
Accurate Quantization of Measures via Interacting Particle-based Optimization

Lantian Xu 1 Anna Korba 2 Dejan Slepčev 1

Abstract

Approximating a target probability distribution
can be cast as an optimization problem where the
objective functional measures the dissimilarity to
the target. This optimization can be addressed by
approximating Wasserstein and related gradient
flows. In practice, these are simulated by inter-
acting particle systems, whose stationary states
define an empirical measure approximating the
target distribution. This approach has been pop-
ularized recently to design sampling algorithms,
e.g. Stein Variational Gradient Descent, or by
minimizing the Maximum Mean or Kernel Stein
Discrepancy. However, little is known about quan-
tization properties of these approaches, i.e. how
well is the target approximated by a finite number
particles. We investigate this question theoreti-
cally and numerically. In particular, we prove
general upper bounds on the quantization error
of MMD and KSD at rates which significantly
outperform quantization by i.i.d. samples. We
conduct experiments which show that the parti-
cle systems at study achieve fast rates in prac-
tice, and notably outperform greedy algorithms,
such as kernel herding. We compare different
gradient flows and highlight their quantization
rates. Furthermore we introduce a Normalized
Stein Variational Gradient Descent and argue in
favor of adaptive kernels, which exhibit faster con-
vergence. Finally we compare the Gaussian and
Laplace kernels and argue that the Laplace kernel
provides a more robust quantization.

1. Introduction
Approximating a probability distribution π only known up to
a normalization constant by a finite set of points, to compute
functionals

∫
f(x)dπ(x) (e.g. expectations, quantiles) is a
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central task in machine learning and computational statistics,
often referred to as sampling. The error made when approx-
imating the integral of interest by an average over n support
points is typically called the integral approximation error.
A large number of methods have been developed to tackle
this problem. For instance, Markov Chain Monte Carlo
(MCMC) methods generate a Markov chain whose law con-
verges to π under mild assumptions (Roberts & Rosenthal,
2004). However, iterates of these chains might bunch up and
cover the target distribution in an irregular, thus inefficient
way with respect to the number of points. More precisely,
the integral approximation error of MCMC methods is of
order O(n− 1

2 ) when using n particles (Łatuszyński et al.,
2013). Hence, a large body of work has been focused on
designing post-processing methods on MCMC algorithms
output to reduce the finite-sample error (Riabiz et al., 2020;
Hodgkinson et al., 2020; Teymur et al., 2021; Chopin &
Ducrocq, 2021). In contrast, Quasi-Monte Carlo methods
(Sobol, 1998; Dick & Pillichshammer, 2010) create more
regularly-spaced sample sets to achieve faster convergence.

Recently, several algorithms for sampling relying on deter-
ministic particle systems have been proposed in the litera-
ture, as alternatives to MCMC algorithms. In a nutshell, one
casts the sampling problem as minimizing a discrepancy
(between probability distributions) to the target measure
π, and discretize Wasserstein, or other, gradient flows of
this discrepancy. The best known example is Stein Varia-
tional Gradient Descent (SVGD) algorithm (Liu & Wang,
2016), that proposes a deterministic gradient descent of the
Kullback-Leibler divergence in Stein geometry that can be
seen as a kernel smoothed relative of the Wasserstein metric.
In particular the velocities of SVGD are smoother than for
the Wasserstein gradient flow of the same energy. The sim-
plicity of the algorithm and its relative success on machine
learning tasks, such as sampling e.g. for Bayesian inference
(Liu & Wang, 2016; Liu & Zhu, 2018), learning deep proba-
bilistic models (Pu et al., 2017), and more recently Bayesian
deep learning (D’Angelo et al., 2021; D’Angelo & Fortuin,
2021) has raised a lot of interest in the sampling literature
and popularized the method. More recently, the minimiza-
tion of other discrepancies have been investigated, such as
the Maximum Mean Discrepancy (Arbel et al., 2019) or
the Kernel Stein Discrepancy (Korba et al., 2021). While
the first one is closely related to optimizing shallow neural
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networks and requires to know the density of π or at least
to have access to samples from it, the second one was in-
troduced as a sampling algorithm when π is only known
up to a normalization constant. In all cases, these methods
implement interacting particle systems, whose empirical
distribution aims at approximating the target distribution
π. The corresponding particle systems generally involve
attractive force and repulsive force terms, that drive the par-
ticles to the target distribution while preventing them from
collapsing. The sample particles are correlated and approxi-
mate the target distribution as a whole. In this view, these
algorithms are closer in spirit to Quasi Monte Carlo sam-
pling. They are typically more computationally expensive
than many MCMC methods, however, as we will discuss
more in depth later, they can provide a better approximation
of the target π for a finite number of samples.

In this paper, we study the approximation properties of parti-
cle systems derived from Wasserstein (and related) gradient
flows for a finite number of particles n, at stationarity. Our
goal is to encourage a fair comparison, for a given computa-
tional budget, between MCMC algorithms and these particle
algorithms, that both depend on the number of iterations
and a number of particles. Our contributions are twofold.
We investigate the quantization properties of these methods,
assuming the particles have attained a minimizer of their dis-
crepancy objective. Furthermore, as these algorithms might
be difficult to tune to guarantee particles convergence, we
also discuss practical improvements. The paper is organized
as follows. Section 2 provides the necessary background on
the discrepancies of interest and interacting particles-based
algorithms, including SVGD. Section 3 discusses related
work relevant to our study. Section 4 presents a new normal-
ized choice of kernel for SVGD. Section 5 is devoted to our
theoretical results on quantization. Our numerical results
are to be found in Section 6.

Notations. The space of l continuously differentiable func-
tions on Rd is Cl(Rd), and the space of smooth functions
with compact support C∞

c (Rd). P(Rd) is the set of proba-
bility distributions over Rd. For any µ ∈ P(Rd), Lp(µ) is
the space of µ-measurable functions f : Rd → Rd such that∫
∥f∥pdµ < ∞. We denote by ∥·∥Lp(µ) the norm of the Ba-

nach space Lp(µ). The Sobolev space W d,2(Rd) is denoted
by Hd = {u ∈ L2(Rd),∀α s. t. |α| ≤ d, Dαu ∈ L2(Rd)}
where D denotes a partial derivative. The convolution of
f and g is denoted f ⋆ g(x) =

∫
f(x − y)g(y)dy. In the

following, we assume that π admits a density proportional
to exp(−U) with respect to Lebesgue measure over Rd.

2. Background
2.1. MMD and KSD Gradient Flows

Consider a positive semi-definite kernel k : Rd × Rd → R
and its corresponding RKHS Hk of real-valued functions
on Rd. The space Hk is a Hilbert space with inner product
⟨·, ·⟩Hk

and norm ∥·∥Hk
. Moreover, k satisfies the reproduc-

ing property: ∀ f ∈ Hk, x ∈ Rd, f(x) = ⟨f, k(x, ·)⟩Hk
.

We denote by Hd
k the Cartesian product RKHS consisting

of elements f = (f1, . . . , fd) with fi ∈ Hk, and with inner
product ⟨f, g⟩Hd

k
=

∑d
i=1⟨fi, gi⟩Hk

. For a differentiable
kernel k : Rd × Rd → R, ∇xk(x, y) (resp. ∇yk(x, y))
is the gradient of the kernel w.r.t. the first (resp. second)
variable evaluated at (x, y), and ∇·x∇yk(x, y) denotes the
divergence of ∇yk(x, y) w.r.t. x.

Let µ ∈ P(Rd). If
∫ √

k(x, x)dµ(x) < ∞, then the
kernel mean embedding mµ =

∫
k(x, .)dµ(x) ∈ Hk

and Eµ[f(X)] = ⟨f,mµ⟩Hk
(Smola et al., 2007). If the

map m : P(Rd) → Hk, µ 7→ mµ is injective, the ker-
nel k is said to be characteristic (Sriperumbudur et al.,
2009); this includes common kernels such as the Gaussian
k(x, y) = exp

(
−∥x− y∥2/h

)
or Laplace kernel k(x, y) =

exp(−∥x− y∥/h) where h denotes some bandwith param-
eter. For a characteristic kernel, the kernel mean embedding
can be used to define a metric for probability distributions,
namely the maximum mean discrepancy (MMD) (Gretton
et al., 2012) defined for any µ ∈ P(Rd) as:

MMD2(µ, π) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∫ fdµ−
∫

fdπ

∣∣∣∣2
= ∥mµ −mπ∥2Hk

=

∫∫
Rd

k(x, y)dµ(x)dµ(y)

+

∫∫
Rd

k(x, y)dπ(x)dπ(y)− 2

∫∫
Rd

k(x, y)dµ(x)dπ(y), (1)

where the last equality is obtained by the reproducing prop-
erty. The MMD (1) writes as a sum of integrals, hence it
can be estimated as soon as one has access to samples of µ
and π. Also, it enables to bound the integral approximation
error for any f ∈ Hk, since by the reproducing property
and Cauchy-Schwartz inequality,∣∣∣∣∫

Rd

f(x)dπ(x)−
∫
Rd

f(x)dµ(x)

∣∣∣∣ ≤ ∥f∥Hk
MMD(µ, π).

(2)

If one has only access to the score of π defined by s(x) =
∇ log π(x), as in many applications such as Bayesian infer-
ence, it is still possible to compute the Kernel Stein Discrep-
ancy (KSD) (Liu et al., 2016; Chwialkowski et al., 2016;
Gorham & Mackey, 2017) defined by

KSD2(µ|π) =
∫∫

Rd

kπ(x, y)dµ(x)dµ(y), (3)

where kπ : Rd × Rd → R is the Stein kernel, defined
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through the score s and k as:

kπ(x, y) = s(x) · s(y)k(x, y) + s(x) · ∇yk(x, y)

+∇xk(x, y) · s(y) +∇ ·x ∇yk(x, y), (4)

where · denotes the scalar product in Rd. The Stein ker-
nel kπ is a reproducing kernel and satisfies a Stein identity
(
∫
Rd kπ(x, ·)dπ(x) = 0) under mild boundary conditions on

k and π, see Oates et al. (2017, Lemma 1) and Chwialkowski
et al. (2016, Lemma 5.1). Hence (3) is obtained by using
the Stein kernel (4) in the MMD (1), and KSD can be
seen as a particular case of MMD. Several properties of
KSD were studied in (Gorham & Mackey, 2017); in par-
ticular for a distantly dissipative target π, the KSD was
shown to metrize weak convergence for the Inverse Mul-
tiQuadratic (IMQ) kernel defined by η(x) = (c + ∥x∥)β ,
β ∈ (−1, 0), c > 0, while this is not the case for kernels
with lighter tails such as Gaussian or Matérn kernels. In
contrast, MMD metrizes weak convergence for all these
kernels Sriperumbudur (2016, Thm.3.2).

Now, let F(µ) = 1/2D2(µ, π) where D is the MMD or
KSD. A Wasserstein gradient flow of F (Ambrosio et al.,
2005) can be described by the following continuity equation:

∂µt

∂t
+∇ · (µtvµt) = 0, for vµt = −∇F ′(µt), (5)

where F ′ denotes the first variation 1 of F . For discrete mea-
sures µn = 1/n

∑n
i=1 δxi , we can define F (Xn) := F(µn)

where Xn = (x1, . . . , xn). For the functionals for which F
is well defined (e.g., MMD or KSD), the Wasserstein gradi-
ent flow of F becomes the standard euclidean gradient flow
of the particle based function F . Furthermore, the forward
Euler discretization of (5) writes as gradient descent on the
position of the particles. If D is the MMD, the gradient of
F is readily obtained as

∇xiF (Xn) =
1

n

n∑
j=1

∇xjk(xi, xj)−
∫

∇xk(x
i, x)dπ(x).

(6)
Notice that the integral with respect to π requires to know
the density π, or at least samples to approximate this integral.
In contrast, thanks to the property of the Stein kernel, if D
is the KSD,

∇xiF (Xn) =
1

n

n∑
j=1

∇xjkπ(x
i, xj). (7)

Hence, minimizing the MMD or KSD result in particle
systems that interact through the gradient of the objective.
We will refer later to these algorithms as MMD Descent and

1If it exists, the first variation of F at ν is the function F ′(ν) :
Rd → R s. t. for ν, µ ∈ P(Rd): limϵ→0

1/ϵ[F(ν + ϵ(µ− ν))−
F(ν)] =

∫
F ′(ν)(x)(dµ(x)− dν(x)).

KSD Descent. While the choice of the MMD is not adapted
to the task of sampling for Bayesian inference where the
density of π or samples are not available, MMD gradient
flow can be related to the optimization of shallow neural
networks with gradient descent (Arbel et al., 2019).

2.2. Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) is a sampling
algorithm introduced in (Liu & Wang, 2016), that performs
gradient descent of the Kullback-Leibler (KL) divergence
(relative to π) in the space of probability distributions, where
the gradient is smoothed through a kernel integral opera-
tor (Korba et al., 2020). Recall that the KL divergence is
defined by

KL(µ|π) =
∫

log

Å
dµ

dπ

ã
dµ,

where dµ/dπ is the Radon-Nikodym derivative, if µ is ab-
solutely continuous with respect to π and KL(µ|π) = +∞
otherwise. More precisely, SVGD dynamics corresponds to
the gradient flow of the KL with respect to a Stein geometry
(Liu, 2017; Duncan et al., 2019). The Stein geometry shares
formal similarities with the Wasserstein metric. The differ-
ence is that the length of the paths in Wasserstein geometry
is measured by the L2 norm of the velocity, while in the
Stein geometry one measures the velocity in an RKHS. That
is the length of the path ∂tµt = −∇ · (µtvt) for t ∈ [0, T ]

is
∫ T

0
∥v∥Hk

dt, as compared to
∫ T

0
∥v∥L2(µt)dt for Wasser-

stein geometry. Thus the velocities of paths of finite length
need to be more regular in Stein geometry.

Fix a reproducing kernel k. In continuous time, SVGD flow
is defined by the continuity equation

∂µt

∂t
+∇·(µtvµt

) = 0, vµt
= −k⋆(µt∇U)−∇k⋆µt. (8)

As was noted (Liu, 2017) the velocity of the flow vµt
is well

defined even if µt is a discrete measure. As vµt depends
on continuously on µt with respect to weak convergence of
measures, (8) can be approximated by an interacting particle
system. In practice, SVGD algorithm implements a particle
approximation of a forward discretization of (8). Let γ > 0
be a fixed step-size. Starting from n i.i.d. samples xi

0 ∼ µ0,
SVGD algorithm updates the n particles as follows at each
iteration :

xi
l+1 = xi

l −
γ

n

n∑
i=1

î
∇U(xi

l)k(x
i
l, x

j
l ) +∇xj

l
k(xi

l, x
j
l )
ó
,

for any i = 1, . . . , n. While the discrete particle flow is
no longer a gradient flow (as the KL divergence is not well
defined) it approximates the continuum gradient flow (8),
see (Lu et al., 2019). However, despite the simplicity of
the algorithm, choosing the right k and its parameters (e.g.,
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bandwith) is critical. Moreover, the convergence may be
slow, especially for a bad choice of k; and practitioners rely
on different modifications/tricks (e.g., use Adagrad (Duchi
et al., 2011)) to improve the convergence of SVGD.

3. Related Work
Quantization problems and Quadrature rules. Finding
an optimal discrete distribution µn =

∑n
i=1 wiδxi

sup-
ported on a finite number n of Dirac masses, in order to
approximate a probability density is referred to as the quan-
tization problem (Graf & Luschgy, 2000). If the weights are
fixed to wi = 1/n and µn is the uniform measure over the
points, then the resulting problem of optimally placing the
points xi is known as the empirical quantization problem
or uniform quantization. Closely related to quantization, a
quadrature rule aims at finding µn such that the integrals of
some test function f w.r.t. µn and π are close (Briol et al.,
2015). The quality of the quantization can be measured
through a discrepancy between π and µn. Many works have
investigated the case where the metric is the Wasserstein
distance (Fournier & Guillin, 2015; Merigot et al., 2021),
where it is known that the typical quantization error between
π and µn is of order O(n−1/d) for d > 2. However, when
the metric is the MMD or KSD, the question of how many
points are required to get a good approximation of π remains
largely open (Oates, 2021).

Kernel herding (KH) and Stein points (SP). Some ap-
proaches attempt to solve MMD or KSD quantization in a
greedy manner, i.e. by sequentially constructing µn to mini-
mize these discrepancies, adding one new particle at each
iteration. The most famous example is kernel herding (KH)
(Chen et al., 2012; Bach et al., 2012; Pronzato, 2021; Tsuji &
Tanaka, 2021; Khanna et al., 2021), that minimizes greedily
the MMD through the Frank-Wolfe algorithm (Frank et al.,
1956), assuming one has access to the mean embedding mπ .
It is also a first-order optimization scheme for the MMD
objective; but it does not rely on the Wasserstein geome-
try like MMD Descent. This is the reason why KH adds
sequentially particles, while MMD descent continuously
displaces a given set of particles. (Bach et al., 2012) obtain
a linear rate of convergence O(e−bn) for KH if the optimum,
i.e. the mean embedding mπ, lies in the relative interior
of the marginal polytope with distance b away from the
boundary; however for infinite-dimensional kernels b = 0
and the rate does not hold, which was pointed out. Simi-
larly to KH, (Chen et al., 2018; 2019) construct Stein Points
(SP): a sequence of points that greedily minimize KSD. In
(Chen et al., 2018), the authors establish a O((log(n)/n)

1
2 )

rate, and acknowledge that this rate seem slower than their
empirical observations. However, as these greedy meth-
ods perform an exhaustive search for the best point at each
iteration, they are more computationally expensive than par-

ticle methods derived from Wasserstein gradient flows, that
perform an explicit descent step (where one iteration is of
complexity O(n2)).

SVGD with a finite number of particles. (Korba et al.,
2020) studies non-asymptotic properties of SVGD, i.e., for
a finite time t ≤ T and number of particles n, how far is
the SVGD particles distribution µ̂n

t from the target π. The
authors obtained propagation of chaos (POC) bounds, that
quantify how far the distribution of the interacting particle
system µ̂n

t is from the one of a particle system composed
of i.i.d. particles distributed as the true continuous process
(non-interacting but non-implementable), denoted µ̄n

t (i.e.,
µ̄n
t is the n-empirical version of µt where µt is the distri-

bution of SVGD dynamics). More precisely, they obtain a
bound of the form E[W2(µ̂

n
t , µ̄

n
t )] ≤ CT√

n
. While this bound

is interesting since it yields a control on the deviation (or
POC) of the particle system, it cannot characterize the quan-
tization properties of SVGD. Indeed, quantization quantifies
how far is the particle system (for a finite n), when T → ∞,
from the target π. The POC bound of (Korba et al., 2020) be-
comes vacuous as T → ∞ and µ̄n

t converges to an empirical
version of π (supported on n points) as T → ∞. Moreover,
to the best of our knowledge, POC bounds always yield at
best O(1/

√
n), i.e. as the Monte Carlo rate.

4. Normalized SVGD
We now turn to introducing a modification to the SVGD
flow. One of the structural issues with the SVGD flow
(8) is that the equation is quadratic in the density µt. A
particular problem is that the velocity vµt

is small where
µt is small. This creates convergence issues, especially if
the initial distribution, µ0, is spread in space. Moreover
choosing a wide initial distribution is otherwise a good idea,
if the target distribution is multimodal or the location of
its mode or geometry in general are unknown a priori. To
mitigate the above issue we introduce a normalized SVGD
(NSVGD) which scales linearly in µt. This is achieved by
reweighing the kernel by a kernel-density estimate of µ.

Consider a translation-invariant kernel parameterized by a
bandwidth τ > 0: ητ (x− y) = η(x−y

τ ) with η ∈ C1(Rd \
{0}), and µ a, potentially discrete, distribution. We now
introduce a density-dependent kernel:

Kµ(x, y) = ητ (x− y)µh(x)
− 1

2µh(y)
− 1

2 (9)

where µh denotes the smoothed density µ ⋆ ηh. We note
that Kµ would be the same if we considered ητ (x− y) =
1
τd η(

x−y
τ ). For each µ the kernel is still symmetric and

positive definite on Rd. Thus there exists a unique Hilbert
space of functions on Rd for which Kµ is a reproducing ker-
nel; however it is no longer translation-invariant. We note
that the kernel now depends on the measure µ, and thus the
way we measure the lengths of curves in the space of mea-
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sures depends on the location, as is the case for the Wasser-
stein metric. The length of the path ∂tµt = −∇ · (µtvt)
for t ∈ [0, T ] in this new, normalized Stein geometry is∫ T

0
∥v∥HKµt

. The resulting gradient flow, namely NSVGD
flow, has the velocity vector field which can be written
explicitly using the kernel (9) in the vector field given in
(8). This choice of density-dependent kernel also defines a
gradient flow of the Kullback-Leibler divergence in Stein
geometry for the new kernel Kµ, see Lemma A.1. We also
remark that it was observed by (Duncan et al., 2019) that for
Laplace kernel, weighting the kernel as in (9) but with µh

replaced by π in one spatial dimension enables one to prove
that the Hessian at the steady state has a positive spectral
gap, indicating exponential convergence to equilibrium.

In the discrete setting where µ = 1/n
∑n

i=1 δxi
, we can

write the NSVGD vector field ruling the particle system as

vµ(x) = − 1

n

n∑
j=1

(
µh(x)µh(x

j)
)− 1

2 wj(x), (10)

where µh(x) =
1
n

n∑
i=1

ηh(x− xi), and

wj(x) =∇ητ (x− xj) + ητ (x− xj)∇U(xj) (11)

+
ητ (x− xj)

2µh(xj)

1

n

n∑
m=1

∇ηh(x
j − xm). (12)

In vµ, the term µh(.)µh(x
j) acts as a preconditioner, (11)

is the vector field of the original SVGD algorithm, while
(12) can be understood as a weighted repulsive term inher-
ited from its neighbors. We will refer to this algorithm as
Normalised SVGD (NSVGD), whose pseudocode is given
in Algorithm 1. The preconditioner accelerates or slows
down the dynamic depending on the density regions and
makes NSVGD less sensitive to the choice of the step-size
than regular SVGD. Furthermore, we consider a self-tuning
kernel bandwidth h = (1/n2

∑
i,j ∥xi − xj∥2)1/2n−1/d+4

inspired from Scott’s rule (Scott, 1979), so we are not in-
troducing more hyperparameters. In practice, τ = h might
be a good choice for kernel bandwidth, as discussed in the
experiments section.

Algorithm 1 Normalized SVGD (NSVGD)
Input: initial distribution µ0, number of particles n, num-
ber of iterations L, step-size γ, bandwidth τ for η
Initialize x1

0, . . . , x
n
0 ∼ µ0.

for l = 1 to L do
Compute µh(.) =

1
n

∑n
i=1 ηh(.− xi

l)
For i = 1, . . . , n,
xi
l+1 = xi

l − γvµ(x
i
l), where vµ is defined as (10).

end for
Return: µn = 1

n

∑n
i=1 δxi

L

5. MMD and KSD Quantization
In this section, we focus on establishing how well can a
measure be approximated by an empirical measure with
respect to MMD or KSD. We are interested in establishing
bounds on the quantization error

Qn = inf
x1,...,xn

D(π, µn), for µn =
1

n

n∑
i=1

δxi ,

where D is the MMD or KSD. It is well known (Gretton
et al., 2006; Lu & Lu, 2020) that if x1, x2, . . . , xn are i.i.d.
samples of µ then the error is independent of the dimension
d and D(π, µn) = O(n− 1

2 ), which matches the minimax
lower bound for empirically estimating the mean embedding
in L2 norm, (Tolstikhin et al., 2017). Here we show that if
instead of random, we consider appropriately chosen points,
then one can obtain a much lower approximation error. We
first consider the following assumption on the kernel k.

Assumption 1. Assume that the kernel is d-times contin-
uously differentiable. Assume also that any mixed partial
derivative of the kernel of order smaller than d has a RKHS
norm bounded by a constant Ck,d ≥ 0.

Assumption 2. Let k(x, y) = η(x − y) a translation in-
variant kernel on Rd. Assume that η ∈ C(Rd) ∩ L1(Rd),
and that its Fourier transform verifies : ∃Ck,d ≥ 0 such that
(1 + |ξ|2)d ≤ Ck,d|η̂(ξ)|−1 for any ξ ∈ Rd.

We will prove that the Gaussian kernel satisfies Assump-
tion 1. Moreover, for the Gaussian kernel η(z) =
exp

(
−∥z∥2/2h2

)
, for any ξ ∈ Rd, |η̂(ξ)|−1 =

h−d exp
(
h2∥ξ∥2/2

)
where η̂ = (2π)−d/2

∫
η(z)e−izξdz.

Hence, it satisfies Assumption 2. Moreover, Assumption 2
includes kernels which are not smooth, such as Matern ker-
nels that can be defined through their Fourier transform
η̂(ξ) ∝ 1

(1+∥ξ∥2)j , j ≥ d whose RKHS correspond to
Sobolev spaces of order j, and which are not smooth at
z = 0.

Theorem 5.1. Suppose Assumption 1 or Assumption 2 holds.
Assume that (i) π is the Lebesgue measure or (ii) a general
probability measure on [0, 1]d. Then, there exists a constant
Cd depending on d, such that for all n ≥ 2,

• if (i): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)d−1

n
.

• if (ii): there exist points x1, . . . , xn such that

MMD(π, µn) ≤ Cd
(log n)

3d+1
2

n
.

Proof. Below we present the proof under Assumption 1
which uses RKHS reproducing properties. Our proof re-
lies on bounding the star discrepancy of the point set
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Xn = {x1, . . . , xn} and the Hardy-Krause variation of
a function belonging to the unit RKHS ball when k satisfies
Assumption 1. The proof under Assumption 2 relies on
Sobolev space techniques and can be found in Appendix B.

The star discrepancy of the point set Xn is defined as

D(Xn, π) = sup
I=Πn

i=1[ai,bi]

|π(I)− µn(I)|. (13)

For a probability measure π on [0, 1]d, the latter quantity
is upper bounded by Cπ,d(log n)

3d+1
2 /n where Cπ,d is of

order
√
d, see Aistleitner & Dick (2013, Theorem 1).

Now, for a subset α ⊆ {1, . . . , d}, and x ∈ Rd, denote by
xα ∈ R|α| the components of x indexed by α, and denote
f(y) := f(xα, 1) where y ∈ Rd is the vector whose i-
th coordinate is equal to xi if i ∈ α, and is 1 otherwise.
We denote by ∂|α|f(xα,1)

∂xα
the mixed partial derivative of f

with respects to the components of xα. The variation of
a function f : [0, 1]d → R with continuous mixed partial
derivatives is defined as

V (f) =
∑

α⊆{1,...,d}

∫
[0,1]|α|

∣∣∣∣∣∂|α|f(xα, 1)

∂xα

∣∣∣∣∣ dxα. (14)

Remarkably, the latter variation coincides with the Hardy-
Krause variation, a more general notion that be applied to
functions that do not have continuous partial derivatives, see
Dick & Pillichshammer (2010, Remark 2.19).

Then, for any x ∈ Rd, α ⊆ {1, . . . , d} and f such that
∥f∥Hk

≤ 1, applying the reproducing property on partial
derivatives, Cauchy-Schwarz inequality Steinwart & Christ-
mann (2008, Corollary 4.36), and Assumption 1, gives∣∣∣∣∣∂|α|f(xα, 1)

∂xα

∣∣∣∣∣ ≤
∥∥∥∥∥∂|α|k((xα, 1), ·)

∂|α|xα

∥∥∥∥∥
Hk

∥f∥Hk
≤ Ck,d.

Thus, the variation can be bounded as

V (f) ≤ Ck,d

∑
α⊆{1,...,d}

∫
[0,1]|α|

dxα = Ck,d2
d. (15)

We now recall a generalized form of the well-known
Koksma-Hlawka inequality:∣∣∣∣∣

∫
[0,1]d

f(x)dπ(x)− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ D(Xn, π)V (f),

that holds for a probability measure on [0, 1]d Aistleitner &
Dick (2015, Theorem 1), where f is function with bounded
variation. Using the previous inequality and the above com-
putations, we can conclude by taking Cd = Ck,dCπ,d.

Remark 5.2. Assumption 1 is satisfied by the Gaussian
kernel with Ck,d = (2d)!.

Proof. By the reproducing property, we have

∥∥∥∥∥∂|α|k((xα, 1), ·)
∂|α|xα

∥∥∥∥∥
Hk

=

Ç
∂|α|,|α|k((xα, 1), (xα, 1))

∂|α|xα∂|α|yα

å 1
2

.

Consider the Gaussian kernel, i.e. for x, y ∈ Rd, k(x, y) =
e−∥x−y∥2/h. Hence, for any x, y ∈ Rd, the |α|-th partial
derivative of the kernel in both variables is equal to

∂|α|,|α|k(x, y)

∂|α|xα∂|α|yα
= (−1)|α|

∂2|α|e−t2

∂2|α|t
= (−1)|α|e−t2h2|α|(t)

where hu, u ≥ 0 denotes the u-th Hermite polynomial, see
Steinwart & Christmann (2008, Section A.1). In particular
for x = y, i.e. t = 0, evaluations of Hermite polynomials
at zero correspond to the well-known Hermite numbers
(−1)|α|2|α|(2|α| − 1)!! with (2|α| − 1)!! = 1 × 3 × · · · ×
(2|α| − 1). We conclude using |α| ≤ d.

The next Proposition, proved in Appendix C, extends the
result to non compactly supported distributions.

Proposition 5.3. Suppose Assumption 1 or Assumption 2
holds and that k is bounded. Assume π is a light-tailed
distribution on Rd (i.e. which has a thinner tail than an
exponential distribution). Then, for n ≥ 2 there exist points
x1, ..., xn such that

MMD(π, µn) ≤ Cd
(log n)

5d+1
2

n
.

Sketch of proof. The proof relies on decomposing
MMD(π, µn) ≤ MMD(π, µ) + MMD(µ, µn) and choos-
ing µ compactly supported on An = [− log n, log n]d. As
π is light-tailed, µ is close to π in total variation distance,
and we first get MMD(π, µ) ≤ C/n. Then, we can take
µn supported on An and bound MMD(µ, µn) using similar
arguments as Theorem 5.1.

Now we turn to the quantization upper bound in KSD. The
proof of the theorem below can be found in Appendix D.

Theorem 5.4. Assume that k is a Gaussian kernel and that
π ∝ exp(−U) with U ∈ C∞(Rd). Assume furthermore
that U(x) > c1∥x∥ for large enough x, and that there
exists a real-valued polynomial V of degree m ≥ 0, such
that for any multi-index2 β,

∣∣∣ ∂βU(x)

∂β1x1...∂
βjxj

∣∣∣ ≤ V (x) for all

1 ≤ |β| ≤ d + 1. Then there exist points x1, ..., xn such
that

KSD(µn|π) ≤ Cd
(log n)

6d+2m+1
2

n
.

2A multi-index β of order |β| := j is a d-tuple of nonnegative
integers whose sum is equal to j. In contrast to the multi-indices
α used in Theorem 5.1, β can have repeated entries.
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We note that for Gaussian mixtures π, U satisfies the condi-
tions of the theorem.

Sketch of proof. The proof relies on bounding the first and
last term of the KSD(µn, π) (3), as the cross terms can be
upper bounded by the former ones, see Lemma A.2. Then,
the two remaining terms in the KSD(µn, π) are treated
independently as two MMD(µn, π), with k1(x, y) =
s(x)T s(y)k(x, y) and k2(x, y) = ∇ ·x ∇yk(x, y).

The results of this section indicate that the quantization
error w.r.t. MMD or KSD decreases faster than the Monte
Carlo error rate of O(n− 1

2 ) for i.i.d. samples Assuming
MMD or KSD Descent algorithms find global minimizers
(or good approximates), we can thus attain very fast rates
of quantization. A consequence of our rates is that the
integration error (2) is controlled for functions in the RKHS
associated to the kernel of the MMD. For some k, the
RKHS is well-characterized - for instance, for the Gaussian
kernel. In contrast, the RKHS of the Stein kernel kπ will
depend on both a kernel k and the target π, resulting in
a specific class of functions. Identifying the Stein kernel
RKHS requires an extended study, which does not exist in
the literature to the best of our knowledge.

Characterizing quantization properties of SVGD stationary
states remain an open problem. In contrast to MMD and
KSD descent, SVGD does not decrease a functional (the KL
divergence is meaningless for discrete measures). Moreover,
there is no clear relation between approximately minimiz-
ing the KL divergence and the integral approximation error.
Hence, it is unclear how to show SVGD quantization prop-
erties. We think that it is a wide open and very challenging
problem, that we also leave for future work. However, our
experimental results in the next Section provide guidance
on what the conjectured quantization rate would be.

6. Experiments
In this section, we investigate numerically the quantiza-
tion properties of the sampling algorithms discussed above,
namely SVGD (Liu & Wang, 2016), Normalized SVGD
presented in Section 4, MMD descent (Arbel et al., 2019),
and KSD Descent (Korba et al., 2021), as well as greedy
algorithms such as Kernel Herding (KH) (Chen et al., 2012)
and Stein points (SP) (Chen et al., 2018).

6.1. Practical Behavior of the Algorithms

We first discuss the optimization properties of the algorithms
at study, as they can be difficult to tune to reach convergence.

Optimization. KSD (3) and MMD (1), as well as their
gradients (6)-(7), can be evaluated exactly for discrete mea-
sures. Note that for a Gaussian target π and Gaussian kernel,

SVGD_Gaussian SVGD_Laplace NSVGD_Laplace

Figure 1. Example of a 2D Gaussian mixture. The configuration of
128 particles are plotted in green at initialization, and in different
colors after convergence. The light grey curves correspond to their
trajectories. From left to right: SVGD with Gaussian and Laplace
kernel, γ=0.5, after 1000 iterations; NSVGD with Laplace kernel
and γ=0.1, after 30 iterations.

the mean embedding mπ can be written in closed-form, see
Tolstikhin et al. (2017, Eq. 25). Thus for Gaussian mixture
targets, one can compute MMD descent exactly. For general
measures one can only approximate the MMD descent if a
sample of the target measure is available, which limits the
practical applicability the algorithm. For KSD and MMD
minimization, we use L-BFGS (Liu & Nocedal, 1989), a fast
and hyperparameter-free optimization algorithm that does
not require tuning the step-size. Since L-BFGS requires
access to the objective loss and gradient in closed form, it
can be used for KSD and MMD descent. However it can-
not be used for SVGD, that optimizes KL, since the latter
cannot be evaluated for discrete measures. Still, SVGD is
often optimized with the AdaGrad optimizer (Duchi et al.,
2011), which can be seen as an improved gradient descent
algorithm where the learning rate is scaled for each particle.
In our experiments, we did not see a significant advantage
of using Adagrad versus the standard gradient descent for
SVGD. Regarding greedy algorithms such as KH and Stein
points, they require at each iteration the solution of a global
optimisation problem over Rd, which is, in practice, infeasi-
ble. Hence, a feasible numerical optimisation subroutine is
used at each iteration to propose a reasonable new particle.

Reaching quantization states. The convergence behavior
of the algorithms considered differ greatly and they exhibit
different levels of sensitivity to the properties of the target,
choice of bandwidth and initialization. For example, while
KSD descent converges reasonably to log-concave targets
(e.g., a Gaussian), it can fail to converge when it is multi-
modal (Korba et al., 2021) (e.g., a mixture of Gaussians).
MMD descent behavior can even be worse; it can fail to
converge to a simple Gaussian target, hence the tuning of
this algorithm is particularly tricky. This can be explained
by the fact that the MMD is non convex with respect to the
Wasserstein geometry (Arbel et al., 2019).

In contrast, SVGD particles always converged reasonably
to the (unimodal and bimodal) target distribution in our ex-
periments, for an appropriate choice of step-size, bandwith
of the kernel and initialization of the particles. Further-
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more, we found a significant improvement in the speed of
convergence and slightly better results when using Normal-
ized SVGD (NSVGD) with a Laplace kernel. We illustrate
this with a simple experiment where the target distribution
is a 2-dimensional mixture of Gaussians, using particles
drawn from a uniform distribution in a ball of radius 5. Fig-
ure 1 displays the trajectories and final states of NSVGD
and SVGD runs, with different optimization strategies and
choices of kernel, with a constant bandwidth 1. NSVGD
with a Laplace kernel leads to the best configuration after
30 iterations. Moreover, NSVGD with a fixed-time step
γ benefits from a faster convergence than SVGD, as illus-
trated in Figure 2. This first experiment motivates the use of
NSVGD over SVGD. We also evaluate these two algorithms
on a Bayesian ICA (Independent Component Analysis) task,
where the target distribution is highly non log-concave, and
Bayesian logistic regression on 13 benchmark datasets, as
in (Korba et al., 2021). Our results, provided in Appendix E,
advocate for NSVGD versus its SVGD: it has either the
same, or slightly better performance than SVGD, while
converging much faster, in particular when the initial distri-
bution has low-density regions.

0.0 0.2 0.4
Time (s.)

10 4

10 2

M
M

D

0.0 0.2 0.4
Time (s.)

10 1

101

KS
D

SVGD AdaGrad
SVGD tuned
NSVGD

Figure 2. Convergence speed of SVGD (tuned time-step or Ada-
Grad) and Normalized SVGD (fixed time-step) on a 2D mixture
of Gaussians, with 128 particles.

Practical considerations. The context in which these ap-
proaches can be used vary. MMD Descent can be used only
in the case where the density or samples of π are available.
KSD Descent only requires the score of π, but particles may
be stuck in low density regions when the target is not uni-
modal (which we noticed in our experiments with a mixture
of Gaussians target, see Appendix E) thus limiting the prac-
tical interest of this algorithm. Finally, SVGD and NSVGD
also only requires the score of π, and are reasonably robust
with respect to the choice of target distribution.

6.2. Quantization Rates

We start by visually comparing the sample sets obtained
by different algorithms, Figure 3. In particular we have
observed that for algorithms that use smooth kernels, like
the Gaussian, the final states develop internal structures like
the rings in figure (c). This is more often encountered for
MMD and KSD minimization, but we observed it in SVGD
as well. In contrast, the algorithms with kernels which are
pointy at the origin, like the Laplace kernel, have stronger
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(a) SVGD Gaussian
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(b) NSVGD Laplace
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(d) i.i.d.

Figure 3. (a)-(c) Final states of the algorithms for 1024 particles,
after 1e4 iterations. The kernel bandwidth for all algorithm is set
to 1. Target measure is Gaussian N (0, I2), whose i.i.d. samples
are given for comparison, (d).

d Eval. SVGD NSVGD MMD-lbfgs KSD-lbfgs KH SP

2 KSD -0.98 -0.94 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.00 -1.60 -1.54 -0.93 -0.77

3 KSD -0.91 -0.81 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -0.91 -1.51 -1.49 -0.92 -0.75

4 KSD -0.91 -0.81 -1.35 -1.39 -0.89 –
MMD -0.94 -0.89 -1.46 -1.40 -0.95 –

8 KSD -0.84 -0.80 -1.14 -1.16 – –
MMD -0.77 -0.90 -1.25 -1.13 – –

Table 1. Slopes for the quantization measured in KSD/MMD, for
the different algorithms at study and several dimensions d. R2

coefficient for the linear regression is always between 0.95 ∼ 1.
The slopes remain much steeper than the Monte Carlo rate, even
when the dimension increases.

local repulsion which results in a more regular distribution
of points, see figure (b). Also, this choice of kernel is less
sensitive to the bandwith as one can see Figure 5, and we
focus on the latter in the following experiments.

The quality of sample sets. We now evaluate the quantiza-
tion properties of the algorithms at study, for different target
distributions and in different dimensions. We compute the
MMD and KSD between the target π and its discrete ap-
proximation µn = 1/n

∑n
i=1 δxi

where the particles (xi)
n
i=1

are either i.i.d. samples, or the output of the algorithms we
mentioned earlier, for different values of n. We chose a
Gaussian kernel for the MMD, since MMD between a dis-
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Figure 4. Quantization rates of the algorithms at study when π =
N (0, 1/dId). MMD/KSD Descent use bandwidth 1; SVGD use
Laplace kernel with median trick; NSVGD use Laplace kernel
with adaptive choice of bandwidth. Stein points use gridsize = 200
points in 2d, 50 in 3d; in 4d grid search was too slow.

crete distribution and a Gaussian (continuous) target can
be computed in closed form; similarly for the KSD. The
results are reported Figure 4 and illustrate the rate of conver-
gence of the different methods with respect of the number
of particles n, when the target is a Gaussian distribution, for
d = 2, 3, 4. Each point is the result of averaging 10 runs of
each algorithm run for 1e4 iterations, where the initial par-
ticles are i.i.d. samples of π (this does not apply to greedy
algorithms). The slopes are reported in Table 1. They high-
light that the algorithms at study show much faster rates
than i.i.d. samples, which are faster than what we proved in
Section 5. In the Appendix, we provide additional details
and illustrations on the experiments of this Section, as well
as additional experiments (e.g., with a Gaussian mixture
target distribution). We observe the following. The quan-
tization error of i.i.d. samples is of order O(n− 1

2 ) and is
always higher than the ones of the other methods. Greedy
algorithms such as KH and SP enjoy appreciable quanti-
zation rates, but are computationally expensive due to the
optimization subroutine when adding a new particle. As the
global optimization cannot be performed exactly, the quanti-
zation errors of KH and SP may be overestimated, but they
correspond to what is achieved in practice. Particles sys-
tems we considered, namely MMD Descent, KSD descent,
SVGD and Normalised SVGD, showed the best rates of con-
vergence. This is particularly the case for MMD and KSD
descent, which are designed to minimize the MMD and
KSD respectively, in contrast to SVGD. In fact we observe
that the MMD and KSD quantization error of the associated
flows have steeper slope (about −1.5 in low dimensions)
than our theoretical guarantees of Section 5.

Robustness to evaluation discrepancy. In Figure 5 we
compare the quality of the samples obtained by using MMD
with different kernel bandwidths to evaluate the difference
between the set of samples and the target distribution. The
sample sets have been obtained by using the bandwidth
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Figure 5. Importance of the choice of the bandwidth in the MMD
evaluation metric when evaluating the final states, in 2d. From
Left to Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.

1 in all methods. We see that when the discrepancy is
measured using the bandwidth which was used in the algo-
rithms, MMD minimization provides the best quantization,
as expected. However if we measure the discrepancy using
a kernel with smaller bandwidth, MMD and KSD results
deteriorate significantly and SVGD and NSVGD with Lapla-
cian kernel perform the best. The likely reason is that the
distribution of samples obtained by SVGD is more regular,
while for MMD and KSD with Gaussian kernel the opti-
mization can create internal structures which can affect the
discrepancy at lower bandwidths. Since MMD measures
the maximal integration error over the RKHS ball, the above
figure suggests that the samples obtained using SVGD and
Laplace kernel will perform better at integration tasks for
wider families, which include less regular functions.

7. Conclusion
In this work, we studied quantization properties of interact-
ing particle systems derived from Wasserstein (and related)
gradient flows, such as SVGD, MMD and KSD descent.
We highlighted both theoretically and numerically that they
can create ”super-samples”, i.e. that they approximate the
target distribution with a very fast rate compared to Monte
Carlo samples, as measured by the MMD or KSD. Further-
more, we proposed a normalized version of SVGD which
accelerates the dynamics and observed that Laplace kernels
produce more regular sample point distributions. A number
of open questions remain about the particle systems at study.
In particular, proving quantization for SVGD is challenging,
as it does not minimize a functional for discrete measures.
Furthermore the fact that some of the observed quantization
rates for KSD and MMD were faster than the guarantees we
proved, points to possible theoretical improvements. Finally,
it would be of great interest to establish non-asymptotic, uni-
fied bounds for these particle systems, i.e. that quantify the
quantization properties these finite particles systems for a
finite number of iterations of algorithm.
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A. Lemmas
We first derive the equations for the NSVGD flow.
Lemma A.1. The gradient flow of the KL divergence with respect to the Stein geometry corresponding to the normalized
kernel Kµ defined in (9) is given by (17).

We observe that when this flow is applied to particles it takes the form (10) thus confirming the derivation of the equations
for NSVGD.

Proof. We denote
∫
Kµ(x, y)u(y)dy = Kµ ∗ u(x), then for v = Kµ ⋆ u ∈ Hd

Kµ
= HKµ

× · · · × HKµ
, we can define the

new metric tensor to be
gµ(v, v) =

∫∫
Kµ(x, y)u(x) · u(y)dxdy.

The corresponding Rayleigh functional is

R(u) =
1

2

∫∫
Kµ(x, y)u(x) · u(y)dxdy +

∫
(∇µ+ µ∇U)(x) ·Kµ ∗ u(x)dx. (16)

Taking the first variation of R(u), we have

δR
δu

(w) =

∫
Kµ ∗ (u+∇µ+ µ∇U) · wdx = 0.

We then conclude that the gradient flow of relative entropy with respect to this new metric is

∂ρt
∂t

= ∇ · (ρt(Kµ ∗ ∇ρt +Kµ ∗ (ρt∇U))). (17)

Therefore, the resulting gradient flow, i.e. NSVGD gradient flow, has the velocity vector field which can be written explicitly
using the kernel (9) as

vµ =−Kµ ⋆∇µ−Kµ ⋆ (µ∇U)

=

∫
(∇yKµ(x, y)−Kµ(x, y)∇U(y)) dµ(y)

=−
∫ Å

1

µh(x)
1/2

Å
1

ρh(y)
1/2

∇η(x− y) +
η(x− y)

2ρh(y)
3/2

µ ∗ ∇ηh(y)

ãã
+Kµ(x, y)∇U(y)

ã
dµ(y).

where the second equality uses an integration by part that holds as lim∥x∥→∞ Kµ(x, .)µ(x) = 0 with a vanishing µ.

Lemma A.2. Assume that the kernel k is bounded and twice differentiable with bounded derivatives. Assume furthermore
that the distribution π is light-tailed with potential U ∈ C1(Rd) and U(x) = O(∥x∥m) with some m ∈ N, the following
inequality holds:

KSD2(µn|π) ≤
∫∫

An

2 (s(x) · s(y)k(x, y) +∇x,yk(x, y)) d(µn − µ)(x)d(µn − µ)(y) +
C0

n2

where s(x) = ∇U(x).

Proof. First
∫
kπ(x, .)dπ(x) = 0 holds from Stein’s identity, see Oates et al. (2017, Lemma 1). We have

KSD2(µn|π) =
∫∫

Rd

kπ(x, y)d(µn − π)(x)d(µn − π)(y)

=

∫∫
Rd

(s(x) · s(y)k(x, y) +∇x,yk(x, y) + 2s(x) · ∇yk(x, y)) d(µn − π)(x)d(µn − π)(y)

By assumptions, the measure dρ = ∥s(x)∥e−U(x)dx is light-tailed and ∥∇yk(x, y)∥ is uniformly bounded, we can take
{xi}ni=1 ⊂ An = [− log n, log n]d and construct µ compactly supported on An as in Proposition 5.3 such that

KSD2(µn|π) =
∫∫

An

(s(x) · s(y)k(x, y) +∇x,yk(x, y) + 2s(x) · ∇yk(x, y)) d(µn − µ)(x)d(µn − µ)(y) +
C0

n2
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with some constant C0. Note that ∇yk(x, y) ∈ Hd
k Steinwart & Christmann (2008, Lemma 4.34), so f1(y) =∫

∇yk(x, y)d(µn − µ)(x) ∈ Hd
k from (Smola et al., 2007). Also, the entries of s(x)d(µn − µ)(x) are finite signed

measures, its kernel embedding f2(x) =
∫
k(x, y)s(y)d(µn − µ)(y) ∈ Hd

k. Now, by reproducing property and Steinwart &
Christmann (2008, Lemma 4.34),∫∫

2s(x) · ∇yk(x, y)d(µn − π)(x)d(µn − π)(y) = 2⟨f1, f2⟩Hd
k
≤ ∥f1∥2Hd

k
+ ∥f2∥2Hd

k

=

∫∫
Rd

(s(x) · s(y)k(x, y) +∇x,yk(x, y))d(µn − π)(x)d(µn − π)(y),

which concludes the proof.

Lemma A.3. Let k be a bounded kernel,then for finite signed Borel measure µ on Borel set M ⊂ Rd and any vector-valued
function v with ∥v∥ ∈ L2(M ; |µ|),

sup
f∈Hd

k,||f ||Hd
k
⩽1

∣∣∣∣∫
M

v · fdµ
∣∣∣∣2 =

∫∫
M

k(x, y)v(x) · v(y)dµ(x)dµ(y)

Proof. For any vector-valued measure dP = vdµ, let Tp : Hd
k 7→ R be the linear functional defined as

TP (f) =

∫
M

f(x) · dP (x)

with ∥TP ∥ := sup
f∈Hd

k,f ̸=0

|TP (f)|
∥f∥Hd

k

. Note that this functional is bounded: let B = supx∈M |k(x, x)|, then for any f ∈ Hd
k, by

Hölder’s inequality and f(x) = ⟨f, k(·, x)⟩Hk
, there exists constant C such that

|TP (f)| =
∣∣∣∣∫

M

f · v dµ

∣∣∣∣ =
∣∣∣∣∣
∫
M

d∑
i=1

vi⟨fi, k(·, x)⟩Hk
dµ

∣∣∣∣∣ ⩽
Å∫

M

B∥f∥2Hd
k
d|µ| ·

∫
M

∥v∥2d|µ|
ã1/2

< C∥f∥Hd
k
.

By Riesz representation theorem, there exists a unique λP = [λPi ]
d
i=1 ∈ Hd

k s.t. TP (f) = ⟨f, λP ⟩Hd
k
. Thus for any

u = [ui]
d
i=1 ∈ U , define ku(·) = [k(·, u1), ...k(·, ud)]

T , we have

TP ([ku(·)]) =
∫
M

d∑
i=1

k(x, ui)vi(x)dµ(x) = ⟨ku(·), λP ⟩Hd
k
=

d∑
i=1

⟨k(·, ui), λPi
⟩Hk

=

d∑
i=1

λPi
(ui),

which implies λPi
(x) =

∫
M

k(y, x)vi(y)dµ(y), i = 1, ..., d. We conclude

sup
f∈Hd

k,||f ||Hd
k

∣∣∣∣∫
M

v · fdµ
∣∣∣∣ = sup

f∈Hd
k,||f ||Hd

k

⟨f, λP ⟩Hd
k

= ∥λP ∥Hd
k

=

Ã
d∑

i=1

∫∫
M

k(x, y)vi(x)vi(y)dµ(x)dµ(y).

B. Proof of Theorem 5.1 under Assumption 2
Denote by Hk the RKHS of k. Recall that, see Kanagawa et al. (2018, Theorem 2.4):

Hk =
{
f ∈ C(Rd) ∩ L2(Rd) : ∥f∥2Hk

:=
1

(2π)d/2

∫
Rd

|η̂(ξ)|−1|f̂(ξ)|2dξ < ∞
}

where f̂ , η̂ are the Fourier transform of f and η respectively, where the Fourier transform

f̂(ξ) =
1

(2π)d/2

∫
Rd

f(x)e−iξxdx.
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Recall also that for j ≥ 0, the Hj-Sobolev norm of f is spectrally defined as

∥f∥2Hj(Rj) =

∫
(1 + ∥ξ∥2)j |f̂(ξ)|2dξ.

We note that for any d, by Assumption 1 there exists a constant Ck,d such that for all ξ, (1+∥ξ∥2)d ≤ Ck,d(2π)
d/2|η̂(ξ)|−1.

Hence, for any f ∈ Hk, ∥f∥Hd(Rd) ≤ ∥f∥Hk
.

To control the integrals on the faces, we recall the Sobolev trace theorem from Rj+1 to a hyperplane Rj . From Hauser &
Mikhailov (2022, Theorem 4.1), it follows that

∥f∥Hj(Rj) ≤
»
2(j + 1)∥f∥Hj+1(Rj+1).

Hence, recursively we obtain

∥f∥Hj(Rj) ≤ 2
d−j
2

 
d!

j!
∥f∥Hd(Rd).

For α ⊆ {1, . . . , d} we let |α| = j. Let [0, 1]j be the face of the cube corresponding to the coordinates α1, . . . , αj . Let
j = |α|. Then by Parseval’s identity,

∥∂jf∥L1([0,1]j) ≤ ∥∂jf∥L2(Rj) ≤
Å∫

Rj

∥ξ∥2j |f̂(ξ)|2dξ
ã 1

2

≤ ∥f∥Hj(Rj) ≤ 2
d−j
2

 
d!

j!
∥f∥Hd(Rd).

Summing up over all of the faces we obtain an upper bound on variation (14):

V (f) =

d∑
j=1

∑
α⊆{1,...,d},|α|=j

∥∂jf∥L1([0,1]j) ≤ 3d
√
d! ∥f∥Hd(Rd).

The result now follows, as before, by the Koksma-Hlawka inequality (15).

C. Proof of Proposition 5.3
Proof. From triangle inequality, for any µ ∈ P(Rd),

MMD(π, µn) ≤ MMD(π, µ) +MMD(µ, µn).

Denote An = [− log n, log n]d. Recall that we assumed that π is light-tailed, i.e. π(∥x∥ ≥ t) ≤ c exp(−λt) for some
λ, c ≥ 0. Hence, for some constant C ≥ 0, π(Rd \An/2) ≤ C

n and without loss of generality we assume π(An) > π(An/2).

We can define a probability measure µ = π
∣∣
An/2

+
1−π(An/2)

π(An)−π(An/2)
π
∣∣
An\An/2

such that µ is compactly supported in

An = [− log n, log n]d and

∥π − µ∥TV (Rd) ≤ 2(1− π(An/2)) ≤
C ′

π,d

n

where ∥ · ∥TV is the total variation distance and C ′
π,d is a positive constant. Then, since there exists B > 0 such that

k(x, y) ≤ B for any x, y ∈ Rd,

MMD2(π, µ) =

∫∫
Rd

k(x, y)d(π − µ)(x)d(π − µ)(y) ≤ B2∥π − µ∥2TV (Rd) ≤
C ′′

π,d

n2
,

for some constant C ′′
π,d. We now turn to bounding MMD(µ, µn). Define T : Rd → Rd, T (x) = log n · (x − [ 12 , ...,

1
2 ]).

For n large enough, consider µn supported on An. Let ν = T−1
# µ, νn = T−1

# µn and Xn = (x1, . . . , xn). For any f ∈ Hk,∣∣∣∣∣
∫
An

fdµ− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ =

∣∣∣∣∫
An

f(x)d(µ− µn)(x)

∣∣∣∣ =

∣∣∣∣∣
∫
[0,1]d

f ◦ Td(ν − νn)

∣∣∣∣∣ ≤ D(T−1(Xn), ν)V (f ◦ T ),
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which implies that
MMD(µ, µn) ≤ sup

f∈Hk,∥f∥Hk
≤1

D(T−1(Xn), ν)V (f ◦ T ).

We will choose Xn so that D(T−1(Xn), ν) is bounded as in the proof of Theorem 5.1. To bound the Hardy-Krause variation,
observe that under Assumption 1,

V (f◦T ) =
∑

α⊆{1,...,d}

∫
[0,1]|α|

∣∣∣∣∣∂|α|f ◦ T (xα, 1)

∂xα

∣∣∣∣∣ dxα ≤
∑

α⊆{1,...,d}

(log n)d

∥∥∥∥∥∂|α|k((xα, 1), ·)
∂|α|xα

∥∥∥∥∥
Hk

∥f∥Hk
≤ Ck,d2

d(log n)d,

where c1,d = Ck,d2
d. Under Assumption 2, we obtain:

V (f ◦ T ) ≤ 3d
√
d! ∥f ◦ T∥Hd(Rd) ≤ 3d

√
Ck,dd!(2π)

d/4(log n)d∥f∥Hk
≤ c2,d(log n)

d,

where c2,d = 3d
√

Ck,dd!(2π)
d/4. In both cases, multiplying c1,d or c2,d by Cπ,d, there exists a constant cd depending on the

dimension such that MMD(µ, µn) ≤ cd(logn)
5d+1

2

n . Hence there exists Cd such that MMD(π, µn) ≤ Cd
(logn)

5d+1
2

n .

D. Proof of Theorem 5.4

Proof. Assume k(x, y) = e−
∥x−y∥2

2h2 and denote s(x) = −∇U(x). By Lemma A.2, there exists a measure µ and a constant
C0 such that

KSD2(µn|π) ≤
C0

n2
+

∫∫
An

2 (k1(x, y) + k2(x, y)) d(µn − µ)(x)d(µn − µ)(y)

where k1(x, y) = s(x) · s(y)k(x, y) and k2(x, y) = ∇x,yk(x, y). Since k2 is a bounded kernel which satisfies As-
sumption 1, MMDk2

(µ, µn) can be upper bounded using Proposition 5.3. Hence, we now turn to derive an upper
bound for MMDk1(µ, µn). Note that since partial derivatives of U are bounded by a polynomial V of degree m ≥ 0,
∥s(x)∥ ∈ L2(An; |µ− µn|), and Lemma A.3 yields:∫∫

An

s(x) · s(y)k(x, y)d(µn − µ)(x)d(µn − µ)(y) = sup
∥f∥Hd

k
≤1

∣∣∣∣∫
An

f(x) · s(x)d(µn − µ)(x)

∣∣∣∣ .
Let φ ∈ C∞(R, [0, 1]) be a cut-off function, i.e. such that φ(x) = 1 on x ∈ [−1, 1] and φ(x) = 0 whenever x ≥ 2. For any
a > 0, let φa(x) = φ(x/a). Note that for i = 1, . . . , d, the i-th coordinate of the score si ∈ Hd(2

√
d[− log n, log n]d) and

that ∥si∥Hd(2
√
d[− logn,logn]d) ≤ C ′

d(log n)
m+d/2. Indeed,

∥si∥2Hd(2
√
d[− logn,logn]d)

=
∑

β=(β1,...,βk),|β|≤d

∫
2
√
d[− logn,logn]d

∣∣∣∣ ∂βsi(x)

∂β1x1 . . . ∂βjxj

∣∣∣∣2 dx
≤ 2d

∫
2
√
d[− logn,logn]d

|V (x)|2dx ≤ C ′22d(2
√
d log n)2m

∫
2
√
d[− logn,logn]d

dx ≤ C ′
d(log n)

2m+d,

using that |V (x)| ≤ C ′∥x∥m for some constant C ′ > 0 and C ′
d depending on the dimension.

Let gi be the real-valued function defined by gi(x) = si(x)φ√
d logn(∥x∥) for i = 1, . . . , d. The vector-valued function

g(x) = [g1(x), ..., gd(x)] satisfies

g(x) =

®
s(x), x ∈ An;

0, ∥x∥ ≥ 2
√
d log n.

Since log n ≥ 1/2 for n ≥ 2 there exists a constant C
′′

d depending on d

∥gi∥Hd(Rd) ≤ C
′′

d ∥si∥Hd(2
√
d[− logn,logn]d).

Thus there exists a constant C
′′′

d depending on d such that ∥gi∥Hd(Rd) ≤ C
′′′

d (log n)m+d/2, for any i = 1, ...d.



Accurate Quantization of Measures via Interacting Particle-based Optimization

Note that Hk continuously embeds into Hd(Rd) and Hd(Rd) is an algebra, see Adams & Fournier (2003, Theorem 4.39).
Thus we have for any f ∈ Hd

k and l ∈ Hd(Rd;Rd), there exists a constant cd such that

∥f · l∥Hd(Rd) ≤ cd∥f∥Hd
k
∥l∥Hd(Rd;Rd),

where f · l(x) =
∑d

i=1 fi(x) · li(x). This implies that for the for the function g defined above,

sup
∥f∥Hd

k
≤1

∣∣∣∣∫
An

f(x) · s(x)d(µn − µ)(x)

∣∣∣∣ = sup
∥f∥Hd

k
≤1

∣∣∣∣∫
An

f(x) · g(x)d(µn − µ)(x)

∣∣∣∣
≤ sup

∥h∥
Hd(Rd)

≤cdC
′′′
d (logn)m+d/2

∣∣∣∣∫
An

h(x)d(µn − µ)(x)

∣∣∣∣ .
We then apply exactly the same approach in Proposition 5.3:

sup
∥h∥

Hd(Rd)
≤C3(logn)m+d/2

∣∣∣∣∫
An

h(x)d(µn − µ)(x)

∣∣∣∣ ≤ sup
∥h∥

Hd(Rd)
≤cdC

′′′
d (logn)m+d/2

D(T−1(Xn), ν)V (h ◦ T ),

since there exists a constant C(4)
d depends on d such that

V (h ◦ T ) ≤ 3d
√
d! ∥h ◦ T∥Hd(Rd) ≤ C

(4)
d (log n)m+d/2,

and use the bound on the star discrepancy in the proof of Theorem 5.1, there exists C(5)
d such that

MMDk1
(µ, µn) ≤ C

(5)
d

(log n)
6d+2m+1

2

n
.

It follows that

KSD2(µn|π) ≤
C0

n2
+MMD2

k1
(µ, µn) +MMD2

k2
(µ, µn) ≤ C2

d

(log n)6d+2m+1

n2

holds with a dimension-dependent constant Cd.

E. Additional Experiments
The code to reproduce the experiments are available at https://github.com/xulant/accurate-quantization-and-nsvgd.

E.1. Comparison of NSVGD and SVGD on Bayesian ICA and Bayesian Logistic regression

In this section we compare the performance of NSVGD and SVGD on real-world problems, i.e. on a synthetic Bayesian ICA
task in Rp×p, and on logistic regression on 13 benchmark datasets. Both settings are described in (Korba et al., 2021). For
Bayesian ICA, initial particles are sampled from the uniform distribution; SVGD is run with AdaGrad for 3000 iterations
with well-tuned bandwidth, while NSVGD is run for 1000 iterations. Results are averaged over 50 independent experiments,
with 50 p × p matrices (i.e., the number of particles in this experiment). Figure 6 and Figure 7 illustrate our results on
the synthetic Bayesian ICA task. We can notice that NSVGD converges to a configuration that is always better (i.e., that
corresponds to lower Amari distance) than SVGD, and faster. Table 2 gives our results on logistic regression on the 13
benchmark datasets. Generally, NSVGD converges much faster to either similar or slightly better solutions than SVGD.
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Figure 6. Distribution of Amari distances in the Bayesian ICA tasks for p = 4 and p = 8.

https://github.com/xulant/accurate-quantization-and-nsvgd.git
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Figure 7. Convergence of Amari distances in the Bayesian ICA tasks. Initial particles are sampled from the uniform distribution on the
centered ball with radius 10. Results averaged over 50 independent experiments, with 50 p× p matrices for each round. We can see that
it is hard to find a reasonable step size for SVGD in this setting, while NSVGD works well with a fixed step size.

Dataset banana cancer diabetes solar german heart image ringnorm splice thyroid titanic twonorm waveform

SVGD 0.60 0.75 0.76 0.66 0.80 0.80 0.82 0.75 0.85 0.85 0.78 0.98 0.87

NSVGD 0.60 0.75 0.76 0.66 0.80 0.81 0.82 0.75 0.85 0.85 0.78 0.98 0.87

Table 2. Bayesian logistic regression accuracies, with a fine-tuned bandwidth, averaged on 10 experiments

E.2. Additional Results and Illustrations on Previous Quantization Experiments

Figure 8 illustrates the quantization rates of the same experiments reported in Figure 4, but where the final states are
evaluated in KSD instead of the MMD, for d = 2− 4. ?? reports the results of the experiments when d = 8.
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Figure 8. Quantization rates measured in KSD of the algorithms at π = N (0, 1/dId).
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Figure 9. Quantization rates of the algorithms at study for π = N (0, 1/8I8), under the same setting as the 2-4d experiments on Figure 4.

Algorithm Eval. n = 4 n = 16 n = 64 n = 256 n = 1024

MMD-lbfgs KSD 3.41± 0.59 e-01 4.65± 0.26 e-02 5.61± 0.60 e-03 6.95± 0.39 e-04 1.12± 0.09 e-04
MMD 6.43± 1.39 e-02 7.08± 0.49 e-03 7.30± 0.58 e-04 7.73± 0.33 e-05 1.18± 0.08 e-05

KSD-lbfgs KSD 2.86± 0.01 e-01 4.25± 0.02 e-02 4.94± 0.49 e-03 6.43± 0.33 e-04 9.44± 0.36 e-05
MMD 7.37± 0.02 e-02 9.34± 0.70 e-03 9.72± 0.86 e-04 1.07± 0.06 e-04 1.47± 0.03 e-05

SVGD KSD 7.02± 0.01 e-01 1.50± 0.02 e-01 3.99± 0.03 e-02 1.16± 0.02 e-02 3.39± 0.04 e-03
MMD 2.26± 0.01 e-01 5.31± 0.03 e-02 1.23± 0.02 e-02 3.10± 0.04 e-03 8.43± 0.03 e-04

NSVGD KSD 4.47± 0.01 e-01 1.12± 0.03 e-01 3.51± 0.04 e-02 1.11± 0.03 e-02 3.45± 0.05 e-03
MMD 1.51± 0.01 e-01 3.34± 0.03 e-03 8.22± 0.04 e-03 2.29± 0.03 e-03 6.90± 0.05 e-04

Table 3. This table reports the 99% confidence intervals for the points plotted in Figure 4, i.e. for the 2d Gaussian target experiments.

E.3. Quantization of a Bimodal Gaussian Mixture

In this section, we evaluate the quantization properties of the algorithms at study when the target distribution is a 2-
dimensional bimodal Gaussian mixture. This is a non log-concave target distribution, in contrast with the standard Gaussian.
When measured with the KSD, all algorithms show faster rates than the i.i.d. samples represented by the black line. In
particular, points provided by KSD-lbfgs show the faster rate. However, when measured with the MMD, one can see that
the performance of KSD descent is not better than i.i.d. points, while MMD Descent corresponds to the fastest rate. For
KSD-LBFGS/Stein Points with grid search, many particles get stuck between the modes, i.e. in a low-probability region
(as reported in (Korba et al., 2021)), so the MMD of their final states are large. These results illustrate the sensitivity to
evaluation discrepancy, and may be related to the particular way KSD quantifies the difference between measures, see
(Gorham & Mackey, 2017). However, one can see that similarly to Figure 5 (for a Gaussian target π), NSVGD quantization
rates are quite robust to the evaluation and faster than i.i.d. points (for a bimodal Gaussian mixture π). Notice that to prevent
NSVGD from missing one mode of the target distribution, one needs to initialize particles in a large ball, see (Wenliang &
Kanagawa, 2020). NSVGD is particularly preferable to SVGD in this setting, since it accelerates the convergence.
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Figure 10. Quantization rates of the algorithms at study when the target distribution is a 2D-Gaussian mixture distribution with variance
0.3, centred at [1,0] and [-1,0]. We evaluate them using MMD and KSD with bandwidth 1. We run algorithms under the same setting as
the 2-4D experiments on Figure 4.

E.4. Quantization in Sliced Wasserstein distance.

We also considered how well do particle distributions found by the algorithms is Section 6.2 approximate the target
distribution with respect to the Sliced p-Wasserstein distance, which for ν, µ ∈ Pp(Rd) is defined as:

dsw,p(ν, µ) =

∫
Sd−1

Wp(Pθ#ν, Pθ#µ)dθ,

where Pθ : x 7→ x · θ and # is the pushforward operator.

Under some further conditions of measure µ it is known that the empirical measure of a random i.i.d. sample approximates
the target measure with respect to Sliced Wasserstein distance at parametric rate (see (Manole et al., 2022)):

dsw,2(µ, µn) ≲
1√
n
.

In our experiments we find that the particle distributions obtained by SVGD, NSVGD flows and MMD and KSD minimization
approximate the target distribution more accurately and at a slightly faster rate, namely for dsw,1 the rates for NSVGD
are approximately n−0.72, n−0.65, n−0.63 in dimensions d = 2, 3, and 4, respectively. We note that these are quite close
to the rate we theoretically predict for the distance between the measure on a grid in [0, 1]d, and the Lebesgue measure:
dsw,1 ∼ n− 1

2−
1
2d , which is n−0.75, n−0.67, n−0.625 in dimensions d = 2, 3, and 4, respectively. We note that determining

the optimal quantization rate with respect to Sliced Wasserstein distances is an interesting open problem.
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Figure 11. Quantization rates measured in Sliced Wasserstein distance of the algorithms π = N (0, 1/dId). The experimental setting is
identical to the one of Figure 4 only that instead of MMD we use Sliced 1-Wasserstein distance to evaluate the quantization error. In
practice, we use 50 random directions drawn uniformly on Sd−1 to discretize the integration.


