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Abstract
Non-parametric two-sample tests (TSTs) that
judge whether two sets of samples are drawn from
the same distribution, have been widely used in
the analysis of critical data. People tend to employ
TSTs as trusted basic tools and rarely have any
doubt about their reliability. This paper systemati-
cally uncovers the failure mode of non-parametric
TSTs through adversarial attacks and then pro-
poses corresponding defense strategies. First, we
theoretically show that an adversary can upper-
bound the distributional shift which guarantees
the attack’s invisibility. Furthermore, we theo-
retically find that the adversary can also degrade
the lower bound of a TST’s test power, which
enables us to iteratively minimize the test crite-
rion in order to search for adversarial pairs. To
enable TST-agnostic attacks, we propose an en-
semble attack (EA) framework that jointly min-
imizes the different types of test criteria. Sec-
ond, to robustify TSTs, we propose a max-min
optimization that iteratively generates adversar-
ial pairs to train the deep kernels. Extensive
experiments on both simulated and real-world
datasets validate the adversarial vulnerabilities
of non-parametric TSTs and the effectiveness of
our proposed defense. Source code is available at
https://github.com/GodXuxilie/Robust-TST.git.

1. Introduction
Non-parametric two-sample tests (TSTs) that judge whether
two sets of samples drawn from the same distribution have
been widely used to analyze critical data in physics (Baldi
et al., 2014), neurophysiology (Rasch et al., 2008), biol-
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ogy (Borgwardt et al., 2006), etc. Compared with traditional
methods (such as the t-test), non-parametric TSTs can relax
the strong parametric assumption about the distributions be-
ing studied and are effective in complex domains (Gretton
et al., 2009; 2012; Chwialkowski et al., 2015; Jitkrittum
et al., 2016; Sutherland et al., 2017; Lopez-Paz & Oquab,
2016; Cheng & Cloninger, 2019; Liu et al., 2020a; 2021).
Notably, the use of deep kernels (Liu et al., 2020a) flexi-
bly empowers the non-parametric TSTs to learn even more
complex distributions.

However, the adversarial robustness of non-parametric TSTs
is rarely studied, despite its extensive studies for deep neu-
ral networks (DNNs). Studies of DNNs’ adversarial ro-
bustness (Madry et al., 2018) have enabled significant ad-
vances in defending against adversarial attacks (Szegedy
et al., 2014), which can help enhance the security in various
domains such as computer vision (Xie et al., 2017; Mah-
mood et al., 2021), natural language processing (Zhu et al.,
2020; Yoo & Qi, 2021), recommendation system (Peng &
Mine, 2020), etc. We therefore undertake this pioneer study
on adversarial robustness of non-parametric TSTs, which
uncovers the failure mode of non-parametric TSTs through
adversarial attacks and facilitate an effective strategy for
making TSTs reliable in critical applications (Baldi et al.,
2014; Rasch et al., 2008; Borgwardt et al., 2006).

First, we theoretically show the adversary could upper-
bound the distributional shift and degrade the lower bound
of a TST’s test power (details in Section 3.1). Given a
benign pair (SP, SQ), in which SP = {xi}mi=1 ∼ Pm and
SQ = {yj}nj=1 ∼ Qn , an `∞-bounded adversary could gen-
erate the adversarial pair (SP, S̃Q). We will show in Propo-
sition 1 that the maximum mean discrepancy (MMD) (Gret-
ton et al., 2012) between the benign and adversarial pairs is
upper-bounded, which guarantees imperceptible adversarial
perturbations (Szegedy et al., 2014). Furthermore, we will
show in Theorem 2 that the adversary can degrade the lower
bound of a TST’s test power, which implies that a TST could
wrongly determine P = Q with a larger probability under
adversarial attacks when P 6= Q holds.

Then, we realize effective adversarial attacks against non-
parametric TSTs (details in Section 3.2). We formulate
an attack as a constraint optimization problem that mini-
mizes a TST’s test criterion (Liu et al., 2020a) within the
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Benign pair (𝑆ℙ , 𝑆ℚ)

Adversarial pair (𝑆ℙ , #𝑆ℚ)
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( )

+ 0.0314 ×
（Not Random）

Oh! 
Different!!

They are
the same!

ℙ : Cat
ℚ : Dog

Figure 1. An example of adversarial pair (SP, S̃Q) generated by
embedding an adversarial perturbation in the benign set SQ of the
benign pair (SP, SQ). Experimental details are in Section 5.1.

`∞-bound of size ε on SQ. We utilize projected gradient
descent (PGD) (Madry et al., 2018) to efficiently search the
adversarial set S̃Q and incorporate automatic schedule of
the step size (Croce & Hein, 2020) to improve the optimiza-
tion convergence. Moreover, we extend the attack beyond
a specific TST to a generic TST-agnostic attack, namely,
ensemble attack (EA). EA jointly minimizes a weighted
sum of different test criteria, which can simultaneously fool
various TSTs. For example, Figure 1 shows non-parametric
TSTs can correctly differentiate the benign pair of “cats”
and “dogs” (top) coming from the different distributions,
but wrongly judge adversarial pairs (bottom) as belonging
to the same distribution.

Second, to robustify the non-parametric TSTs, we study the
corresponding defense approaches (details in Section 4). A
straightforward defense seems to use an ensemble of TSTs.
We find an ensemble of TSTs is sometimes effective against
a specific attack targeting a certain type of TSTs but al-
most always fails under EA (see experiments in Section 5.1).
Therefore, to effectively defend against adversarial attacks,
we propose to adversarially learn the robust kernels. The
defense is formulated as a max-min optimization that is
similar in flavor to the adversarial training’s min-max formu-
lation (Madry et al., 2018). For its realization, we iteratively
generate adversarial pairs by minimizing the test criterion
in the inner minimization and update kernel parameters
by maximizing the test criterion on the adversarial pairs

in the outer maximization. We realize our defense using
deep kernels that have achieved the state-of-the-art (SOTA)
performance in non-parametric TSTs (Liu et al., 2020a).

Lastly, we empirically justify the proposed attacks and de-
fenses (in Section 5). We evaluate the test power of many
existing non-parametric TSTs (non-robust) and the robust-
kernel TST (robust) under the EA on simulated and real-
world datasets, including complex synthetic distributions,
high-energy physics data, and challenging images. Compre-
hensive experimental results validate that the existing non-
parametric TSTs lack adversarial robustness; we can signifi-
cantly improve the adversarial robustness of non-parametric
TSTs through adversarially learning the deep kernels.

2. Non-Parametric Two-Sample Tests
In this section, we provide the preliminaries of non-
parametric TSTs and provide discussions with the related
studies in Appendix C.

2.1. Problem Formulation

Let X ⊂ Rd and P, Q be Borel probability measures on X .
A non-parametric TST J (SP, SQ) : Xm ×Xn 7→ {0, 1} is
used to distinguish between the null hypothesisH0 : P = Q
and the alternative hypothesis H1 : P 6= Q, where SP and
SQ are independent identically distributed (IID) samples of
size m and n drawn from P and Q, respectively. A non-
parametric TST constructs a mean embedding based on
a kernel parameterized with θ for each distribution, and
utilizes the differences in these embeddings as the test
statistic for the hypothesis test. The judgement is made
by comparing the test statistic D(SP, SQ) with a partic-
ular threshold r: if the threshold is exceeded, then the
test rejects H0. The test power (TP) of a non-parametric
TST J is measured by the probability of correctly re-
jecting H0 when the alternative hypothesis is true, i.e.,
TP(J ) = ESP∼Pm,SQ∼Qn [1(J (SP, SQ) = 1)] for a par-
itular P 6= Q. A non-parametric TST optimizes its learnable
parameters θ via maximizing its test criterion, thus approxi-
mately maximizing its test power.

2.2. Test Statistics

Here, we introduce a typical test statistic, maximum mean
discrepancy (MMD) (Gretton et al., 2012), and leave
other test statistics in Appendix D, such as tests based
on Gaussian kernel mean embeddings at specific posi-
tions (Chwialkowski et al., 2015; Jitkrittum et al., 2016) and
classifier two-sample tests (C2ST) (Lopez-Paz & Oquab,
2016; Cheng & Cloninger, 2019).

Definition 1 (Gretton et al. (2012)). Let k : X × X → R
be a kernel of a reproducing kernel Hilbert spaceHk, with
feature maps k(·, x) ∈ Hk. Let X ∼ P and Y ∼ Q, and
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define the kernel mean embeddings µP = E[k(·, X)] and
µQ = E[k(·, Y )]. Under mild integrability conditions,

MMD(P,Q;Hk) = sup
f∈H,‖f‖Hk≤1

|E[f(X)]− E[f(Y )]|

= ‖µP − µQ‖Hk . (1)

For characteristic kernels, MMD(P,Q;Hk) = 0 if and
only if P = Q. Assuming n = m, we can estimate MMD
(Eq. (1)) using the U -statistic estimator, which is unbiased
for MMD2 and has nearly minimal variance among all un-
biased estimators (Gretton et al., 2012):

M̂MD
2
(SP, SQ; k) =

1

n(n− 1)

∑
i 6=j

Hij , (2)

Hij = k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi),

where xi, xj ∈ SP and yi, yj ∈ SQ.

In this paper, we investigate six types of non-parametric
TSTs as follows since Liu et al. (2020a; 2021) have shown
they are powerful on complex data.

• D(G)(·, ·; k(G)) = M̂MD
2
(·, ·; k(G)) for tests based on

MMD with Gaussian kernels (MMD-G) (Sutherland
et al., 2017) with the learnable lengthscale σφ, in which
k(G)(x, y) = exp(− 1

2σφ
‖x− y‖2).

• D(D)(·, ·; k(D)) = M̂MD
2
(·, ·; k(D)) for tests based on

MMD with deep kernels (MMD-D) (Liu et al., 2020a).
Note that k(D)(x, y) = [(1 − γ) exp(− 1

2σφ
‖φ(x) −

φ(y)‖2) + γ] exp(− 1
2σq
‖x− y‖2) where γ, σφ, σq are

the learnable parameters and φ(·) is a parameterized
deep network to extract the features.

• D(S)(·, ·) (Eq. (10)) for C2ST based on Sign (C2ST-
S) (Lopez-Paz & Oquab, 2016). A classifier f : X →
R that outputs the classification probabilities is uti-
lized by C2ST. Liu et al. (2020a) pointed out that the
test statistic of C2ST-S is equivalent to MMD with

kernel k(S), i.e., D(S)(·, ·) = M̂MD
2
(·, ·; k(S)) where

k(S)(x, y) = 1
41(f(x) > 0)1(f(y) > 0).

• D(L)(·, ·) (Eq. (11)) for C2ST-L (Cheng & Cloninger,
2019) that utilizes the discriminator’s measure of con-
fidence. Its test statistic is also equivalent to MMD
with kernel k(L) (Liu et al., 2020a), i.e., D(L)(·, ·) =

M̂MD
2
(·, ·; k(L)) where k(L)(x, y) = f(x)f(y).

• D(ME)(·, ·) (Eq. (12)) for tests based on differences
in Gaussian kernel mean embeddings at specific lo-
cations (Chwialkowski et al., 2015; Jitkrittum et al.,
2016), namely Mean Embedding (ME).

• D(SCF)(·, ·) (Eq. (13)) for tests based on Gaussian
kernel mean embeddings at a set of optimized fre-
quency (Chwialkowski et al., 2015; Jitkrittum et al.,
2016), namely Smooth Characteristic Functions (SCF).

2.3. Test Criterion

In this subsection, we introduce the test criteria for non-
parametric TSTs based on MMD (Sutherland et al., 2017;
Liu et al., 2020a; Lopez-Paz & Oquab, 2016; Cheng &
Cloninger, 2019).

Theorem 1 (Asymptotics of MMD under H1 (Serfling,
2009)). Under the alternative, H1 : P 6= Q, the standard
central limit theorem holds:

√
n(M̂MD

2
−MMD2)→ N (0, σ2

H1
),

σ2
H1

= 4(E[H12H13]− E[H12]2),

where H12, H13 refer to Hij in Eq. (2).

Guided by the asymptotics of MMD (Theorem 1), the test
power is estimated as follows:

Pr(nM̂MD
2
> r)→ Φ(

√
nMMD2

σH1

− r√
nσH1

), (3)

where Φ is the cumulative distribution function (CDF) of
standard normal distribution and r is the rejection thresh-
old approximately found via permutation testing (Dwass,
1957; Fernández et al., 2008). This general method is usu-
ally considered best to estimate the null hypothesis: under
H0, samples from P and Q are interchangeable, and repeat-
edly re-computing the test statistic with samples randomly
shuffled between SP and SQ estimates its null distribution.

For reasonably large n, the test power is dominated by the
first term of Eq. (3), and thus the TST yields the most power-
ful test by approximately maximizing the test criterion (Liu
et al., 2020a)

F(P,Q; k) = MMD2(P,Q; k)/σH1(P,Q; k). (4)

Further, F(P,Q; k) can be empirically estimated with

F̂(SP, SQ; k) =
M̂MD

2
(SP, SQ; k)

σ̂H1,λ(SP, SQ; k)
, (5)

where σ̂2
H1,λ

is a regularized estimator of σ2
H1

:

σ̂2
H1,λ =

4

n3

n∑
i=1

( n∑
j=1

Hij

)2

− 4

n4

( n∑
i=1

n∑
j=1

Hij

)2

+ λ,

where λ is a positive constant. The test criterion of the
MMD test (e.g., MMD-G, MMD-D, C2ST-S and C2ST-
L) is calculated based on its corresponding kernel. We
let σ2

θ denote σ2
H1

(P,Q; kθ), and analogously σ̂2
θ denote

σ̂2
H1,λ

(P,Q; kθ), for simplicity.

In addition, Chwialkowski et al. (2015) and Jitkrittum et al.
(2016) analyzed that the test power of ME tests, and SCF
tests can be approximately maximized by maximizing the
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corresponding test criterion as well, i.e., F̂ (ME)(SP, SQ)

and F̂ (SCF)(SP, SQ) (details in Appendix D).

To avoid notation clutter, we simply let θ represent all of
the learnable parameters in a non-parametric TST. The opti-
mized parameters of a TST are obtained as follows.

θ̂ ≈ arg max
θ

F̂(Str
P , S

tr
Q ; kθ), (6)

where (Str
P , S

tr
Q ) is the training pair. Then, we conduct a

hypothesis test based on D(Ste
P , S

te
Q ; kθ̂), where (Ste

P , S
te
Q )

is the test pair.

3. Adversarial Attacks Against
Non-Parametric TSTs

In this section, we first show the possible existence of ad-
versarial attacks against a non-parametric TST. Then, we
propose a method to generate adversarial test pairs that can
fool a TST. To enable TST-agnostic attacks, we propose a
unified attack framework, i.e., ensemble attack.

3.1. Theoretical Analysis

This section theoretically shows that there could exist adver-
sarial attacks that can invisibly undermine a TST. We first
lay out the needed assumptions on kernel functions.

Assumption 1. The possible kernel parameterized with
θ ∈ Rκ lies in Banach space. The set of possible kernel
parameters Θ is bounded by RΘ, i.e., Θ ⊆ {θ | ‖θ‖ ≤ RΘ}.
We let Θ̄s = {θ ∈ Θ | σ2

θ ≥ s2 > 0} in which s is a
positive constant.

Assumption 2. The kernel function kθ is uniformly
bounded, i.e., supθ∈Θ supx∈X kθ(x, x) ≤ ν. We treat ν
as a constant.

Assumption 3. The kernel function kθ(x, y) satisfies the
Lipschitz conditions as follows.

|kθ(x, y)− kθ′(x, y)| ≤ L1‖θ − θ′‖;
|kθ(x, y)− kθ(x′, y′)| ≤ L2(‖x− x′‖+ ‖y − y′‖),

where L1 and L2 are positive constants.

We consider a potential risk that causes a malfunction of
a non-parametric TST: an adversarial attacker that aims to
deteriorate the TST’s test power, can craft an adversarial
pair (SP, S̃Q) as the input to the TST during the testing
procedure, in which the two sets S̃Q and SQ are nearly
indistinguishable. We provide a detailed description of the
attacker against non-parametric TSTs in Appendix F.

We define the ε-ball centered at x ∈ X as follows:

Bε[x] = {x̃ ∈ X | ‖x− x̃‖∞ ≤ ε}.

Further, an `∞-bound of size ε on the set SQ is defined as

Bε[SQ] = {S̃Q = {x̃i ∈ X}ni=1 |
x̃i ∈ Bε[xi], ∀xi ∈ SQ, x̃i ∈ S̃Q}.

Without loss of generality, we assume that the adversarial
perturbation is `∞-bounded of size ε, i.e., S̃Q ∈ Bε[SQ].
We leave exploring the effects of other constraints that can
bound the “human imperception” as the future work, such
as Wasserstein-distance constraints (Wong et al., 2019).

Under `∞-bounded attacks, we conduct our theoretical anal-
ysis of distributional shift in the test pairs as follows.

Proposition 1. Under Assumptions 1 to 3, we use ntr sam-
ples to train a kernel kθ parameterized with θ and nte sam-
ples to run a test of significance level α. Given the adver-
sarial budget ε ≥ 0, the benign pair (SP, SQ) and the cor-
responding adversarial pair (SP, S̃Q) where S̃Q ∈ Bε[SQ],
with the probability at least 1− δ, we have

sup
θ
|M̂MD

2
(SP, S̃Q; kθ)− M̂MD

2
(SP, SQ; kθ)|

≤ 8L2ε
√
d√

nte

√
2 log

2

δ
+ 2κ log(4RΘ

√
nte) +

8L1√
nte

.

The proof is in Appendix B.1.

Remark 1. Proposition 1 shows that ε can control the up-
per bound of distributional shift measured by MMD be-
tween samples in the test pair. In other words, a small ε

can ensure the difference between M̂MD
2
(SP, S̃Q; kθ) and

M̂MD
2
(SP, SQ; kθ) is numerically small. Therefore, an `∞-

bounded adversary can make the adversarial perturbation
imperceptible, thus guaranteeing the attack’s invisibility.

Next, we provide a lemma that theoretically analyzes the
adversary’s influence on the estimated test criterion.

Lemma 1. In the setup of Proposition 1, with probability
at least 1− δ, we have

sup
θ∈Θ̄s

|F̂(SP, S̃Q; kθ)− F̂(SP, SQ; kθ)|

= O
(εL2

√
d
(

log 1
δ + κ log(RΘ

√
nte)

)
+ L1

s
√
nte

)
.

The proof is in Appendix B.2.

Remark 2. Lemma 1 shows that, when ε > 0, a TST needs
a larger number of test samples to facilitate the estimated
test criterion on the adversarial test pair to converge to the
estimated test criterion on the benign test pair. In other
words, the estimated test criterion in adversarial settings
(ε > 0) could be lower than the estimated test criterion in
benign settings for a particular nte.
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Since the test criterion dominates the test power, Lemma 1
motivates us to further theoretically analyze the adversary’s
effects on the lower bound of a TST’s test power as follows.

Theorem 2. In the setup of Proposition 1, given θ̂ntr
=

arg maxθ∈Θ̄s F̂(kθ), r(nte) denoting the rejection thresh-
old, F∗ = supθ∈Θ̄s F(kθ), and constants C1, C2, C3 de-
pending on ν, L1, λ, s,RΘ and κ, with probability at least
1− δ, the test under adversarial attack has power

Pr(nteM̂MD
2
(SP, S̃Q; kθ̂ntr

) > r(nte)) ≥ Φ

[√
nte

(
F∗−

C1√
ntr

√
log

√
ntr

δ
−C2L2ε

√
d√

nte

√
log

√
nte

δ

)
−C3

√
log

1

α

]
.

The proof is in Appendix B.3.

Remark 3. Theorem 2 indicates that the lower bound of test
power can become lower with the increase of the adversarial
budget ε, the dimensionality of data d and Lipschitz constant
L2 of the kernel function, which implies that the test power
of a TST could be further degraded in the adversarial setting.
In other words, a non-parametric TST could wrongly accept
H0 with a larger probability in the adversarial setting when
P 6= Q holds. Therefore, with the ε > 0 being constrained
within a reasonable range, there could exist an adversarial
attack that can invisibly fool a non-parametric TST.

3.2. Generation of Adversarial Pairs

Formulation. Motivated by Theorem 1, a TST could out-
put a wrong judgement on an adversarial pair (SP, S̃Q) with
a larger probability when the test criterion F̂(SP, S̃Q) be-
comes smaller. Therefore, to generate an adversarial pair
against a non-parametric TST, we update S̃Q via minimiz-
ing the test criterion F̂(SP, S̃Q). We formulate adversarial
attacks against a non-parametric TST J in the following:

S̃Q = arg min
S̃Q∈Bε[SQ]

F̂ (J )(SP, S̃Q), (7)

where F̂ (J )(·, ·) is the test criterion, S̃Q is constrained in an
ε-ball centered at SQ.

Realization. We utilize PGD (Madry et al., 2018) to ap-
proximately solve the minimization problem of Eq. (7).
Given a starting point S(0)

Q , step size ρ > 0, iteration num-
ber t ∈ N, and the size of adversarial budget ε ≥ 0, PGD
works as follows:

S
(t+1)
Q ={ΠBε[x(0)

i ]

(
x

(t)
i −ρ sign(∇

x
(t)
i
F̂(SP, S

(t)
Q ))
)
}ni=1,

where x(0)
i ∈ S

(0)
Q , x(t)

i ∈ S
(t)
Q , ΠBε[x(0)](·) is the projection

function that projects the adversarial data back into the ε-ball
centered at x(0), and F̂(·, ·) is a differentiable function.

Algorithm 1 Ensemble Attack (EA)
1: Input: benign pair (SP, SQ), maximum PGD step T ,

adversarial budget ε, test criterion function set F̂, weight
set W, checkpoint C = {c0, . . . , cn}

2: Output: adversarial pair (SP, S̃Q)

3: S(0)
Q ← SQ and ρ← ε

4: S(1)
Q ←{ΠBε[x(0)

i ]

(
x

(0)
i −ρ sign(∇

x
(0)
i
`(SP, S

(0)
Q ))
)
}ni=1

5: `min ← min{`(SP, S
(0)
Q ), `(SP, S

(1)
Q )}

6: S̃Q ← S
(0)
Q if `min ≡ `(SP, S

(0)
Q ) else S̃Q ← S

(1)
Q

7: for t = 1 to T − 1 do
8: S

(t+1)
Q ←{ΠBε[x(0)

i ]

(
x

(t)
i −ρsign(∇

x
(t)
i
`(SP,S

(t)
Q ))
)
}ni=1

9: if `min > `(SP, S
(t+1)
Q ) then

10: S̃Q ← S
(t+1)
Q and `min ← `(SP, S

(t+1)
Q )

11: end if
12: if t ∈ C then
13: if Condition 1 or Condition 2 then
14: ρ← ρ/2 and S(t+1)

Q ← S̃Q
15: end if
16: end if
17: end for

Further, we introduce a strategy that automatically sched-
ules the step size ρ, which can improve the convergence of
PGD (Croce & Hein, 2020). We start with step size ρ(0) = ε
at iteration 0 and identify whether it is necessary to halve
the current step size at checkpoints c0, c1, . . . , cn. We set
two conditions:

1.
∑cj−1
i=cj−1

1F̂(SP,S
(i+1)
Q )<F̂(SP,S

(i)
Q )

< 0.75·(cj−cj−1);

2. ρ(cj−1) ≡ ρ(cj) and F̂ (cj−1)
min ≡ F̂ (cj)

min ,

where F̂ (t)
min is the lowest value of the test criterion found in

the first t iterations. If one of the conditions is triggered, then
the step size at iteration t = cj is halved and ρ(t) = ρ(cj)/2
for every t ∈ {cj + 1, . . . , cj+1}. If at a checkpoint c, the
step size gets halved, then we set S(c+1)

Q to the current S̃Q.

3.3. TST-Agnostic Ensemble Attack

In practice, different TSTs have different formulations of
the test criteria. To provide a generic TST-agnostic attack
framework, we propose the ensemble attack (EA) that finds
the adversarial set S̃Q as follows.

S̃Q = arg min
S̃Q∈Bε[SQ]

∑
w(Ji)∈W,F̂(Ji)∈F̂

w(Ji)F̂ (Ji)(SP, S̃Q),

where J = {J1,J2, . . . ,Jn} a set of non-parametric
TSTs, F̂ = {F̂ (J1), F̂ (J2), . . . , F̂ (Jn)} is a set com-
posed of the test criterion for each TST Ji ∈ J,
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W = {w(J1), w(J2), . . . , w(Jn)} is a weight set, and∑
w(Ji)∈W w(Ji) = 1. For notational simplicity, we let

`(SP, S̃Q) =
∑

w(Ji)∈W,F̂(Ji)∈F̂

w(Ji)F̂ (Ji)(SP, S̃Q).

We utilize “PGD with a dynamic schedule of step size ρ”
(see above) to realize EA. We summarize the realization of
EA in Algorithm 1. Note that an adversarial attack against a
TST J is the special case of EA when we set w(J ) = 1.

4. Defending Non-Parametric TSTs
In this section, to counteract the threats incurred by adver-
sarial attacks, we propose defensive strategies to enhance
the test power of non-parametric TSTs under attacks.

4.1. A Simple Ensemble as A Vanilla Defense

In machine learning, ensemble methods leverage various
learning algorithms together to obtain better performance
than could be obtained from any of the individual learning
algorithms alone (Opitz & Maclin, 1999; Rokach, 2010).
Therefore, a simple ensemble of different non-parametric
TSTs could be a vanilla defense. Correspondingly, we let the
test power of an ensemble of TSTs measure the probability
of any non-parametric TST Ji ∈ J correctly rejecting H0

whenH1 is true, i.e., for a particular P 6= Q,

TP(J) = ESP∼Pm,SQ∼Qn [∨Ji∈J1(Ji(SP, SQ) = 1)].

However, this simple defense cannot effectively improve
the test power of TSTs under EA. We empirically find that
EA can significantly degrade the test power of an ensemble
of different TSTs (see Table 1). Therefore, the ensemble of
TSTs is no longer an effective defensive strategy.

4.2. Adversarially Learning Kernels for TSTs

To effectively enhance the robustness of non-parametric
TSTs, we propose a general defense which employs adver-
sarial learning (Madry et al., 2018) to obtain robust kernels
for non-parametric TSTs. The learning objective of robust
kernels is formulated as a max-min optimization:

θ̂ ≈ arg max
θ

min
S̃Q∈Bε[SQ]

F̂(SP, S̃Q; kθ). (8)

Eq. (8) is equivalent to a minimax optimization problem
by simply flipping its inner minimization term and its outer
maximization term simultaneously. Then, Danskin’s theo-
rem (Danskin, 1966) can apply (Madry et al., 2018). There-
fore, we can adversarially learn the deep kernels with one
step minimizing the test criterion to find an adversarial pair
and one step maximizing the test criterion on the adversarial
pair w.r.t. the parameters θ.

Algorithm 2 Adversarially Learning Deep Kernels
1: Input: benign pair (SP, SQ), maximum PGD step T ,

adversarial budget ε, checkpoint C = {c0, . . . , cn},
deep kernel k(RoD)

θ parameterized by θ, training epochs
E, learning rate η

2: Output: parameters of robust deep kernel θ
3: for e = 1 to E do
4: X ← minibatch from SP; Y ← minibatch from SQ
5: Generate an adversarial pair (X, Ỹ ) by Algorithm 1

with setting F̂ = {F̂ (RoD)(·, ·; k(RoD)
θ )}

6: θ ← θ + η∇θF̂ (RoD)(X, Ỹ ; k
(RoD)
θ )

7: end for

Robust deep kernels for TSTs (MMD-RoD). Since
MMD-D (Liu et al., 2020a) has been validated as a superior
non-parametric TST, our defense is based on the deep ker-
nels, i.e., F̂ (RoD)(·, ·; k(RoD)

θ ) = F̂ (D)(·, ·; k(RoD)
θ ) where

k
(RoD)
θ = k

(D)
θ . We let θ denote all the learnable parame-

ters (γ, σφ, σq and the parameters of the DNN φ(·)) for a
robust deep kernel. We summarize the training procedure of
adversarially learning deep kernels in Algorithm 2. The test-
ing procedure of MMD-RoD exactly follows MMD-D (Liu
et al., 2020a) and is introduced in Appendix E.3.

5. Experiments
In this section, we empirically uncover the adversarial vul-
nerabilities of non-parametric TSTs and demonstrate the
efficacy of our proposed MMD-RoD in enhancing adversar-
ial robustness of non-parametric TSTs.

5.1. Test Power Evaluated under Ensemble Attacks

We conduct six typical non-parametric TSTs (MMD-D,
MMD-G, C2ST-S, C2ST-L, ME and SCF) under EA
on five benchmark datasets—Blob (Gretton et al., 2012;
Jitkrittum et al., 2016; Sutherland et al., 2017), high-
dimensional Gaussian mixture (HDGM) (Liu et al., 2020a),
Higgs (Chwialkowski et al., 2015), MNIST (LeCun et al.,
1998; Radford et al., 2015) and CIFAR-10 (Krizhevsky,
2009). P and Q of each dataset are illustrated in Ap-
pendix E.1. Note that P 6= Q in each dataset. For Blob,
HDGM and Higgs, we randomly sample a training pair (Str

P ,
Str
Q ) for learning a kernel once for each non-parametric

TST. For MNIST and CIFAR-10, we select a subset of the
available data as training data Str

P and Str
Q . The training

settings (e.g., the structure of neural network and the opti-
mizer) follow Liu et al. (2020a) and are illustrated in detail
in Appendix E.2.

During the testing procedure, we randomly sample 100
new pairs (Ste

P , Ste
Q ), disjoint from the training data, as the

benign test pairs. We let ntr and nte be large enough to
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Table 1. We report the average test power of six typical non-parametric TSTs (α = 0.05) as well as Ensemble on five benchmark datasets
in benign and adversarial settings, respectively. The lower the test power under attacks is, the more adversarially vulnerable is the TST.

Datasets ε nte EA MMD-D MMD-G C2ST-S C2ST-L ME SCF Ensemble

Blob 0.05 100 × 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.992±0.002 0.962±0.001 1.000±0.000√
0.131±0.007 0.099±0.003 0.021±0.003 0.715±0.091 0.154±0.011 0.098±0.022 0.846±0.030

HDGM 0.05 3000 × 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.002 0.942±0.013 1.000±0.000√
0.259±0.009 0.081±0.003 0.105±0.000 0.090±0.000 0.500±0.025 0.006±0.000 0.734±0.078

Higgs 0.05 5000 × 1.000±0.000 1.000±0.000 0.970±0.002 0.984±0.003 0.830±0.042 0.675±0.071 1.000±0.000√
0.027±0.001 0.002±0.000 0.065±0.000 0.080±0.006 0.263±0.022 0.058±0.005 0.422±0.013

MNIST 0.05 500 × 1.000±0.000 0.904±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.386±0.005 1.000±0.000√
0.087±0.040 0.102±0.002 0.003±0.000 0.005±0.000 0.062±0.002 0.001±0.000 0.213±0.026

CIFAR-10 0.0314 500 × 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.033±0.001 1.000±0.000√
0.187±0.001 0.279±0.004 0.107±0.017 0.119±0.021 0.079±0.000 0.000±0.000 0.429±0.005

ensure TSTs can achieve a high test power in benign set-
tings. EA is implemented on each benign test pair and
generates the corresponding adversarial test pair as the input
for TSTs. We illustrate experimental settings of permutation
test in Appendix E.3. Note that we utilize the wild boot-
strap process (Chwialkowski et al., 2014) (introduced in
Appendix E.3) to resample the value of MMD for MMD-D
and MMD-G (as well as MMD-RoD) since adversarial data
are probably not IID. Wild bootstrap process guarantees that
we can get correct p-values in non-IID/IID scenarios. We
repeat the full process 10 times, and report the average test
power (comparing P to Q) of each non-parametric TST as
well as an ensemble of these six typical TSTs (denoted as
“Ensemble”) in Table 1. In addition, we confirm that these
TSTs have reasonable Type I errors (comparing P to P) in
Appendix E.5.

EA minimizes a weighted sum of test criteria of six typical
TSTs, i.e., F̂ = {F̂ (D), F̂ (G), F̂ (S), F̂ (L), F̂ (ME), F̂ (SCF)}.
Weight set W is manually set for each dataset and is summa-
rized in Table 7 (Appendix E.4). For all datasets, T = 50. ε
for each dataset is summarized in Table 1.

In Table 1, we implement EA in the white-box setting where
we can obtain the non-parametric TST’s all information
(e.g., the kernel parameters). Table 1 demonstrates that the
test power of each particular non-parametric TST and even
Ensemble are significantly deteriorated among all datasets.
It empirically validates that many existing non-parametric
TSTs suffer from severe adversarial vulnerabilities.

In addition, we surprisingly find that ε = 0.05 is large
enough to significantly degrade the test power on MNIST.
In contrast, conventional adversarial attacks that aim to
fool DNNs on MNIST need a larger adversarial budget ε
which is up to 0.3 (Madry et al., 2018). It seems that non-
parametric TSTs are more adversarially vulnerable than
classifiers. However, this claim could be inaccurate for
two reasons. First, attack target is different. We target to
fool non-parametric TSTs that belong to hypothesis tests,
while previous works aim to attack DNN-based classifiers.
Second, measurement is different. We cannot fairly com-

pare the non-parametric TST’s test power to the classifier’s
classification accuracy.

5.2. Adversarial Robustness of MMD-RoD

For hyperparameters of adversarially learning kernels, we
keep ε same as the dataset-corresponding adversarial budget
in Table 1, and set T = 1 for all datasets. Other training
settings such as the structure of the neural network and the
optimizer as well as the testing procedure of MMD-RoD
exactly follow MMD-D (Liu et al., 2020a). We call an en-
semble of six typical TSTs and MMD-RoD as “Ensemble+”.
Here, EA is conducted based on the test criteria of TSTs
in Ensemble+. As for W, we let w(RoD) and w(D) in this
section be half of w(D) in Section 5.1. Other attack settings
(e.g., nte, T, ε) for each dataset follow Section 5.1. The
Type I error of MMD-RoD is reported in Appendix E.5.

Table 2. Test power of MMD-RoD and Ensemble+.
EA Blob HDGM Higgs MNIST CIFAR-10

MMD-RoD × 1.00±0.00 0.61±0.07 0.53±0.00 1.00±0.12 1.00±0.00√
0.19±0.06 0.00±0.01 0.23±0.02 0.98±0.00 0.91±0.00

Ensemble+ × 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00√
0.89±0.01 0.73±0.08 0.54±0.04 0.98±0.00 0.95±0.00

Table 2 reports the test power of MMD-RoD and Ensemble+

in benign and adversarial settings. Table 2 shows that the
test power of MMD-RoD and Ensemble+ under EA are
significantly enhanced on most datasets such as MNIST
and CIFAR-10, even without sacrificing test power in the
benign setting. It validates robust deep kernels can improve
adversarial robustness of non-parametric TSTs.

We surprisingly observe in Table 2 that benign test power of
MMD-RoD on MNIST and CIFAR-10 remains high while
the test power under attacks is significantly improved. This
seems to conflict with the robustness-accuracy trade-off in
conventional adversarial training (Zhang et al., 2019b). The
main reason could be that the metric is different, i.e., test
power for non-parametric TSTs v.s. classification accuracy
for classifiers. Due to this difference, the trade-off between
benign test power and adversarial robustness may not hold
in the case of non-parametric TSTs. In addition, there are
published papers (Yang et al., 2020a; Pang et al., 2022)
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Figure 2. Visualization of adversarial test sets.

that claimed there should be no trade-off between benign
accuracy and adversarial robustness.
MMD-RoD unexpectedly performs poorly on HDGM and
Higgs, which has low test power in both benign and adver-
sarial settings. The poor performance in the benign setting
could be attributed to that the most adversarial training pairs
can lead to the cross-over mixture problem (Zhang et al.,
2020a), thus making the learning extremely difficult and
even fail. The reason for the poor robustness could be
that the number of training data is small since enhancing
adversarial robustness needs more training data (Schmidt
et al., 2018). Therefore, we believe that utilizing the style
of friendly adversarial training (Zhang et al., 2020a) for
learning kernels along with sampling more training data can
further enhance the performance of MMD-RoD. We leave
further improving MMD-RoD as future work.

5.3. Visualization of Adversarial Test Sets

We visualize benign test set SQ (middle) and the correspond-
ing adversarial test set S̃Q (bottom) on Blob and MNIST
in Figure 2 as well as CIFAR-10 in Figure 1. The adver-
sarial data are generated in the experiments illustrated in
Section 5.1. Note that the benign test pair we choose to
visualize can be correctly judged as samples drawn from
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Figure 3. Ablation studies on important hyperparameters.

different distributions by each TST in Ensemble, and its
corresponding adversarial test pair can successfully fool
Ensemble. Due to limited space, we visualize only a part of
samples from each set. Figure 1-2 verify that the differences
between SQ and S̃Q is almost visually indistinguishable to
humans, and meanwhile the distribution of SP is explicitly
different from that of S̃Q. Therefore, Figure 1-2 empirically
validate that an `∞-bound can guarantee the invisibility of
adversarial attacks.

5.4. Ablation Studies on Important Hyperparameters

In this subsection, we conduct ablation studies on important
hyperparameters, including ε, d, nte and W. Comprehensive
results further validate non-parametric TSTs lack adversarial
robustness.

Evaluation with different ε. We report the aver-
age test power of Ensemble under EA with ε ∈
{0.00, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2} on MNIST. Other
settings keep same as Section 5.1. The upper left panel of
Figure 3 shows that the test power of Ensemble under EA
(red solid line) becomes lower as ε increases, and is signif-
icantly lower than the test power evaluated in the benign
setting (black dash line) over different ε, which is in line
with the conclusion of Theorem 2.

Evaluation with different d. We evaluate the test power
of Ensemble under EA on HDGM with different d ∈
{5, 10, 15, 20, 25}. The settings follow Section 5.1 except
the dimensionality of Gaussian mixture. The upper right
panel of Figure 3 shows that the test power in the adversar-
ial setting (red solid line) decreases as d rises and remains
lower than benign test power (black dash line). However,
with larger d (e.g., d > 15) the test power under EA does
not keep degrading and even rises. We believe it is due to
that the weight set for EA with larger d is set inappropriately.
We discuss the reasons in detail in Appendix E.7.

Evaluation with different nte. We evaluate the test
power of Ensemble under EA on MNIST with different
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nte ∈ {100, 200, 300, 400, 500}, and use the same settings
as Section 5.1. The lower left panel of Figure 3 shows
that the test power in the adversarial setting (red solid line)
increases as nte becomes larger, but the test power under
EA is always severely deteriorated compared to benign test
power (black dash line), which reflects that non-parametric
TSTs lack adversarial robustness.

Evaluation with different W. We report the test power
of Ensemble under EA with three weight strategies:
1) “Naive” (green pillar) denotes that we set W =
{1/6, 1/6, 1/6, 1/6, 1/6, 1/6}; 2) “Automatic” (blue pillar)
denotes that we use the softmax of test criterion for each test
as W at each PGD iteration, i.e., w(Ji) = exp(F̂(Ji))∑n

j=1 exp(F̂(Jj))
;

3) “Finetune” (red pillar) denotes that we set manually-
finetuned W for each dataset. The finetuned weight set is
summarized in Appendix E.2. Other settings follow Sec-
tion 5.1. The lower right panel of Figure 3 shows that the test
power of Ensemble under EA can be severely deteriorated
with an appropriate weight strategy.

5.5. Transferability of Adversarial Attacks

Further, we empirically demonstrate that our proposed EA
against non-parametric TSTs has transferability.

Transferability between different types of non-
parametric TSTs. We report test power of non-
parametric TSTs under the adversarial attack against a
certain type of TSTs on MNIST in Figure 4(a) and the test
power of non-parametric TSTs under EA against a TST
ensemble composed by leaving one TST out of Ensemble
on MNIST in Figure 4(b). The experimental details and
results are in Appendix E.6. Figure 4(a) shows that attacks
against a certain type of TST sometimes can fool other
types of TSTs. Figure 4(b) demonstrates that attacks against
an ensemble of TSTs sometimes can successfully fool TSTs
that are not included in the attack ensemble. Therefore,
Figure 4 validates our proposed EA has transferability
between different types of non-parametric TSTs.

Transferability between target and surrogate non-
parametric TSTs. Here, we assume that the attacker can-
not obtain the target non-parametric TST’s kernel param-
eters and training data, and it only knows the target non-
parametric TST’s test criterion (including its kernel func-
tion). We generate adversarial pairs via EA based on an en-
semble of surrogate non-parametric TSTs on MNIST (other
attack configurations follow Section 5.1) and then report the
average test power of target tests on these adversarial pairs
in Table 3. Surrogate tests are trained on the training data
with different random seeds. Table 3 shows that the test
power of each target non-parametric TST and Ensemble are
deteriorated under EA based on surrogate non-parametric

TSTs, which further validates that existing non-parametric
TSTs are adversarially vulnerable.

Table 3. Transferability between target and surrogate non-
parametric TSTs.

MMD-D MMD-G C2ST-S C2ST-L ME SCF Ensemble
0.564±0.09 0.149±0.00 0.418±0.03 0.471±0.04 0.064±0.01 0.001±0.00 0.751±0.01

Transferability between different test sets drawn from
P. We replace the set SP with S′P where S′P is drawn from
the distribution P with different random seeds (i.e., SP 6=
S′P). S̃Q is generated by EA on the benign test pair (SP, SQ).
We report the average test power of non-parametric TSTs on
(S′P, S̃Q) under EA on MNIST (details follow Section 5.1)
in Table 4. Table 4 shows that EA still hurts the test power
of non-parametric TSTs on (S′P, S̃Q), and implies that EA
has a good transferability property between different test
sets drawn from P.

Table 4. Transferability between different test sets drawn form P.
MMD-D MMD-G C2ST-S C2ST-L ME SCF Ensemble

0.166±0.05 0.201±0.00 0.013±0.00 0.018±0.00 0.270±0.03 0.017±0.01 0.486±0.04

6. Conclusions
This paper systematically studies adversarial robustness of
non-parametric TSTs. We propose a generic ensemble at-
tack framework which reveals non-parametric TSTs are
adversarially vulnerable.To counteract these risks, we pro-
pose to adversarially learn kernels for non-parametric TSTs.
We empirically show that SOTA non-parametric TSTs can
fail catastrophically under adversarial attacks, and our pro-
posed MMD-RoD can substantially enhance the adversarial
robustness of non-parametric TSTs. We believe our work
makes people aware of potential risks when they apply non-
parametric TSTs to critical applications.

One of the limitations of our current work is that our pro-
posed attack method is computationally heavy and user-
dependent, in that it needs very large GPU memory when
nte is too large and the weight set needs to be manually
finetuned. Future research includes (a) how to fool non-
parametric TSTs by perturbing fewer samples, (b) how to
adaptively adjust the weight set at each PGD iteration.
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A. Notation Table

Table 5. A notation table in convenience for viewing.
Notation Description
J The non-parametric TST
J The set of non-parametric TSTs
H0 The null hypothesis
H1 The alternative hypothesis
α The significance level
r The rejection threshold

TP The measurement function for the test power
D The test statistic function
F̂ The test criterion function
F̂ The set of test criterion functions
d The dimensionality of data
X The data feature space ⊂ Rd
P The Borel probability measure on X
Q The Borel probability measure on X

Pm The joint probability distribution Pm =

m︷ ︸︸ ︷
P× P× . . .× P

Qn The joint probability distribution Qn =

n︷ ︸︸ ︷
Q×Q× . . .×Q

SP The set SP = {xi}mi=1 ∼ Pm
SQ The set SQ = {yi}ni=1 ∼ Qn
ntr The number of training samples drawn from a particular distribution
nte The number of testing samples drawn from a particular distribution
k The kernel function
θ The kernel parameter
κ The dimensionality of the kernel parameter
Θ The set of kernel parameters

RΘ A positive constant that bounds the kernel parameter θ ∈ Θ
s A positive constant used in defining Θ̄s

Θ̄s A set of kernel parameters Θ̄s = {θ ∈ Θ | σ2
θ ≥ s2 > 0}

ν A constant that uniformly bounds the kernel function
L1 Lipschitz constant of the kernel function
L2 Lipschitz constant of the kernel function
λ A constant ∈ (0, 1) used in calculating σ̂H1,λ (in Eq. (5))
S̃Q The adversarial data corresponding to SQ
ε The size of adversarial budget
T The maximum PGD step
ρ The step size
w The weight for the test criterion function
W The weight set
C The checkpoint set
E The number of training epoch
η The learning rate of the optimizer
f A classifier that outputs classification probabilities
φ A neural network
γ A learnable parameter in the deep kernel
σφ A learnable parameter in the deep kernel
G The number of test locations
V The set of test locations



Adversarial Attack and Defense for Non-Parametric Two-Sample Tests

B. Theoretical Analysis
All the proofs are inspired by Liu et al. (2020a).

B.1. Uniform Convergence Results

These results, on the uniform convergence of M̂MD
2
(SP, S̃Q; kθ) and σ̂2

H1,λ
(SP, S̃Q; kθ), were used in the proof of

Theorem 2.

Proposition 1 (Restated). Under Assumptions 1 to 3, we use ntr samples to train a kernel kθ parameterized with θ
and nte samples to run a test of significance level α. Given adversarial budget ε ≥ 0, the benign pair (SP, SQ) and the
corresponding adversarial pair (SP, S̃Q) where S̃Q ∈ Bε[SQ], with the probability at least 1− δ, we have

sup
θ
|M̂MD

2
(SP, S̃Q; kθ)− M̂MD

2
(SP, SQ; kθ)| ≤

8L2ε
√
d√

nte

√
2 log

2

δ
+ 2κ log(4RΘ

√
nte) +

8L1√
nte

.

Proof of Proposition 1. We study the random error function

∆(θ) = M̂MD
2
(SP, S̃Q; kθ)− M̂MD

2
(SP, SQ; kθ).

First, we choose P points {θi}Pi=1 such that any θi ∈ Θ and mini ‖θ − θi‖ ≤ q; Assumption 1 ensures this is possible with
at most P = (4RΘ/q)

κ points (Poggio & Shelton, 2002).

We define H̃ij = k(xi, xj) + k(ỹi, ỹj)− k(xi, ỹj)− k(xj , ỹi) where xi, xj ∈ SP and ỹi, ỹj ∈ S̃Q. Note that ỹi = yi + ζi
for any yi ∈ SQ and ỹi ∈ S̃Q where ζi is an adversarial perturbation under an `∞-bound of size ε. Correspondingly,

M̂MD
2
(SP, S̃Q; kθ) = 1

n(n−1)

∑
i6=j H̃ij . Via Assumption 3 we know that |H̃ij −Hij | ≤ 4L2ε

√
d.

Because S̃Q ∈ Bε[SQ], it holds that |H̃ij − Hij | → 0 when ε → 0. Therefore, we have E∆ → 0. Recall that

M̂MD
2
(SP, SQ; kθ) = 1

n(n−1)

∑
i 6=j Hij . If we replace (x1, y1) with (x1

′, y1
′), we can obtain M̂MD′

2

(SP, SQ; kθ) =

1
n(n−1)

∑
i 6=j Fij and M̂MD′

2

(SP, S̃Q; kθ) = 1
n(n−1)

∑
i 6=j F̃ij , where F (or F̃ ) agrees with H (or H̃) except when i or j

is 1. Then, we have

|M̂MD
2
(SP, S̃Q; kθ)− M̂MD

2
(SP, SQ; kθ)− (M̂MD′

2

(SP, S̃Q; kθ)− M̂MD′
2

(SP, SQ; kθ))|

≤ 1

n(n− 1)
|
∑
i>1

(H̃i1 −Hi1 − (F̃i1 − Fi1)) +
∑
j>1

(H̃1j −H1j − (F̃1j − F1j))|

≤ 1

n(n− 1)

(∑
i>1

|H̃i1 −Hi1|+
∑
i>1

|(F̃i1 − Fi1)|+
∑
j>1

|H̃1j −H1j |+
∑
j>1

|F̃1j − F1j |
)

≤ 16L2ε
√
d

n
.

Using McDiarmid’s inequality for each ∆(θi) and a union bound, we then obtain that with probability at least 1− δ,

max
i∈{1,2,...,P}

∆(θ) ≤ 16L2ε
√
d√

2n

√
log

2P

δ
≤ 8L2ε

√
d√

n

√
2 log

2

δ
+ 2κ log

4RΘ

q
.

Via Assumption 3, for any two θ, θ′ ∈ Θ, we also have

|M̂MD
2
(SP, S̃Q; kθ)− M̂MD

2
(SP, S̃Q; kθ′)| ≤

1

n(n− 1)

∑
i6=j

|H̃(θ)
ij − H̃

(θ′)
ij |

≤ 1

n(n− 1)

∑
i 6=j

4L1‖θ − θ′‖ = 4L1‖θ − θ′‖ ≤ 4L1q.
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Similarly, |M̂MD
2
(SP, SQ; kθ)− M̂MD

2
(SP, SQ; kθ′)| ≤ 4L1q.

Combining these two results, we know that with probability at least 1− δ,

sup
θ
|∆(θ)| ≤ max

i∈{1,2,...,P}
∆(θ) + 8L1q ≤

8L2ε
√
d√

n

√
2 log

2

δ
+ 2κ log

4RΘ

q
+ 8L1q.

Since the adversary perturbs benign test pairs, we let n = nte and q = 1√
nte

, thus yielding the desired results.

Proposition 2. Under Assumptions 1 to 3, we use ntr samples to train a kernel kθ parameterized with θ and nte samples
to run a test of significance level α. Given adversarial budget ε ≥ 0, the benign pair (SP, SQ) and the corresponding
adversarial pair (SP, S̃Q) where S̃Q ∈ Bε[SQ], with the probability at least 1− δ, we have

sup
θ
|σ̂2
H1,λ(SP, S̃Q; kθ)− σ̂2

H1,λ(SP, SQ; kθ)| ≤
1024νL2ε

√
d√

nte

√
2 log

2

δ
+ 2κ log(4RΘ

√
nte) +

512L1ν√
nte

.

Proof of Propositon 2. We study the random error function

∆(θ) = σ̂2
H1,λ(SP, S̃Q; kθ)− σ̂2

H1,λ(SP, SQ; kθ).

Note that σ̂2
H1,λ

(SP, SQ; kθ) = 4
n3

∑n
i=1

(∑n
j=1Hij

)2

− 4
n4

(∑n
i=1

∑n
j=1Hij

)2

+ λ, and σ̂2
H1,λ

(SP, S̃Q; kθ) =

4
n3

∑n
i=1

(∑n
j=1 H̃ij

)2

− 4
n4

(∑n
i=1

∑n
j=1 H̃ij

)2

+ λ.

Because S̃Q ∈ Bε[SQ], it holds that |H̃ij −Hij | → 0 when ε→ 0. Therefore, we have E∆→ 0.

If we replace (x1, y1) with (x1
′, y1

′), we can obtain σ̂′
2

H1,λ(SP, SQ; kθ) = 4
n3

∑n
i=1

(∑n
j=1 Fij

)2

−

4
n4

(∑n
i=1

∑n
j=1 Fij

)2

+λ and σ̂′
2

H1,λ(SP, S̃Q; kθ) = 4
n3

∑n
i=1

(∑n
j=1 F̃ij

)2

− 4
n4

(∑n
i=1

∑n
j=1 F̃ij

)2

+λ, where F

(or F̃ ) agrees with H (or H̃) except when i or j is 1. Via Assumption 2, we have |Hij | ≤ 4ν. Then, we have

|σ̂2
H1,λ(SP, S̃Q; kθ)− σ̂2

H1,λ(SP, SQ; kθ)− (σ̂′
2

H1,λ(SP, S̃Q; kθ)− σ̂′
2

H1,λ(SP, SQ; kθ))|

≤ 4

n3

∣∣∣∣ n∑
i=1

[( n∑
j=1

H̃ij

)2

−
( n∑
j=1

Hij

)2

−
( n∑
j=1

F̃ij

)2

+

( n∑
j=1

Fij

)2]∣∣∣∣
+

4

n4

∣∣∣∣[( n∑
i=1

n∑
j=1

H̃ij

)2

−
( n∑
i=1

n∑
j=1

Hij

)2

−
( n∑
i=1

n∑
j=1

F̃ij

)2

+

( n∑
i=1

n∑
j=1

Fij

)2]∣∣∣∣
≤ 4

n3

∣∣∣∣ n∑
i=1

[( n∑
j=1

H̃ij −
n∑
j=1

F̃ij

)( n∑
j=1

H̃ij +

n∑
j=1

F̃ij

)
−
( n∑
j=1

Hij −
n∑
j=1

Fij

)( n∑
j=1

Hij +

n∑
j=1

Fij

)]∣∣∣∣
+

4

n4

∣∣∣∣(∑
ij

H̃ij −
∑
ij

F̃ij

)(∑
ij

H̃ij +
∑
ij

F̃ij

)
−
(∑

ij

Hij −
∑
ij

Fij

)(∑
ij

Hij +
∑
ij

Fij

)∣∣∣∣
≤ 4

n3

∣∣∣∣( n∑
j=1

H̃1j −
n∑
j=1

F̃1j

)( n∑
j=1

H̃1j +

n∑
j=1

F̃1j

)
+
∑
i>1

(
H̃i1 − F̃i1

)( n∑
j=1

H̃ij +

n∑
j=1

F̃ij

)

−
( n∑
j=1

H1j −
n∑
j=1

F1j

)( n∑
j=1

H1j +

n∑
j=1

F1j

)
−
∑
i>1

(
Hi1 − Fi1

)( n∑
j=1

Hij +

n∑
j=1

Fij

)∣∣∣∣
+

4

n4

∣∣∣∣∑
ij

H̃ij −
∑
ij

F̃ij

∣∣∣∣ · ∣∣∣∣∑
ij

H̃ij +
∑
ij

F̃ij −
(∑

ij

Hij +
∑
ij

Fij

)∣∣∣∣
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+
4

n4

∣∣∣∣∑
ij

Hij +
∑
ij

Fij

∣∣∣∣ · ∣∣∣∣∑
ij

H̃ij −
∑
ij

F̃ij −
(∑

ij

Hij −
∑
ij

Fij

)∣∣∣∣
≤ 4

n3

(∣∣∣∣ n∑
j=1

H̃1j −
n∑
j=1

F̃1j

∣∣∣∣ · ∣∣∣∣ n∑
j=1

H̃1j +

n∑
j=1

F̃1j −
( n∑
j=1

H1j +

n∑
j=1

F1j

)∣∣∣∣
+

∣∣∣∣ n∑
j=1

H̃1j +

n∑
j=1

F̃1j

∣∣∣∣ · ∣∣∣∣ n∑
j=1

H̃1j −
n∑
j=1

F̃1j −
( n∑
j=1

H1j −
n∑
j=1

F1j

)∣∣∣∣)

+
4

n3

∑
i>1

(∣∣∣∣H̃i1 − F̃i1
∣∣∣∣ · ∣∣∣∣ n∑

j=1

H̃ij +

n∑
j=1

F̃ij −
( n∑
j=1

Hij +

n∑
j=1

Fij

)∣∣∣∣
+

∣∣∣∣ n∑
j=1

Hij +

n∑
j=1

Fij

∣∣∣∣ · ∣∣∣∣H̃i1 − F̃i1 −
(
Hi1 − Fi1

)∣∣∣∣)
+

4

n4
· 2(2n− 1) · 4ν · (n2 · 4L2ε

√
d+ n2 · 4L2ε

√
d)

+
4

n4
· (n2 · 4ν + n2 · 4ν) · ((2n− 1) · 4L2ε

√
d+ (2n− 1) · 4L2ε

√
d)

≤ 4

n3
· (n · 4ν + n · 4ν) · (n · 4L2ε

√
d+ n · 4L2ε

√
d) +

4

n3
· (n · 4ν + n · 4ν) · (n · 4L2ε

√
d+ n · 4L2ε

√
d)

+
4

n3
· (n− 1) · (8ν · (n · 4L2ε

√
d+ n · 4L2ε

√
d) + (n · 4ν + n · 4ν) · (4L2ε

√
d+ 4L2ε

√
d))

+
512(2n− 1)

n2
νL2ε

√
d

≤ 1024(2n− 1)

n2
νL2ε

√
d ≤ 2048νL2ε

√
d

n
.

Using McDiarmid’s inequality for each ∆(θi) and a union bound, we then obtain that with probability at least 1− δ,

max
i∈{1,2,...,P}

∆(θ) ≤ 2048νL2ε
√
d√

2n

√
log

2P

δ
≤ 1024νL2ε

√
d√

n

√
2 log

2

δ
+ 2κ log

4RΘ

q
.

According to Lemma 19 in Liu et al. (2020a), for any two θ, θ′ ∈ Θ, we have

|σ̂2
H1,λ(SP, SQ; kθ)− σ̂2

H1,λ(SP, SQ; kθ′)| ≤ 256L1ν‖θ − θ′‖ ≤ 256L1νq.

Similarly, |σ̂2
H1,λ

(SP, S̃Q; kθ)− σ̂2
H1,λ

(SP, S̃Q; kθ′)| ≤ 256L1νq.

Combining these two results, we know that with probability at least 1− δ,

sup
θ
|∆(θ)| ≤ max

i∈{1,2,...,P}
∆(θ) + 512L1νq ≤

1024νL2ε
√
d√

n

√
2 log

2

δ
+ 2κ log

4RΘ

q
+ 512L1νq.

Since the adversary perturbs benign test pairs, we let n = nte and q = 1√
nte

, thus yielding the desired results.

B.2. Proof of Lemma 1

Lemma 1 (Restated). Under Assumptions 1 to 3, we use ntr samples to train a kernel kθ parameterized with θ and nte

samples to run a test of significance level α. Given adversarial budget ε ≥ 0, the benign pair (SP, SQ) and the corresponding
adversarial pair (SP, S̃Q) where S̃Q ∈ Bε[SQ], with the probability at least 1− δ, we have

sup
θ∈Θ̄s

|F̂(SP, S̃Q; kθ)− F̂(SP, SQ; kθ)|

≤ L2ε
√
d√

nte

[
8

s
+

2048ν2

s3

]√
2 log

2

δ
+ 2κ log(4RΘ

√
nte) +

[
8L1

s
√
nte

+
1024L1ν

s3
√
nte

]
:= ξ̃,
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and by treating ν as a constant, we have

sup
θ∈Θ̄s

|F̂(SP, S̃Q; kθ)− F̂(SP, SQ; kθ)| = O
(εL2

√
d
(

log 1
δ + κ log(RΘ

√
nte)

)
+ L1

s
√
nte

)
.

Proof of Lemma 1. Using Proposition 1 and 2, we have

sup
θ∈Θ̄s

|F̂(SP, S̃Q; kθ)− F̂(SP, SQ; kθ)|

= sup
θ∈Θ̄s

|M̂MD
2
(SP, S̃Q; kθ)

σ̂H1,λ(SP, S̃Q; kθ)
− M̂MD

2
(SP, SQ; kθ)

σ̂H1,λ(SP, SQ; kθ)
|

≤
∣∣∣∣M̂MD

2
(SP, S̃Q; kθ)

σ̂H1,λ(SP, S̃Q; kθ)
− M̂MD

2
(SP, SQ; kθ)

σ̂H1,λ(SP, S̃Q; kθ)

∣∣∣∣+

∣∣∣∣M̂MD
2
(SP, SQ; kθ)

σ̂H1,λ(SP, S̃Q; kθ)
− M̂MD

2
(SP, SQ; kθ)

σ̂H1,λ(SP, SQ; kθ)

∣∣∣∣
=

1

|σ̂H1,λ(SP, S̃Q; kθ)|
· |M̂MD

2
(SP, S̃Q; kθ)− M̂MD

2
(SP, SQ; kθ)|

+
|M̂MD

2
(SP, SQ; kθ)| · |σ̂2

H1,λ
(SP, S̃Q; kθ)− σ̂2

H1,λ
(SP, SQ; kθ)|

|σ̂H1,λ(SP, SQ; kθ)| · |σ̂H1,λ(SP, S̃Q; kθ)| · |(σ̂H1,λ(SP, S̃Q; kθ) + σ̂H1,λ(SP, SQ; kθ))|

≤ 1

s
|M̂MD

2
(SP, S̃Q; kθ)− M̂MD

2
(SP, SQ; kθ)|+

4ν

2s3
|σ̂2
H1,λ(SP, S̃Q; kθ)− σ̂2

H1,λ(SP, SQ; kθ)|

=
1

s
(
8L2ε

√
d√

nte

√
2 log

2

δ
+ 2κ log(4RΘ

√
nte) +

8L1√
nte

) +
2ν

s3
(
1024νL2ε

√
d√

nte

√
2 log

2

δ
+ 2κ log(4RΘ

√
nte) +

512L1ν√
nte

)

=

[
8L2ε

√
d

s
√
nte

+
2048ν2L2ε

√
d

s3
√
nte

]√
2 log

2

δ
+ 2κ log(4RΘ

√
nte) +

[
8L1

s
√
nte

+
1024L1ν

s3
√
nte

]
.

B.3. Proof of Theorem 2

Before providing the proof of Theorem 2, we need the following lemma. We let F(kθ) refer to F(SP, SQ; kθ), and
analogously F̂(kθ) refer to F̂(SP, SQ; kθ), for simplicity.
Lemma 2 (Liu et al. (2020a)). Under Assumptions 1 to 3, we use ntr samples to train a kernel kθ parameterized with θ and
nte samples to run a test of significance level α. With probability at least 1− δ, we have

sup
θ∈Θ̄s

|F̂(SP, SQ; kθ)−F(SP, SQ; kθ)|

≤ 2ν

s3
λ+

1√
ntr

[
8ν

s
+

1792ν

s2s

]√
2 log

2

δ
+ 2κ log(4RΘ

√
ntr) +

[
8

s
√
ntr

+
2048ν2

√
ntrs2s

]
L1 +

4608ν3

s2ntrs
:= ξ.

Then, we provide the proof of Theorem 2.

Theorem 2 (Restated). In the setup of Proposition 1, given θ̂ntr
= arg maxθ∈Θ̄s F̂(kθ), r(nte) denoting the rejection

threshold, F∗ = supθ∈Θ̄s F(kθ), and constants C1, C2, C3 depending on ν, L1, λ, s,RΘ and κ, with probability at least
1− δ, the test under adversarial attack has power

Pr(nteM̂MD
2
(SP, S̃Q; kθ̂ntr

) > r(nte)) ≥ Φ

[√
nte

(
F∗ − C1√

ntr

√
log

√
ntr

δ
− C2L2ε

√
d√

nte

√
log

√
nte

δ

)
− C3

√
log

1

α

]
.

Proof of Theorem 2. Letting θ∗ = arg maxF(kθ), we know that F̂(SP, SQ; kθ̂ntr
) ≥ F̂(SP, SQ; kθ∗) because θ̂ntr

maxi-

mizes F̂ . Using Lemma 1 and 2 , in the adversarial setting, we can obtain

F(SP, S̃Q; kθ̂ntr
) ≥ F̂(SP, S̃Q; kθ̂ntr

)− ξ ≥ (F̂(SP, SQ; kθ̂ntr
)− ξ̃)− ξ ≥ F̂(SP, SQ; kθ∗)− ξ − ξ̃
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≥ (F(SP, SQ; kθ∗)− ξ)− ξ − ξ̃ = F∗ − 2ξ − ξ̃. (9)

Corollary 11 of Gretton et al. (2012) implies that r(nte) ≤ 4ν
√

log(α−1)nte no matter the choice of θ. According to
Theorem 1 and Eq. (9), with probability at least 1− δ, the test in adversarial settings has power

Pr

[
nteM̂MD

2
(SP, S̃Q; kθ̂ntr

) > r(nte)

]

= Pr

[
ntr

M̂MD
2
(SP, S̃Q; kθ̂ntr

)−MMD2(SP, S̃Q; kθ̂ntr
)

σH1(SP, S̃Q; kθ̂ntr
)

>
r(nte)

√
nteσH1(SP, S̃Q; kθ̂ntr

)
−
√
nteMMD2(SP, S̃Q; kθ̂ntr

)

σH1(SP, S̃Q; kθ̂ntr
)

]

→ Φ

[√
nteF(SP, S̃Q; kθ̂nte

)− r(nte)

√
nteσH1

(SP, S̃Q; kθ̂ntr
)

]

≥ Φ

[√
nte(F∗ − 2ξ − ξ̃)− r(nte)

s
√
nte

]
≥ Φ

[√
nte

(
F∗ − C1√

ntr

√
log

√
ntr

δ
− C2L2ε

√
d√

nte

√
log

√
nte

δ

)
− C3

√
log

1

α

]
,

where C1, C2, C3 are constants depending on ν, L1, κ,RΘ, λ and s.

C. Related Works
In this section, we discuss the differences between our work and the related studies.

Two-sample tests. TST is a premier statistical method to judge whether two sets of data come from the same distribution.
Classical TSTs such as t-test and Kolmogorov-Smirnov test require strong assumptions on the distributions being studied
and are only efficient when applied to one-dimensional data. Non-parametric TSTs, relaxing the distributional assumptions
and being able to handling complex distributions, have been applied to a wide of real-world domains (Gretton et al.,
2009; Sugiyama et al., 2011; Gretton et al., 2012; Sutherland et al., 2017; Chen & Friedman, 2017; Ghoshdastidar et al.,
2017; Li & Wang, 2018; Kirchler et al., 2020; Chwialkowski et al., 2015; Jitkrittum et al., 2016; Lopez-Paz & Oquab,
2016; Cheng & Cloninger, 2019; Liu et al., 2020a; 2021). These tests have also allowed applications in various machine
learning problems such as domain adaptation, covariate shift, label-noise learning, generative modeling, fairness and causal
discovery (Bińkowski et al., 2018; Zhang et al., 2020b; Fang et al., 2020a; Gong et al., 2016; Fang et al., 2020b; Liu et al.,
2019; Zhang et al., 2020c; Liu et al., 2020b; Stojanov et al., 2019; Lopez-Paz & Oquab, 2016; Oneto et al., 2020). However,
people rarely doubt the reliability of non-parametric TSTs. In other words, adversarial robustness of non-parametric TSTs is
barely studied. In this paper, we leverage our proposed adversarial attack to disclose the failure mode of non-parametric
TSTs and propose an effective strategy to make TSTs reliable in analyzing critical data.

Robust hypothesis tests. Previous robust hypothesis tests are composite tests where the null and the alternative hypotheses
include a family of distributions, to obtain the reliable estimation of the underlying distributions when there exists outliers in
training dataset. These robust tests introduce various uncertainty sets for the distributions under the null and the alternative
hypotheses such as ε-contamination sets (Huber, 2004) and sets centered around the empirical distribution defined via
Kullback-Leibler divergence (Levy, 2008; Gül & Zoubir, 2017) or Wasserstein metric (Gao et al., 2018; Xie et al., 2021).
In comparison, our study discloses a premier hypothesis testing method (i.e., non-parametric TSTs) is non-robust against
adversarial attacks during the testing procedure. Further, we develop a novel defense—robust deep kernels for TSTs, to
enhance adversarial robustness of non-parametric TSTs at the testing time.

Adversarial attacks and defenses. There is a bunch of studies on adversarial attacks (Szegedy et al., 2014; Goodfellow
et al., 2015; Moosavi-Dezfooli et al., 2016; Papernot et al., 2016; Carlini & Wagner, 2017; Chen et al., 2018; Ilyas et al.,
2018; Athalye et al., 2018; Cheng et al., 2019; Xiao et al., 2018; Zheng et al., 2019; Wong et al., 2019; Mopuri et al., 2018;
Alaifari et al., 2019; Sriramanan et al., 2020; Cheng et al., 2020; Chen et al., 2020; Rahmati et al., 2020; Yan et al., 2020;
Croce & Hein, 2020; Wu et al., 2020b;a; Andriushchenko et al., 2020; Croce et al., 2020; Yu et al., 2021; Yao et al., 2021;
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Hendrycks et al., 2021; Kanth Nakka & Salzmann, 2021) and defenses (Madry et al., 2018; Cai et al., 2018; Yan et al., 2018;
Wang et al., 2019; Song et al., 2019; Tramèr et al., 2018; Wong & Kolter, 2018; Shafahi et al., 2019; Pang et al., 2019;
Carmon et al., 2019; Wang et al., 2020; Ding et al., 2020; Wu et al., 2020b; Dong et al., 2020; Wong et al., 2020; Sehwag
et al., 2020; Zhang et al., 2019a; Qin et al., 2019; Zhang et al., 2019b; 2020a; 2021; Sriramanan et al., 2020; 2021; Robey
et al., 2021; Zou et al., 2021; Kim et al., 2021; Wang et al., 2021; Sarkar et al., 2021; Pang et al., 2021; Chen et al., 2021;
Erdemir et al., 2021; Gowal et al., 2021; Rebuffi et al., 2021) in the parametric settings, especially focusing on DNNs. On
the other hand, studies on robustness of non-parametric classifiers (e.g., nearest neighbors, decision trees, random forests
and kernel classifiers) are gaining a growing attention (Amsaleg et al., 2017; Hein & Andriushchenko, 2017; Wang et al.,
2018; Chen et al., 2019; Sitawarin & Wagner, 2019; Yang et al., 2019; 2020b; Bhattacharjee & Chaudhuri, 2020; 2021)
as well. In contrast, our study focuses on adversarial robustness of non-parametric TSTs, which belongs to the field of
hypothesis test rather than classification problems.

Statistical adversarial data detection. Non-parametric TSTs have been applied to judge if upcoming data contains
adversarial data that is statistically different from benign data distribution (Metzen et al., 2017; Feinman et al., 2017; Grosse
et al., 2017; Gao et al., 2021). These works focus on utilizing statistical methods (e.g., TSTs) to distinguish adversarial data
against DNNs from benign data. Compared to these works, our work investigates TST itself. We disclose the adversarial
vulnerabilities of non-parametric TSTs through adversarial attacks and further propose effective defensive strategies to make
non-parametric TSTs reliable.

D. Non-Parametric Two-Sample Tests
We provide an introduction to the typical non-parametric TSTs in this section.

D.1. Test Statistics

C2ST-S (Lopez-Paz & Oquab, 2016) Classifier-based two-sample test (C2ST) utilizes a classifier f : X → R that
outputs the classification probabilities. C2ST trains f via maximizing the classification accuracy, and then makes judgements
on the test pairs. C2ST-S is based on the sign of classification probabilities. The test statistic of C2ST-S proposed
in Lopez-Paz & Oquab (2016) is

D(S)(SP, SQ) =
1

2n

∑
xi∈SP

1(f(xi) > 0) +
1

2n

∑
yi∈SQ

1(f(yi) < 0). (10)

Further, Liu et al. (2020a) pointed out that D(S)(SP, SQ) is equivalent to M̂MD
2
(SP, SQ; k(S)).

C2ST-L (Cheng & Cloninger, 2019) C2ST-L utilizes the classification confidence given by f instead of only accessing
the sign of f ’s output. Letting f : X → R be a classifier that outputs classification probabilities, the test statistic of C2ST-L
proposed in Cheng & Cloninger (2019) is

D(L)(SP, SQ) =
1

n

∑
xi∈SP

f(xi)−
1

n

∑
yi∈SQ

f(yi). (11)

Similar to C2ST-S, Liu et al. (2020a) also pointed out that D(L)(SP, SQ) is equivalent to M̂MD
2
(SP, SQ; k(L)).

ME (Chwialkowski et al., 2015; Jitkrittum et al., 2016). Given a positive definite kernel k : X × X → R and a set of
G test locations V = {vi}Gi=1, the test statistic of ME is

D(ME)(SP, SQ) = nz̄>n S
−1
n z̄n, (12)

where z̄n = 1
n

∑n
i=1 zi, Sn = 1

n−1

∑n
i=1(zi − z̄n)(zi − z̄n)>, and zi = (k(xi, vj)− k(yi, vj))

G
j=1 ∈ RG.

SCF (Chwialkowski et al., 2015; Jitkrittum et al., 2016). Given a positive definite kernel k : X × X → R and a set of
G test locations V = {vi}Gi=1, the test statistic of SCF is

D(SCF)(SP, SQ) = nz̄>n S
−1
n z̄n, (13)
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where z̄n = 1
n

∑n
i=1 zi, Sn = 1

n−1

∑n
i=1(zi − z̄n)(zi − z̄n)>, and zi = [ĥ(xi) sin (x>i vj) −

ĥ(yi) sin (y>i vj), ĥ(xi) cos (x>i vj) − ĥ(yi) cos (y>i vj)]
G
j=1. ĥ(x) =

∫
Rd exp(−iux)l(u)du is the Fourier transform of

l(x), and h : Rd → R is an analytic translation-invariant kernel.

D.2. Test Criterion

For C2ST-S and C2ST-L, Lopez-Paz & Oquab (2016) and Cheng & Cloninger (2019) proposed to maximize f ’s classification
accuracy, but it cannot directly maximize the test power (Liu et al., 2020a). In this paper, therefore, we take F̂ (S)(SP, SQ) =
M̂MD

2
(SP,SQ;k(S))

σ̂H1,λ
(SP,SQ;k(S))

and F̂ (L)(SP, SQ) = M̂MD
2
(SP,SQ;k(L))

σ̂H1,λ
(SP,SQ;k(L))

as the test criterion for C2ST-S and C2ST-L, respectively. To

make F̂ (S) differentiable, we modify the kernel for C2ST-S as follows:

k(S)(x, y) =
1

16
(
f(x)

|f(x)| + 1)(
f(y)

|f(y)| + 1). (14)

For ME and SCF tests, Chwialkowski et al. (2015) and Jitkrittum et al. (2016) theoretically pointed out that maximizing
D(ME)(SP, SQ) and D(SCF)(SP, SQ) can maximize the test power of ME and SCF, respectively. Therefore, F̂ (ME)(·, ·) =

D(ME)(·, ·) and F̂ (SCF)(·, ·) = D(SCF)(·, ·).

E. Experimental Details and Results
E.1. Datasets

In this section, we introduce the distribution P and Q of each dataset.

Blob. Blob is often used to validate two-sample test methods (Gretton et al., 2012; Jitkrittum et al., 2016; Sutherland et al.,
2017). We show the specifications of P and Q of Blob in Table 6.

High-dimensional Gaussian mixture. High-dimensional Gaussian mixture (HDGM) was utilized as a benchmark dataset
in Liu et al. (2020a). HDGM can be regarded as high-dimensional Blob which contains two modes with the same variance
and different covariance. We show the specifications of P and Q of HDGM in Table 6.

We set d = 10 for experiments on HDGM in Section 5.1 and 5.2. In section 5.4, we conduct experiments on HDGM
with different d ∈ {5, 10, 15, 20, 25}. In practice, the scale of data from HDGM is roughly betwen −4.37 and 4.70. The
adversarial budget we set in the experiments (ε = 0.05) on HDGM is small enough.

Table 6. Specifications of P and Q of synthetic datasets. µb
1 = [0, 0], µb

2 = [0, 1], µb
3 = [0, 2], ..., µb

8 = [2, 1], µb
9 = [2, 2]. µh

1 =
0d, µ

h
2 = 0.5×1d where 1d is an identity matrix with size d. ∆b

i = −0.02− 0.002× (i− 1) if i < 5 and ∆b
i = 0.02 + 0.002× (i− 6)

if i > 5. if i = 5, ∆b
i = 0. ∆h

1 and ∆h
2 are set to 0.5 and -0.5, respectively.

Datasets P Q

Blob
∑9
i=1

1
9N (µbi , 0.03× I2)

∑9
i=1

1
9N
(
µbi ,

[
0.03 ∆b

i

∆b
i 0.03

])
HDGM

∑2
i=1

1
2N (µhi , Id)

∑2
i=1

1
2N
(
µhi ,

 1 ∆h
i 0d−2

∆h
i 1 0d−2

0Td−2 0Td−2 Id−2

)

Higgs. For the experiments on Higgs, we compare the jet Φ-momenta distribution (d = 4) of the background process,
P, which lacks Higgs bosons, to the corresponding distribution Q for the process that produces Higgs bosons, follow-
ing Chwialkowski et al. (2015). Higgs dataset can be downloaded from UCI Machine Learning Repository. In practice, the
scale of data from Higgs is betwen −1.74 and 1.74. The adversarial budget we set in the experiments (ε = 0.05) on Higgs
is small enough.

MNIST. For the experiments on MNIST, we compare true MNIST images drawn from MNIST dataset (LeCun et al.,
1998) (regarded as the distribution P) to fake MNIST images generated from a pretrained deep convolutional generative

https://archive.ics.uci. edu/ml/datasets/Higgs
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adversarial network (DCGAN) (Radford et al., 2015) (regarded as the distribution Q). Samples drawn from Q can be
generated by implementing dcgan.py.

CIFAR-10. For the experiments on CIFAR-10, we compare samples drawn from the class “cat” (regarded as the distribution
P) to samples drawn from the class “dog” (regarded as the distribution Q) in CIFAR-10 dataset (Krizhevsky, 2009). CIFAR-
10 dataset can be downloaded via PyTorch (Paszke et al., 2019).

E.2. Training Settings

We conduct all experiments on Python 3.8 (PyTorch 1.1) with NVIDIA RTX A50000 GPUs. We run MMD-D, MMD-G,
C2ST-S, C2ST-L, ME and SCF using the GitHub code provided by Liu et al. (2020a) and implement MMD-RoD by
ourselves. Following Lopez-Paz & Oquab (2016), we use a deep neural network f as the classifier in C2ST-S and C2ST-L,
and train f by minimizing cross-entropy loss. The neural network structure φ in MMD-D and MMD-RoD has the same
architecture with feature extractor in f , i.e., f = g ◦ φ where g is composed of two fully-connected layers and outputs the
classification probabilities. For MNIST and CIFAR-10, we normalize the raw data into the scale [−1, 1].

For Blob, HDGM and Higgs, φ is a five-layer fully-connected neural network. The number of neurons in hidden and output
layers of φ are set to 50 for Blob, 3× d for HDGM and 20 for Higgs, where d is the dimensionality of samples. For MNIST
and CIFAR-10, φ is a convolutional neural network (CNN) that contains four convolutional layers and one fully-connected
layer. The structure of the CNN exactly follows Liu et al. (2020a).

We use Adam optimizer (Kingma & Ba, 2015) to optimize (1) parameters of f in C2ST-S and C2ST-L, (2) parameters of φ
in MMD-D and MMD-RoD and (3) kernel lengthscale in MMD-G. We set drop-out rate to zero when training C2ST-S,
C2ST-L, MMD-D and MMD-RoD on all datasets. We set the number of training samples ntr to 100 for Blob, 3, 000 for
HDGM, 5, 000 for Higgs, 500 for MNIST and CIFAR-10.

For ME and SCF, we follow (Chwialkowski et al., 2015) and set J = 10 for Higgs. For other datasets, we set J = 5.

For C2ST-S and C2ST-L, we set batchsize to 128 for Blob, HDGM and Higgs, and 100 for MNIST and CIFAR-10. We
set the number of training epochs to 9000× nte/batchsize for Blob, 1, 000 for HDGM and Higgs, 2, 000 for MNIST and
CIFAR-10. We set learning rate to 0.001 for Blob, HDGM and Higgs, and 0.0002 for MNIST and CIFAR-10.

For MMD-D, we use full batch (i.e., all samples) to train MMD-D and MMD-RoD for Blob, HDGM and Higgs. We use
mini-batch (batchsize is 100) to train MMD-D and MMD-RoD for MNIST and CIFAR-10. We set the number of training
epochs to 2, 000 for Blob, HDGM, Higgs and MNIST, and 1, 000 for CIFAR-10. We set learning rate to 0.0005 for Blob
and Higgs, 0.00001 for HDGM, 0.001 for MNIST and 0.0002 for CIFAR-10.

For MMD-RoD, we keep ε for each dataset same as that in Table 1 and set T to 1 for all datasets. We set learning rate to
0.0005 for MNIST. Other training settings of MMD-RoD keep same as that of MMD-D.

E.3. Testing Procedure

We use permutation test to compute p-values of MMD-D, MMD-G, C2ST-S, C2ST-L and MMD-RoD. We set α to
0.05 and the iteration number of permutation test to 100 for all experiments. In addition, we utilize the wild bootstrap
process (Chwialkowski et al., 2014) to resample the value of MMD for MMD-D, MMD-G and MMD-RoD since the
adversarial data are probably not IID. The wild bootstrap can ensure that we obtain correct p-values in non-IID/IID
scenarios (Chwialkowski et al., 2014).

Wild bootstrap process. Following Leucht & Neumann (2013) and Chwialkowski et al. (2014), we utilize the following
wild bootstrap process:

Wt = e−1/lWt−1 +
√

1− e−2/lτt, (15)

where W0, τ0, ..., τt are independent standard normal random variables. In all experiments, we set l = 0.5.

We summarize the permutation test with wild bootstrap process for non-parametric TSTs based on MMD in Algorithm 3.

https://github.com/eriklindernoren/ PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py.
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Algorithm 3 Testing with kθ on SP and SQ

1: Input: input pair (SP, SQ), kernel kθ parameterized with θ, iteration number of permutation test nperm

2: Output: est, p-value: 1
nperm

∑nperm

i=1 1(permi > est)

3: est← M̂MD
2
(SP, SQ; kθ)

4: for i = 1 to nperm do
5: Generate {W P

i }nte
i=1 and {WQ

i }nte
i=1 using Eq. (15)

6: {W̃ P
i }nte

i=1 ← {W P
i }nte

i=1 − 1
nte

∑nte

i=1W
P
i

7: {W̃Q
i }nte

i=1 ← {WQ
i }nte

i=1 − 1
nte

∑nte

i=1W
Q
i

8: permi ← 1
nte(nte−1)

∑
i,j HijW̃

P
i W̃

Q
j

9: end for

E.4. Weight Set Configurations

Observed from the lower right panel of Figure 3, we empirically find that an appropriate weight set is critical to the
performance of EA. We finetune the weight set by increasing the weight of the TST that is difficult to be successfully fooled.
Table 7 summarizes the manually-finetuned weight of MMD-D, MMD-G, C2ST-S, C2ST-L, ME and SCF for each dataset.

Table 7. The manually-finetuned weight set of EA for each dataset.
Datasets W

Blob { 5
29 ,

1
29 ,

1
29 ,

20
29 ,

1
29 ,

1
29}

HDGM { 25
79 ,

1
79 ,

1
79 ,

50
79 ,

1
79 ,

1
79}

Higgs { 3
98 ,

45
98 ,

4
98 ,

3
98 ,

40
98 ,

3
98}

MNIST { 1
109 ,

45
109 ,

1
109 ,

1
109 ,

60
109 ,

1
109}

CIFAR-10 { 1
80 ,

50
80 ,

4
80 ,

4
80 ,

20
80 ,

1
80}

E.5. Type I Errors

The Type I error of a TST measures the probability of rejectingH0 whenH0 is true. If the Type I error was much higher
than α, this TST would always reject the null hypothesis, which invalidates this TST (Chwialkowski et al., 2014). Therefore,
a reasonable Type I error of a TST should not be much higher than α.

Type I Errors of six typical non-parametric TSTs. We report the Type I error of typical non-parametric TSTs on each
dataset in Table 8. As for the experimental configurations, the only difference from settings in Section 5.1 is that the training
pairs and test pairs are composed of samples drawn from the same distribution P. Table 8 shows that these six typical
non-parametric TSTs have reasonable Type I errors in benign settings.

Table 8. We report the Type I error of six typical non-parametric TSTs (α = 0.05) on five benchmark datasets.
Datasets nte MMD-D MMD-G C2ST-S C2ST-L ME SCF

Blob 100 0.056±0.000 0.056±0.000 0.049±0.000 0.051±0.000 0.051±0.000 0.042±0.000

HDGM 3000 0.057±0.000 0.048±0.000 0.056±0.000 0.040±0.000 0.050±0.000 0.041±0.000

Higgs 5000 0.058±0.000 0.043±0.000 0.040±0.001 0.045±0.001 0.043±0.000 0.029±0.000

MNIST 500 0.026±0.000 0.009±0.000 0.030±0.000 0.038±0.000 0.026±0.000 0.010±0.000

CIFAR-10 500 0.032±0.000 0.001±0.000 0.000±0.000 0.003±0.000 0.001±0.000 0.000±0.000

Type I error of MMD-RoD. We report the Type I error of MMD-RoD in Table 9. The training pairs and test pairs are
composed of samples drawn from the same distribution P. The training settings and testing procedure of MMD-RoD exactly
follow Section 5.2. Table 9 shows that the Type I error of MMD-RoD maintains reasonable in benign settings.
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Table 9. The Type I error of MMD-RoD.
Blob HDGM Higgs MNIST CIFAR-10

0.049±0.004 0.056±0.000 0.030±0.001 0.002±0.000 0.000±0.000

E.6. Transferability between Different Types of Non-Parametric TSTs

We report the test power of non-parametric TSTs under the adversarial attack against a certain type of TSTs on MNIST
in Figure 4(a). The experimental settings are kept the same as in Section 5.1 except W. We set w(J ) = 1 for the attack
implemented on benign test pairs in each row of Figure 4(a) where J is the target non-parametric TST (corresponding to the
ordinate). Figure 4(a) shows that a specific attack against a certain type of TST sometimes can fool other types of TSTs.

Therefore, an ensemble of TSTs is sometimes effective against a specific attack against a certain type of TST. For example,
an ensemble of C2ST-S and C2ST-L could still be vulnerable against the attack against C2ST-S since the test power of
C2ST-S and C2ST-L are simultaneously degraded under the attack against C2ST-S (see the third row of Figure 4(a)).
However, an ensemble of those six typical non-parametric TSTs can defend the attack against C2ST-S since MMD-D,
MMD-G and ME all have a high test power under the attack against C2ST-S (see the third row of Figure 4(a)).

However, an ensemble of TSTs is no longer an effective defense under EA. Compared to the attack against a particular type
of TST, our proposed EA that jointly minimizes a weighted sum of different test criteria can significantly degrades the test
power of different TSTs simultaneously (empirically validated in Section 5.1).

In addition, we further show the test power of non-parametric TSTs under EA against a TST ensemble composed by leaving
one TST (corresponding to the ordinate) out of Ensemble on MNIST in Figure 4(b). The experimental settings follow
Section 5.1 except W. In each row of Figure 4(b), we set the weight of the TST (corresponding to the ordinate) that is
needed to be left out to 0; we then normalize the weights of leftover TSTs in Ensemble to [0, 1] according to the original
weight set summarized in Table 7, so that the weight sum is 1. Figure 4(b) demonstrates that attacks against an ensemble of
TSTs sometimes can successfully fool TSTs that are not included in the attack ensemble.

All in all, Figure 4 validates that our proposed EA has transferability between different types of non-parametric TSTs, and it
further validates that existing non-parametric TSTs lack adversarial robustness.

MMD-D MMD-G C2ST-S C2ST-L ME SCF
Non-parametric TSTs

MMD-D

MMD-G

C2ST-S

C2ST-L

ME

SCF

In
pu

t p
ai

r

0.2 1.0 1.0 1.0 1.0 0.999

1.0 0.005 1.0 1.0 1.0 0.087

0.996 0.997 0.001 0.001 1.0 0.87

0.997 0.993 0.0 0.0 1.0 0.865

0.994 0.861 0.999 0.999 0.004 0.44

1.0 1.0 1.0 1.0 1.0 0.0

Only one target TST

0.0

0.2

0.4

0.6

0.8

1.0

Test pow
er

(a)

MMD-D MMD-G C2ST-S C2ST-L ME SCF
Non-parametric TSTs

MMD-D

MMD-G

C2ST-S

C2ST-L

ME

SCF

In
pu

t p
ai

r

0.333 0.09 0.001 0.003 0.072 0.0

0.036 0.879 0.015 0.018 0.063 0.0

0.314 0.051 0.014 0.022 0.082 0.0

0.031 0.081 0.012 0.015 0.068 0.0

0.093 0.014 0.007 0.012 1.0 0.0

0.061 0.105 0.006 0.007 0.076 0.108

Leave one TST out

0.0

0.2

0.4

0.6

0.8

1.0

Test pow
er

(b)

Figure 4. In Figure 4(a), each number represents the test power of the non-parametric TST corresponding to its abscissa on adversarial test
pairs generated by the attack against the target TST corresponding to its ordinate. In Figure 4(b), each number represents the test power of
the non-parametric TST corresponding to the abscissa on adversarial test pairs generated by the attack against Ensemble except the TST
corresponding to its ordinate.

E.7. Discussions about the Situation When d is Larger

In this section, we discuss the reason for the phenomenon where the test power of Ensemble under EA does not continue to
decrease with larger d (e.g., d > 15), which is shown in the upper right of Figure 3. We demonstrate the test power of each
particular non-parametric TST and Ensemble under EA with different d in Table 10. Table 10 shows that, with the increasing
of d, the test power of most TSTs (e.g., MMD-D, MMD-G) becomes lower. However, the ME test seems to be difficult to be
successfully fooled with larger d, especially d > 15. We believe that upweighting the test criterion of ME (i.e., enlarging
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w(ME)) during conducting EA on HDGM with larger d could make EA further hurt the test power of ME and Ensemble.

Table 10. We report the average test power of six typical non-parametric TSTs (α = 0.05) as well as Ensemble under EA on HDGM with
different d ∈ {5, 10, 15, 20, 25}.

d MMD-D MMD-G C2ST-S C2ST-L ME SCF Ensemble
5 0.289±0.019 0.613±0.029 0.123±0.017 0.597±0.137 0.885±0.080 0.297±0.003 0.983±0.023

10 0.259±0.009 0.081±0.003 0.105±0.000 0.090±0.000 0.500±0.025 0.006±0.000 0.734±0.078

15 0.094±0.002 0.063±0.000 0.079±0.000 0.086±0.000 0.655±0.000 0.003±0.000 0.665±0.093

20 0.008±0.000 0.014±0.000 0.067±0.000 0.051±0.000 0.696±0.000 0.006±0.000 0.765±0.051

25 0.000±0.000 0.000±0.000 0.009±0.000 0.000±0.000 0.762±0.000 0.000±0.000 0.707±0.081

E.8. Extensive Experiments about Adversarially Learning Kernels for TSTs

Here, we study a different adversarial learning objective for obtaining robust kernels that minimizes a weighted sum of
benign and adversarial loss (Goodfellow et al., 2015; Zhang et al., 2019b), which is formulated as follows.

θ̂ ≈ arg max
θ

(β · F̂(SP, SQ; kθ) + (1− β) · F̂(SP, S̃Q; kθ)), (16)

where the adversarial set S̃Q is generated using Eq. (7) and 0 ≤ β ≤ 1 is a constant. Note that Eq. (8) is a special case of
Eq. (16) when we set β = 0.

We call non-parametric TSTs with robust deep kernels obtained by Eq. (16) as “MMD-RoD∗”. The training algorithm
of MMD-RoD∗ is almost same as Algorithm 2 expect that the Line 6 in Algorithm 2 is replaced with θ ← θ + η∇θ(β ·
F̂(SP, SQ; kθ) + (1− β) · F̂(SP, S̃Q; kθ)).

We conduct experiments to evaluate the adversarial robustness of MMD-RoD∗. We set β = 0.5 and denote the ensemble of
six typical non-parametric TSTs and MMD-RoD∗ as “Ensemble∗”. Other settings of training, attack and testing procedure
exactly follow Section 5.2. We report the test power of MMD-RoD∗ and Ensemble∗ in Table 11.

Table 11. Test power of MMD-RoD∗ and Ensemble∗.
EA Blob HDGM Higgs MNIST CIFAR-10

MMD-RoD∗ × 1.00±0.04 1.00±0.02 0.52±0.00 1.00±0.12 1.00±0.00√
0.13±0.06 0.01±0.00 0.19±0.02 0.86±0.00 0.84±0.01

Ensemble∗ × 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00√
0.85±0.01 0.74±0.02 0.54±0.04 0.89±0.00 0.88±0.00

Compared to MMD-RoD (in Table 2), we find MMD-RoD∗ that incorporates benign training pairs into adversarially learning
kernels improves the test power in benign settings (especially on HDGM), but obtains the lower test power in adversarial
settings among all datasets. Therefore, we recommend utilizing only adversarial training pairs for adversarially learning
deep kernels.

F. Description of Attackers against Non-Parametric TSTs
In this section, we provide a detailed description of the attacker against non-parametric TSTs from four perspectives “goal,
knowledge, capability, strategy” (Biggio & Roli, 2018).

• Goal. The attacker aims to make a target non-parametric TST incorrectly judge two sets of data are drawn from the
same distribution during the test procedure, when in reality these two sets of data are drawn from different distributions.

• Knowledge. Depending on the assumptions made on the attacker’s knowledge, we have different attack scenarios.

– Perfect-knowledge white-box attacks. The attacker is assumed to know everything about the target non-parametric
TST, such as the target non-parametric TST’s test criterion function and kernel parameters.
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– Limited-knowledge gray-box attacks. The attacker has part of the target non-parametric TST’s knowledge. For
example, the attacker knows the target non-parametric TST’s test criterion function, but does not know its kernel
parameters and training data.

– Zero-knowledge black-box attacks. The attacker does not have any knowledge about the target non-parametric
TST. The attacker can only query the non-parametric TST in a black-box manner and then obtain the judgement
on the test pairs.

• Capability. The attacker can only manipulate test data, and the malicious perturbations should be human-imperceptible.

• Strategy. The attacker searches for adversarial sets via minimizing the target non-parametric TST’s test criterion under
data manipulation constraints.


