]

{∥∥θ∗j (0)− θ0
∥∥ ≥ r

})
≤

∑
j∈[m]

P
(∥∥θ∗j (0)− θ0

∥∥ ≥ r
)
≤ m exp(−λnr2) + ϵ.
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We proof by induction. Given any {θj}mj=1, define

Rk,r = I
{
w ∈ supp(π) : arg min

j∈[m]
Lw(θj) = k and

∥∥∥θ̂w − θ0

∥∥∥ ≤ r

}
.

Suppose at iteration t, we have ∥θ∗k(t)− θ0∥ ≤
cα
√

log n
n

λ0γ
for some constant c and λ0, which we denote as the minimum

eigenvalue of ∇2
θL∞(fθ0). Now at iteration t, we have two cases.

Case 1: EπRk,∞ ≥ γ Suppose that at iteration t, for k such that EπRk,∞ ≥ γ, and ∥θ∗k(t)− θ0∥ = qk, we have the
following property:

∥θ∗k(t+ 1)− θ0∥2 =

∥∥∥∥θ∗k(t)− ϵt
EπRk,∞

Eπ [∇θLw(θ∗k(t))Rk,∞]− θ0

∥∥∥∥2
= ∥θ∗k(t)− θ0∥2 −

2ϵt
EπRk,∞

⟨θ∗k(t)− θ0,Eπ [∇θLw(θ∗k(t))Rk,∞]⟩+ ϵ2t ∥Eπ [∇θLw(θ∗k(t))Rk,∞]∥2 .

Notice that

Eπ [∇θLw(θ∗k(t))Rk,qk ]
(1)
= Eπ

[
∇2

θLw(θ̂w)(θ
∗
k(t)− θ̂w)Rk,qk

]
+ o

(
q2k
)

(2)
= Eπ

[
∇2

θLw(θ̂w)(θ
∗
k(t)− θ0)Rk,qk

]
+O

(
q2k
)

(3)
= Eπ

[
∇2

θLw(θ0)(θ
∗
k(t)− θ0)Rk,qk

]
+O

(
q2k
)

Here (1) is obtained via applying Taylor expansion on ∇θLw(θ∗k(t)) at θ̂w. (2) is by assumption 1 and 2. (3) is by
assumption 1. We thus have

− ⟨θ∗k(t)− θ0,Eπ [∇θLw(θ∗k(t))Rk,∞]⟩
≤ − ⟨θ∗k(t)− θ0,Eπ [∇θLw(θ∗k(t))Rk,qk ]⟩+ ∥θ∗k(t)− θ0∥ ∥Eπ∇θLw(θ∗k(t))(1−Rk,qk)∥
≤ − ⟨θ∗k(t)− θ0,Eπ [∇θLw(θ∗k(t))Rk,qk ]⟩+ cqk exp(−λnq2k)
≤− EπRk,qk(θ

∗
k(t)− θ0)

⊤∇2
θLw(θ0)(θ

∗
k(t)− θ0) + cqk exp(−λnq2k) +O

(
q3k
)
.

Notice that with sufficiently large n, with central limit theorem, we have

− EπRk,qk(θ
∗
k(t)− θ0)

⊤∇2
θLw(θ0)(θ

∗
k(t)− θ0)

≤∥θ∗k(t)− θ0∥2 Eπ

∥∥∇2
θLw(θ0)−∇2

θLw(θ0)
∥∥− EπRk,qk(θ

∗
k(t)− θ0)

⊤∇2
θL∞(θ0)(θ

∗
k(t)− θ0)

=− EπRk,qk(θ
∗
k(t)− θ0)

⊤∇2
θL∞(θ0)(θ

∗
k(t)− θ0) +O(n−1/2).

This gives that

− ⟨θ∗k(t)− θ0,Eπ [∇θLw(θ∗k(t))Rk,∞]⟩

≤ − EπRk,qk(θ
∗
k(t)− θ0)

⊤∇2
θL∞(θ0)(θ

∗
k(t)− θ0) + cqk exp(−λnq2k) +O

(
q3k + qkn

−1/2
)

≤− λ0EπRk,qk ∥θ∗k(t)− θ0∥2 + cqk exp(−λnq2k) +O
(
q3k + qkn

−1/2
)
.

Use the above estimation, we have

∥θ∗k(t+ 1)− θ0∥2

≤∥θ∗k(t)− θ0∥2 − 2ϵtλmin
EπRk,qk

EπRk,∞
∥θ∗k(t)− θ0∥2

+2cϵtqk exp(−λnq2k)/EπRk,∞ +O
(
ϵt(q

3
k + qkn

−1/2)/EπRk,∞ + ϵ2t

)
≤∥θ∗k(t)− θ0∥2 +

ϵt
EπRk,∞

(
−2λ0EπRk,qk ∥θ∗k(t)− θ0∥2 − 2cqk exp(−λnq2k) +O

(
q3k + ϵt + qkn

−1/2
))

.
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Notice that by choosing α >
√
1/(2λ) and ϵt = O(n−1), with sufficiently large n, when

∥θ∗k(t)− θ0∥ ≥
cα

√
logn
n

λ0EπRk,qk

for some constant c, we have
∥θ∗k(t+ 1)− θ0∥ ≤ ∥θ∗k(t)− θ0∥ .

Thus ∥θ∗k(t+ 1)− θ0∥ ≤
cα
√

log n
n

λ0EπRk,∞
≤ cα

√
log n

n

λ0γ
for some constant c.

Case 2: EπRk,∞ ≤ γ In this case, we have

∥θ∗k(t+ 1)− θ0∥2 =
∥∥∥θ∗k(t)− ϵt∇θL(fθ∗

k(t)
)− θ0

∥∥∥2
= ∥θ∗k(t)− θ0∥2 − 2ϵt ⟨θ∗k(t)− θ0,∇θL(θ∗k(t))⟩+ ϵ2t

∥∥∥∇θL(fθ∗
k(t)

)
∥∥∥2 .

Notice that

−⟨θ∗k(t)− θ0,∇θL(θ∗k(t))⟩ ≤ −
〈
θ∗k(t)− θ0,∇2

θL(θ0) (θ∗k(t)− θ0)
〉
− ⟨θ∗k(t)− θ0,∇θL(fθ0)⟩+ o(||θ∗k(t)− θ0||3)

= − (θ∗k(t)− θ0)
⊤∇2

θL∞(θ0) (θ
∗
k(t)− θ0) + o(||θ∗k(t)− θ0||3) +Op(n

−1/2)||θ∗k(t)− θ0||.

This gives that

∥θ∗k(t+ 1)− θ0∥2 ≤ ∥θ∗k(t)− θ0∥2 − 2ϵtλ0 ∥θ∗k(t)− θ0∥2 + o(ϵt||θ∗k(t)− θ0||3 + ϵ2t ) +Op(n
−1/2)ϵt||θ∗k(t)− θ0||.

With ϵt = O(n−1) and sufficiently large n, when

∥θ∗k(t)− θ0∥ ≥
cα

√
logn
n

λ0γ
,

we have ∥θ∗k(t+ 1)− θ0∥2 ≤ ∥θ∗k(t)− θ0∥2.

By these two cases, we conclude that ∥θ∗k(t+ 1)− θ0∥ ≤
cα
√

log n
n

λ0γ
for any t, when ∥θ∗k(0)− θ0∥ ≤

cα
√

log n
n

λ0γ
.

We thus conclude that, for any α >
√
1/(2λ) and ϵ > 0, when n is sufficiently large, with probability at least

1−m exp
(
−λ cα2 logn

λ2
0γ

2

)
− ϵ, we have

max
j∈[m]

sup
t

∥∥θ∗j (t)− θ0
∥∥ ≤ cα

√
logn
n

λ0γ
.

C.3. Proof for Theorem 2

Notice that

Lw(θ∗j (t))− Lw(θ̂w) =
1

2

(
θ∗j (t)− θ̂w

)⊤
∇2

θLw(θ̂w)
(
θ∗j (t)− θ̂w

)
+O(

∥∥∥θ∗j (t)− θ̂w

∥∥∥3)
=

1

2

(
θ∗j (t)− θ̂w

)⊤
∇2

θLw(θ0)
(
θ∗j (t)− θ̂w

)
+O(

∥∥∥θ∗j (t)− θ̂w

∥∥∥3) +O(
∥∥∥θ∗j (t)− θ̂w

∥∥∥2 ∥∥∥θ̂w − θ0

∥∥∥)
=

1

2

∥∥∥θ∗j (t)− θ̂w

∥∥∥2
D
+

∥∥∇2
θLw(θ0)−∇2

θL∞(θ0)
∥∥ ∥∥∥θ∗j (t)− θ̂w

∥∥∥2 +O(
∥∥∥θ∗j (t)− θ̂w

∥∥∥3)
+O(

∥∥∥θ∗j (t)− θ̂w

∥∥∥2 ∥∥∥θ̂w − θ0

∥∥∥)
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Given w, we define uw = argminj∈[m]

∥∥∥θ∗j (t)− θ̂w

∥∥∥2
D

. For any α >
√

1/(2λ) and ϵ > 0, when n is sufficiently large,

with probability at least 1−m exp
(
−λ cα2 logn

λ2
0γ

2

)
− ϵ, we have

1

2
Ew∼π

[
min
j∈[m]

∥∥∥θ∗j (t)− θ̂w

∥∥∥2
D

]
=
1

2
Ew∼π

[∥∥∥θ∗uw
− θ̂w

∥∥∥2
D

]
≥Ew∼π

[
Lw(θ∗uw

)− Lw(θ̂w)− c
∥∥∥θ∗uw

− θ̂w

∥∥∥2 (∥∥∥θ̂w − θ0

∥∥∥+
∥∥∇2

θLw(θ0)−∇2
θL∞(θ0)

∥∥+
∥∥∥θ∗uw

− θ̂w

∥∥∥)]
≥Ew∼π

[
Lw(θ∗uw

)
]
− Ew∼π

[
Lw(θ̂w)

]
− c

(
α
√
log n

λ0γn3/2

)
=Ew∼π

[
min
j∈[m]

Lw(θ∗j (t))

]
− Ew∼π

[
Lw(θ̂w)

]
− c

(
α
√
log n

λ0γn3/2

)
.

Similarly, we also have, with probability at least 1−m exp
(
−λ cα2 logn

λ2
0γ

2

)
,

Ew∼π

[
min
j∈[m]

Lw(θ∗j (t))

]
− Ew∼π

[
Lw(θ̂w)

]
≥ 1

2
Ew∼π

[
min
j∈[m]

∥∥∥θ∗j (t)− θ̂w

∥∥∥2
D

]
− c

(
α
√
log n

λ0γn3/2

)
.

Notice that the above bound holds uniformly for all j ∈ [m] and any iteration t, which implies that with probability at least
1− 2m exp

(
−λ cα2 logn

λ2
0γ

2

)
− 2ϵ, we have

sup
t≥0

∣∣∣∣Ew∼π[ min
j∈[m]

Lw(θ∗j (t))]−B − Ew∼π[ min
j∈[m]

||θ∗j (t)− θ̂w||2D]/2

∣∣∣∣ ≤ c

(
α
√
log n

λ0γn3/2

)
.


