Prompting Decision Transformer for Few-Shot Policy Generalization

Mengdi Xu'! Yikang Shen? Shun Zhang® Yuchen Lu? Ding Zhao' Joshua B. Tenenbaum* Chuang Gan 3>

Abstract

Human can leverage prior experience and learn
novel tasks from a handful of demonstrations. In
contrast to offline meta-reinforcement learning,
which aims to achieve quick adaptation through
better algorithm design, we investigate the ef-
fect of architecture inductive bias on the few-shot
learning capability. We propose a Prompt-based
Decision Transformer (Prompt-DT), which lever-
ages the sequential modeling ability of the Trans-
former architecture and the prompt framework
to achieve few-shot adaptation in offline RL. We
design the trajectory prompt, which contains seg-
ments of the few-shot demonstrations, and en-
codes task-specific information to guide policy
generation. Our experiments in five MuJoCo con-
trol benchmarks show that Prompt-DT is a strong
few-shot learner without any extra finetuning on
unseen target tasks. Prompt-DT outperforms its
variants and strong meta offline RL baselines by a
large margin with a trajectory prompt containing
only a few timesteps. Prompt-DT is also robust
to prompt length changes and can generalize to
out-of-distribution (OOD) environments. Project
page: https://mxu34.github.io/PromptDT/.

1. Introduction

Offline Reinforcement Learning (offline RL) (Levine et al.,
2020) aims to learn an optimal policy from trajectories col-
lected by a set of behavior policies without access to the
environments. This data-driven approach is essential in
many settings, where online interactions could be expen-
sive (e.g., robotics or educational agents) and dangerous
(e.g., autonomous driving or healthcare). A number of re-
cent works have illustrated the power of such approaches
in enabling data-driven learning of policies for game en-

!Carnegie Mellon University University of Montreal, Mila
*MIT-IBM Watson AI Lab *Massachusetts Institute of Tech-
nology *UMass Amherst. Correspondence to: Mengdi Xu
<mengdixu@andrew.cmu.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

vironments (Chen et al., 2021), robotic manipulation be-
haviors (Ebert et al., 2018; Kalashnikov et al., 2018), and
robotic navigation skills (Kahn et al., 2021).

However, we identify one of offline RL’s inherent difficul-
ties as the failure to generalize to unseen tasks. While the
agent might be able to get good state coverage from the
training tasks, due to the distribution shift, it would still
struggle to find a good policy in the test tasks. As a result,
recent work from Mitchell et al. (2021) considers the of-
fline meta-RL setting that aims to solve the generalization
problem in offline RL. It proposed the Meta-Actor Critic
with Advantage Weighting (MACAW) algorithm that uses
advantage-weighted regression (Peng et al., 2019) as a sub-
routine RL algorithm, and optimizes the agent’s adaptive
ability with a meta-learning objective (Finn et al., 2017a).

While meta-learning methods address this issue through
the algorithmic learning perspective, we aim to investigate
the power of architecture inductive bias in this work. It
is known that Transformer (Vaswani et al., 2017) models,
when pretrained on large-scale datasets, are able to perform
few-shot or zero-shot learning. Furthermore, recent works
from Natural Language Processing (NLP) (Liu et al., 2021;
Brown et al., 2020) suggest the prompt-based framework
as an effective paradigm for adaptation to new tasks, such
as translation and question-answering. In the prompt-based
framework, the prompt contains valuable information about
the task, and is pre-pended as a prefix to the input. As a
result, it casts the problem of few-shot or zero-shot gener-
alization to a conditional sequence generation, which has
been the strength of these large Transformer models. Re-
cently Chen et al. (2021) shows that beyond the natural lan-
guage, the Transformer architecture can also have a strong
sequence modeling capability for trajectory data, achieving
state-of-art results on offline RL. In this work, we aim to
address the question: Can we leverage the prompt-based
framework from NLP, and adapt it to the context of offline
RL to enable few-shot generalization to unseen tasks?

It is worth noting that adapting the prompt-based method
to RL problems is non-trivial. In NLP, Language Models
(LMs) are pretrained on massive amounts of raw text, includ-
ing almost all information on the internet. Moreover, most
NLP tasks can be rewritten into standard blank-filling for-
mats as prompts. These prompts serve as queries to extract

https://mxu34.github.io/PromptDT/

Prompting Decision Transformer for Few-Shot Policy Generalization

the right information from the pretrained LMs. In RL, due
to inherent differences between different tasks, it is ques-
tionable whether a pretrained model has enough knowledge
to solve an unforeseen task. We propose to use the few-shot
demonstrations as prompts, which we call the trajectory
prompt. Instead of unsupervised language model pretrain-
ing, we focus on supervisedly training an agent that can
imitate these demonstrations to generate a new policy with-
out finetuning. In our prompt-based offline RL framework,
the agent is first trained with offline trajectories that are col-
lected from different tasks in the same domain/environment.
For each task, the agent learns to predict a target trajectory
while conditioning on the trajectory prompt sampled from
the same task. During the evaluation, the agent is given a
new task and a handful of new trajectories (total step length
of which is less or equal to 15) to construct the prompt.
Without extra finetuning, the agent should leverage the task
information shown in these trajectories and generate policies
for new tasks. This framework is powerful and attractive
for a number of reasons: it allows the agent to exploit of-
fline trajectories that are collected from different tasks, and
the agent can perform few-shot learning, adapting to new
scenarios without updating the agent.

We call our method Prompt-based Decision Transformer
(Prompt-DT), which leverages the sequential modeling abil-
ity of the Transformer architecture and the prompt frame-
work to achieve few-shot adaptation in offline RL. Our con-
tributions are as follows.

1. We propose Prompt-DT, a Transformer-based model
that learns to adapt to unseen tasks via short trajectory
prompts constructed from a handful of trajectories.

2. Our experiments in five MuJoCo control benchmarks
show that Prompt-DT is a strong few-shot learner with-
out any extra finetuning on target tasks, beating strong
meta offline RL baselines by a large margin.

3. Our analysis suggests the necessity of our prompt-
based framework, as well as the robustness to prompt
length and sensitivity to the prompt quality.

4. Prompt-DT can generalize to out-of-distribution tasks,
while all the prior methods fail.

2. Related Work

Offline Reinforcement Learning. Offline RL (Levine
et al., 2020) learns a policy with the pre-collected dataset,
which contains trajectories sampled under a behavior policy.
As identified in Levine et al. (2020), the offline RL problem
has shown to be more challenging than online RL, as the
learning agent needs to estimate the value of a policy using
only the offline data. Similar to online RL, we can adopt
a model-based or a model-free approach. When using a

model-based approach, we can estimate the reward and
transition functions with offline data. However, we need to
modify the RL algorithm to avoid exploiting errors in the
estimated model (Yu et al., 2020b; Kidambi et al., 2021;
Yu et al., 2021). Alternatively, when choosing a model-
free approach, we can adapt Q-learning algorithms or the
policy gradient algorithms to the offline setting, but need to
explicitly correct the distributional mismatch between the
behavior policy in the offline data and the policy we want to
optimize (Kumar et al., 2020; Islam et al., 2019).

Meta-Reinforcement Learning. Meta-reinforcement
learning (meta-RL) aims to generalize an agent’s knowledge
from one task to another. One popular meta-RL algorithm
is the Model-Agnostic Meta-Learning (MAML) proposed
in Finn et al. (2017a). The objective of MAML is to find a
policy parameter such that given a new task within the task
distribution, it can achieve a good performance in the new
task only after a few updates. MAML involves an inner
loop and an outer loop in its optimization process. The inner
loop optimizes the policy parameter to adapt to a given task
in one step or a few steps. This can be done by following
any policy gradient algorithm. The outer loop involves the
meta-learning objective, which optimizes the performance
of the policy after adaption over all possible tasks in
the task distribution. MAML has shown successful and
effective adaptions in benchmark domains. However, such
an optimization algorithm requires backpropagation from
the inner loop to the outer loop, which is computationally
expensive. More follow-up methods were proposed to
mitigate the computational burden (Nichol et al., 2018;
Rajeswaran et al., 2019).

Policy Learning as Sequence Modeling. RL algorithms
need to handle the challenge of long-term credit assignment,
which is typically done by temporal difference (TD) learning
(Sutton & Barto, 2018). However, models designed for
NLP, like Transformer (Vaswani et al., 2017), can inherently
handle the long-term credit assignment problem. Recently,
Decision Transformer (Chen et al., 2021) was proposed to
model an RL problem as a sequence-prediction problem,
using state, action, reward-to-go as tokens in a Transformer
model. A concurrent work takes a similar approach that uses
Transformer to predict the dynamics of the environment
(Janner et al., 2021). These Transformer-based approaches
have achieved similar or better performances in benchmark
domains compared with classic RL algorithms. Recently,
Furuta et al. (2021) demonstrates that Decision Transformer
model is doing hindsight information matching.

Few-Shot Learning. Few-Shot Learning (FSL) aims to
rapidly generalize to new tasks containing only a few sam-
ples with supervised information (Wang et al., 2020). FSL
can advance robotics through developing agents that can
replicate human actions. Examples include one-shot imi-
tation (Wu & Demiris, 2010), multi-armed bandits (Duan

Prompting Decision Transformer for Few-Shot Policy Generalization

et al., 2017), visual navigation (Finn et al., 2017a), and con-
tinuous control (Yoon et al., 2018). Applications of FSL
include image classification (Vinyals et al., 2016), object
tracking (Bertinetto et al., 2016), visual question answer-
ing (Dong et al., 2018), language modeling (Vinyals et al.,
2016), and neural architecture search (Brock et al., 2017).
FSL can reduce the data gathering effort for data-intensive
applications. Another classic FSL scenario is where exam-
ples with supervised information are hard to acquire due to
safety or ethical issues (Altae-Tran et al., 2017).

Prompt-based Learning. For NLP, prompt-based learn-
ing is based on language models that model the probabil-
ity of text directly. Unlike traditional supervised learning,
which trains a model to take in an input x and predict an
output y as P(y|x), a prompt-based method uses a template
to modify the original input x into a textual string prompt
2’ that has some unfilled blanks, and then uses the language
model to probabilistically fill answers y into blanks (Liu
et al., 2021). In this way, by selecting appropriate prompts,
we can manipulate the model to predict desired outputs,
sometimes even without any additional task-specific train-
ing (Brown et al., 2020; Radford et al., 2019; Gao et al.,
2020). The underlying hypothesis is that pretrained lan-
guage models have learned adequate knowledge from the
pretraining corpus and we just need to find the right way to
extract the knowledge. However, in the RL setting, we don’t
have a pretraining corpus that is large and general enough to
cover different environments and tasks. Thus, in this work,
we propose to use prompts in a different way. Instead of us-
ing prompts to extract knowledge from the pretrained model,
the RL agent is required to imitate the provided trajectory
prompts, such that it can reproduce the policy that generates
these trajectories.

3. Preliminaries
3.1. Online and Offline Meta-Reinforcement Learning

A reinforcement learning (RL) problem is a sequential
decision-making problem where a learning agent interacts
with an environment and optimizes its control policy to ob-
tain the optimal value. Each sequential decision-making
task in dynamic environments is in general modeled as a
Markov Decision Process (MDP) (Sutton & Barto, 2018)
represented by a tuple M = (S, A, P,R, i1). S and A are
the state space and the action space. P: S x A xS — Riis
the transition model, where P(s, a, s’) is the probability of
reaching state s’ by taking action ¢ in state s. R: S — R
is the reward function. p is the initial state distribution. At
each step, an RL agent interacts with the environment by
taking an action a based on the current state s, observing
reward r and resulting next state s’ from the environment.
The objective of a sequential decision-making task is to
find a policy 7 : S x A — R that optimizes the expected

cumulative rewards, Eso ., » >, V' R(s¢).

Generally, RL is performed online, where the agent iter-
atively takes actions and receives feedback from the en-
vironment. However, this may not always be feasible as
RL algorithms may require a large number of training data
due to their generally low sample efficiency. This makes
training in an online environment time-consuming. In some
real-world safety-critical environments, deploying the agent
online in the training phase may cause catastrophic failures.
We consider the offline RL setting (Levine et al., 2020),
which aims to learn a policy from data that are pre-collected
using a (possibly-unknown) behavior policy. In this setting,
the agent has access to a dataset D containing a set of trajec-
tories. A trajectory {so, ag, 70, 81,a1,71,- -, ST, a1, T}
is sampled using a behavior policy in the environment. The
agent is expected to find the optimal policy using only the
dataset D without interacting with the environment itself.

Both online and offline RL settings are originally proposed
to find the optimal policy in one task. The efficiency of
RL can be further improved if the designed learning agent
is able to adapt to similar tasks with a handful of newly
collected data after learning on a few tasks, which is mainly
developed under meta-RL (Finn et al., 2017a). Recently,
meta-RL has been extended to offline settings, aiming to
adapt to new tasks via pre-collected data quickly. In the
offline meta-RL setting proposed in Mitchell et al. (2021),
an agent is given a set of tasks 7', where a task T; € T is
defined as (M;, 7;), containing an MDP M and a behavior
policy m;. For each task 7;, the agent is provided with a
dataset D;, which contains trajectories sampled using ;.
The agent is trained with a subset of training tasks denoted
as 7" and is expected to find the optimal policies in a
set of test tasks 75!, which is disjoint with 77",

3.2. Decision Transformer

Transformer which has been extensively studied in NLP (De-
vlin et al., 2018) and computer vision (Carion et al., 2020),
has shown to outperform RNN-based architectures. It is
recently applied to solve RL problems for its efficiency and
scalability when modeling long sequential data. Decision
Transformer (Chen et al., 2021) for offline RL treats learning
a policy as a sequential modeling problem. It proposes to
model trajectories with state sy, action a; and reward-to-go
7¢ tuples collected at different time steps ¢. The reward-to-
go is the cumulative rewards from the current time step till
the end of the episode. Instead of including the one-step
reward 7, this novel representation helps guide action selec-
tion towards optimizing the return. At timestep ¢, Decision
Transformer takes a trajectory sequence 7 autoregressively
as input which contains the most recent K -step history.

T = (ft7K+laSt7K+17at7K+17~-~>72t;3t7at)- (1)

Prompting Decision Transformer for Few-Shot Policy Generalization

Few-shot Demonstrations

a*
K
*
s (alr s (alr
*
s)(a)(r s)(a)(r Prompt
Task 1 4

ook * * 4
__.rlslalr

& t-K+1 & t-1 & t
4 4 t
Prompt-based Decision Transformer
t t 4 t + 4 t t
r s a r s ‘a fr s
t-K+1 t-K+1 t-K+1 t-1 t-1 t-1 t t
a* ‘r* s*ia*
K-1 K K K

Figure 1. Prompt-DT for few-shot policy generalization. The left shows the few-shot demonstration dataset P; for each task 7, €
Jirain | Ttest The trajectory prompt is defined as a trajectory sequence of length K* sampled from various episodes stored in ;. In
both pretraining and few-shot evaluation, Prompt-DT takes both the trajectory prompt augmentation and the most recent K -step history as
input, and autoregressively outputs actions corresponding to each state in the input sequence.

When training with offline collected data, 7 = .., 7.
During testing, 7y = G* — 22:0 r; where G* is the tar-
geted total return for an episode. Each trajectory 7 corre-
sponds to 3K tokens in the standard Transformer model. To
encode the sequence timestep information, Decision Trans-
former concatenate the same timestep embedding to the
embeddings of sy, a; and 7;. Each head corresponding to
a state token is trained to predict an action by minimizing

mean-squared loss when continuous action spaces.

4. Prompt-based Decision Transformer

This section presents Prompt-based Decision Transformer
(Prompt-DT), a novel Transformer architecture for few-shot
policy generalization as visualized in Figure 1.

4.1. Problem Formulation

We formalize the offline few-shot RL problem as a few-shot
policy generalization problem to new tasks after training on
a set of tasks with offline data. Each task 7; in the training
set T is associated with a dataset D;, which contains
trajectories pre-collected with an unknown behavior policy
m;. In contrast to offline meta-RL, which updates the model
weights with task-specific offline data or online interactions,
we desire to achieve generalization with no finetuning or gra-
dient updates, which maintains high efficiency and avoids
catastrophic forgetting due to parameter shifts.

To achieve few-shot learning in the context of RL, we as-
sume that there exists a dataset P; containing few-shot
demonstrations for each task 7; € Tt U Ttest For
a training task 7; € 77", we let P; be a subset of the
offline data set D;. P; for a test task 7; € Tt could be
obtained with a human experimenter or a behavior policy.
In this work, we hope to design an architecture that can
directly extract unique task-specific information stored in
the demonstration dataset P; and exploit the information to
guide policy generation.

4.2. Prompt Representation

Text prompts containing task-specific instructions enable
a large Transformer model to generate answers without
changing the model parameters in NLP tasks. In the context
of RL, text descriptions that could serve as prompts are
recently introduced to solve Atari video games and multi-
modal household tasks (Shridhar et al., 2020). Such text
descriptions usually require predefined language templates
and may require large human labor to annotate.

We instead define trajectory prompt for RL as a sequence
that consists of a few trajectory segments. Each trajectory
segment contains multiple state s*, action a* and reward-to-
go 7* tuples, (s*, a*, 7*), following the trajectory represen-
tation in Decision Transformer. Each element with super-
script -* is associated with the trajectory prompt. Since each
sequential decision-making task 7; can be modeled as an
MDP M;, trajectory prompts can store partial to complete
information to specify a task by implicitly capturing the tran-
sition model and the reward function. Trajectory prompts
are relatively easy to obtain compared to text prompts by
directly sampling trajectory segments from the few-shot
demonstration dataset P;. Formally, we define a trajectory
prompt 7 for task 7; as

2

K™ is the number of environment steps stored in the prompt.
Note that our choice of K* is much shorter than the hori-
zon of the task. So a trajectory prompt only contains the
information needed to help identify the task but insufficient
information for the agent to imitate.

*x Ak * * AK * * ak * *
Tr = (1, 87, a7, 75, 85, A5y oo Theuy Shews Qs)

4.3. Prompt-DT Architecture

Our Prompt-DT architecture is built on Decision Trans-
former (Chen et al., 2021) and solves the offline few-shot RL.
problem through the lens of a prompt-augmented sequence-
modeling problem. The proposed trajectory prompt allows
minimal architecture change to the Decision Transformer for

Prompting Decision Transformer for Few-Shot Policy Generalization

Algorithm 1 Prompt-DT Training

Algorithm 2 Trajectory Prompt Generation (GetPrompt)

Input: training tasks 774" causal Transformer Trans-
formery, training iterations IV, offline dataset D, demon-
strations P, per-task batch size M, learning rate «
forn =1to N do
for Each task 7; € Tt"%" do
for m = 1to M do
Sample a trajectory 7; ,, of length K from D;
Sample a prompt 7/, = GetPrompt(T;, P;)

. input __ *
Getinput 7; " = (Tim,” Tiom)
end for
P M __ inputy M
Get a minibatch B} = {7,/ """}/,
end for
Ttv‘ain

Getabatch B = {BM}L|"", Ttrain — |Ttrain|

aPr? = Transformery(T7""PU), YrinPut ¢ B

Lyse = ﬁ S inpurep(a — aPed)?

0« 60— OéVg[:MSE

Prompt-DT Few-Shot Evaluation along training
end for

generalization. For each task 7;, Prompt-DT takes 7:"P%¢ as
input, which contains both the K™ step trajectory prompt ob-
tained from P; and the most recent K step history sampled
from D;. Formally 77"P%! = (7, ;). Since the data pair at
each timestep is a 3-tuple (s, a, 7*), the input sequence cor-
responds to 3(K™* + K) tokens in Transformer. Prompt-DT
autoregressively outputs K* + K actions at heads corre-
sponding to state tokens in the input sequence.

In the implementation, we utilize stochastic trajectory
prompt 7 aiming to increase training stability and avoid
overfitting as in Algorithm 2. The stochastic trajectory
prompt 7 for task 7; consists of J trajectory segments with
length H and K* = JH.

= (T) 3)
* Ak * *
Tig = (Fija 85000410
Tr i HsSi g G), Vi € [J]. “4)

Following the structure of Decision Transformer, we utilize
a GPT model with linear layers to obtain token embeddings
and add the same positional embedding to tokens corre-
sponding to the same timestep.

4.4. Algorithms

We summarize the training and testing algorithms for
Prompt-DT in Algorithm 1 and Algorithm 3.

During training, Prompt-DT minimizes errors between the
predicted actions and the actions in the data for both the
prompt and recent history. By learning the target actions
stored in trajectory prompts, Prompt-DT is motivated to
extract the task-specific information stored in the trajectory

Input: task 7, task-specific demonstrations P, sample
episode J, segmentation length H

Sample J episodes from P

Sample segments 77 of length H, Vj € [J] (Equation 4)
Return: trajectory prompt 7% = (77,...,7J)

Algorithm 3 Prompt-DT Few-Shot Evaluation

Input: test tasks 7 %!, causal Transformer Transformerg,
demonstrations P, target return G*, episode length T’
for Each task 7; € 7%t do
Initialize history T with zeros, desired reward g = G
Sample a prompt 7 = GetPrompt(T;, P;)
fort < T do
Get action a = Transformery((7*,7))[-1]
Step env. and get feedback s,a,r, g < g —7r

Append [s, a, g] to recent history T
end for
end for

prompt and combine it with the recent history for future
action predictions. In continuous settings, Prompt-DT mini-
mizes the mean-squared loss with gradient descent. At each
training step, we sample a batch B that contains prompt-
history pairs for each training task. Instead of iteratively
conducting gradient updates with data batch sampled from
one training task, our batch B helps stabilize training by
aggregating gradient estimates across all tasks in 77",

In testing time, we assume that the offline pretrained Prompt-
DT can interact with a simulator for each evaluation task in
Ttest. This online evaluation assumption resembles the ac-
tual deployment of trained RL agents. We sample a stochas-
tic trajectory prompt based on the demonstration set P; for
task 7; € 7t¢t similar to the training procedure. Prompt-
DT then generates actions taking both the prompt and recent
context as input. At the beginning of each episode, we
initialize a recent history 7 with all zeros for Prompt-DT
prediction and update it with streamingly collected data.

S. Experiments

We conduct experiments to test the few-shot generalization
capability of the proposed Prompt-DT with metric as the
episode accumulated reward. We aim to empirically answer
the following questions: 1) Can Prompt-DT achieve few-
shot policy generalization? 2) How does the prompt quantity
and quality affect the few-shot generalization ability? 3)
Does Prompt-DT generalize to out-of-distribution tasks?

5.1. Environments and Datasets

We evaluate in five meta-RL control tasks described as fol-
lows (Finn et al., 2017a; Rothfuss et al., 2018; Mitchell
et al., 2021; Yu et al., 2020a; Todorov et al., 2012).

Prompting Decision Transformer for Few-Shot Policy Generalization

= Prompt-DT = Prompt-MT-BC — MT-ORL MT-BC-Finetune — MACAW -—= MACAW Oracle ‘
Cheetah-dir Cheetah-vel Ant-dir
0 e A 2P
350
£-100 £300
g g
&_150 2250
3 5200
a 2
8200 ‘8150
w w
[e e S — —-250 1007,
501
—200
—300 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Training Iteration Training lteration Training lteration
Dial MetaWorld-reach-v2

5000

1.0
4000

EO.S c

2 2

£0.6 | 23000

L7 L

B B

204 22000

Q. 53

w | w

1000

0
5000 0

2500 3000

0 1000

2000 3000
Training Iteration

Figure 2. Episodic accumulated returns in never-before-seen tasks of Prompt-DT, Prompt-based Behavior Cloning (Prompt-MT-BC),
Multi-task Offline RL (MT-ORL), Multi-task Behavior Cloning (MT-BC-Finetune), and Meta-Actor Critic with Advantage Weighting
(MACAW). All methods are trained with the same expert dataset D. Each plot is run with three seeds. Prompt-DT and Prompt-MT-BC
have a few-shot dataset P containing expert demonstrations. Cheetah-dir, Cheetah-vel and Ant-dir have prompts of length K* = 5. Dial
has prompts of length K* = 15. Meta-World reach-v2 has prompts of length K* = 2. MT-BC-Finetune and MACAW use the same
amount of data which equals the prompt length for finetuning at testing time. The dashed lines show the optimal performance of MACAW
reported in Mitchell et al. (2021). Prompt-augmented methods including Prompt-DT and Prompt-MT-BC outperform baselines across

4000 500 1000 1500 2000

Training Iteration

environments with a short trajectory prompt.

* Cheetah-dir. There are two tasks in Cheetah-dir with
goal directions as forward and backward, respectively.
The cheetah agent is rewarded with high velocity along
the goal direction. The training and testing set are
equal, and both contain the two tasks.

* Cheetah-vel. There are 40 tasks in Cheetah-vel with
different goal velocities. The target velocities are uni-
formly sampled from the interval [0,3]. The agent is
penalized with [, errors to the target velocity. We hold
out 5 tasks to construct the testing set and train with
the remaining 35 tasks.

Ant-dir. There are 50 tasks in Ant-dir with different
goal directions uniformly sampled in 2D space. The
8-joints ant is rewarded with high velocity along the
goal direction. We sample 5 tasks for testing and leave
the rest for training.

e Dial. In Dial, the task is to control a 6-DOF Jaco
robot to reach a target number located in a number
pad. There are 10 numbers in total corresponding to
10 tasks. We train in 6 tasks and test in 4 tasks. Dial
is more complex than Meta-World reach-v2 since it
directly controls 6 joints.

¢ Meta-World reach-v2. In Meta-World reach-v2, the
task is to control a Sawyer robot’s end-effector to reach
a target position in 3D space. The agent directly con-
trols the XYZ location of the end-effector. Each task
has a different goal position. We train in 15 tasks and
test in 5 tasks.

Experiments in Cheetah-dir, Cheetah-vel and Ant-dir strictly
follow the datasets and settings in Mitchell et al. (2021).
The agents in all three tasks are penalized with large control
signals. The dataset for Cheetah-dir and Ant-dir contains the
full replay buffer for training an RL agent with Soft Actor-
Critic (Haarnoja et al., 2018). The dataset for Cheetah-
vel contains the replay buffer trained with TD3 (Fujimoto
et al., 2018) for its better training stability. In Meta-World
reach-v2 (Yu et al., 2020a) and Dial (Shiarlis et al., 2018),
we collect expert trajectories with script expert policies
provided in both environments.

5.2. Baselines

We compare the few-shot generalization ability of Prompt-
DT with four baselines, including three variants of Prompt-
DT and one state-of-art offline meta-RL algorithm.

Prompting Decision Transformer for Few-Shot Policy Generalization

¢ Multi-task Offline RL (MT-ORL). We train a Deci-
sion Transformer to learn multiple tasks in the training
set. We omit the prompt augmentation in Prompt-DT
to construct MT-ORL and keep the remaining MT-ORL
training process the same as Prompt-DT. In evaluation,
the reward-to-go are fed into the Transformer model
to provide partial task-specific information. MT-ORL
helps ablate the effect of prompt.

¢ Prompt-based Behavior Cloning (Prompt-MT-BC).
We omit Prompt-DT’s reward-to-go tokens stored in
the history input in both training and evaluation. This
Prompt-MT-BC baseline only keeps task-specific infor-
mation in the trajectory prompt. Prompt-MT-BC helps
show the effect of reward-to-go tokens.

L]

Multi-task Behavior Cloning (MT-BC-Finetune).
We exclude both the prompt augmentation and reward-
to-go tokens in the MT-BC-Finetune baseline. To adapt
to the target task, we update the Decision Transformer
model with finetuning gradient steps with data col-
lected in the target task. MT-BC-Finetune helps show
the effect of both prompt and reward-to-go tokens com-
pared with finetuning.

* Meta-Actor Critic with Advantage Weighting
(MACAW). MACAW is an offline meta-RL algorithm
that leverages the strength of both meta-learning and
off-policy value-based algorithms. MACAW has high
sample efficiency and outperforms multiple finetune
adaptation baselines in Cheetah-dir, Cheetah-vel, and
Ant-dir (Mitchell et al., 2021).

6. Discussion

6.1. Can Prompt-DT Achieve Few-Shot Policy
Generalization?

We compare the few-shot generalization ability of Prompt-
DT and the baselines to investigate whether prompts fa-
cilitate few-shot generalization, whether prompts encode
adequate task-specific information than the rewards, and
whether prompt-augmented methods are more data-efficient
than finetuning methods. We measure the generalization
ability of different methods with the average episode accu-
mulated reward in 7 %%, We show the results in Figure 2,
which are the few-shot evaluation performances of different
algorithms along the training process.

All the methods in Figure 2 are trained with the same expert
dataset in each environment. For Cheetah-dir, Cheetah-vel,
and Ant-dir, we select the expert dataset for each task as
the last 20,000 steps in the complete replay buffer. The
expert dataset for Dial and Meta-World reach-v2 contains
200 episodes for each task. Prompt-DT and Prompt-MT-BC
make use of a few-shot dataset P containing expert demon-

strations sampled from D, and have a trajectory prompt
consisting of a segment sampled from a single episode. To
have a fair comparison, finetuning methods, including MT-
BC-Finetune and MACAW, use offline expert trajectories
for estimating finetune gradients and are evaluated in an
online manner. We later discuss the effect of demonstra-
tion dataset P’s quantity in Section 6.2, and dataset D and
demonstration dataset P’s quality in Section 6.3.

Comparison of MT-ORL and Prompt-MT-BC. With
expert datasets P and D, Prompt-DT achieves high per-
formance with few-shot demonstrations in unseen tasks as
shown in Figure 2. Prompt-DT consistently outperforms
MT-ORL across environments with a large margin. Prompt-
DT and Prompt-MT-BC perform similarly in Cheetah-dir,
Cheetah-vel, Ant-dir, and Meta-World reach-v2. This ob-
servation shows that the trajectory prompts already embed
sufficient information to fully specify the task. However,
Prompt-DT outperforms Prompt-MT-BC in Dial, which
shows that there exist environments where the prompt itself
is insufficient, and the rewards help in policy generaliza-
tions.

Prompt-MT-BC performs similarly to MT-ORL in Dial and
is better than MT-ORL in the other four environments by a
large margin. We can see that the expert trajectory prompt
augmentation indeed provides more task-specific informa-
tion than the reward-to-go tokens stored in the historical
context in most situations. In Cheetah-dir, Cheetah-vel and
Ant-dir, although we construct different tasks by only modi-
fying reward functions (e.g., changing goal directions and
velocities), it is still hard to directly generalize to novel tasks
with contexts containing recent reward records according to
the poor performances of MT-ORL. In contrast, the trajec-
tory prompt augmentation could provide strong task-specific
signals to guide the action generation.

Comparison of MACAW and MT-BC-Finetune. During
training, we use the same batch sizes for all the algorithms.
Thus, methods at the same number of training iterations
(the x-axis in Figure 2) use the same amount of training
data. During testing, we provide all methods with the same
amount of data collected in the target test task, which means
the amount of data used for finetuning equals the prompt
length for each environment.

In all the environments except for Dial, Prompt-based meth-
ods converge to the optimal performances much faster than
MACAW. Note that the optimal performance of MACAW
marked as the dashed line in Figure 2 requires a finetune
batch of size 256. Even with a much smaller amount of
adaptation data (5 vs. 256), prompt-based methods have
better asymptotic performance than MACAW in relatively
complex environments, including Cheetah-vel and Ant-dir,
and similar performance in the simple Cheetah-dir envi-

Prompting Decision Transformer for Few-Shot Policy Generalization

Table 1. Ablation: The effect of prompt quantity on Prompt-DT’s
few-shot generalization ability. We vary the number of episodes J
and the trajectory segment length H in three environments. We use
a recent history containing K = 20 timesteps for all experiments.
Each number is run with 3 seeds. Prompt-DT only requires an
expert prompt with a small number of timesteps to achieve a few-
shot generalization.

K* J H Cheetah-dir Cheetah-vel Ant-dir

2 1 2 92646 £2.87 -4526£2.87 409.81 £ 9.69
5 1 5 927.20 £18.02 -37.92 £ 4.56 367.12 + 10.50
10 1 10 925.00 £ 1.41 -38.43 £2.14 382.94 £+ 25.21
40 2 20 926.87 £9.30 -34.43 +2.33 323.83 £9.33

ronment. In all the environments, prompt-based methods
consistently outperform MT-BC-Finetune. Moreover, with
the same amount of finetuning data and finetuning steps,
MT-BC-Finetune underperforms MACAW. We conjecture
that this is due to the data-hungry nature of Transformer,
which has significantly more model parameters than the
actor and critic net of MACAW. We provide further ablation
studies to show the performance of finetune-based algo-
rithms with various amounts of finetune data and finetune
steps in Section C.2 and Section C.3.

6.2. Does the Prompt Quantity Affect the Few-Shot
Generalization Ability?

In practice, there may exist a limited amount of high-quality
demonstrations for each test task, or the demonstrations may
contain trajectories with heterogeneous quality. We provide
an ablation study to reveal the effect of the trajectory prompt
quantity on the few-shot generalization ability. Table 1
summarizes the ablation results with expert dataset D and
expert demostrations P in all the three environments. We
vary the prompt quantity K* by changing the number of
trajectory segments J and the segment length H.

In Cheetah-dir, Prompt-DT achieves similar high perfor-
mances with different prompt lengths, even when the prompt
only contains two timesteps. It shows that by training in both
tasks in Cheetah-dir, Prompt-DT learns to run fast with his-
tory context 7, which is a common skill shared across tasks,
and extracts goal direction information stores in the (s, a,)
pair to generate actions. In Cheetah-vel, the trajectory
prompt with parameters K* = 40, J = 2, H = 20 achieves
the highest episode return in unseen task sets. Increasing
the prompt length K* does not greatly increase the general-
ization performance. With a short two-timestep trajectory
prompt, Prompt-DT could still achieve higher performances
than other baselines. In Ant-dir, Prompt-DT achieves the
highest performance with a two-timestep prompt. We con-
jecture that the existence of nonexpert episodes (with nega-

tive returns) in Ant-dir’s dataset decreases the effectiveness
of prompts constructed from multiple trajectories.

Our experiments show that, with trajectory prompt sampled
from expert demonstrations, Prompt-DT is not sensitive
to the prompt quantity and can successfully extract task-
specific information even with prompts containing only a
few timesteps. It shows that the sequential information in
the trajectory prompt is not crucial to revealing the unique
task-specific reward information in the current MuJoCo
control settings. However, we conjecture that if tested with a
more complex task set, such as Meta-world containing tasks
that require sequential tool manipulation, the sequential
information stored in the prompt will become more critical.

6.3. Does the Prompt Quality Affect the Few-Shot
Generalization Ability?

There are situations where expert demonstrations for tar-
get tasks are unavailable, especially when the target test
task 7 itself is not fully characterized due to model uncer-
tainty (e.g., uncertain dynamic parameters in control tasks).
Thus it is vital to investigate how the prompt quality affects
the generalization ability. We conduct an ablation study
in Cheetah-vel and construct expert, medium, and random
datasets D’ corresponding to the last, middle, and first 500
trajectories in the full replay buffer collected along training
an RL agent. We also sample expert, medium, and ran-
dom few-shot demonstrations P’ from D’ accordingly. We
summarize the ablation results in Figure 3.

Prompt-DT could adjust its generated actions according
to the given trajectory prompt when training with expert
data. For example, Prompt-DT achieves low episode re-
turn with random trajectory prompt and high performances
with expert or medium prompts. Similarly, when training
with medium data, Prompt-DT’s return heavily decreases
when random prompts and slightly increases with expert
prompts, validating the effect of prompt quality. However,
when training with random data, only feeding Prompt-DT
expert or medium trajectory prompts does not help improve
the generalization ability. This observation may result from
the largely overlapped task state distributions in the random
training dataset, reducing the prompt’s effects and encour-
aging Prompt-DT to match the commonly shared random
state distribution.

6.4. Can Prompt-DT Generalize to Out-of-distribution
Tasks via Few-Shot Demonstrations?

In previous discussions, we follow the experimental setting
in MACAW (Mitchell et al., 2021) by training in a large
batch of training tasks and evaluating in a few held-out
tasks. The held-out tasks have goals (target velocity or
target direction) within the goal range calibrated by training
tasks. We desire to test whether trajectory prompts enable

Prompting Decision Transformer for Few-Shot Policy Generalization

Cheetah_vel-expert-dataset

Cheetah_vel-medium-dataset

Cheetah_vel-random-dataset

-50

|
v
(=]

-100

|
-
o
o

-150 -150

Episode Return
Episode Return

—200

|
N
=]
o

—250 —250

-300 -300

|
ur
o

Expert-Prompt

£ _100 =—— Medium-Prompt
% —— Random-Prompt
o

© —150

°

o

2

‘S —200

w

—250 , e

300

0 1000 2000 3000 4000 5000 0 1000 2000
Training Iteration

Training Iteration

3000 4000 5000 - 0 1000 2000 3000 4000 5000
Training Iteration

Figure 3. Ablation: The effect of prompt quality to Prompt-DT’s few-shot generalization ability. We train Prompt-DT with datasets
and demonstrations with the same quality in each plot. The left, middle and right figure corresponds to expert, medium, and random
dataset collected in Cheetah-vel. Each plot is run with 2 seeds. We feed Prompt-DT trajectory prompts of different qualities when testing
Prompt-DT’s few-shot generalization ability. The results show that Prompt-DT tries to generate policies that match the prompt quality,
and the quality of training datasets also affects the few-shot generalization ability of Prompt-DT.

Ant-dir
600
500
c A 4 4
£
2 400 Al N\/ \/ \\/\
o \/\/
NP~ s MagA S
Q ~
a
5200 ﬁvm-/—\,« UA\/\/_,/\/_V_
100 —— Prompt-DT MT-BC-Finetune
Prompt-MT-BC —— MACAW
o —— MT-ORL
0 1000 2000 3000 4000 5000

Training Iteration
Figure 4. Episodic accumulated returns in novel tasks with goals
out of training tasks’ goal range in Ant-dir. Each plot is run with 3
seeds. Prompt-MT-BC scores the highest reward and outperforms
baselines without trajectory prompts by a large margin.

the extrapolation ability when handling tasks with goals out
of the training range. In other words, we hope to test the
generalization ability in out-of-distribution tasks.

We sample eight training tasks in Ant-dir and three testing
tasks, two of which have indexes smaller than the minimum
task index and one larger than the maximum. The task in-
dex is proportional to the desired direction angle. We show
that Prompt-DT still performs better than baselines with no
prompt augmentation in Figure 4. The large variance of
Prompt-DT may come from the large variance in episode re-
turns across different testing tasks and the increased sparsity
of training tasks.

7. Conclusion

In this work, we proposed Prompt-based Decision Trans-
former to solve offline few-shot RL problems. We em-
pirically evaluated our algorithm and found it outperform
the state-of-the-art offline meta-RL algorithm MACAW

(Mitchell et al., 2021) in multiple benchmark domains. We
also showed that Prompt-DT is robust to the prompt length
changes when trained with an expert dataest, while it is
sensitive to the quality of the data provided in the prompt.

To the best of our knowledge, this is the first application of
sequence-prediction models in the offline few-shot RL set-
ting, developed based on Decision Transformer (Chen et al.,
2021). Our algorithm is simple to implement, which only
involves training a prompt-based Transformer, as opposed
to training policy and value networks separately using an
actor-critic algorithm in MACAW (Mitchell et al., 2021).

We hope this work will inspire more investigation of applica-
tions of sequence-prediction models in RL. In future work,
we consider designing objective functions that balance the
weight of the trajectory prompt and the history context as
we currently deem the length of the prompt as a hyperparam-
eter, and use prompt-based Transformer for other RL tasks
like meta-imitation learning (Duan et al., 2017; Finn et al.,
2017b). We also notice that when using prompts subsampled
from expert trajectories, Prompt-DT and Prompt-MT-BC
fail to generalize in Meta-World’s ML10 benchmark. This
motivates future works to design better prompts and prompt-
based algorithms to solve complex compositional tasks.

Acknowledgements. This work was supported by MIT-
IBM Watson Al Lab and its member company Nexplore,
and DARPA Machine Common Sense program. The infor-
mation, data, or work presented herein was also funded by
the Advanced Research Projects Agency-Energy (ARPA-
E), U.S. Department of Energy, under Award Number DE-
AR0001210. MDX and ZD gratefully acknowledge support
from the National Science Foundation under grant CAREER
CNS-2047454. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Prompting Decision Transformer for Few-Shot Policy Generalization

References

Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande,
V. Low data drug discovery with one-shot learning. ACS
central science, 3(4):283-293, 2017.

Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., and
Vedaldi, A. Learning feed-forward one-shot learners. In

Advances in neural information processing systems, pp.
523-531, 2016.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Smash:
one-shot model architecture search through hypernet-
works. arXiv preprint arXiv:1708.05344, 2017.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European Conference on Computer Vi-
sion, pp. 213-229. Springer, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dong, X., Zhu, L., Zhang, D., Yang, Y., and Wu, F. Fast
parameter adaptation for few-shot image captioning and
visual question answering. In Proceedings of the 26th

ACM international conference on Multimedia, pp. 54-62,
2018.

Duan, Y., Andrychowicz, M., Stadie, B. C., Ho, J., Schnei-
der, J., Sutskever, 1., Abbeel, P., and Zaremba, W. One-
shot imitation learning. arXiv preprint arXiv:1703.07326,
2017.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., and Levine,
S. Visual foresight: Model-based deep reinforcement

learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126—1135.
PMLR, 2017a.

Finn, C., Yu, T, Zhang, T., Abbeel, P, and Levine, S. One-
shot visual imitation learning via meta-learning. In Con-
ference on Robot Learning, pp. 357-368. PMLR, 2017b.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1587-1596.
PMLR, 2018.

Furuta, H., Matsuo, Y., and Gu, S. S. Generalized decision
transformer for offline hindsight information matching.
arXiv preprint arXiv:2111.10364, 2021.

Gao, T., Fisch, A., and Chen, D. Making pre-trained lan-
guage models better few-shot learners. arXiv preprint
arXiv:2012.15723, 2020.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861-1870. PMLR,
2018.

Islam, R., Teru, K. K., Sharma, D., and Pineau, J. Off-
Policy Policy Gradient Algorithms by Constraining the
State Distribution Shift. arXiv:1911.06970 [cs, stat],
2019.

Janner, M., Li, Q., and Levine, S. Reinforcement learning
as one big sequence modeling problem. arXiv preprint
arXiv:2106.02039, 2021.

Kahn, G., Abbeel, P, and Levine, S. Badgr: An autonomous
self-supervised learning-based navigation system. /[EEE
Robotics and Automation Letters, 6(2):1312-1319, 2021.

Kalashnikov, D., Irpan, A., Pastor, P,, Ibarz, J., Herzog, A.,
Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Van-
houcke, V., et al. Scalable deep reinforcement learning
for vision-based robotic manipulation. In Conference on
Robot Learning, pp. 651-673. PMLR, 2018.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T.
MOReL : Model-Based Offline Reinforcement Learning.
In arXiv:2005.05951 [Cs, Stat], 2021.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative Q-Learning for Offline Reinforcement Learning.
Neural Information Processing Systems, 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Liu, P, Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. arXiv
preprint arXiv:2107.13586, 2021.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and
Finn, C. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, pp. 7780-7791. PMLR, 2021.

Prompting Decision Transformer for Few-Shot Policy Generalization

Nichol, A., Achiam, J., and Schulman, J. On First-
Order Meta-Learning Algorithms. arXiv:1803.02999
[cs], 2018.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, 1., et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-Learning with Implicit Gradients. In Wallach,
H., Larochelle, H., Beygelzimer, A., d\textquotesingle
Alché-Buc, F,, Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 32, pp. 113—
124. Curran Associates, Inc., 2019.

Rothfuss, J., Lee, D., Clavera, 1., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. arXiv preprint
arXiv:1810.06784, 2018.

Shiarlis, K., Wulfmeier, M., Salter, S., Whiteson, S., and
Posner, I. Taco: Learning task decomposition via tempo-
ral alignment for control. In International Conference on
Machine Learning, pp. 4654—4663. PMLR, 2018.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,
W., Mottaghi, R., Zettlemoyer, L., and Fox, D. Alfred:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10740-10749, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, 2018. ISBN 978-0-262-35270-
3.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp- 5026-5033. IEEE, 2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching networks for one shot learning. Advances in
neural information processing systems, 29:3630-3638,
2016.

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. Generalizing
from a few examples: A survey on few-shot learning.
ACM Computing Surveys (CSUR), 53(3):1-34, 2020.

Wu, Y. and Demiris, Y. Towards one shot learning by imi-
tation for humanoid robots. In 2010 IEEE International
Conference on Robotics and Automation, pp. 2889-2894.
IEEE, 2010.

Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., and Ahn, S.
Bayesian model-agnostic meta-learning. In Proceedings
of the 32nd International Conference on Neural Informa-
tion Processing Systems, pp. 73437353, 2018.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on Robot Learning, pp. 1094-1100. PMLR,
2020a.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S.,
Finn, C., and Ma, T. MOPO: Model-based Offline Policy
Optimization. Neural Information Processing Systems,
2020b.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine,
S., and Finn, C. COMBO: Conservative Offline Model-
Based Policy Optimization. arXiv:2102.08363 [cs],
2021.

Appendix: Prompting Decision Transformer for Few-Shot Policy Generalization

We provide the hyperparameters for Prompt-DT and baselines in Section A, more experiment details in Section B and
ablation studies in Section C.

A. Hyperparameters

We show the hyperparameter of Prompt-DT and its variants in Table 2 and Table 3, and MACAW in Table 4.

Table 2. Common Hyperparameters of Prompt-DT, Prompt-MT-BC, MT-ORL and MT-BC-Finetune

Hyperparameters Value
K (length of context 7) 20
training batch size for each task 8
number of evaluation episodes for each task 20
learning rate le-4
learning rate decay weight le-4
number of layers 3
number of attention heads 1
embedding dimension 128
activation ReLU

Table 3. Environment-specific Hyperparameters of Prompt-DT and Prompt-MT-BC

Environments Target RewardS G* Prompt Length K*
Cheetah-dir 1000 5
Cheetah-vel 0 5
Ant-dir 500 5
Dial 10 15
Meta-World reach-v2 1500 2

Table 4. Hyperparameters of MACAW
Hyperparameters Value

training inner batch size 256
evaluation batch size prompt length K*
inner policy learning rate le-3
inner value learning rate le-3
outer policy learning rate le-4
outer value learning rate le-5

replay buffer size 20k
inner buffer size 20k
MLP net width 300
MLP net depth 3

activation tanh

adaptation step 10

Prompting Decision Transformer for Few-Shot Policy Generalization

B. Experiment Details

We show the task index of the training and testing set for when evaluating the in-distribution generalization capability in
Table 5. In other words, the experiments in Section 6.1, Section 6.2 and Section 6.3 follows the training and testing division
in Table 5.

Table 5. Training and testing task indexes when testing the generalization ability in in-distribution tasks
Cheetah-dir

Training set of size 2 [0,1]
Testing set of size 2 [0.1]

Cheetah-vel

Training set of size 35 [0-1,3-6,8-14,16-22,24-25,27-39]
Testing set of size 5 [2,7,15,23,26]

ant-dir

Training set of size 45 [0-5,7-16,18-22,24-29,31-40,42-49]
Testing set of size 5 [6,17,23,30,41]

Meta-World reach-v2

Training set of size 15 [1-5,7,8,10-14,17-19]
Testing set of size 5 [6,9,15,16,20]

Dial

Training set of size 6 Target pin number: [1,2,3,4,5,8]
Testing set of size 4 Target pin number: [6,7,9,0]

We also show and the task indexes when evaluating the out-of-distribution generalization capability in Table 6 which
accounts for the experiments in Section 6.4.

Table 6. Training and testing task indexes when testing the generalization ability in out-of-distribution tasks

ant-dir

Training set of size 8 [8,13,16,20,22,26,32,37]
Testing set of size 3 [1,4,41]

Prompting Decision Transformer for Few-Shot Policy Generalization

C. Ablation Study

In this section, we provide addition ablation studies on the effect of prompt length in Section C.1

C.1. The Effect of Prompt Quantity

We show evaluation curves along the training process with various prompt quantity. The training curves for Prompt-DT
are shown in Figure 5 and curves for Prompt-MT-BC in Figure 6. Both figures show that in Cheetah-dir, Cheetah-vel and
Ant-dir, prompt-based methods are not sensitive to the number of episodes stored in the trajectory prompt or the prompt
length.

Cheetah-dir Cheetah-vel Ant-dir
0
400 >,
/A
-50 N m,.,\ YV
c c c A
E 5 -100 5 300
@ @]
o o [~
] - —150 £ 200
‘8 200 —— episode: 1, length: 2 ‘8 / —— episode: 1, length: 2 'g episode: 1, length:
2 episode: 1, length: 5 S —200 episode: 1, length: 5 = episode: 1, length: 5
0 episode: 1, length: 10 y episode: 1, length: 10 100 episode: 1, length: 10
—— episode: 2, length: 20 —250 —— episode: 2, length: 20 —— episode: 2, length: 20
—200 —— episode: 5, length: 20 —— episode: 5, length: 20 0 —— episode: 5, length: 20
—300
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Training lteration Training lteration Training Iteration
Figure 5. Ablation: The effect of trajectory prompt length to Prompt-DT’s performance. Each plot is run with 3 seeds.
-di Cheetah-vel -di
1000 Cheetah-dir o Ant-dir
. - 400 i
800 AN AN
-50 r,)_fv-\/\/\/'\/\\ Rl /\/~/“ '
£ 600 £ / £ 300
2 2 -100 1 2
[[|7
% 400 % / ﬁ‘ﬂ} 5
R : Y -150 / i Y 200 }
Ag 2004/ MT: episode: 1, length: 2 g /4 —— MT: episode: 1, length: 2 g —— MT: episode: 1, length: 2
= MT: episode: 1, length: 5 & 200 / MT: episode: 1, length: 5 = 100 MT: episode: 1, length: 5
0 MT: episode: 1, length: 10 MT: episode: 1, length: 10 MT: episode: 1, length: 10
—— MT: episode: 2, length: 20 -250 —— MT: episode: 2, length: 20 —— MT: episode: 2, length: 20
—200 —— MT: episode: 5, length: 20 —— MT: episode: 5, length: 20 0 —— MT: episode: 5, length: 20
. ' U Y —300 - U 5 '
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Training Iteration Training Iteration Training Iteration

Figure 6. Ablation: The effect of trajectory prompt length to Prompt-MT-BC’s performance. Each plot is run with 3 seeds.

C.2. The Effect of Finetune Data’s Quantity on MT-BC-Finetune

We show MT-BC-Finetune’s performance with various adaptation batch sizes in Figure 7. With limited finetune data,
MT-BC-Finetune has difficulties in adapting to every task. MT-BC-Finetune has a large performance variance in Cheetah-dir
with an adaptation batch of size 256 and smaller variances in Cheetah-vel and Ant-dir. The large variance in Cheetah-dir
may result from the disjoint state distribution in the two tasks with opposite rewards by design.

Note that in Figure 7, we use 10 adaptation steps. We notice that with 100 finetune steps and the adaptation batch size of
1280, MT-BC-Finetune could adapt to test tasks as shown in Table 7.

Environments Adaptation Batch Size Finetune Steps Converged performance

Cheetah-dir 1280 100 930
Cheetah-vel 1280 100 -32
Ant-dir 1280 100 470

Table 7. The performance of MT-BC-Finetune with adequate adaptation data and adaptation steps.

Prompting Decision Transformer for Few-Shot Policy Generalization

‘ = Prompt-DT —— MT-BC-Finetune-256 —— MT-BC-Finetune-128 ~— MT-BC-Finetune
heetah-dir ~ L
1000 Cheetah-d Cheetah-vel Ant-dir
_ 400
800 50
£ 600 g~100 £300
2 2 2
& 400 &-150 &
[}] @200
o e e
2200 2-200 2
o Q. o
2 4 -250
—200 _300 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Training Iteration Training Iteration Training Iteration
Dial MetaWorld-reach-v2
5000
1.0
4000
g0 £
2 2
Lo. 2 3000
() @
3 3
204 22000
o [
w w
02 1000
0.0
| 0
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000
Training Iteration Training Iteration

Figure 7. Ablation: The effect of finetune data’s quantity on MT-BC-Finetune. MT-BC-Finetune-256 and MT-BC-Finetune-128 have a
finetune batch size of 256 and 128 respectively.

200

Episode Return

-200

—— Prompt-DT —— MACAW-256 —— MACAW-128 — MACAW === MACAW Oracle
Cheetah-dir Cheetah-vel Ant-dir
400
-50
Ad 100 £300
§ 2 250
&-150 L & -
% _§200
-200
£ v Z1s0
-250 1
50
-300 o
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Training lteration Training lteration Training lteration
Dial MetaWorld-reach-v2
5000
1.0 P
4000
EOB c
2 2
&o6 g 3000
5 3
20.4 2 2000
2 2
w w
0.2 1000
&0‘ | 0 |
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000
Training Iteration Training Iteration

Figure 8. Ablation: The effect of finetune data’s quantity on MACAW. MACAW-256 and MACAW-128 have a finetune batch size of 256
and 128 respectively.

C.3. The Effect of Finetune Data’s Quantity on MACAW

We show MACAW'’s performance with various adaptation batch sizes in Figure 8. Each curve has 10 finetuning gradient
steps. With an increasing adaptation batch size, MACAW’s performance improves consistently across environments.
However, MACAW-256 (MACAW with an adaptation batch size of 256) still underperforms Prompt-DT in Cheetah-dir,
Cheetah-vel, and Ant-dir. In Meta-World reach-v2, Macaw-256 has a similar asymptotic performance with Prompt-DT but
converges slower than Prompt-DT.

