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Abstract

In many real-world applications, mutual trans-
fer learning is the paradigm that each data do-
main can potentially be a source or target do-
main. This is quite different from transfer learn-
ing tasks where the source and target are known
a priori. However, previous studies about mutual
transfer learning either suffer from high compu-
tational complexity or oversimplified hypothesis.
To overcome these challenges, in this paper, we
propose the Difference Standardization method
(DiffS) for mutual transfer learning. Specifically,
we put forward a novel distance metric between
domains, the standardized domain difference, to
obtain fast structure recovery and accurate param-
eter estimation simultaneously. We validate the
method’s performance using both synthetic and
real-world data. Compared to previous methods,
DiffS demonstrates a speed-up of approximately
3000 times that of similar methods and achieves
the same accurate learnability structure estima-
tion.

1. Introduction
In various real-world applications, it is a common practice
to take advantage of domain-specific knowledge in a source
domain to improve the performance in a target domain,
which is called transfer learning (Zhuang et al., 2020). For
example, human beings could transfer the knowledge about
how to play the violin into playing the piano, or learn to
drive a car using the experience when riding a bicycle. In
transfer learning, the source domains and target domain are
usually specified as a priori.

However, nowadays there are a growing amount of big data
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applications. Such transferring scenario can not be easily
applied in those data collections. As an example, climate
analysis (Vose et al., 2014) utilizes a collection of data sets
recorded in different time periods, different places or dif-
ferent devices. Due to the variety of the distributions in
these data sets, they are split into different data domains. In
this case, every data domain could possibly be the target do-
main depending on their inherent characteristics. The source
and target domains are hence not known a priori. Transfer
learning strategy may apply to such a task but it will suffer
from exponential explosion problem since it needs to try
every pair of source and target domains. As a result, mutual
transfer learning was proposed by (Cheng et al., 2020) in
order to efficiently resolve the problem. In mutual transfer
learning, every data domain is considered to be a candidate
source domain or target domain. Since some of the domains
are more related with each other, there exists several do-
main subgroups. Mutual transfer learning aims to reveal
such subgroup structure, or called the learnability structure,
within the data collection. Although mutual transfer learn-
ing precisely define the features in such Big Data tasks, it
also encounters several challenges:

(1) Large-scale setting: In a real-world scenario, data scale
grows exponentially, e.g., the number of domains, sample
size of each domain and feature dimension. In the NOAA’s
nClimDiv Database, there have been more than 500,000
samples recorded monthly ever since 1895 coming from
hundreds of data domains. If we need daily or even hourly
predictions, the scale would be further enlarged by hundreds
of times. The large-scale setting leads to extremely long
time cost or even infeasibility for some methods. (2) Mixed-
effects heterogeneity: In mutual transfer learning tasks,
some features may have the same effect on the response
among different domains, which are called the global fea-
tures. Yet, there may exist some features that behave differ-
ently in various domains. These features can be called the
heterogeneous features. Global and heterogeneous features
may simultaneously exist in real-world data. To illustrate,
in user preference modeling (Aaker et al., 2013; Lenk et al.,
1996), the low price may attract every consumer while a
nice appearance of the product may be only appreciated by
part of people.

One approach to addressing these challenges is to integrate
learnability structure recovery into optimization problems.
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Ŝ

(X,Z,y)

M

Ŝ
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


(
β̂

θ̂

)

λ

δij

Ŝ
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Figure 1. Comparison between DiffS and previous optimization-based methods. Optimization-based methods (orange arrow path) typically
estimate parameters multiple times when tuning hyper-parameters. They could be infeasible in large-scale settings. Instead, DiffS (blue
arrow path) uses the proposed standardized domain difference to accurately obtain the learnability structure. Meanwhile, we derive a
closed-form solution to further accelerate the procedure.

The generalized least squares method (Anh & Chelliah,
1999) is a scalable method with a closed-form solution
that solves the mixed-effects parameter estimation prob-
lem. However, it lacks the ability to recover learnability
structure since it treats heterogeneous parameters of each do-
main individually. As an improvement, (Cheng et al., 2020)
minimizes generalized least square loss with a penalty on
heterogeneous parameters to fuse domains into subgroups.
Nevertheless, it suffers from extremely high computational
cost and memory usage when dealing with large-scale data.
To our best knowledge, most of the optimization methods
that address mixed-effects problem have large time complex-
ities, either because of hyper-parameter tuning or algorithm
complexity. In order to efficiently estimate the learnability
structure, another category of methods turn to statistical ap-
proaches. For instance, (Xue et al., 2007) utilizes the Dirich-
let process to estimate heterogeneous parameters. (Bakker
& Heskes, 2003) uses an EM algorithm for its Gaussian
mixture model assumption. Despite the fast computation,
they cannot deal with mixed-effects heterogeity situation
since they simply equally treat all the features.

In this paper, we propose the Difference Standardization
method (DiffS) to overcome the two challenges in mutual
transfer learning. Our method constructs a novel domain
distance metric called the standardized domain difference
and estimates the learnability structure by evaluating such
difference between data domains. We also further research
the properties of parameters in different domains and theo-
retically guarantee the learnability structure recovery using
our proposed algorithm. DiffS is able to estimate the param-
eters via a closed-form solution, which much accelerates the
estimation as illustrated in Figure 1. The main contributions
of this work can be summarized as follows:

• Novel method: We propose DiffS using the designed
standardized domain difference to address learnability
structure recovery problem. With standardized domain
difference, the learnability structure can be estimated
from raw data without any need of prior knowledge.

• Fast and tuning-free estimation: DiffS is feasible
with large-scale data and avoids hyper-parameter tun-
ing problems compared to common regularization
methods. In the synthetic experiments, result shows
DiffS is about 3000 times faster than previous methods
in large-scale settings and spends only about 1/10 of
the time cost by k-means.

• Theoretical guarantees: We theoretically guarantee
the perfect learnability recovery ability of DiffS and
analyze the computational complexity. Also, we prove
the property of the standardized domain difference.

• Synthetic and real-world experiments: We compare
DiffS with state-of-the-art baseline methods. Results
show that DiffS outperforms the baseline methods in
almost all cases of experiment settings. We also apply
DiffS to the monthly temperature prediction problem
on NOAA’s nClimDiv Database and Microarray Data
to prove the feasibility in real-world applications.

Notations We denote bold lowercase characters like α
as column vectors, bold uppercase characters like A as
matrices and calligraphic characters like A, except P and
I, as sets. |A| denotes the cardinality of the set A. P(A)
denotes the set consisting of all partitions for set A. ∥·∥
refers to the ℓ2 norm of a vector. The indicator function
I(P ) equals 1 if P is true and 0 otherwise. The squared
root A1/2 of a positive semi-definite matrix A is defined as
A1/2A1/2 = A. 1p×q , 0p×q ∈ Rp×q denote p×q matrices
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with all entries filled with 1 or 0, respectively. Iq ∈ Rq×q

denotes the q × q identity matrix.

2. Background
2.1. Formalization of Mixed-effects Heterogeneity with

Learnability Structure

We formalize the learnability structure following the two-
layer mixed-effects regression model in (Cheng et al., 2020).
Suppose that M data domains are divided into S subgroups,
which can be expressed as a partition S = {S1,S2, . . . ,SS}
of {1, 2, . . . ,M}. In data domain i, there are ni data sam-
ples with p-dimensional global features and q-dimensional
heterogeneous features. The global parameters are shared
among all the domains and the heterogeneous parameters
are shared in one subgroup. Since we do not known how
many subgroups there are and what member domains they
have, the heterogenous parameters are only shared in one
data domain at the very beginning. Combine these samples
of data domain i in a vector form, we use the linear mixed-
effects model to describe the mutual transfer learning task
as

yi = Xiβ +Zi(αs + ui) + εi, i ∈ Ss, (1)

where yi ∈ Rni is the response vector, Xi ∈ Rni×p

is the global feature design matrix with parameters β,
Zi ∈ Rni×q is the heterogeneous feature design matrix
with parameters αs, ui ∼ N (0, σ2

uIq) denotes the random
effect and εi ∼ N (0, σ2

εIni
) denotes the observation noise.

To be explicit, random effect ui is domain-specific and stays
fixed in a single domain sampling procedure while obser-
vation noise varies among samples. The global parameters
β are the same among all the domains, i.e., a hard sharing.
The heterogeneous features show a two-layer heterogene-
ity: the shared subgroup-specific heterogeneous parameters
α results in the 1st-layer heterogeneity and the domain-
specific random effect ui of each data domain (lacking in
usefulness for knowledge transfering) contributes to the 2nd-
layer heterogeneity. Our goal is to obtain an estimate of
the true learnability structure S∗ and parameters β∗, α∗

s ,
1 ⩽ s ⩽ S.

2.2. Generalized Least Squares

Under the situations that the learnability structure is un-
known (i.e., S is unknown), the model (1) can be revised as

yi = Xiβ +Zi(θi + ui) + εi, 1 ⩽ i ⩽ M, (2)

where θi ∈ {α1, . . . ,αS} are the heterogenous parameters
for each data domain since they are simply known shared
in one domain at present. Then our main goal becomes to
figure out β∗, α∗

s , 1 ⩽ s ⩽ S and all the θi. In fact, if we
ignore the learnability structure embedded in the data, which
means we simply put one data domain in each subgroup,

the heterogeneity parameters can be analyzed independently
among domains. Therefore, this problem can be solved by
minimizing

LGLS(β,θ1, . . . ,θM ) =

M∑

i=1

(yi −Xiβ −Ziθi)
⊤W i(yi −Xiβ −Ziθi),

(3)

where W i = Cov(yi|Xi,Zi)
−1 = (σ2

εI + σ2
uZiZ

⊤
i )

−1

is the inverse of covariance of yi given Xi,Zi. The pa-
rameters σ2

ε , σ2
u can be consistently estimated via restricted

maximum likelihood method (Cheng et al., 2020; Richard-
son & Welsh, 1994). We here assume they are known. The
GLS estimator (3) has a closed-form solution, characterized
by

β̂ = (

M∑

i=1

X⊤
i W iXi)

−1
M∑

i=1

X⊤
i W iXiβ

D
i ,

θ̂i = θD
i ,

(4)

where

(
βD
i ,θ

D
i

)⊤
= [G⊤

i W iGi]
−1G⊤

i W iyi, (5)

is called the domain GLS estimator, just for symbol sim-
plification. Here, Gi = (Xi,Zi) is the augmented design
matrix. Although closed-form solutions are available, we
cannot extract learnability structure directly from the esti-
mates since in the model we treat θ independently. Two
of the estimated θ from the same subgroup can rarely turn
out to be exactly the same due to sample noise and other
disturbance.

3. Methodology
3.1. DiffS

Given design matrix Xi ∈ Rni×p, Zi ∈ Rni×q, 1 ⩽ i ⩽
M , we assume the response yi ∈ Rni follows the mixed-
effects heterogeneity model (1) with true parameters β∗,
α∗ but with learnability structure S∗ unknown. Combining
optimization and statistical method premises, we propose
the Difference Standardization method (DiffS) in order to
directly obtain the learnability structure and further simulta-
neously estimate the global and heterogeneous parameters.

Basically, we involve constraints to ensure that the hetero-
geneous parameters are the same in one subgroup and try
to extract a learnability structure out of raw data. Derived
from the generalized least square loss, DiffS considers the
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problem of

min LDiffS(β,θ1, . . . ,θM ,α1, . . . ,αŜ) =

M∑

i=1

(yi −Xiβ −Ziθi)
⊤W i(yi −Xiβ −Ziθi),

s.t. Ŝ = Ψ(X,Z),

θi = αs, ∀i ∈ Ŝs, 1 ⩽ s ⩽ |Ŝ|.
(6)

Here, X,Z stand for the design matrices of all the data
domains, N =

∑M
i=1 ni is the total number of samples, the

learnability recovering function Ψ : RN×(p+q) 7→ P({i ∈
N+, i ⩽ M}), derived by us, generates a learnability struc-
ture estimated directly from data, and Ŝ = |Ŝ| is the number
of estimated subgroups.

The problem (6) can be divided into two parts, consistent
with the two steps in Section 3.3: the learnability structure
recovery part, and the parameter estimating part. In the
learning structure recovery part, the recovering function Ψ
extracts the relationships of data domains from the raw data.
It is designed to utilize the distances between domains in
order to divide them into subgroups. To be specific, the
recovering function firstly converts the data Xi,Zi into a
distance matrix ∆ as its input:

Ψ(X,Z) = Ψ (∆(X,Z)) , (7)

where ∆ = (∆ij)M×M and ∆ij denotes the distance be-
tween domain i and j. It further merges similar domains
depending on the distance matrix as described in the Step I
in Section 3.3. The distance measurement can be various,
but in order to recover the learnability structure perfectly,
we further propose the standardized domain difference in
Section 3.2. Once we obtain the estimated subgroups Ŝ,
in the parameter estimating part, we can solve (6) with a
simple closed-form solution described in Section 3.3, the
Step II.

3.2. Standardized Domain Difference

In order to accurately recover the learnability structure, the
remaining problem is to design a effective distance metric
∆ij and the recovering function Ψ. Firstly, we look into
the probability property of the differences between the do-
main GLS estimates for heterogenous parameters. It can be
proved that

θD
i − θD

j ∼ N (θ∗
i − θ∗

j ,Σi +Σj), (8)

where θ∗
i , θ∗

i are the true parameters for domain i, j,
Σi = (0q×p, Iq)[G

⊤
i W iGi]

−1(0q×p, Iq)
⊤ is the covari-

ance matrix with regard to domain GLS estimator. Since the
covariance matrices vary among difference domain pair i, j,
directly applying ℓ2-norm on the original domain difference

Algorithm 1 DiffS
1: Input: Design matrices Xi ∈ Rni×p, Zi ∈ Rni×q,

response vector yi ∈ Rni , 1 ⩽ i ⩽ M ;
2: Prepare: Calculate the domain GLS estimates θD

i with
(5) and the standardized domain differences δij with
(9);

3: Step 1: Calculate the distance matrix ∆ =
(∥δij∥2)M×M and then apply learnability recovering
function Ψ (Algorithm 2) with ∆ to obtain Ŝ.

4: Step 2: Calculate β̂, α̂s with (12) and set θ̂i = α̂s for
i ∈ Ŝs, 1 ⩽ s ⩽ Ŝ;

5: return Ŝ, β̂, α̂s, 1 ⩽ s ⩽ S;

is likely to have a wrong learnability structure estimate. In
order to address such problem, we standardize the original
domain difference and propose the standardized domain
difference, which defined as

δij = (Σi +Σj)
−1/2(θD

i − θD
j ). (9)

In DiffS, we use the ℓ2 norm of the standardized domain
difference as the distance between domains:

∆ij = ∥δij∥2. (10)

It can be proven that

δij ∼
{
N (0, I), i, j in the same subgroup,
N (µij , I), otherwise,

(11)

where µij = (Σi +Σj)
−1/2(θ∗

i − θ∗
j ). See proof in Ap-

pendix A.1. If domain i, j are in the same subgroup, δij
follows a standard normal distribution. Otherwise, it fol-
lows another normal distribution with identity covariance
but non-zero mean. As a result, standardized domain differ-
ence extracts the hidden relationship between two domains
from heterogeous covariances and we can further utilize
it in the following estimation. Additionally, standardized
domain difference helps guarantee the perfect recovery of
learnability structure (Theorem 4.3) with the learnability
recovering function Ψ. The details of Ψ is described in the
following section.

3.3. Two-step Solution

DiffS solves the problem (6) via two main steps as proposed
in Algorithm 1.

3.3.1. STEP I: LEARNABILITY STRUCTURE
RECOVERING WITH STANDARDIZED DOMAIN
DIFFERENCE

The recovering function Ψ is implemented in this step. With
the help of standardized domain difference, a basic intu-
ition to decide whether the two domains are in the same
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Algorithm 2 Learnability Structure Recovering Ψ

1: Input: Distance matrix ∆ ∈ RM×M ;
2: Initialize subgroups Ŝ = {{1}, {2}, . . . , {M}};
3: Set ν = 0.001 (Recommended);
4: Obtain threshold λ = F−1

q (1− ν);
5: for m = 1 to M − 1 do
6: if mini̸=j ∆ij > λ then
7: break;
8: end if
9: Find u = argmini

∑
j ̸=i I(∆ij ⩽ λ) subject to

∃j ̸= i,∆ij ⩽ λ;
10: Find v = argminj ∆uj ;
11: Add Ŝt = Ŝu ∪ Ŝv to Ŝ and remove Ŝu, Ŝv from Ŝ;
12: Insert a new row and column into ∆ indexed with t,

where ∆t,j = max(∆u,j ,∆v,j), ∀j ̸= u, v, t;
13: Delete the rows and columns in ∆ w.r.t. subgroup u,

v;
14: end for
15: return Ŝ;

subgroup or not is to decide a threshold. If ∆ij is less
than the threshold, domain i, j are potentially in the same
subgroup whereas if ∆ij is larger than the threshold, the
two domains are considered as not being from the same
subgroup. Inspired by (9), DiffS adopts a fixed threshold
λ = F−1

q (1−ν) where F−1
q denotes the inverse CDF of the

χ2-distribution where q denotes the degrees of freedom and
ν is the significance parameter that controls the probability
of false partitioning with recommended value of 0.001. The
choice of ν is discussed in detail in the Appendix A.3.

Therefore, our proposed learnability structure recovering
function Ψ is materialized as a clustering-based algorithm
summarized in Algorithm 2 with standardized domain dis-
tance matrix input. The algorithm starts from the basic
learnability structure that there is one domain in each sub-
group. In each of iterations (up to M − 1 iterations in total),
we find the subgroup u that has the least number of between-
subgroup distances below the threshold λ. Then we merge
Ŝu and its ‘nearest neighbor’ Ŝv that has the smallest dis-
tance between the two. To guarantee that the estimated
subgroups have complete inner-group linkages (here link-
age refers to the potential to be in the same subgroup), the
subgroup distance is set to the largest distance between
domains from the two groups. When the algorithm stops,
we can guarantee that the true learnability structure can be
recovered by Ŝ via Theorem 4.3.

3.3.2. STEP II: SYNCHRONIZED PARAMETER
ESTIMATING

As long as the Ŝ is obtained, we can synchronously cal-
culate the estimate for both global and heterogeneous pa-

rameters via a closed-form solution. To prevent lengthy
expressions, we consider an Mq × Ŝq labeling matrix
B(Ŝ) with Bij(Ŝ) = I(i ∈ Ŝj)Iq as its (i, j)-th q × q

block. The labeling matrix satisfies (θ⊤
1 , . . . ,θ

⊤
M )⊤ =

B(Ŝ)(α⊤
1 , . . . ,α

⊤
Ŝ
)⊤, which maps each α to the corre-

sponding θ of the domains in the subgroup. With the help
of the labeling matrix, we denote G = (X,ZB(Ŝ)) ∈
RN×(p+Ŝq) as the augmented design matrix. Then the op-
timal solution for (6), the DiffS estimate, can be concisely
given as

(
β̂, α̂1, . . . , α̂Ŝ

)⊤
= [G⊤WG]−1G⊤Wy, (12)

where X = (X⊤
i )

⊤
1⩽i⩽M , Z = diag(Zi)1⩽i⩽M , W =

diag(W i)1⩽i⩽M , y = (y⊤
i )

⊤
1⩽i⩽M . The estimated het-

erogeneous parameters for each domain is obtained by
θ∗
i = α∗

s, i ∈ Ŝs, 1 ⩽ s ⩽ Ŝ. So far, we have estimated all
the required variables and we can output Ŝ , β̂ and α̂ as the
results.

3.3.3. TIME COMPLEXITY

DiffS contains four major computation steps. To simplify
the expressions, here we assume all the domains have the
same number of samples, which is ni = n, ∀i. We only
concern about multiplication operations. The calculation
of domain GLS estimates has O(Mn2(p+ q)) complexity.
Each of the standardized domain differences costs O(q3).
Thus, the whole distance matrix calculation has O(M2q3)
complexity. Notice that both the domain GLS estimator and
the DiffS estimator only consist of matrix multiplication
and inversion. Their calculation can be accelerated by GPU
or other multi-thread methods in order to further reduce the
time cost.

4. Theoretical Analysis
To theoretically evaluate the effectiveness of our proposed
method, the following assumption is needed:

Assumption 4.1 (Subgroup differentiation). Denoting S
as the true learnability structure and S = |S|, there ex-
ists 0 < λ∗

− < λ∗
+ that satisfies ∀s, 1 ⩽ s ⩽ S, ∀i, j ∈

Ss,maxi,j∈Ss
∆ij < λ∗

−, and ∃i ∈ Ss,minj /∈Ss
∆ij >

λ∗
+.

Remark 4.2. The above assumption stands for the distinct
differentiation of each pair of subgroups. It can be easily sat-
isfied if the true parameters are far enough from each other.
Under such assumption, we can guarantee the learnability
structure recovery ability of DiffS.

Theorem 4.3 (Learnability structure recovery guarantee).
Denoting S∗ as the true learnability structure, supposing
that the Assumption 4.1 is satisfied and learnability structure
recovering is applied via Algorithm 2, thus Ŝ = S∗.
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Remark 4.4. See proof in Appendix B. This theorem shows
that DiffS has the capability to perfectly recover the true
learnability structure, which further guarantees the perfor-
mance.

5. Related Works
5.1. Mutual Transfer Learning

There are some researches related with mutual transfer learn-
ing task that use different but similar hypotheses. They all
propose their own solutions to the specific problem dis-
cussed in their papers. For example, (Kumar & Daume III,
2012) assumes that parameters are the linear combination of
some vectors from a low dimensional subspace. (Thrun &
O’Sullivan, 1996; Barzilai & Crammer, 2015; Jacob et al.,
2008) model the parameters from different domains into
clusters. (Agarwal et al., 2010) uses a manifold to describe
the behaviour of parameters. Also, some researches thinks
the parameters follow a prior distribution like Gaussian
mixture model (Bakker & Heskes, 2003) or Dirichlet pro-
cess (Xue et al., 2007). For those whose assumptions are
consistent with our model (1), the methods can be mainly
categorized into two types: optimization or statistics.

Optimization methods aim to minimize loss functions with
regularization on parameters in order to estimate learnability
structure. (Kumar & Daume III, 2012; Barzilai & Crammer,
2015) treat parameters as a linear combination of several
low dimensional subgroup centers. (Han & Zhang, 2015)
assumes the domains are constructed with multiple levels of
subgroups and optimizes least square loss with a pairwise
penalty to fuse parameters. (Cheng et al., 2020) further uti-
lizes the confidence distribution of parameters to accelerate
computation and proposes the CD Fusion method. Hyper-
parameter tuning and high computation complexity are the
two main common problems within optimization methods.

Statistical methods begin from a set of prior distribution
assumptions for parameters. (Yu et al., 2005; Bakker &
Heskes, 2003) adopts an EM algorithm to obtain the hidden
parameters of a Gaussian distribution or Gaussian mixture
model. (Xue et al., 2007) puts effort into analyzing the
Dirichlet process. Additionally, (Thrun & O’Sullivan, 1996)
provides a simple framework for clustering based on the
nearest neighbor algorithm. Although statistical methods
have the advantage of simple implementation and fast com-
putation, drawbacks also exist, including local minima trou-
bles and improper distance metric problems. In addition,
only a few of the mentioned methods can be adapted to the
mixed-effects heterogeneity model discussed in this paper.

5.2. Multi-Task Learning and Clustering

The idea of multi-task learning (Caruana, 1997; Ben-David
& Schuller, 2003; Evgeniou et al., 2005) is similar with mu-

tual transfer learning. MALSAR (Zhou et al., 2011b) sum-
marizes the common multi-task learning method with struc-
ture regularizations. Most of the methods solve the regular-
ized optimization problem of the form minL(W )+Ω(W ),
which is identical to CD Fusion. The loss L is least squares
or logistic. The regularization Ω could be Lasso (Tibshi-
rani, 1996), Frobenius norm (Evgeniou & Pontil, 2004), ℓ1,2
norm (Argyriou et al., 2006), and their combinations (Gong
et al., 2012; Zhou et al., 2011a; Jalali et al., 2010). However,
DiffS does not contain the regularizer Ω(W ) because it is
originated from the probabilistic analysis for learnability
sturcture recovery instead of loss regularization. This makes
DiffS a tuning-free method.

Among the multi-task learning methods, there are a category
of methods, called task clustering (Zhang & Yang, 2018;
Ruder, 2018), that consider the hidden learnabiliy structure
within the data and use common clustering approaches (Xu
& Tian, 2015; Dafir et al., 2021) to figure out these sub-
groups. For example, k-means we use in the experiments is
a typical clustering baseline. DD (Rodriguez & Laio, 2014)
proposes a novel idea for the clustering center from the per-
spective of data point density. CURE (Guha et al., 1998)
focuses on large-scale data settings and clusters the data by
mini-batches. The learnability structure recovery function in
DiffS is also a complete linkage based clustering algorithm,
but it is deeply combined with the proposed standardization
domain difference and our theoretical guarantees.

6. Experiments
We implement DiffS by Matlab, consistent with other base-
lines, and conduct experiments on a Linux server with an
Intel Xeon Bronze 3204 CPU with up to 12 threads and
32GiB memory. These following baseline methods are in-
volved in the experiments: (1) CD Fusion (Cheng et al.,
2020): An optimization method that adds pairwise penalty
on heterogeneous parameters, tuned by modified BIC. (2)
MeTaG (Han & Zhang, 2015): A method that aims to ex-
tract multi-level learnability structure among domains. We
set the level as 2 in experiments since the model (1) has a
two-level structure. (3) k-means with BIC: Applying the
k-means algorithm directly on domain GLS estimates θi to
obtain the learnability structure. The k is tuned via modified
BIC as in (Cheng et al., 2020). The estimate of parameters
is similar to the Step II of DiffS. (4) S-means: Directly
providing the true number S of subgroups to k-means. We
name this open-book approach as “S-means”. It is only
included in error comparisons.

6.1. Experiments on Synthetic Data

Data Preparation We generate 18 cases of synthetic
datasets with different settings. In each case, we divide
the M domains into S subgroups with at least one do-
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main in each subgroup. Thus, the number of domains
in these subgroups follows a multinomial distribution:
(M1,M2, . . . ,MS)

⊤ ∼ 1S×1 + Multi(1S×1/S,M − S).
All M domains are randomly splited into training set,
validation set and test set, with the proportion of 7 :
1 : 2. For the true global parameters, each dimen-
sion is drawn from a uniform distribution U(−2, 2) in-
dependently. To ensure the true heterogeneous param-
eters are different enough between subgroups, we gen-
erate base values α̃ = (α̃1, α̃2, . . . , α̃S)

⊤ from evenly
spaced points in [−S1.4/2, S1.4/2]. Then the parame-
ters are generated by α∗

1 = (α̃1, α̃2, · · · , α̃S)
⊤, α∗

2 =

(α̃S , α̃1, α̃2, · · · , α̃S−1)
⊤, and so on. It means the next α∗

is the values of the previous one shifted by 1 dimension to
the right. Meanwhile, if S is odd, we add 1 to all the element
to avoid some of the parameters to be 0. For the design ma-
trix (Xi,Zi), we let all domains have the same sample size
n and generate each sample row from a normal distribution
N (0,ΣD) where ΣD = 0.3·1(p+q)×(p+q)+0.7Ip+q . Ran-
dom effects u, ε are drawn from two normal distributions
N (0, Iq), N (0, 2), respectively. The response is calculated
via (1). In addition, we generate 20 replications for each
setting case.

Metrics We use the following metrics to evaluate each
methods: (1) Wall-clock time: The median real time cost
while estimating is recorded for each case. We omit the
time cost of the calculating domain GLS estimates since
it is an initialization step for CD Fusion, k-means and
DiffS and only need to calculate once. (2) Parameter er-
ror: We calculate the estimation error between the true
parameters and the estimated parameters, represented as
RMSE(θ∗, θ̂)=

∑M
i=1∥θ∗

i − θ̂i∥/√q where θ̂ is the esti-
mated parameters from each method. (3) Subgroup num-
ber: The mean number and standard deviation of the esti-
mated subgroups is reported for each setting. (4) Normal-
ized mutual information: We use the normalized mutual
information (NMI) (Ana & Jain, 2003) to quantify how well
the learnability structure estimates are. The normalizer is
the mean of entropies of the two clusters. The higher value
of NMI indicates a closer estimation of learnability struc-
ture. (5) Prediction error: We calculate the mean squared
prediction error on test set to compare the performances of
the methods for linear mixed-effects model regression tasks.

Settings In the base case settings, we set the number of
domains M = 50, the number of subgroups S = 5, the
sample size n = 100, the dimension p = q = 10. We vary
domain size M , dimension p+ q, sample size n, subgroup
size S, one at a time. To show the impact of data scale,
we vary M from 50 to 300 and n from 100 to 600. We set
ν = 0.001 for DiffS in all cases. For CD Fusion, the BIC
tuning procedure optimizes the parameters for 5 times to
find a better hyper-parameter. Due to its high time cost, we
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Figure 2. Time cost tendency of DiffS, k-means, CD Fusion and
MeTaG. Wall-clock estimation time includes hyper-parameter tun-
ing for k-means, CD Fusion and MeTaG. CD Fusion fails to esti-
mate in some cases due to high time cost (above 3000 seconds).

only run it on half of the replications. For k-means, we vary
k from 1 to M and choose the best k with the least BIC
value. For MeTaG, we tune on λ for 5 times and merge the
same parameters from different domains (if possible) and
generate subgroups based on that.

Results: (a) Time cost comparison Figure 2 shows the
time cost tendency of the methods when M , p+ q, n or S
grows. We use log-time to the base 10 as y axis. The CD
Fusion method takes more than 3000 seconds per replication,
whereas DiffS only takes about 0.2 second to estimate when
the scale is 3 times larger than base case. This indicates that
the CD Fusion method is infeasible in large-scale settings,
so we discard it in some cases. Also, DiffS is about 50
to 1000 times faster than k-means and about 2 to 20 times
faster than MeTaG among all the cases. The dimensionality
of data influences the methods less. However, DiffS is still
about 1200 times faster than CD Fusion, 100 times faster
than k-means and 20 times faster than MeTaG. It proves that
DiffS is feasible in large-scale settings and has the fastest
estimation speed among the 5 methods.

Results: (b) Parameter error comparison Figure 3 il-
lustrates the parameter estimation error of the 5 methods.
We take the average result among all the replicates in each
experiment setting. DiffS performs better with respect to
mean RMSE than the baselines in most of the cases. The
k-means based methods estimate parameters poorly since
they generate bad learnability structure estimates. We notice
that the baselines has their “comfort zone” that in some set-
tings they behave well while in other settings they generate
meaningless estimates. This may explain the zig-zag lines
in the figure. For example, MeTaG performs well in most
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Table 1. Learnability structure estimation performance of DiffS, k-means, S-means, CD Fusion and MeTaG. DiffS (w/o) refers to DiffS
without standardization. The discussion about it is in the Ablation Study paragraph. We calculate the mean of Ŝ and NMI in all the
replicates of one setting. CD Fusion method are only run on half of the replications due to high time cost and it fails to apply in some
cases with “N/A”. The bold-type number indicates the best performance out of the 5 methods.

Data settings Methods

M n p q S
DiffS k-means + BIC S-means CD Fusion (10 Reps) MeTaG DiffS (w/o)

Ŝ±std NMI Ŝ±std NMI NMI Ŝ±std NMI Ŝ±std NMI Ŝ±std NMI
50 100 10 10 3 3.20± 0.41 0.993 3.15± 0.49 0.970 0.950 3.00± 0.00 1.000 35.00± 0.00 0.476 8.25± 1.12 0.720
50 100 10 10 5 5.10± 0.31 0.998 5.15± 1.09 0.941 0.912 5.00± 0.00 1.000 35.00± 0.00 0.628 10.10± 1.33 0.851
50 100 10 10 7 7.00± 0.32 0.998 7.90± 1.29 0.945 0.902 4.40± 2.84 0.621 35.00± 0.00 0.708 12.50± 1.64 0.891
50 100 10 10 9 9.00± 0.00 1.000 8.00± 1.81 0.925 0.902 1.00± 0.00 0.000 35.00± 0.00 0.764 13.60± 1.27 0.930
50 100 30 30 5 5.15± 0.37 0.997 1.15± 0.67 0.047 0.890 1.20± 0.63 0.036 35.00± 0.00 0.628 18.50± 1.85 0.729
50 100 50 50 5 5.10± 0.31 0.954 1.00± 0.00 0.000 0.603 N/A N/A 35.00± 0.00 0.614 35.00± 0.00 0.611
50 300 10 10 5 5.15± 0.49 0.992 5.35± 1.09 0.948 0.893 4.80± 0.63 0.977 35.00± 0.00 0.626 10.75± 1.21 0.834
50 600 10 10 5 5.05± 0.22 0.998 6.75± 1.68 0.938 0.937 N/A N/A 35.00± 0.00 0.627 10.25± 1.21 0.845
150 100 10 10 5 6.05± 0.89 0.987 5.65± 0.75 0.978 0.902 5.00± 0.00 1.000 105.00± 0.00 0.529 18.90± 1.97 0.735
300 100 10 10 5 6.85± 1.23 0.980 5.95± 0.89 0.967 0.942 N/A N/A 210.00± 0.00 0.475 28.30± 1.72 0.677
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Figure 3. The parameter estimation error comparisons of the 5
methods. The experiment settings are the same as 2. We draw
lines of CD Fusion method outside the figure to mean that it is not
applicable in the following cases due to high time cost.

of the cases but behaves badly with high domain size. DiffS
mantains a smooth curve, showing a stable performance.

Results: (c) Learnability structure estimation Table
1 compares the performance of learnability structure es-
timation. DiffS shows sound ability in learnability struc-
ture recovery with almost all correct estimates. k-means
has much practicability in some proper feature dimension
settings, but it still behaves worse than DiffS. CD Fusion
cannot generate valid estimates when S increases. MeTaG
can hardly provide useful learnability structure since the
parameters it estimates are always different among domains.
We speculate that both k-means and CD Fusion behave
poorly because the hyper-parameter tuning is difficult in
complicated cases. Additionally, S-means generate nice
NMI results while parameter estimations are terrible.
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Figure 4. The test set prediction error comparisons of the 5 meth-
ods. We draw lines outside the figure for infeasible cases of the
method.

Results: (d) Prediction error Figure 4 shows the compar-
ison of prediction error on test set. DiffS gives the smallest
or second smallest test errors among most of the cases. Gen-
erally, with good enough learnability structure estimate,
methods can provide nice predictions on test set, while poor
subgroup estimates can lead to a disaster in test error.

Ablation Study: Raw domain difference and GLS esti-
mates In the ablation study, we analyze two more base-
lines to show the effectiveness of DiffS: (1) a variant of
DiffS that do not standardize the domain differences (i.e.,
δij = θi − θj , DiffS (w/o) for short). (2) original GLS
estimates (i.e., βD, θD

i ). The learnability structure estimate
performance of DiffS (w/o) is listed in the last two columns
of Table 1. Figure 5 shows the parameter estimation perfor-
mance comparisons of DiffS and the two baselines. Com-
paring DiffS (w/o) and GLS, learnability structure does help
reduce the noise within heterogeneous parameter estimates
since knowledge can be transferred in the subgroup. From
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Figure 5. The parameter estimation error comparisons of DiffS,
DiffS without standardization (referred to as DiffS (w/o) in figure)
and raw GLS estimates. The results of DiffS is the same as in
Figure 3 and is used here just for ablation study.

Table 2. Comparison of DiffS, k-means and MeTaG in real-world
datasets. Time costs are recorded in seconds.

Method NOAA nClimDiv Database
Timecost S MSE

DiffS 33.79 7.10± 0.32 82.44± 3.44
k-means 119.73 4.40± 0.52 88.72± 8.91
MeTaG 32.49 3.10± 1.60 > 10200

Microarray Data
DiffS 0.0169 2.10± 0.32 0.93± 0.14
k-means 0.2677 1.00± 0.00 0.96± 0.13
MeTaG 0.2988 14.00± 0.00 0.90± 0.14

the comparison of DiffS and DiffS (w/o) in the Table 1, there
is a clear performance drop with regards to the learnabil-
ity structure estimates. This indicates that the standardized
domain difference can help distinguish the domains from
or not from the same subgroup. The parameter estimation
error drop shown in Figure 5 also illustrates the benefit of a
better learnability structure estimate.

6.2. Experiment on Real Datasets

We apply DiffS on the NOAA nClimDiv Database1 (Vose
et al., 2014) and Microarray Data (Wille et al., 2004) to-
gether with baseline k-means and MeTaG.

In the NOAA nClimDiv Database, we estimate the monthly
average temperature. Palmer Drought Severity Index
(PDSI), Palmer Hydrological Drought Index (PHDI), pre-
cipitation (PCPN) and Palmer Z Index (ZNDX) are chosen

1https://www.ncei.noaa.gov/access/
metadata/landing-page/bin/iso?id=gov.noaa.
ncdc:C00005

as features. Three dummy variables for Summer (June, July,
August), Fall (September, October, November) and Winter
(December, January, February) are added to the features.
Spring (March, April, May) feature is learned within the
intercept term. Following (Cheng et al., 2020), intercept,
PCPN and ZNDX is chosen to be the heterogenous features
(q = 3) and the rests are global features (p = 5). In the
database, data have been collected monthly from 344 divi-
sions for 126 years. The monthly average temperature pre-
diction problem contains M = 344 domains and n = 1512
samples each domain.

The Microarray Data is a gene expression dataset with mi-
croarray data related to isoprenoid biosynthesis in plant
organism. 18 genes in the plastidial pathway (18 domains)
are expected to be expressed by the 21 genes in the meval-
onate pathway (21 dimensions). In each data domain, there
are 118 samples (n = 118). Heterogeneous features are
selected via the same way as described by (Cheng et al.,
2020) in their NOAA experiment. We choose 8 features for
global and 12 for heterogeneous (p = 8, q = 12).

We randomly split the domains into 7 : 1 : 2 for training,
validation and testing. We generate 10 splits to reduce ran-
domness. In k-means, the k is limited in [1, 5]. We try
some value of ν in DiffS for each dataset and use a fixed
value in experiment. The result is summarized in Table 2.
A case study on NOAA is in the Appendix C. CD Fusion is
not included because it requires too much memory (about
1000GiB) in NOAA database, while DiffS only requires
about 10GiB in this experiment. Notice that the time cost
of k-means is limited and if we tune k from 1 to 344, the
timecost could reach 32000 seconds. In NOAA Database,
MeTaG generates bad estimates which make MSE explode.
DiffS is able to control the estimation timecost in an accept-
able range and meanwhile provides reasonable estimates.
These experiments show that DiffS is scalable and applica-
ble in large scale settings and real-world applications.
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A. Properties of Standardized Domain Difference
A.1. Proof for Equation (9)

Recall that eqution (9) reads

δij = (Σi +Σj)
−1/2(θD

i − θD
j ) ∼

{
N (0, I), i, j in the same subgroup,
N (µij , I), otherwise.

(9)

Proof. The domain GLS estimators follow (He & Shao, 2000; Cheng et al., 2020)

(βD
i ,θ

D
i )

⊤ ∼ N ((β∗
i ,θ

∗
i )

⊤, [G⊤
i W iGi]

−1). (12)

So that
θD
i ∼ N (θ∗

i ,Σi), (13)

where Σi = (0q×p, Iq)[G
⊤
i W iGi]

−1(0q×p, Iq)
⊤. Thus, for any i ̸= j, since θD

i is independent from θD
j ,

θD
i − θD

j ∼ N (θ∗
i − θ∗

j ,Σi +Σj), (14)

and

δij ∼
{
N (0, I), i, j in the same subgroup,
N (µij , I), otherwise,

(15)

where µij = (Σi +Σj)
−1/2(θ∗

i − θ∗
j ).

A.2. The Distribution of the Distance Between Domains

The distribution of ∆ij can be derived from equation (9).
Corollary A.1. The elements in the similarity matrix ∆ satisfies

∆ij = ∥δij∥2

∼
{
χ2
q, i, j in the same subgroup,

χ′2
q (∥µij∥2), otherwise,

(16)

where χ2
q denotes the χ2-distribution with q degrees of freedom, χ′2

q (∥µij∥2) denotes the noncentral χ2-distribution with q

degrees of freedom and non-centrality parameter ∥µij∥2 and µij = (Σi +Σj)
−1/2(θ∗

i − θ∗
j ).

Proof. Note that the standardized domain difference

δij ∼
{
N (0, I), i, j in the same subgroup,
N (µij , I), otherwise.

(17)

Provided domain i, j are in the same subgroup,

∆ij =

q∑

k=1

Z2
k ,

where Zk ∼ N (0, 1) i.i.d.. Thus according to the definition of χ2-distribution,

∆ij ∼ χ2
q. (18)

Similarily, provided domain i, j are from two different subgroups,

∆ij =

q∑

k=1

Z ′2
k ,

where Z ′2
k ∼ N (µk, 1). Here µk is the k-th element of µij . Follow the definition of noncentral χ2-distribution,

∆ij ∼ χ′2
q (∥µij∥2). (19)
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A.3. Choice of ν

There is only one tunable hyper-parameter ν in DiffS. No parameter tuning work will exist as long as users leave it a fix
number. Synthetic experiments also prove that when we set it to 0.001, DiffS behaves stably well. However, the change in ν
is also acceptable and we will discuss the impact it has on the performance of DiffS.

From Appendix A.2 we know

∆ij = ∥δij∥2 ∼
{
χ2
q, i, j in the same subgroup,

χ′2
q (∥µij∥2), otherwise.

(20)

The optimal threshold value can be calculated via Bayesian classifiers where the true parameters are known. When dealing
with real-world problems, the true parameters are unknown, which makes the optimal threshold unavailable. In DiffS we
propose to set the threshold to a fixed value in any setting of data, namely λ = F−1

q (ν). Thus provided ν = 0.001, there is a
probability of 99.9% that ∆ij ⩽ λ if i, j come from the same subgroup when Gi vary. ν controls the probability that the
two domains in the same subgroup would have zero distance. If ν is set to be larger, there is less probability that the data
domains in the same subgroup will have zero distances, which may result in the disassembly of some big subgroups. If ν
is tuned to be much smaller, there is a chance that more data domains from different subgroups will have zero distances,
leading to misclustering.

It can be inferred that as the domain size M grows, the outliers of ∆ij within the same subgroup appear more frequently. In
order to include these outliers as much as possible, it is better to decrease ν (i.e., increase threshold λ) when dealing with
large M data.

B. Proof for Theorem 4.3
First we restate Assumption 4.1 into a proposition.

Proposition B.1. The estimated subgroup in each iteration of Algorithm 2 satisfies

• ∀s, t, if ∃s′, Ŝs ∪ Ŝt ⊆ Ss′ , then ∆st ⩽ λ.

• ∀u′,∃u such that, Ŝu ⊆ Su′ and ∀t if Ŝt ∩ Su′ = ∅, then ∆ut > λ.

Then, we consider the lemma below:

Lemma B.2. In each iteration of Algorithm 2,

∀s,∃s′ such that Ŝs ⊆ Ss′ , (21)

and Proposition B.1 holds, as long as the Assumption 4.1 is satisfied and we take λ ∈ (λ∗
−, λ

∗
+) as the threshold in Algorithm

2.

Proof. We use Mathematical Induction (MI) to prove the lemma.

Base case: For the initial subgroup estimate Ŝ = {{1}, {2}, . . . , {M}}, since S is a partition of {1, 2, . . . ,M}, it is
clearly that ∀s,∃s′, Ŝs ⊆ Ss′ . Also, since we have not modify the similarity matrix ∆, the Assumption 4.1 naturally meets
Proposition B.1.

Inductive step: We are going to show that for any iteration number m that 0 ⩽ m < M − 1 (m = 0 refers to the base case),
if in iteration #m (21) holds and Proposition B.1 is met, in iteration #(m+ 1) it also holds and Proposition B.1 is also met.

Firstly, we are going to prove that the u found by Algorithm 2 Line #9 is exactly the u described by the second item of
Proposition B.1. According to (21), ∀s,∃s′, Ŝs ⊆ Ss′ . Due to the first item of Propsition B.1, ∀s, if ∃j ̸= s such that
∆sj ⩽ λ, there is

M′
s = {j | ∆sj ⩽ λ} ⊇ Ms′ = {j | Ŝj ⊆ Ss′}, (22)

where M′
s stands for the set of j such that ∆sj ⩽ λ, Ms′ stands for the set of j such that Ŝj ⊆ Ss′ . According to the

second item of Proposition B.1, there exists u such that ∀t, Ŝt ∩ Su′ = ∅ → ∆ut > λ. It is easy to prove by contradiction
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that (22) acquires the equal sign if and only if s = u, which means M′
u = Mu′ . Let ū be the u found by Algorithm 2 Line

#9. If M′
ū ̸= Mū′ (or equivalently M′

ū ⫌ Mū′ ), according to the second item of Proposition B.1, for the ū′ corresponding
to ū, there exists u such that M′

u = Mū′ . Therefore,
∑

j ̸=ū I(∆ūj ⩽ λ) >
∑

j ̸=u I(∆uj ⩽ λ), which means ū is not the
minimal point for

∑
j ̸=i I(∆ij ⩽ λ), leading to contradiction. Thus, we proved that M′

ū = Mū′ . As a result, the u found
by Algorithm 2 Line #9 is exactly the u described by the second item of Proposition B.1. In fact, the u found by algorithm is
the u of the smallest subgroup described by the second item of Proposition B.1.

Secondly, we are going to prove (21) holds in iteration #(m+ 1). Apply (21) on the Ŝu we find in the iteration #(m+ 1),
and we denote Ss′ such that Ŝu ⊆ Ss′ . Since Proposition B.1 is met, the Ŝu should satisfy that ∀j,

∆uj ⩽ λ → Ŝu ∪ Ŝj ⊆ Ss′ . (23)

Here “→” means logical implication. Thus, the v found in the iteration #(m+ 1) satisfies

Ŝu ∪ Ŝv ⊆ Ss′ , (24)

which means Ŝt = Ŝu ∪ Ŝv ⊆ Ss′ . Since we only merge Ŝu and Ŝu in this iteration, we have proven that (21) holds in
iteration #(m+ 1).

Lastly, we are going to prove that Proposition B.1 is true in iteration #(m+ 1). For all r ̸= u, v, without loss of generality,
there are only possible two situations for Ŝr before merging the two subgroups:

• Ŝr ∪ Ŝu ⊆ Su′ . Thus Ŝv ∪ Ŝr ⊆ Ss′ and Ŝt ∪ Ŝr ⊆ Ss′ . As a result, ∆t,r = max(∆u,r,∆v,r) ⩽ λ. Therefore the
first item of Proposition B.1 is also true after merging.

• Ŝr ∩ Su′ = ∅, and thus ∆u,r > λ. Since Ŝt ⊆ Su′ , and ∆t,r ⩾ ∆u,r > λ, the second item of Proposition B.1 is also
true after merging. In fact, Ŝt takes the place of Ŝu.

As a result, Proposition B.1 holds in iteration #(m+ 1).

Conclusion: Since both the base case and the inductive step are proven as true, Lemma B.2 holds.

When Algorithm 2 stops, the ∆ is either a 1× 1 matrix (actually it is 0) or with all off-diagonal elements larger than λ. If ∆
turns out to be 0, it means that all the domains are clustered into a single subgroup, which reflects the ground truth since that
Ŝ1 = {1, 2, . . . ,M} ⊆ S1 ⊆ {1, 2, . . . ,M} ⇒ Ŝ1 = S1 = {1, 2, . . . ,M}. Otherwise, ∀s, t we assume that Ŝs ⊆ Ss′ and
Ŝt ⊆ St′ . Since ∆st > λ, one knows that

∀u′, Ŝs ∪ Ŝt ⊈ Su′ . (25)

Because that S is a partition of {1, 2, . . . ,M}, we can infer that Ss′ ∩ St′ = ∅. Thus, for all s′, there exists only one s

such that Ŝs ⊆ Ss′ . Since Ŝ is also a partition of {1, 2, . . . ,M}, then Ŝs = Ss′ , which means Ŝ = S . Thus, Theorem 4.3 is
proved.

C. Case Study: NOAA nClimDiv Database
The subgroup estimation maps are shown in Figure 6. We vary ν in DiffS from 0.1 to 0.9 and k in k-means from 2 to 10.
As an example, DiffS estimates that there are 3 main subgroups under the setting of ν = 0.5. Notice that in the subgroup
estimation we do not use any geographical information. Compared with climate zones defined by IECC2, the pattern of the
blue subgroup matches zone 5 perfectly, the red subgroup consists of zone 2, 3, 4, and the green subgroup contains zone 6
and 7. Also, the shape of the 3 subgroups is approximately in accord with the US temperature outlook3: the blue and red
subgroups have the shape of areas that tend to be warmer and the green region corresponds to the areas that have equal
chances to be hotter or cooler. This shows that the learnability structure estimate from DiffS has pratical value to a certain
extent.

2https://up.codes/viewer/nevada/iecc-2012/chapter/CE 3/ce-general-requirements#C301.1
3The first figure in https://www.climate.gov/news-features/videos/noaas-2019-20-winter-outlook-temperature-precipitation-and-

drought.
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(a) DiffS (ν = 0.1) (b) DiffS (ν = 0.3) (c) DiffS (ν = 0.5) (d) DiffS (ν = 0.7) (e) DiffS (ν = 0.9)

(f) k-means (k = 2) (g) k-means (k = 4) (h) k-means (k = 6) (i) k-means (k = 8) (j) k-means (k = 10)

Figure 6. Subgroup estimation result maps from DiffS and k-means for the average temperature estimation task in NOAA nClimDiv
Database.

k-means generates similar learnability structure estimations with DiffS. It is consistent with the behaviour of k-means in
synthetic experiments that it generates moderate estimations. However, the prediction error of k-means is larger than DiffS
because the unstable clustering results. CD Fusion method mentioned in the paper cannot handle such large-scale data
using the algorithm described in their original paper due to extremely high memory cost. In addition, even if the memory
requirement is met, CD Fusion still would take hours to estimate. DiffS, however, could complete grid search on ν in 70s.
The selection of k in k-means is quite random and subjective, and full tuning of k takes very long time. These disadvantages
of baselines make DiffS a better approach in such real-world applications.


