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Abstract
Covariate-shift generalization, a typical case
in out-of-distribution (OOD) generalization, re-
quires a good performance on the unknown test
distribution, which varies from the accessible
training distribution in the form of covariate
shift. Recently, independence-driven importance
weighting algorithms in stable learning literature
have shown empirical effectiveness to deal with
covariate-shift generalization on several learning
models, including regression algorithms and deep
neural networks, while their theoretical analyses
are missing. In this paper, we theoretically prove
the effectiveness of such algorithms by explain-
ing them as feature selection processes. We first
specify a set of variables, named minimal sta-
ble variable set, that is the minimal and optimal
set of variables to deal with covariate-shift gen-
eralization for common loss functions, such as
the mean squared loss and binary cross-entropy
loss. Afterward, we prove that under ideal con-
ditions, independence-driven importance weight-
ing algorithms could identify the variables in this
set. Analysis of asymptotic properties is also
provided. These theories are further validated
in several synthetic experiments. The source
code is available at https://github.com/
windxrz/independence-driven-IW.

1. Introduction
Although modern machine learning techniques have
achieved great success in various areas, many researchers
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have demonstrated the vulnerability of machine learning
models under distribution shifts (Shen et al., 2021). This
issue arises from the violation of the i.i.d. assumption
(i.e., training and test data are independent and identi-
cally distributed) and stimulates recent research on out-
of-distribution (OOD) generalization (Shen et al., 2021;
Zhang et al., 2022a). Among different types of distribution
shifts considered in OOD literature, covariate shift (Shi-
modaira, 2000; Sugiyama et al., 2007a; Ben-David et al.,
2007), where the marginal distribution of variables shifts
from the training data to the test data while the labeling
function keeps unchanged, is the most common one (Shen
et al., 2021). Further, covariate-shift generalization is much
more challenging, given that the test distribution remains
unknown in the training phase.

With the prior knowledge of the test distribution, impor-
tance weighting (IW) is common in dealing with covariate
shift (Shimodaira, 2000; Sugiyama et al., 2007a;b; 2008;
Fang et al., 2020). In detail, IW methods consist of two steps,
namely weight estimation and weighted regression (Fang
et al., 2020). The weight estimation step estimates sample
weights that characterize the density ratio between the train-
ing and test distribution. The weighted regression step trains
predictors after plugging the sample weights into loss func-
tions. However, IW methods can not adapt to covariate-shift
generalization problems directly because the test distribu-
tion is unknown.

Recently, independence-driven importance weighting meth-
ods (Shen et al., 2020; Kuang et al., 2020b; Zhang et al.,
2021; 2022b) in stable learning literature (Cui & Athey,
2022) have shown empirical effectiveness to deal with
covariate-shift generalization on several learning tasks in-
volving regression algorithms and deep models. Without the
knowledge of the test distribution, in the weight estimation
step, they propose to learn sample weights that guarantee the
statistical independence between features in the weighted
distribution. Although the advantages of these algorithms
have been proved empirically, the theoretical explanations
for these methods are missing. In this paper, we take a
step towards the theoretical analysis of independence-driven
IW methods on covariate-shift generalization problems by
explaining them as feature selection processes.

https://github.com/windxrz/independence-driven-IW
https://github.com/windxrz/independence-driven-IW
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We first show that for common loss functions, including
the mean squared loss and binary cross-entropy loss, the
covariate-shift generalization problem can be tackled by
a minimal set of variables S that satisfies the condition:
E[Y |S] = E[Y |X]. Such a minimal set of variables is
named the minimal stable variable set. Afterward, we
prove that independence-driven IW algorithms could iden-
tify the minimal stable variable set. We analyze the typical
algorithms (Kuang et al., 2020b; Shen et al., 2020) where
the weighted least squares (WLS) is adopted in the weighted
regression step. Variables whose corresponding coefficients
of WLS are not zero could be considered as chosen vari-
ables. Under ideal conditions, i.e., perfectly learned sam-
ple weights and infinite samples, the selected variables are
proved to be the minimal stable variable set. We further pro-
vide asymptotic properties and error analysis when the ideal
conditions are not satisfied. We highlight that although a lin-
ear model (WLS) is adopted, these theoretical results hold
for both linear and non-linear data-generating processes.
Along with the optimality and minimality of the minimal
stable variable set, these theories provide a way to explain
why independence-driven IW methods work for covariate-
shift generalization. These theories are further validated in
several synthetic experiments.

1.1. Overview of Results

We begin with a simplified presentation of our results. Con-
sider a set of variables (X, Y ) where X represents features
and Y represents the outcome that we try to predict from X .
We consider covariate-shift generalization problems, which
is the most common one among the different distribution
shifts (Shen et al., 2021). In detail, covariate shift considers
the scenario where the marginal distribution of X shifts
from the training phase to the test phase while the labeling
function keeps unchanged.
Assumption 1.1. Suppose the test distribution P te differs
from the training distribution P tr in covariate shift only, i.e.,

P te(X, Y ) = P te(X)P tr(Y |X). (1)

In addition, P te has the same support of P tr.
Problem 1.1 (Covariate-shift generalization problem).
Given the samples from the training distribution P tr,
covariate-shift generalization problem is to design an algo-
rithm which can guarantee the performance on the unknown
test distribution P te that satisfies Assumption 1.1.

We focus on several common loss functions, including the
mean squared loss and binary cross-entropy loss, under
which circumstances EP te [Y |X] is the global optimum for
the test distribution P te.
Theorem 1.1 (Informal version of Theorem 3.1). Let P te

be the unknown test distribution in the covariate-shift gen-
eralization problem defined in Problem 1.1. Then a subset

of variables S ⊆ X that can fit the target EP te [Y |X] if and
only if it satisfies EP tr [Y |S] = EP tr [Y |X].

We define the minimal set of variables that satisfies
EP tr [Y |S] = EP tr [Y |X] as the minimal stable variable set
(Definition 3.4). Under mild assumptions (Assumption 2.1),
the existence and uniqueness of the variable set are guaran-
teed (Theorem 3.2). As relationships between X vary from
the training phase to the test phase, i.e., P tr(X) ̸= P te(X),
it is reasonable to find the minimal set of variables to make
predictions so that it can relieve the negative impact of other
features in the test distribution. We will show the optimality
property of the minimal stable variable set empirically in
Figure 2.

Now we consider independence-driven IW algorithms (The
framework of such algorithms can be found in Section 4
and Algorithm 1). Typical independence-driven IW algo-
rithms (Shen et al., 2020; Kuang et al., 2018) learn sample
weights first to make features statistically independent in
the weighted distribution and then adopt a weighted least
squares regression step. The algorithms can be considered as
processes of feature selection by examining the coefficients
of WLS. In detail, the variables with non-zero coefficients
are chosen. The variables chosen by independence-driven
IW algorithms have the following properties.

Theorem 1.2 (Informal version of Theorem 5.1 and Theo-
rem 5.2). Under ideal conditions (perfectly learned sample
weights and infinite samples),

– if a variable Xi is not in the minimal stable variable
set, then independence-driven IW algorithms could
filter it out with any weighting function that satisfies
the independence condition, and

– if a variable Xi is in the minimal stable variable
set, then there exist weighting functions with which
independence-driven IW algorithms could identify Xi.

We further analyze the error of coefficients if these ideal
conditions are not satisfied (Theorem 5.3) under several
mild assumptions.

Theorem 1.1 and Theorem 1.2 provide a general picture
of the effectiveness of independence-driven IW algorithms.
To conclude, under ideal assumptions, they could identify
the minimal stable variable set, which is the minimal and
optimal set of variables to deal with covariate-shift general-
ization.

1.2. Related Works

OOD and covariate-shift generalization OOD general-
ization has raised great concerns. According to (Shen et al.,
2021), OOD methods could be categorized into unsuper-
vised representation learning methods (Bengio et al., 2013;
Yang et al., 2021; Zhang et al., 2022c), supervised learning



A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization

models (Peters et al., 2016; Zhou et al., 2021; Liu et al.,
2021a;b; Zhou et al., 2022b; Lin et al., 2022a;b), and opti-
mization methods (Duchi et al., 2020; Duchi & Namkoong,
2021; Zhou et al., 2022a). More thorough discussions could
refer to (Shen et al., 2021).

There are many types of distribution shift, including co-
variate shift (Shimodaira, 2000), label shift (Garg et al.,
2020), and concept shift (Gama et al., 2014) and covari-
ate shift is the most common distribution shift (Shen et al.,
2021). To deal with the covariate-shift generalization prob-
lem, there are several methods recently (Shen et al., 2020;
Kuang et al., 2020b; Zhang et al., 2021; Duchi & Namkoong,
2021; Krueger et al., 2021; Ruan et al., 2021). In this pa-
per, we focus on independence-driven IW algorithms (Shen
et al., 2020; Kuang et al., 2020b; Zhang et al., 2021) and
provide a theoretical analysis of them.

Importance weighting (IW) and independence-driven
IW algorithms Importance weighting methods are com-
mon practices to tackle distribution shifts. In traditional
domain adaptation (DA) problems (Daume III & Marcu,
2006; Ben-David et al., 2007), importance weighting meth-
ods assume the prior knowledge of the test distribution and
they can estimate the density ratio between the training and
test distributions directly (Shimodaira, 2000; Huang et al.,
2006; Storkey & Sugiyama, 2007; Sugiyama et al., 2007a;b;
Bickel et al., 2007; Sugiyama et al., 2008; Kanamori et al.,
2009; Fang et al., 2020). As a result, the ERM training on
the weighted distribution is unbiased in the test distribu-
tion (Fang et al., 2020).

Compared to typical DA settings, covariate-shift general-
ization problems consider a much more challenging set-
ting where the test distribution is unknown (Shen et al.,
2021). Without the knowledge of the test distribution,
independence-driven IW algorithms (Shen et al., 2018;
Kuang et al., 2020a; Shen et al., 2020; Zhang et al., 2021)
in stable learning literature (Cui & Athey, 2022) propose to
learn sample weights that make features statistically inde-
pendent in the weighted distribution. Although the effective-
ness of such algorithms on covariate-shift generalization has
been proved empirically, their detailed theoretical analysis
is missing.

Feature Selection Feature selection aims to construct a
diagnostic or predictive model for a given regression or clas-
sification task via selecting a minimal-size subset of vari-
ables that show the best performance (Guyon & Elisseeff,
2003). Feature selection approaches can be broadly divided
into four categories, namely filter methods, wrapper meth-
ods, embedded methods, and others. Filter methods adopt
statistical criteria to rank and select features before building
classifiers with selected features (John et al., 1994; Langley
et al., 1994; Guyon & Elisseeff, 2003; Law et al., 2004).

Given filter methods are usually independent of the learning
of the classifiers, they show superiority in operating time
and applicability over other methods (Kira & Rendell, 1992;
Bolón-Canedo et al., 2013). Wrapper methods heuristically
search variable subsets via learning a predictive model, thus
they can identify the best performing feature subsets for
the given modeling algorithm, but are typically computa-
tionally intensive (Menze et al., 2009; Bolón-Canedo et al.,
2013; Urbanowicz et al., 2018). Embedded methods seek
to minimize the size of the selected feature subset while
maximizing the classification performance simultaneously
(Tibshirani, 1996; Rakotomamonjy, 2003; Zou & Hastie,
2005; Loh, 2011; Chen & Guestrin, 2016). Some meth-
ods attempt to combine the advantages of wrapper methods
and filter methods (Cortizo & Giraldez, 2006; Liu et al.,
2014; Benoı̂t et al., 2013). However, discussions on feature
selection problems under covariate-shift generalization set-
tings are missing. In this paper, we specify the optimal and
minimal set of variables to deal with covariate-shift general-
ization and prove that independence-driven IW algorithms
could identify them.

2. Preliminaries
Notations Let X = (X1, X2, . . . Xd)

T ∈ Rd denote
the d-dimensional features and Y ∈ R denote the out-
come. The training data is from a joint training distribution
P tr(X, Y ). Let X , Xj , and Y denote the support of X ,
Xj , and Y , respectively. Suppose we get n i.i.d. samples,{
x(i) =

(
x
(i)
1 , . . . , x

(i)
d

)T
, y(i)

}n

i=1

sampled from the dis-

tribution. Let P te denote the unknown test distribution.

We use S ⊆ X to indicate that S is a subset of features
X and ⊊ to mean proper subset. We write A ⊥ B | C
when two sets of variables A,B ⊆ X are statistically
independent given another set of variables C ⊆ X . We also
adopt A ⊥ B when conditioning set is empty to indicate
that A and B are statistically independent.

We use EQ(·)[·] and EQ(·)[·|·] to denote expectation and
conditional expectation, respectively, under a distribution Q.
For example, EQ(X)[X] =

∫
X xQ(X = x)dx represent

the expectation of X and EQ(X,Y )[Y |X] =
∫
Y Q(Y =

y|X)ydy represent the conditional expectation of Y given
X under distribution Q. Q could be chosen as the training
distribution P tr, test distribution P te, or any other proper
distributions. If not confusing, we will use E[·] and E[·|·] to
denote the expectation and conditional expectation under the
training distribution P tr. We use Ê[·] to denote the empirical
expectation w.r.t. n samples.

Basic assumption We consider the following assumption.
Assumption 2.1 (Strictly positive density assumption).
∀x1 ∈ X1, x2 ∈ X2, . . . , xd ∈ Xd, P tr(X1 = x1, X2 =
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x2, . . . , Xd = xd) > 0.

Remark 2.1. Assumption 2.1 is reasonable on the grounds
that there always exists uncertainty in the data (Pearl, 2014;
Strobl & Visweswaran, 2016). Therefore, we suppose the
strictly positive density assumption in the whole paper for
simplicity.

3. Minimal Stable Variable Set for
Covariate-shift Generalization

In this section, we specify the set of variables that are suit-
able for covariate-shift generalization problems. We first
provide the definition of the minimal and optimal predictor.

Definition 3.1 (Optimal predictor (Statnikov et al., 2013)).
Given a dataset sampled from P tr(X, Y ), a learning algo-
rithm L, and a performance metric M to assess learner’s
models, a variable set S ⊆ X is an optimal predictor of Y
if S maximizes the performance metric M for predicting Y
using learner L in the dataset.

Definition 3.2 (Minimal and optimal predictor (Strobl &
Visweswaran, 2016)). Let S be an optimal predictor of Y .
If no proper subset of S satisfies the definition of the optimal
predictor of Y , then S is a minimal and optimal predictor
of Y .

The minimal and optimal predictor for covariate-shift gener-
alization can be given as follows.

Theorem 3.1. Under Assumption 1.1 and Assumption 2.1,
if M is a performance metric that is maximized only when
EP te [Y |X] is estimated accurately and L is a learning al-
gorithm that can approximate any conditional expectation.
Suppose S ⊆ X is a subset of variables, then

1. S is an optimal predictor of Y under distribution P te

if and only if EP tr [Y |X] = EP tr [Y |S], and
2. S is a minimal and optimal predictor of Y under dis-

tribution P te if and only if EP tr [Y |X] = EP tr [Y |S]
and no proper subset S′ ⊊ S satisfies EP tr [Y |X] =
EP tr [Y |S′].

Remark 3.1. To deal with covariate-shift generalization, M
should be measured on the unknown test distribution P te

with common loss functions. In practice, researchers often
adopt the mean squared loss in regression problems and the
binary cross-entropy loss in binary classification problems.
It is easy to check that the global optimum for both loss
functions is EP te [Y |X] if applying the loss functions on the
test distribution P te.

As a result, we provide the following definitions.

Definition 3.3 (Stable variable set). A stable variable set of
Y under distribution P is any subset S of X for which

EP [Y |S] = EP [Y |X]. (2)

The set of all stable variable sets for Y is denoted as
StableP (Y ). In addition, we use Stable(Y ) to denote the
set under the training distribution P tr for simplicity, i.e.,
Stable(Y ) ≜ StableP tr(Y ).

Definition 3.4 (Minimal stable variable set). A minimal
stable variable set of Y is a minimal set in Stable(Y ), i.e.,
none of its proper subsets satisfies Equation (2).

With these definitions, the conclusions of Theorem 3.1 be-
come: (1) S is an optimal predictor of Y under P te if and
only if it is a stable variable set under P tr, and (2) S is a
minimal and optimal predictor of Y under P te if and only if
it is a minimal stable variable set under P tr. Furthermore,
the existence and uniqueness of the minimal stable variable
set are given by the following theorem.

Theorem 3.2. Under Assumption 2.1, there exists a unique
minimal stable variable set of Y , which can be de-
noted as MinStable(Y ). Furthermore, with the unique
MinStable(Y ), the set of all stable variable sets of Y un-
der the training distribution P tr, i.e., Stable(Y ), can be
expressed as

Stable(Y ) = {S ⊆ X | MinStable(Y ) ⊆ S}. (3)

Theorem 3.1 and Theorem 3.2 provide a way to ensure
promising OOD performance for covariate-shift generaliza-
tion problems. The minimal stable variable set under the
training distribution P tr is a minimal and optimal predic-
tor in the test distribution P te, with which we can learn
reliable models (John et al., 1994; Guyon & Elisseeff,
2003). As relationships between X are usually unstable
and P tr(X) ̸= P te(X), it is reasonable to find the min-
imal and optimal predictor, i.e., MinStable(Y ), to make
predictions so that it can relieve the negative impact from
X\MinStable(Y ) under the test distribution.

Comparing the minimal stable variable set with other
variable sets MinStable(Y ) could be explained as the
direct causal variables in typical data-generating pro-
cesses. Consider the following mechanism (Tibshirani,
1996; Ravikumar et al., 2009; Hastie & Tibshirani, 2017;
Kuang et al., 2020a),

X = (S,V ), Y = f(S) + ϵ, ϵ ⊥ X. (4)

Here variables X contain two kinds of variables (S and V )
while Y depends on S only. The relationship between S
and V is arbitrary. In such common cases, S is the set of all
the direct causal variables and is the minimal stable variable
set of Y .

In addition, the minimal stable variable set has relationships
with the stable blanket proposed by Pfister et al. (2021).
However, the stable blankets are defined in causal graphs
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over a set of interventions while the minimal stable variable
set targets for the covariate-shift generalization.

Furthermore, the minimal stable variable set is closely re-
lated to the Markov boundary (Pearl, 2014). Under the per-
formance metric in Theorem 3.1, the minimal stable variable
set shares the same prediction power of Y with the Markov
boundary while the minimal stable variable set contains
fewer variables and thus combats covariate-shift generaliza-
tion problems better. A detailed comparison between the
minimal stable variable set and the Markov boundary can
be found in Appendix A.

4. Independence-driven IW Algorithms
4.1. General Framework

The framework of typical independence-driven importance
weighting algorithms (Shen et al., 2020; Kuang et al., 2020a)
is shown in Algorithm 1. Similar to standard IW algo-
rithms (Fang et al., 2020), independence-driven IW algo-
rithms consist of two steps, which are independence-driven
weight estimation and weighted least squares respectively.

4.1.1. INDEPENDENCE-DRIVEN WEIGHT ESTIMATION

Independence-driven IW algorithms consider weighting
functions that depend on X only.
Definition 4.1 (Weighting function and weighted distribu-
tion). Let W be the set of weighting functions that satisfies

W =
{
w : X → R+ | EP tr [w(X)] = 1

}
. (5)

Then ∀w ∈ W , the corresponding weighted distribution
P̃w can be determined by the following probability density
function.

P̃w(X, Y ) = w(X)P tr(X, Y ). (6)

P̃w is well defined with the same support of P tr.

Furthermore, instead of the whole set W , independence-
driven IW algorithms consider a subset W⊥ ⊆ W . The
weighting functions in W⊥ satisfies that X are mutually
independent of each other in the corresponding weighted
distribution P̃w, i.e.,

W⊥ ≜
{
w ∈ W | X are statistically independent in P̃w

}
.

(7)

4.1.2. WEIGHTED LEAST SQUARES

Let w ∈ W be a weighting function. With n datapoints
sampled from P tr(X, Y ), the weighted least squares solves
the following equation

β̂w = argmin
β

Ê
[
w (X)

(
βTX − Y

)2
]
= Σ̂−1

w Ê[w(X)XY ].

(8)

Algorithm 1 Independence-driven IW Algorithm

1: Input: Dataset
{
x(i) =

(
x
(i)
1 , . . . , x

(i)
d

)T
, y(i)

}n

i=1
2: Learn sample weight w ∈ W⊥ so that X are statisti-

cally independent in the weighted distribution P̃w.
3: Solve weighted least squares with weighting function

w(X). The solution is β̂w.
4: Output: Cofficients of weighted least squares β̂w.

Here Σ̂w ≜ Ê[w(X)XXT ] represents the empirical covari-
ance matrix with sample weights w. Furthermore, we denote
the solution to population level weighted least squares under
distribution P tr(X, Y ) as

βw = argmin
β

E
[
w (X)

(
βTX − Y

)2
]
= Σ−1

w E[w(X)XY ].

(9)
Here Σw ≜ E[w(X)XXT ] represents the population level
covariance matrix. In addition, we use βw(Xi) and β̂w(Xi)

to denote the corresponding coefficient of βw and β̂w on
the i-th feature Xi.

4.2. Two Specific Implementations

Algorithm 1 has two typical implementations, namely DWR
(Kuang et al., 2020a) and SRDO (Shen et al., 2020). They
differ mainly in the way to learn sample weights w.

DWR Kuang et al. (2020a) propose to decorrelate every
two features, i.e.,

w(X) = arg min
w0(X)

∑
1≤i,j≤d,i ̸=j

(Cov(Xi, Xj ;w0))
2
,

(10)
where Cov(Xi, Xj ;w0) represents the covariance of fea-
tures Xi and Xj in the weighted distribution P̃w0

. The loss
function in Equation (10) focuses on the linear correlation
only and is used as an approximation for statistical inde-
pendence. They proved that linear decorrelation suffices
to generate good prediction models under simple models.
Recently, Zhang et al. (2021) combined DWR with random
fourier features (Rahimi et al., 2007) to achieve statistical
independence and showed that deep models could perform
better if the representations are statistically independent
instead of linearly decorrelated.

SRDO Shen et al. (2020) propose to learn w(X) by esti-
mating the density ratio of the training distribution P tr and a
specific weighted distribution P̃ . The weighted distribution
P̃ is determined by performing random resampling on each
feature so that P̃ (X1, X2, . . . , Xd) =

∏d
i=1 P

tr(Xi). As a
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result, the weighting function w(X) is given by

w(X) =
P̃ (X)

P tr(X)
=

P tr(X1)P
tr(X2) · · ·P tr(Xd)

P tr(X1, X2, . . . , Xd)
. (11)

The density ratio in Equation (11) can be tackled by class-
probability estimation problems and can be learned by sev-
eral methods such as the binary cross-entropy loss, the LSIF
loss (Kanamori et al., 2009), and the KLIEP loss (Sugiyama
et al., 2009). A thorough review of density ratio estimation
methods is presented by Menon & Ong (2016). As a re-
sult, SRDO can guarantee statistical independence between
variables X if the density ratio is estimated accurately.

5. Theoretical Analysis of
Independence-driven IW Algorithms

In this section, we will show that independence-driven IW
algorithms as shown in Algorithm 1 can be considered as a
process of feature selection according to the coefficients of
weighted least squares. The chosen features are the minimal
stable variable set in Definition 3.4. We first show the iden-
tifiability result with perfectly learned weighting functions
and infinite samples in Section 5.1. Afterward, we relax
the assumptions and study the asymptotic properties in Sec-
tion 5.2. These theoretical results, along with Theorem 3.1
could prove the effectiveness of independence-driven IW
algorithms for the covariate-shift generalization problem
(Problem 1.1).

5.1. Population Level Properties

Generally speaking, with infinite samples, for any perfectly
learned proper weighting function w ∈ W⊥ adopted by the
algorithms, the coefficient on variables that do not belong to
the minimal stable variable set will be zero (Theorem 5.1).
In addition, there exist proper weighting functions with
which the coefficients on the minimal stable variable set
would not be zero (Theorem 5.2).

Theorem 5.1. Under Assumption 2.1, suppose Xi ̸∈
MinStable(Y ). Let w be any weighting function
in W⊥. Suppose EP tr(X)

[
w(X)∥X∥22

]
< ∞ and

EP tr(X,Y )

[
w(X)Y 2

]
< ∞. Then the population level

solution βw of weighted least squares under w satisfies
βw(Xi) = 0.

Theorem 5.2. Under Assumption 2.1, suppose Xi ∈
MinStable(Y ). Then there exists w ∈ W⊥ and constant
α ̸= 0, such that the population level solution βw satisfies
βw(Xi) = α.

Remark 5.1. In very rare cases, independence-driven IW
algorithms may fail to identify the minimal stable variable
set if Xi is not independent of Y but is linearly decorrelated
with Y in the weighted distribution P̃w.

These two theorems, along with Theorem 3.1, prove the
effectiveness of independence-driven IW algorithms for the
covariate-shift generalization problem (Problem 1.1). In
detail, under ideal conditions, i.e., perfectly learned sam-
ple weights and infinite samples, independence-driven IW
algorithms could find the minimal stable variable set of Y ,
which is the minimal and optimal predictor under the test
distribution P te according to Theorem 3.1.

5.2. Asymptotic Properties

We further analyze the asymptotic properties of
independence-driven IW algorithms in this subsection.
Given a weighting function w ∈ W , let{

approxw(X) ≜ E[Y |X]− ⟨βw,X⟩,
noise(X) ≜ Y − E[Y |X].

(12)

Here approxw(X) denotes the model misspecification
term w.r.t. linear models and noise(X) represents the
noise term of Y . For a non-trivial asymptotic property of
the independence-driven IW algorithms, similar to Zhang
(2005); Hsu et al. (2014), we first make the assumptions
about the data-generating process between X and Y .

Assumption 5.1 (Bounded covariate). There exists a finite
constant B > 0 such that, in the training distribution P tr,
almost surely, ∥X∥2 ≤ B.

Assumption 5.2 (Bounded approximation error). There
exists a finite constant Cw > 0 such that, in the training
distribution P tr, almost surely, |approxw(X)| ≤ Cw.

Assumption 5.3 (Sub-gaussian noise). There exists a fi-
nite constant σ ≥ 0 such that, in the training distribution
P tr, almost surely, ∀η ∈ R, E [ exp (η · noise(X))|X] ≤
exp

(
η2σ2/2

)
.

Furthermore, we assume that the chosen weighting function
is non-degenerate.

Assumption 5.4 (Non-degenerate weighting function).
The minimal eigenvalue of Σw is greater than 0, i.e.,
λmin (Σw) ≜ Λw > 0.

In practice, we can not obtain the true weighting function
w and we need to estimate it from finite samples. The
estimated weighting function is denoted as ŵ. We further
provide assumptions about it.

Assumption 5.5 (Small estimation error of the weighting
function). The estimation error of the estimated weighting
function ŵ is small. In detail, E

[
(w(X)− ŵ(X))

2
]
≜

ϵ2 < Λ2
w/E[∥X∥42].

Assumption 5.6 (Bounded estimated weighting function).
There exists a finite constant δŵ > 0 such that, in the train-
ing distribution P tr, almost surely, ŵ(X) < δŵ.
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Remark 5.2. To ensure a small ϵ2 in Assumption 5.5,
we can adopt LSIF (Kanamori et al., 2009) to optimize
EP tr(X)[(w(X)−ŵ(X))2] directly. If we know a weighted
distribution Q and want to learn a weighting function
w(X) = Q(X)/P tr(X). According to Menon & Ong
(2016), the loss of LSIF is L(w) = EQ(X)[−w(X)] +

EP tr(X)

[
w(X)2/2

]
. It is easy to see that w∗(X) =

minw L(w) = Q(X)/P tr(X) and L(w) − L(w∗) =
EP tr(X)

[
(w∗(X)− w(X))2

]
/2. As a result, minimizing

the loss of LSIF will meet the assumption which requires
that EP tr(X)[(w(X)− ŵ(X))2] = ϵ2 be small enough.
Remark 5.3. The difference between SRDO and DWR
lies in Assumption 5.5 due to the way of learning sam-
ple weights. Specifically, it is harder for DWR to satisfy
Assumption 5.5 because DWR focuses more on the linear
correlation. As a result, its performance may drop when
Y has a complex non-linear relationship with X, which is
further validated by our experiments as shown in the fourth
point in Section 6.3.

With the assumptions, we can provide the asymptotic prop-
erty of independence-driven IW algorithms.

Theorem 5.3. Let w ∈ W be a weighting function. Suppose
Assumptions 2.1, 5.1-5.6 (with parameters B, Cw, σ, Λw, ϵ,
δŵ) hold. Pick any t > max{0, 2.6− log d}, let

n ≥ 6δŵB
2(log d+ t)

Λw − ϵ
√
E [∥X∥42]

. (13)

Then with probability at least 1− 3e−t,∥∥∥β̂ŵ − βw

∥∥∥2

2

≤ 4δŵσ
2(d+ 2

√
td+ 2t)

n
(
Λw − ϵ

√
E [∥X∥42]

) +
8δŵB

2C2
w(1 + ϵ)

(
1 +

√
8t
)2

n
(
Λw − ϵ

√
E [∥X∥42]

)2

︸ ︷︷ ︸
error caused by WLS from finite samples

+
4ϵ2Mw(

Λw − ϵ
√

E [∥X∥42]
)2

︸ ︷︷ ︸
error caused by imperfectly learned weights

+ o(1/n).

(14)

Here Mw = ∥Σw∥22∥βw∥22
(

E[∥X∥4
2]

∥Σw∥2
2

+
E[∥XY ∥2

2]
∥E[w(X)XY ]∥2

2

)
is a constant when w is fixed. In particular, if w ∈ W⊥,
then∥∥∥β̂ŵ − βw

∥∥∥2
2
=
∥∥∥β̂ŵ(V )

∥∥∥2
2
+
∥∥∥β̂ŵ(S)− βw(S)

∥∥∥2
2
,

(15)
where β̂ŵ(V ) represents the coefficients of β̂ŵ on
X\MinStable(Y ) and β̂ŵ(S), βŵ(S) represent the co-
efficients of β̂ŵ, βw on MinStable(Y ). As a result,∥∥∥β̂ŵ(V )

∥∥∥2
2

and
∥∥∥β̂ŵ(S)− βw(S)

∥∥∥2
2

are also bounded by
the RHS of Equation (14).

Remark 5.4. Equation (14) applies for any weighting func-
tion w ∈ W that satisfies the listed assumptions. Excluding
the high-order term of o(1/n), the RHS of Equation (14)
consists of two parts. The first part is caused by WLS from
finite samples and it vanishes when n → ∞. The second
part is caused by the error between the estimated function ŵ
and the true weighting function w and it also vanishes when
ϵ → 0.

In particular, let w ∈ W⊥ be a weighting function
adopted by independence-driven IW algorithms. Ac-
cording to Theorems 5.1 and 5.2, the coefficients on
X\MinStable(Y ) (i.e., ∥β̂ŵ(V )∥22) and the error of coef-
ficients on MinStable(Y ) (i.e., ∥β̂ŵ(S)− βw(S)∥22) will
be bounded by the RHS of Equation (14) and become zero
when n → ∞ and ϵ → 0. This property guarantees that we
could eliminate X\MinStable(Y ) and find MinStable(Y )
with finite samples and imperfectly learned sample weights.

6. Synthetic Experiments
We run various experiments on synthetic data to verify the
effectiveness of independence-driven IW algorithms in dis-
covering the minimal stable variable set in covariate-shift
generalization problems. We consider the following data-
generating process similar to Kuang et al. (2020a).

6.1. Data-generating Process

Data Let X = (S,V ) and the dimension of X is fixed
to d = 10. In our experiments, the dimensions of S and V
are specified as ds = dv = 0.5 · d = 5. Covariate X is
generated by the following process.

Z1, Z2, . . . , Zd+1 ∼ N(0, 1), V1, V2, . . . , Vdv ∼ N(0, 1),

Si = 0.8Zi + 0.2Zi+1, i = 1, 2, . . . , ds.
(16)

We further clip features X into [−2, 2] by letting X =
max(min(X, 2),−2). The outcome Y is generated through
Y = f(S) + ϵ, in which f(S) may contain both linear and
non-linear transformations. To test the performance with
different forms of non-linear terms in f(S), we generate the
outcome Y from an MLP non-linear function (YMLP) and a
polynomial one (Ypoly), respectively:{

YMLP = f(S) + ϵ = βTS + MLP([S1, S2, S3]; θ) + ϵ,

Ypoly = f(S) + ϵ = βTS + S1S2S3/4 + ϵ.
(17)

Here β = {1/3,−2/3, 1,−1/3, 2/3}, ϵ ∼ N(0, 0.32),
and MLP([S1, S2, S3]; θ) represents the transformation of
MLP with two hidden layers (sizes 3 and 3, respectively)
parametrized by randomly generated θ ∼ U(−1, 1).

Generating various environments We generate various
environments by constructing spurious correlations between
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Figure 1. Experimental results on synthetic data (MLP non-linear function YMLP and polynomial function Ypoly from top to bottom).
Varying the spurious correlation strength rtr, we compare independence-driven IW algorithms (DWR and SRDO shown in solid lines) with
several baselines (shown in dashed lines) on both feature selection (Rank average and F1 score) and covariate-shift generalization (RMSE
average and standard deviation) metrics. Independence-driven IW algorithms outperform other methods in the synthetic experiments.
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Figure 2. The covariate-shift generalization metrics (RMSE aver-
age and standard deviation) w.r.t. the number of selected features.
Fix rtr = 2.5 here and the feature ranking lists are provided by
SRDO. The minimal stable variable set (5 features) achieves the
optimal performance.

Y and V4, V5. Specifically, we fix a bias rate r ∈ R (|r| > 1)
in each generated environment. For each sample x(i) =
(s(i),v(i)), we select it to the corresponding environment

with probability Pr
(
select|x(i); r

)
=
∏5

j=4 |r|
−10D

(i)
j ,

where D
(i)
j =

∣∣∣f(S)− sgn(r) ∗ v(i)
j

∣∣∣ and sgn(r) is the in-
dicator function on whether r > 0. Intuitively, r controls
the strength and direction of spurious correlations. Specifi-
cally, r > 1 corresponds to the positive spurious correlation
between Y and V and r < −1 corresponds to the nega-
tive spurious correlation. In addition, the higher |r| is, the
stronger correlation between Y and V becomes.

Here P (Y |X) is obviously invariant across different en-
vironments and the data-generating process satisfies the
covariate-shift condition. Moreover, the minimal stable
variable set MinStable(Y ) is S in each environment.

Experimental setting In the YMLP setting, we randomly
generate 5 different MLPs and report the results averaged
over the 5 MLPs. We train feature selection models on one
training dataset with a specific bias rate rtr and n = 10, 000
samples. We then choose the top 5 features selected by each

model and further train an MLP regressor on them. The
regressor is then evaluated on 10 test environments with
corresponding rte = −3.0, −2.5, −2.0, −1.5, −1.3, 1.3,
1.5, 2.0, 2.5, 3.0. To test the effect of spurious correlation
strength on feature selection models, we vary rtr = 1.5, 1.7,
2.0, 2.3, 2.5, 2.7, 3.0.

6.2. Baselines and Evaluation Metrics

Baselines We compare independence-driven IW algo-
rithms (including DWR (Kuang et al., 2020a) and
SRDO (Shen et al., 2020)) with filter methods (in-
cluding mutual information based (MI) and correlation
based (Correlation) methods), wrapper methods (includ-
ing gradient boosting (GB) (Friedman, 2001), XGBoost
(XGB) (Chen & Guestrin, 2016), and random forests
(RF) (Dı́az-Uriarte & De Andres, 2006)), and embedded
methods (including OLS, LASSO (Tibshirani, 1996), and
STG (Yamada et al., 2020)). More details on baseline im-
plementations can be found in Appendix B.

Evaluation metrics On the one hand, to test the perfor-
mances on feature selection, we report the rank average and
F1 score of selected features. To compute the rank average,
we utilize the scores that each model assigns to the features
and then rank all features according to the scores. The rank
average is calculated as the mean of the ranks of the mini-
mal stable variable set MinStable(Y ) = S. The F1 score
is defined as the harmonic mean of the precision and recall,
where precision and recall are computed by comparing the
selected features to the true features, i.e., the minimal stable
variable set. On the other hand, to test the performances on
covariate-shift generalization, we calculate the root mean
squared error (RMSE) in each test environment and report
the mean and standard deviation of RMSE in various test
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environments.

6.3. Experimental Results and Analysis

The results are shown in Figure 1 and Figure 2 and we have
the following observations.

1. We first validate the optimality property of the minimal
stable variable set on covariate-shift generalization proposed
in Section 3. With fixed rtr = 2.5 and predicted feature rank-
ing by SRDO, we vary the number of top selected features
and train an MLP on them. Afterward, we test the per-
formances of the MLP on test distributions and show the
results in Figure 2. The results demonstrate that the minimal
stable variable set (5 features) achieves the optimal perfor-
mance under covariate-shift generalization. The figures with
different rtr and more experimental details are provided in
Appendix B.
2. Independence-driven IW algorithms perform much better
on the discovery of the minimal stable variable set than other
feature selection methods. As shown in Figure 1, SRDO
and DWR achieve the minimal rank average and maximal
F1 score for both data-generating processes YMLP and Ypoly.
As a result, with the accurate discovery of the minimal
stable variable set, SRDO and DWR further achieve the best
covariate-shift generalization metrics (RMSE average and
standard deviation). This experiment result validates the
theories in Section 5.
3. The discovery of the minimal stable variable set becomes
progressively challenging as spurious correlation strength
rtr increases. As shown in Figure 1, the rank average tends
to increase while the F1 score tends to decrease for all
methods as rtr increases. This phenomenon makes sense on
the grounds that V1 and V2 become strongly correlated with
Y and models tend to select them when rtr is large.
4. SRDO outperforms DWR in most settings, especially
when Y has a complex non-linear relationship with X . As
discussed in Section 4.2, DWR aims to decorrelate the linear
relationships between features and can not guarantee strict
statistical independence. In the YMLP setting of our exper-
iment, DWR fails to discover the minimal stable variable
set when rtr is large while SRDO performs much better in
the setting. However, DWR could effectively handle the
polynomial Ypoly setting, which is also suggested by Kuang
et al. (2020a).

7. Discussions
In this paper, we theoretically prove the effectiveness of
independence-driven IW algorithms. We show that under
ideal conditions, i.e., perfectly learned sample weights and
infinite samples, the algorithms could identify the minimal
stable variable set, which is the minimal set of variables
that could provide good predictions under covariate shift.
We further provide asymptotic properties and error analysis

when these two conditions are not satisfied. Empirical re-
sults also demonstrate the superiority of these methods in
selecting target variables.

Relationships between the minimal stable variable set
and the Markov boundary The minimal stable variable
set has close relationships with the Markov boundary, which
we will further demonstrate in Appendix A. Here we provide
a brief discussion.

Firstly, we can easily verify that the minimal stable variable
set is a subset of the Markov boundary (Theorem A.2 and Ex-
ample A.1) by definition (Definition 3.4 and Definition A.2).
However, not all variables in the Markov boundary are nec-
essary for the covariate-shift generalization problem with
common loss functions while the minimal stable variable
set could provide the minimal set of variables (comparing
Theorem 3.1 and Theorem A.3).

In addition, traditional Markov boundary discovery al-
gorithms mainly adopt the conditional independence test
(Fukumizu et al., 2007; Sejdinovic et al., 2013; Strobl et al.,
2019), which is a particularly challenging hypothesis to test
for (Shah & Peters, 2020) though. As a result, independence-
driven IW algorithms would hopefully provide a proper ap-
proximation of the Markov boundary, which could be of
independent interest.

Applicable scenarios and limitations We should notice
that the definition of the minimal stable variable set is
applicable only when E[Y |X] is well defined. This im-
plies that the definitions could be applied to typical regres-
sion and binary classification settings, but they may not
be applicable in multi-class classification settings. In ad-
dition, under regression settings, E[Y |X] will not be the
solution in other forms of losses. For example, consider
the Minkowski loss (Bishop, 2006, Section 1.5.5) given as
Lq = E[|Y − f(X)|q]. It reduces to the expected squared
loss when q = 2. The minimum of Lq is given by the con-
ditional mean E[Y |X] for q = 2, which is our case. But
the solution becomes the conditional median for q = 1 and
the conditional mode for q → 0. Nevertheless, we highlight
that the squared loss under regression settings and the cross-
entropy loss under binary classification settings are general
enough for most potential applications. We leave the theo-
retical analysis and applications of independence-driven IW
algorithms on multi-class classification settings as future
work.
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A. Relationships between the Minimal Stable Variable Set and the Markov Boundary
A.1. Main Results

Generally speaking, the minimal stable variable set is closely related to the Markov boundary and independence-driven IW
algorithms would hopefully provide a proper approximation of the Markov boundary. In addition, if setting covariate-shift
generalization as the goal, the Markov boundary is not necessary while the minimal stable variable set is sufficient and
optimal. Details are provided as follows.

Definition and basic property of the Markov blankets and boundary According to (Statnikov et al., 2013; Pearl, 2014),
Markov blankets and Markov boundary are defined as follows.

Definition A.1 (Markov blanket). A Markov blanket of Y under distribution P is any subset S of X for which

Y ⊥ (X\S) | S. (18)

The set of all Markov blankets for Y is denoted as BLP (Y ). In addition, we use BL(Y ) to denote the set under the training
distribution P tr for simplicity, i.e., BL(Y ) ≜ BLP tr(Y ).

Definition A.2 (Markov boundary). A Markov Boundary of Y is a minimal Markov blanket of Y , i.e., none of its proper
subsets satisfy Equation (18).

The existence of Markov blankets and Markov boundaries are given by the following proposition.

Proposition A.1. Under Assumption 2.1, there exists a unique Markov boundary of Y , which can be denoted as BD(Y ).
Furthermore, with the unique Markov boundary BD(Y ), the set of all Markov blankets of Y , BL(Y ), can be expressed as

BL(Y ) = {S ⊆ X | BD(Y ) ⊆ S}. (19)

Comparing the minimal stable variable set and the Markov boundary Besides the similarities in mathematical forms,
there exist some connections between the stable variable set and the Markov blanket, and between the minimal stable
variable set and the Markov boundary.

Theorem A.2. Under Assumption 2.1, a stable variable set is also a Markov blanket and the minimal stable variable set is
a subset of the Markov boundary, i.e.,

BL(Y ) ⊆ Stable(Y ), MinStable(Y ) ⊆ BD(Y ). (20)

The above theorem shows the inclusion relations between those two concepts, and the following example further illustrates a
proper inclusion case.

Example A.1 (from Strobl & Visweswaran (2016)). Let X = (X1, X2) and the data-generating process is given as follows.

X1, X2 ∼ N(0, 1), Y = f(X1) +N
(
0, g(X2)

2
)
, (21)

where f(·) and g(·) are fixed functions. Then

{X1} = MinStable(Y ) ⊊ BD(Y ) = {X1, X2},
{{X1, X2}} = BL(Y ) ⊊ Stable(Y ) = {{X1}, {X1, X2}}.

(22)

The following proposition provides the property of the Markov boundary on covariate-shift generalization.

Theorem A.3. Under Assumption 1.1 and Assumption 2.1, suppose M is a performance metric that is maximized only
when P te(Y |X) is estimated accurately and L is a learning algorithm that can approximate any conditional probability
distribution. Suppose S ⊆ X is a subset of variables, then

1. S is an optimal predictor of Y under the test distribution P te if and only if it is a Markov blanket of Y under the
training distribution P tr, and

2. S is a minimal and optimal predictor of Y under the test distribution P te if and only if it is a Markov boundary of Y
under the training distribution P tr.
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Remark A.1. The main difference between Theorem 3.1 and Theorem A.3 is the requirement on the performance metric
M. The Markov boundary is the minimal and optimal predictor if M is chosen as maximizing P te(Y |X). However, for
regression problems with the mean squared loss and binary classification problems with the cross-entropy loss, EP te [Y |X]
is optimal in the test distribution P te.

As a result, compared with the Markov boundary, the minimal stable variable set can bring two advantages.

1. The conditional independence test is the crux to the precise discovery of the Markov boundary. Shah & Peters (2020)
have shown that conditional independence is a particularly challenging hypothesis to test for, which highlights the
challenges of discovering the Markov boundary in real-world tasks. However, discovering the minimal stable variable
set is relatively easier and proved possible in this paper.

2. In several common machine learning tasks, including regression and binary classification, not all variables in the
Markov boundary are necessary. As shown in Example A.1, if a variable only affects the variance of the response
variable Y , it would not be useful to predict Y when adopting mean squared loss. The minimal stable variable
set is proved to be a subset of the Markov boundary and it excludes useless variables in the Markov boundary for
covariate-shift generalization.

In addition, since the precise discovery of the Markov boundary is challenging, independence-driven IW algorithms would
hopefully provide a proper approximation of the Markov boundary, which could be of independent interest.

A.2. Related Works on Causal Discovery and Markov Boundary

Causal literature can be categorized into two frameworks, namely the potential outcome (Rosenbaum & Rubin, 1983;
Holland, 1986; Rubin, 2005; Imbens & Rubin, 2015; Johansson et al., 2016; Zou et al., 2019; 2020) and the structural
causal model framework (Pearl, 2014). The definition of the minimal stable variable set in this work is closely related to the
Markov boundary, which falls into the structural causal model framework. Traditional causal discovery literature aims to
discover the causal relationship between all variables. Typical methods include constraint-based (Spirtes et al., 2000; 2013),
scored-based (Chickering, 2002; Huang et al., 2018), and learning-based (Zheng et al., 2018; 2020; He et al., 2021) methods.

Markov blankets and Markov boundary (Pearl, 2014) are the cores of local causal discovery. Under the intersection
assumption (Pearl, 2014), the Markov boundary is proved unique and the discovery algorithms include (Tsamardinos &
Aliferis, 2003; Tsamardinos et al., 2003a;b; Mani & Cooper, 2004; Aliferis et al., 2010a;b; Pena et al., 2007). Moreover, Liu
et al. (2010a;b); Statnikov et al. (2013) studied the setting when multiple Markov boundaries exist. In this paper, we assume
that the probabilities are strictly positive, which is a stronger assumption than the intersection assumption (Pearl, 2014) but
is also common in reality (Strobl & Visweswaran, 2016). With this assumption, we can guarantee the uniqueness of the
Markov boundary and the minimal stable variable set proposed in this paper.

Traditional discovery algorithms mainly use the conditional independence test (Fukumizu et al., 2007; Sejdinovic et al.,
2013; Strobl et al., 2019). However, Shah & Peters (2020) proved that conditional independence is indeed a particularly
difficult hypothesis to test for and there is no free lunch in conditional independence testing, which limits the application of
these methods in reality. (Strobl & Visweswaran, 2016) propose a regression-based method to discover Markov boundaries,
which is mostly closed to us. They proved that their method could find a subset of the Markov boundary but did not discuss
the detailed properties of the subset. Here we further demonstrate that under ideal conditions, independence-driven IW
algorithms could identify the exact subset of variables, i.e., the minimal stable variable set.

B. More Experimental Details
Implementation details We use scikit-learn1 for mutual information based (MI), correlation based (Correlation), gradient
boosting (GB), random forest (RF), and LASSO, XGBoost package2 for XGBoost (XGB), and original implementation3 of
STG. The hyperparameter search ranges for these baselines are shown in Table 1.

For independence-driven IW algorithms, i.e., DWR, and SRDO, the feature scores are calculated as the absolute values
of WLS coefficients. To be specific, for the DWR algorithm, following Kuang et al. (2020a), we learn sample weights

1https://scikit-learn.org
2https://xgboost.readthedocs.io/en/stable/
3https://github.com/runopti/stg

https://scikit-learn.org
https://xgboost.readthedocs.io/en/stable/
https://github.com/runopti/stg
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w = {wi}ni=1 by

w = argmin
w∈Rn

∑
1≤i,j≤d,i̸=j

(
C̃ov(Xi, Xj ;w)

)2
+ λ1 ·

(
n∑

i=1

wi − 1

)2

+ λ2 ·
n∑

i=1

w2
i . (23)

Here C̃ov(Xi, Xj ;w) denotes the empirical covariance of Xi and Xj with sample weights w. Equation (23) is optimized
by the Adam algorithm (Kingma & Ba, 2014) with a learning rate of 0.001. For the SRDO algorithm, we implement it
according to the official code4. In detail, an MLP classifier (two hidden layers with sizes 30 and 10, respectively) is utilized
to discriminate between the training distribution P tr(X) and the weighted distribution P tr(X1)P

tr(X2) . . . P
tr(Xd). We

adopt the binary cross-entropy loss and the Adam algorithm with a learning rate of 0.001. To further restrict the range of
learned sample weights, we clip the weights to [1/γ, γ]. The search ranges of the hyperparameters are shown in Table 1.

We run each model 5 times on various training datasets. In each run, we train feature selection models and get the top 5
features selected by the algorithms. We then train an MLP regressor on these features to predict Y . The MLP adopted here
has two hidden layers with sizes 5 and 5, respectively. The optimizer is the Adam algorithm with a learning rate of 0.001.
All MLPs in our paper adopt the ReLU activation function.

Table 1. Hyperparameter search ranges of the methods.

Method Hyperparameters

Mutual information based (MI) n neighbors ∈ {3, 5, 10, 20}
Correlation based (Correlation) N/A

Gradient boosting (GB) n estimators ∈ {50, 100, 200}, max depth ∈ {6, 8, 10}
XGBoost (XGB) n estimators ∈ {50, 100, 200}, max depth ∈ {6, 8, 10}

Random forests (RF) n estimators ∈ {50, 100, 200}, max depth ∈ {6, 8, 10}
OLS N/A

LASSO α ∈ {0.0003, 0.001, 0.01, 0.1}
STG λ ∈ {0.001, 0.01, 0.1, 1.0, 10.0}
DWR λ1 ∈ {0.02, 0.05, 0.1}, λ2 ∈ {0.02, 0.05, 0.1}
SRDO γ ∈ {5, 10, 20}
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(b) rtr = 2.0
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(c) rtr = 3.0

Figure 3. The covariate-shift generalization metrics (RMSE average and standard deviation) w.r.t. the number of selected features. Fix
rtr = 1.5, 2.0, 3.0 and the feature ranking lists are provided by SRDO. The minimal stable variable set (5 features) achieves the optimal
performance.

Table 2. Feature rankings in Figure 2 and Figure 3.

rtrain YMLP Ypoly

1.5 S3, S5, S2, S1, S4, V5, V4, V2, V1, V3 S3, S2, S5, S1, S4, V4, V3, V1, V5, V2

2.0 S3, S5, S2, S1, S4, V5, V4, V3, V2, V1 S3, S2, S5, S1, S4, V4, V3, V1, V2, V5

2.5 S3, S2, S5, S1, S4, V5, V4, V2, V3, V1 S3, S2, S5, S1, S4, V4, V5, V2, V3, V1

3.0 S3, S5, S2, S1, S4, V4, V5, V3, V1, V2 S3, S2, S5, S1, S4, V5, V4, V2, V1, V3

4https://github.com/Silver-Shen/Stable_Linear_Model_Learning

https://github.com/Silver-Shen/Stable_Linear_Model_Learning
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The optimality property of the minimal stable variable set We adopt the SRDO method to generate feature rankings in
both the YMLP (We only sample one MLP in this experiment.) and Ypoly settings. The feature rankings in different settings
are shown in Table 2.

We vary rtr to test the covariate-shift generalization metrics w.r.t. the number of selected features. The results are shown in
Figure 3. We observe a similar phenomenon as that shown in Figure 2. These empirical results validate the advantage of the
minimal stable variable set on covariate-shift generalization.

C. Omitted Proofs
C.1. Proof of Theorem 3.1

Lemma C.1. Under Assumption 2.1, suppose M is a performance metric that is maximized only when EP tr [Y |X] is
estimated accurately and L is a learning algorithm that can approximate any conditional expectation. Suppose S ⊆ X is a
subset of variables, then

1. S is an optimal predictor of Y if and only if it is a stable variable set of Y under distribution P tr, and
2. S is a minimal and optimal predictor of Y if and only if it is a minimal stable variable set of Y under distribution P tr.

Proof of Lemma C.1. We omit the subscript of EP tr [·|·] for simplicity.

Consider the first part. On the one hand, if S is a stable variable set of Y , then E[Y |X] = E[Y |S] by definition. Hence S is
an optimal predictor because E[Y |X] = E[Y |S] can be approximated perfectly by L and M will be maximized. On the
other hand, assume S is an optimal predictor but not a stable variable set, which implies that E[Y |S] ̸= E[Y |X]. X is a
stable variable set by definition. Hence, By first part of the proof, X is an optimal predictor of Y , similar to S. Therefore,
the following should hold: E[Y |X] = E[Y |S], which contradicts the assumption that S is not a stable variable set. As a
result, S is a stable variable set of Y .

Consider the second part. On the one hand, if S is a minimal stable variable set of Y , then it is also a stable variable set of
Y . So S is an optimal predictor. Moreover, by the definition of the minimal stable variable set, no proper subset of S is
a stable variable set of Y . Therefore, no proper subset of S satisfies the definition of an optimal predictor. Thus, S is a
minimal and optimal predictor of Y . On the other hand, assume S is a minimal and optimal predictor of Y . Then, S is
also an optimal predictor of Y, which implies that S is a stable variable set of Y . By the definition of minimality, no proper
subset of S is a minimal and optimal predictor. Hence, no proper subset of S is a stable variable set of Y . As a result, S is a
minimal stable variable of Y .

Now we prove the original theorem.

Proof of Theorem 3.1. It is obvious that EP tr [Y |X] = EP te [Y |X] from Assumption 1.1. As a result, the original theorem is
proved according to Lemma C.1.

C.2. Proof of Theorem 3.2

The proof is based on the following intersection property.

Lemma C.2. Under Assumption 2.1, if S1,S2 ∈ Stable(Y ), then S1 ∩ S2 ∈ Stable(Y ).

Proof of Lemma C.2. Let S = S1 ∩ S2, S̄1 = S1\S, S̄2 = S2\S, and X̄ = X\(S1 ∪ S2). Then X = (S, S̄1, S̄2, X̄).

By definition, ∀s ∈ S, s̄1 ∈ S̄1, s̄2 ∈ S̄2, x̄ ∈ X̄ , E[Y |S = s, S̄1 = s̄1] = E[Y |S = s, S̄2 = s̄2] = E[Y |S = s, S̄1 =
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s̄1, S̄2 = s̄2, X̄ = x̄]. Let x = (s, s̄1, s̄2, x̄). Under Assumption 2.1,

E[Y |S = s]

=

∫
Y
yP tr(Y = y|S = s)dy

=

∫
Y

∫
S̄1

yP tr(Y = y|S = s, S̄1 = s̄1)P
tr(S̄1 = s̄1|S = s)ds̄1dy

=

∫
S̄1

E[Y |S = s, S̄1 = s̄1]P
tr(S̄1 = s̄1|S = s)ds̄1

=E[Y |S = s, S̄2 = s̄2]

∫
S̄1

P tr(S̄1 = s̄1|S = s)ds̄1

=E[Y |S = s, S̄2 = s̄2] = E[Y |S = s, S̄1 = s̄1, S̄2 = s̄2, X̄ = x̄] = E[Y |X = x].

As a result, S ∈ Stable(Y ).

Now we prove the original theorem.

Proof of Theorem 3.2. We first prove the uniqueness of the minimal stable variable set. Suppose there are two minimal stable
variable sets w.r.t. Y , denoted as MinStable1(Y ) and MinStable2(Y ). By definition, MinStable1(Y ),MinStable2(Y ) ∈
Stable(Y ). Under Assumption 2.1, according to Lemma C.2, MinStable1(Y ) ∩MinStable2(Y ) ∈ Stable(Y ). Because
MinStable1(Y ) has no proper subset that is in Stable(Y ), we have MinStable1(Y )∩MinStable2(Y ) = MinStable1(Y ).
Similarly, MinStable1(Y ) ∩MinStable2(Y ) = MinStable2(Y ), which means MinStable1(Y ) = MinStable2(Y ).

Next, we prove the exact form of the stable variable sets. Let

Ω = {S ⊆ X | MinStable(Y ) ⊆ S}.

On the one hand, ∀S ∈ Stable(Y ), according to Lemma C.2, S ∩MinStable(Y ) ∈ Stable(Y ). Because of the minimality
of MinStable(Y ), |S ∩ MinStable(Y )| ≥ |MinStable(Y )|. As a result, MinStable(Y ) ⊆ S and S ∈ Ω. Hence
Stable(Y ) ⊆ Ω.

On the other hand, ∀S ∈ Ω, let D = MinStable(Y ), W = S\D, and X̄ = X\S. Then ∀d ∈ D,w ∈ W , s = (d,w),
we can get

E[Y |S = s] =

∫
Y
yP tr(Y = y|D = d,W = w)dy

=

∫
Y

∫
X̄
yP tr(Y = y|D = d,W = w, X̄ = x̄)P tr(X̄ = x̄|D = d,W = w)dx̄dy

=

∫
X̄
P tr(X̄ = x̄|D = d,W = w)E[Y |D = d,W = w, X̄ = x̄]dx̄

=

∫
X̄
P tr(X̄ = x̄|D = d,W = w)E[Y |D = d]dx̄

=E[Y |D = d]

∫
X̄
P tr(X̄ = x̄|D = d,W = w)dx̄

=E[Y |D = d] = E[Y |X = x].

As a result, S satisfies the requirement of stable variable sets and S ∈ Stable(Y ). Hence Ω ⊆ Stable(Y ).

To conclude, Stable(Y ) ⊆ Ω and Ω ⊆ Stable(Y ), which results in Ω = Stable(Y ).

C.3. Proof of Theorem 5.1

We need the following lemma first.

Lemma C.3. Let w ∈ W be a weighting function, and P̃w be the corresponding weighted distribution. Then P̃w(Y |X) =
P tr(Y |X).
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Proof of Lemma C.3. ∀x ∈ X , y ∈ Y ,

P̃w(Y = y|X = x) =
P̃w(Y = y,X = x)

P̃w(X = x)
=

P tr(Y = y,X = x)w(x)∫
y′ P̃w(X, Y = y′)dy′

=
P tr(Y = y,X = x)w(x)

w(x)
∫
y′ P tr(X = x, Y = y′)dy′

=
P tr(Y = y,X = x)

P tr(X = x)
= P tr(Y = y|X = x).

Now we prove the original theorem.

Proof of Theorem 5.1. Let X−i denote variables other than Xi and X−i denote the support of X−i.

Given Xi ̸∈ MinStable(Y ), there exists a function f : X−i → Y such that EP tr(X,Y )[Y |X] = f(X−i). According
to Lemma C.3, EP̃w(X,Y )[Y |X] = EP tr(X,Y )[Y |X] = f(X−i). As a result, because EP tr(X)

[
w(X)∥X∥22

]
< ∞ and

EP tr(X,Y )

[
w(X)Y 2

]
< ∞, the covariance between Xi and Y under P̃w is

CovP̃w
[XiY ] =EP̃w(Xi,Y )[XiY ]− EP̃w(Xi)

[Xi]EP̃w(Y )[Y ]

=EP̃w(X)

[
XiEP̃w(X,Y )[Y |X]

]
− EP̃w(Xi)

[Xi]EP̃w(X)

[
EP̃w(X,Y )[Y |X]

]
=EP̃w(X)[Xif(X−i)]− EP̃w(Xi)

[Xi]EP̃w(X−i)
[f (X−i)] = 0.

The last equation is due to the independence between Xi and X−i in the weighted distribution P̃w. As a result, the
coefficient βw(Xi) is

βw(Xi) = VarP̃w
(Xi)

−1 CovP̃w
[XiY ] = 0.

C.4. Proof of Theorem 5.2

Proof. Let X−i denote the rest variable except Xi and P tr
−i denote the marginal distribution of P tr on X−i. Because

Xi ∈ MinStable(Y ), EP tr(X,Y )[Y |X] depends on Xi. Hence, there exists a probability density function P̃−i with the same
support of P tr

−i that satisfies

1. X−i are mutually independent under P̃−i, and
2. g(Xi) ≜ EP̃−i(X−i)

[EP tr(X,Y ) [Y |X−i, Xi]] depends on Xi.

Moreover, there exist a probability density function P̃i with the same support of P tr
i that satisfies g(Xi) is linearly correlated

with Xi under P̃i.

Let P̃ be the joint distribution on (X, Y ) and P̃ (X−i, Xi, Y ) = P̃−i(X−i)P̃i(Xi)P
tr(Y |X). Hence,

EP̃ (Xi,Y )[Y |Xi] = EP̃−i(X−i)
[EP tr(X,Y ) [Y |X−i, Xi]] = g(Xi).

Let w(X) = P̃ (X)/P tr(X). Because EP tr(X,Y )[Y |X] depends on Xi, VarP tr(Xi) > 0. Hence, VarP̃ (Xi) > 0. As a
result, the coefficient on Xi is

βw(Xi)

=
1

VarP̃i
(Xi)

(
EP tr(X,Y )[w(X)XiY ]− EP tr(X)[w(X)Xi]EP tr(X,Y )[w(X)Y ]

)
=

1

VarP̃i
(Xi)

(
EP̃ (Xi,Y )[XiY ]− EP̃ (Xi)

[Xi]EP̃ (Y )[Y ]
)

=
1

VarP̃i
(Xi)

(
EP̃ (Xi)

[
XiEP̃ (Xi,Y )[Y |Xi]

]
− EP̃i(Xi)

[Xi]EP̃i(Xi)

[
EP̃ (Xi,Y )[Y |Xi]

])
=

1

VarP̃i
(Xi)

(
EP̃i(Xi)

[Xig(Xi)]− EP̃i(Xi)
[Xi]EP̃i(Xi)

[g(Xi)]
)
̸= 0.
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C.5. Proof of Theorem 5.3

We observe that ∥∥∥β̂ŵ − βw

∥∥∥2
2
≤
(∥∥∥β̂ŵ − βŵ

∥∥∥
2
+ ∥βŵ − βw∥2

)2
≤ 2

(∥∥∥β̂ŵ − βŵ

∥∥∥2
2
+ ∥βŵ − βw∥

2
2

)
= 2

(∥∥∥Σ−1/2
ŵ Σ

1/2
ŵ

(
β̂ŵ − βŵ

)∥∥∥2
2
+ ∥βŵ − βw∥

2
2

)
≤ 2

(∥∥∥Σ−1/2
ŵ

∥∥∥2
2

∥∥∥Σ1/2
ŵ

(
β̂ŵ − βŵ

)∥∥∥2
2
+ ∥βŵ − βw∥

2
2

)
= 2

(∥∥Σ−1
ŵ

∥∥
2

∥∥∥β̂ŵ − βŵ

∥∥∥2
Σŵ

+ ∥βŵ − βw∥
2
2

)
We analyze the upper bounds of the terms in the above equation and the first part of the claim follows from Proposition C.4,
Proposition C.5, and Proposition C.6. Furthermore, the second part of the claim is then straightforward from Theorem 5.1
and Theorem 5.2.

C.5.1. ERROR CAUSED BY WLS FROM FINITE SAMPLES

Proposition C.4. Suppose Assumption 5.4 (with parameter Λw) and Assumption 5.5 (with parameter ϵ) hold. Then∥∥Σ−1
ŵ

∥∥
2
≤ 1/

(
Λw − ϵ

√
E [∥X∥42]

)
.

Proof. Let ∆w(X) ≜ ŵ(X)− w(X) and ∆Σ = E
[
∆w(X)XXT

]
.

∥∆Σ∥2

= sup
∥c∥2=1

∥∆Σ · c∥2 = sup
∥c∥2=1

∥∥∥E [∆w(X)XXT c
]∥∥∥

2

≤ sup
∥c∥2=1

E
[
∆w(X)∥XXT c∥2

]
(triangle inequality of norms)

≤ sup
∥c∥2=1

√
E [∆w(X)2]E

[
∥XXT c∥22

]
(Cauchy–Schwarz inequality)

=ϵ sup
∥c∥2=1

√
E
[
∥XXT c∥22

]
(E
[
∆w(X)2

]
= ϵ)

≤ϵ

√√√√E

[
sup

∥c∥2=1

∥XXT c∥22

]
(supE[·] ≤ E[sup ·])

=ϵ
√

E [∥X∥42]

As a result, according to Weyl’s theorem (Horn & Johnson, 2012), Assumption 5.4, and Assumption 5.5,

λmin (Σŵ) = λmin (Σw +∆Σ) ≥ Λw − ∥∆Σ∥2 ≥ Λw − ϵ
√

E [∥X∥42] > 0.

Therefore, ∥∥Σ−1
ŵ

∥∥
2
=

1

λmin (Σŵ)
≤ 1

Λw − ϵ
√
E [∥X∥42]

Proposition C.5. Suppose Assumption 5.1 (with parameter B), Assumption 5.2 (with parameter Cw), Assumption 5.3
(with parameter σ), Assumption 5.4 (with parameter Λw), Assumption 5.5 (with parameter ϵ), and Assumption 5.6 (with
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parameter δŵ) hold. Then there exist constants ρŵ, bŵ, σŵ > 0 such that weighting function ŵ satisfies Condition D.1 (with
parameter ρŵ), Condition D.2 (with parameter bŵ), and Condition D.3 (with parameter σŵ) and

ρŵ ≤
√
δŵB√

d
(
Λw − ϵ

√
E [∥X∥42]

) ,
bŵ ≤ δŵCwB√

d
(
Λw − ϵ

√
E [∥X∥42]

) ,
σŵ ≤

√
δŵσ.

Furthermore, pick any t > max{0, 2.6− log d}, let

n ≥ 6δŵB
2(log d+ t)

Λw − ϵ
√
E [∥X∥42]

.

Then with probability at least 1− 3e−t,

∥∥∥β̂ŵ − βŵ

∥∥∥2
Σŵ

≤ 2δŵσ
2(d+ 2

√
td+ 2t)

n
+

4δŵB
2E
[
ŵ(X)approxw(X)2

]
n
(
Λw − ϵ

√
E [∥X∥42]

) (
1 +

√
8t
)2

+ o(1/n)

≤ 2δŵσ
2(d+ 2

√
td+ 2t)

n
+

4δŵB
2C2

w(1 + ϵ)

n
(
Λw − ϵ

√
E [∥X∥42]

) (1 +√
8t
)2

+ o(1/n).

Proof. Based on Assumption 5.1, Assumption 5.4, Assumption 5.5, and Assumption 5.6, according to Proposition C.4,
almost surely, √

ŵ(X)
∥∥∥Σ−1/2

ŵ X
∥∥∥
2√

d
≤

√
δŵ

∥∥∥Σ−1/2
ŵ

∥∥∥
2
∥X∥2

√
d

≤
√
δŵB√

d
(
Λw − ϵ

√
E [∥X∥42]

)
Based on Assumption 5.1, Assumption 5.2, Assumption 5.4, Assumption 5.5, and Assumption 5.6, according to Proposi-
tion C.4, almost surely,

ŵ(X)
∥∥∥Σ−1/2

ŵ approxw(X)X
∥∥∥
2√

d
≤

δŵCwB
∥∥∥Σ−1/2

ŵ

∥∥∥
√
d

≤ δŵCwB√
d
(
Λw − ϵ

√
E [∥X∥42]

)
Based on Assumption 5.3 and Assumption 5.6, almost surely,

∀η ∈ R, E
[
exp

(
η
√
ŵ(X)noise(X)

)∣∣∣X] ≤ exp
(
η2ŵ(X)σ2/2

)
≤ exp

(
η2
(√

δŵσ
)2

/2

)
.

Because
E
[
ŵ(X)approxw(X)2

]
≤ C2

wE [|ŵ(X)|] ≤ C2
w (E[w(X)] + E[|w(X)− ŵ(X)|])

≤ C2
w

(
1 +

√
E
[
(w(X)− ŵ(X))

2
])

= C2
w(1 + ϵ).

Now the claim follows from Theorem D.1. Theorem D.1 provides the asymptotic property of WLS and we analyze it in
detail in Section D.
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C.5.2. ERROR CAUSED BY IMPERFECTLY LEARNED WEIGHTS

Proposition C.6. Suppose Assumption 5.4 (with parameter Λw) and Assumption 5.5 (with parameter ϵ) hold. Then

∥βŵ − βw∥2 ≤ ϵ∥Σw∥2∥βw∥2
Λw − ϵ

√
E [∥X∥42]

(√
E [∥X∥42]
∥Σw∥2

+

√
E [∥XY ∥22]

∥E[w(X)XY ]∥2

)

Proof. Let ∆w(X) ≜ ŵ(X)− w(X) and ∆b ≜ E [∆w(X)XY ]. We can prove that

∥∆b∥2 = ∥E [∆w(X)XY ] ∥2
≤ E [∆w(X)∥XY ∥2] (triangle inequality of norms)

≤
√
E[∆w(X)2]E [∥XY ∥22] (Cauchy–Schwarz inequality)

= ϵ
√

E [∥XY ∥22] (E
[
∆w(X)2

]
= ϵ)

In addition, Σwβw = E[w(X)XY ] and (Σw +∆Σ)βŵ = E[w(X)XY ] + ∆b. As a result, according to Lemma E.1 and
Proposition C.4,

∥βŵ − βw∥2
∥βw∥2

≤ ∥Σw∥2∥Σ−1
w ∥2

1− ∥Σ−1
w ∥2∥∆Σ∥2

(
∥∆Σ∥2
∥Σw∥2

+
∥∆b∥2

∥E[w(X)XY ]∥2

)
≤ ϵ∥Σw∥2

Λw − ϵ
√
E [∥X∥42]

(√
E [∥X∥42]
∥Σw∥2

+

√
E [∥XY ∥22]

∥E[w(X)XY ]∥2

)

C.6. Proof of Proposition A.1

The proof is based on the following lemma.

Lemma C.7 (Intersection Property). Under Assumption 2.1, let V 1, V 2, and S be subset of X . Then,

Y ⊥ V 1 | (S ∪ V 2) & Y ⊥ V 2 | (S ∪ V 1) =⇒ Y ⊥ (V 1 ∪ V 2) | S.

The proof of Lemma C.7 can be found in (Pearl, 2014, Section 3.1.2). Now we prove the original theorem.

Proof of Proposition A.1. According to Statnikov et al. (2013), if the distribution P tr satisfies the intersection property, then
there exists a unique Markov boundary of Y .

Next we prove the exact form of the Markov blankets. On the one hand, from Lemma C.7, we can know that under
Assumption 2.1, if S1 and S2 are Markov blankets of Y , so does S1 ∩ S2. As a result, for any S ∈ BL(Y ), we have
S ∩ BD(Y ) ∈ BL(Y ). Because BD(Y ) is the minimal element in BL(Y ), we have |S ∩ BD(Y )| ≥ |BD(Y )|. Hence,
BD(Y ) ⊆ S.

On the other hand, for any S that satisfies BD(Y ) ⊆ S ⊆ X . Let V = X\S and W = S\BD(Y ). Then

P tr(Y,V |S) =P tr(Y,V ,BD(Y ),W )

P tr(S)
=

P tr(Y,V ,W |BD(Y ))P tr(BD(Y ))

P tr(S)

=
P tr(Y |BD(Y ))P tr(V ,W |BD(Y ))P tr(BD(Y ))

P tr(S)

=
P tr(Y |BD(Y ))P tr(V ,W ,BD(Y ))

P tr(S)

=
P tr(Y |BD(Y ))P tr(V ,S)

P tr(S)
= P tr(Y |S)P tr(V |S).

As a result, Y ⊥ V | S and S is a Markov blanket of Y . To conclude, BL(Y ) = {S ⊆ X | BD(Y ) ⊆ S}.
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C.7. Proof of Theorem A.2

Proof. ∀S ∈ BL(Y ), Y ⊥ (X\S) | S. Hence E[Y |X] = E[Y |S] and S ∈ Stable(Y ), which implies BL(Y ) ⊆
Stable(Y ).

Therefore, ∀S ∈ BL(Y ), S ∈ Stable(Y ). According to Theorem 3.2, MinStable(Y ) ⊆ S. In particular, let S =
BD(Y ) ∈ BL(Y ) and we have MinStable(Y ) ⊆ BD(Y ).

C.8. Proof of Theorem A.3

The proof is based on the following proposition.

Proposition C.8 (Statnikov et al. (2013); Strobl & Visweswaran (2016)). Suppose M is a performance metric that is
maximized only when P (Y |X) is estimated accurately and L is a learning algorithm that can approximate any conditional
probability distribution. Suppose S ⊆ X is a subset of variables, then

1. S is a Markov blanket of Y if and only if it is an optimal predictor of Y , and
2. S is a Markov boundary of Y if and only if it is a minimal and optimal predictor of Y .

Now we can prove the original theorem.

Proof of Theorem A.3. We use BLtest and BDtest to denote the Markov blankets and Markov boundary in the test distribu-
tion. We first prove that BLtest(Y ) = BL(Y ) and BDtest(Y ) = BD(Y ).

Suppose S is a Markov blanket under the training distribution P tr. Let V = X\S. Under Assumption 1.1 and Assump-
tion 2.1, ∀v ∈ V, s ∈ S, y ∈ Y ,

P te(Y = y|V = v,S = s) = P tr(Y = y|V = v,S = s) = P tr(Y = y|S = s).

Hence,
P te(Y = y|S = s)

=

∫
V
P te(Y = y|V = v′,S = s)P te(V = v′|S = s)dv′

=

∫
V
P tr(Y = y|S = s)P te(V = v′|S = s)dv′

=P tr(Y = y|S = s) = P te(Y = y|V = v,S = s).

As a result, S is a Markov blanket under P te, which implies BL(Y ) ⊆ BLtest(Y ). With similar calculations, we can
show that BLtest(Y ) ⊆ BL(Y ), which finally shows that BLtest(Y ) = BL(Y ). Because Markov boundary is the minimal
element of the set of Markov blankets, we can get that BDtest(Y ) = BD(Y ).

Now the claim follows from Proposition C.8.

D. Asymptotic Oroperty of WLS
D.1. Main Result

Condition D.1 (Bounded statistical leverage). For a weighting function w ∈ W , there exists a finite constant ρw ≥ 1, such
that, in the training distribution P tr, almost surely,√

w(X)
∥∥∥Σ−1/2

w X
∥∥∥
2√

d
≤ ρw.

Condition D.2 (Bounded approximation error). For a weighting function w ∈ W , there exists a finite constant bw ≥ 0 such
that, in the training distribution P tr, almost surely,

w(X)
∥∥∥Σ−1/2

w approxw(X)X
∥∥∥
2√

d
≤ bw.
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Condition D.3 (Noise). For a weighting function w ∈ W , there exists a finite constant σw ≥ 0 such that, in the training
distribution P tr, almost surely,

∀η ∈ R, E
[
exp

(
η
√
w(X)noise(X)

)∣∣∣X] ≤ exp

(
η2σ2

w

2

)
.

Theorem D.1. For a weighting function w ∈ W . Pick any t > max{0, 2.6− log d}. Suppose w satisfies Condition D.1
(with parameter ρw), Condition D.2 (with parameter bw), and Condition D.3 (with parameter σw) and that

n ≥ 6ρ2wd(log d+ t).

With probability at least 1− 3e−t,

∥∥∥β̂w − βw

∥∥∥2
Σw

≤
2σ2

w

(
d+ 2

√
td+ 2t

)
n

+
4ρ2wd · E[w(X)approxw(X)2]

n
(1 +

√
8t)2 + o(1/n).

Remark D.1. The constant bw only appears in o(1/n) terms.

D.2. Proof

The main scope of the proof follows Hsu et al. (2014), which provides the asymptotic properties of OLS and ridge regression.
We further adapt it to the WLS here. We use E[·] to denote EP tr [·] throughout the section.

Let
β̄w ≜ Σ̂−1

w Ê[w(X)XE[Y |X]].

Then ∥∥∥β̂w − βw

∥∥∥2
Σw

≤
(∥∥∥β̄w − β̂w

∥∥∥
Σw

+
∥∥β̄w − βw

∥∥
Σw

)2

≤ 2

(∥∥∥β̄w − β̂w

∥∥∥2
Σw

+
∥∥β̄w − βw

∥∥2
Σw

)
We analyze the two terms

∥∥∥β̄w − β̂w

∥∥∥2
Σw

and
∥∥β̄w − βw

∥∥2
Σw

separately and the result is a straightforward combination of

Proposition D.2, Proposition D.4, and Proposition D.5. We first define the following ∆.

∆ ≜ Σ−1/2
w (Σ̂w − Σw)Σ

−1/2
w ,

D.2.1. EFFECT OF ERRORS IN Σ̂w

Proposition D.2 (Spectral norm error in Σ̂w). Suppose w satisfies Condition D.1 (with parameter ρw) holds. Pick
t > max{0, 2.6− log d}. With probability at least 1− e−t,

∥∆∥2 ≤
√

4ρ2wd(log d+ t)

n
+

2ρ2wd(log d+ t)

3n
.

Proof. First, define X̃ ≜
√

w(X)Σ
−1/2
w X and let

Z ≜ X̃X̃
T − I = Σ−1/2

w

(
w(X)XXT − Σw

)
Σ−1/2

w .

So ∆ = Ê[Z]. Observe that E[Z] = 0, and

∥Z∥2 = max{λmax(Z), λmax(−Z)} ≤ max{∥X̃∥22, 1} ≤ ρ2wd.

Here the second inequality is based on Condition D.1. Moreover,

E
[
Z2
]
= E

[(
X̃X̃

T
)2]

− I = E
[
∥X̃∥22

(
X̃X̃

T
)]

− I.

As a result,
λmax

(
E
[
Z2
])

≤ λmax

(
E
[
∥X̃∥22

(
X̃X̃

T
)])

≤ ρ2wd · λmax(I) ≤ ρ2wd,

tr
(
E
[
Z2
])

≤ tr
(
E
[
∥X̃∥22

(
X̃X̃

T
)])

≤ ρ2wd · tr(I) = ρ2wd
2.

The proposition now follows from Lemma E.2.
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Proposition D.3 (Relative spectral norm error in Σ̂w (Hsu et al., 2014)). If ∥∆∥2 < 1, then∥∥∥Σ1/2
w Σ̂−1

w Σ1/2
w

∥∥∥
2
≤ 1

1− ∥∆∥2
.

Proof. Observe that,
Σ−1/2

w Σ̂wΣ
−1/2
w = Σ−1/2

w

(
Σw + Σ̂w − Σw

)
Σ−1/2

w = I +∆,

and according to the assumption ∥∆∥2 < 1 and Weyl’s theorem (Horn & Johnson, 2012), we have

λmin (I +∆) ≥ 1− ∥∆∥2 > 0.

Therefore,∥∥∥Σ1/2
w Σ̂−1

w Σ1/2
w

∥∥∥
2
= λmax

((
Σ−1/2

w Σ̂wΣ
−1/2
w

)−1
)

= λmax

(
(I +∆)

−1
)
=

1

λmin (I +∆)
≤ 1

1− ∥∆∥2
.

D.2.2. EFFECT OF APPROXIMATION ERROR

Proposition D.4. Suppose w satisfies Condition D.1 (with parameter ρw) and Condition D.2 (with parameter bw) hold.
Pick any t > 0. If ∥∆∥2 < 1, then

∥β̄w − βw∥Σw
≤ 1

1− ∥∆∥2

∥∥∥Ê[w(X)approxw(X)X]
∥∥∥
Σ−1

w

.

Moreover, with probability at least 1− e−t,

∥∥∥Ê[w(X)approxw(X)X]
∥∥∥
Σ−1

w

≤

√√√√√E
[∥∥∥Σ−1/2

w w(X)approxw(X)X
∥∥∥2
2

]
n

(1 +
√
8t) +

4bwt
√
d

3n

≤
√

ρ2wd · E[w(X)approxw(X)2]

n
(1 +

√
8t) +

4bwt
√
d

3n

Proof. By definition,

β̄w − βw = Σ̂−1
w

(
Ê[w(X)XE[Y |X]]− Σ̂wβw

)
= Σ−1/2

w

(
Σ1/2

w Σ̂−1
w Σ1/2

w

)
Σ−1/2

w

(
Ê[w(X)X(⟨βw,X⟩+ approxw(X))]− Σ̂wβw

)
= Σ−1/2

w

(
Σ1/2

w Σ̂−1
w Σ1/2

w

)
Σ−1/2

w Ê[w(X)approxw(X)X].

Therefore, with the submultiplicative property of the spectral norm,

∥β̄w − βw∥Σw
≤
∥∥∥Σ1/2

w Σ−1/2
w

∥∥∥
2

∥∥∥Σ1/2
w Σ̂−1

w Σ1/2
w

∥∥∥
2

∥∥∥Ê[w(X)approxw(X)X]
∥∥∥
Σ−1

w

≤ 1

1− ∥∆∥2

∥∥∥Ê[w(X)approxw(X)X]
∥∥∥
Σ−1

w

.

Here the last inequality is according to Proposition D.3.

Now prove the second part of the claim. Observe that

E[w(X)approxw(X)X] = E[w(X)X(E[Y |X]− ⟨βw,X⟩)]
= E [w(X)XE[Y |X]]− E[w(X)X⟨βw,X⟩]
= 0.
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Therefore,

E
[
Σ−1/2

w w(X)approxw(X)X
]
= Σ−1/2

w E[w(X)approxw(X)X] = 0.

In addition, according to Condition D.2,∥∥∥Σ−1/2
w w(X)approxw(X)X

∥∥∥
2
≤ bw

√
d.

Moreover, by Condition D.1

E
[∥∥∥Σ−1/2

w w(X)approxw(X)X
∥∥∥2
2

]
= E

[
w(X)approxw(X)2

∥∥∥Σ−1/2
w

√
w(X)X

∥∥∥2
2

]
≤ ρ2wd·E[w(X)approxw(X)2].

The claim now follows from Lemma E.3.

D.2.3. EFFECT OF NOISE

Proposition D.5. Suppose w satisfies Condition D.3 (with parameter σw) holds. Pick any t > 0. With probability at least
1− e−t, either ∥∆∥2 ≥ 1, or

∥∆∥2 < 1 and
∥∥∥β̄w − β̂w

∥∥∥2
Σw

≤ 1

1− ∥∆∥2

σ2
w

(
d+ 2

√
td+ 2t

)
n

.

Proof. Observe that∥∥∥β̄w − β̂w

∥∥∥2
Σw

≤
∥∥∥Σ1/2

w Σ̂−1/2
w

∥∥∥2
2

∥∥∥β̄w − β̂w

∥∥∥2
Σ̂w

=
∥∥∥Σ1/2

w Σ̂−1
w Σ1/2

w

∥∥∥
2

∥∥∥β̄w − β̂w

∥∥∥2
Σ̂w

.

According to Proposition D.3, if ∥∆∥2 < 1, then
∥∥∥Σ1/2

w Σ̂−1
w Σ

1/2
w

∥∥∥
2
≤ 1/(1− ∥∆∥2).

Let ξ ≜ (
√

w(x(1))noise(x(1)),
√

w(x(2))noise(x(2)), . . . ,
√
w(x(n))noise(x(n))) be the random vector and

noise(x(i)) =
(
y(i) − E[Y |X = x(i)]

)
. By the definition of β̂w and β̄w,∥∥∥β̄w − β̂w

∥∥∥2
Σ̂w

=
∥∥∥Σ̂−1/2

w Ê [w(X)X(E[Y |X]− Y )]
∥∥∥2
2
= ξT K̂ξ,

where K̂ ∈ Rn×n is a symmetric matrix whose (i, j)-th entry is

K̂i,j ≜ 1/n2

〈
Σ̂−1/2

w

√
w(x(i))x(i), Σ̂−1/2

w

√
w(x(j))x(j)

〉
.

According to the proof of Lemma 6 (Hsu et al., 2014), the nonzero eigenvalues of K̂ are the same as those of

1

n
Ê
[(

Σ̂−1/2
w

√
w(X)X

)(
Σ̂−1/2

w

√
w(X)X

)T]
=

1

n
Σ̂−1/2

w Σ̂wΣ̂
−1/2
w =

1

n
Id,

where Id is the identity matrix with dimension d. By Lemma E.4, with probability at least 1 − e−t (conditioned on
x(1),x(2), . . . ,x(n)),

ξT K̂ξ ≤ σ2
w

(
tr(K̂) + 2

√
tr(K̂2)t+ 2

∥∥∥K̂∥∥∥
2
t

)
≤

σ2
w

(
d+ 2

√
td+ 2t

)
n

.

Now the claim follows.
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E. Important lemmas

Lemma E.1 (Chandrasekaran & Ipsen (1995)). Suppose Ax = b and Âx̂ = b̂. Suppose ∥A−1∥∥A− Â∥ < 1, then

∥x− x̂∥
∥x∥

≤ ∥A∥∥A−1∥
1− ∥A−1∥∥A− Â∥

(
∥A− Â∥
∥A∥

+
∥b− b̂∥
∥b∥

)
.

Lemma E.2 (Matrix Bernstein bound (Hsu et al., 2012a)). Let A be a random matrix, and r > 0, v > 0, and k > 0 be such
that, almost surely,

E[A] = 0, λmax(A) ≤ r, λmax
(
E
[
A2
])

≤ v, tr
(
E[A2]

)
≤ vk.

If A1, A2, . . . , An are independent copies of A, then for any t > 0,

Pr

[
λmax

(
1

n

n∑
i=1

Ai

)
>

√
2vt

n
+

rt

3n

]
≤ kt

(
et − t− 1

)−1
.

If t > 2.6, then t (et − t− 1)
−1 ≤ e−t/2.

Lemma E.3 (Vector Bernstein bound (Hsu et al., 2012b)). Let x(1),x(2), . . . ,x(n) be independent random vectors such
that

n∑
i=1

E
[∥∥∥x(i)

∥∥∥2
2

]
≤ v and

∥∥∥x(i)
∥∥∥
2
≤ r

for all i = 1, 2, . . . , n, almost surely. Let s ≜ x(1) + x(2) + · · ·+ x(n). For all t > 0,

Pr
[
∥s∥2 >

√
v(1 +

√
8t) + (4/3)rt

]
≤ e−t.

Lemma E.4 (Quadratic forms of a sub-Gaussian random vector (Hsu et al., 2012b)). Let ξ be a random vector taking values
from Rn such that for some c ≥ 0,

E [exp(⟨u, ξ⟩)] ≤ exp
(
c∥u∥22/2

)
, ∀u ∈ Rn.

For all symmetric positive semidefinite matrices K ⪰ 0, and all t > 0,

Pr
[
ξTKξ > c

(
tr(K) + 2

√
tr(K2)t+ 2∥K∥2t

)]
≤ e−t.


