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Abstract
We consider the problem of audio voice separa-
tion for binaural applications, such as earphones
and hearing aids. While today’s neural networks
perform remarkably well (separating 4+ sources
with 2 microphones) they assume a known or
fixed maximum number of sources, K. Moreover,
today’s models are trained in a supervised man-
ner, using training data synthesized from generic
sources, environments, and human head shapes.

This paper intends to relax both these constraints
at the expense of a slight alteration in the problem
definition. We observe that, when a received mix-
ture contains too many sources, it is still helpful to
separate them by region, i.e., isolating signal mix-
tures from each conical sector around the user’s
head. This requires learning the fine-grained spa-
tial properties of each region, including the signal
distortions imposed by a person’s head. We pro-
pose a two-stage self-supervised framework in
which overheard voices from earphones are pre-
processed to extract relatively clean personalized
signals, which are then used to train a region-
wise separation model. Results show promising
performance, underscoring the importance of per-
sonalization over a generic supervised approach.
(audio samples available at our project website1).
We believe this result could help real-world ap-
plications in selective hearing, noise cancellation,
and audio augmented reality.

1. Introduction
Audio source separation research (Luo et al., 2019; Gu et al.,
2019; 2020; Jenrungrot et al., 2020) has focused extensively
on separating sources from a generic microphone array (e.g.,
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a table-top teleconference system, robots, cars, etc.). When
these microphones are on “earable” devices, such as hearing
aids and earphones, new opportunities emerge. In particular,
the human face/ears/head alter the arriving audio signals
in sophisticated ways, ultimately helping the brain infer
important spatial attributes of the signal (Blauert, 1996).
Importantly, this head-related transfer function (HRTF) is
different across users, and harnessing this personalized filter
remains a rich area of exploration in various fields of science
(Zhang et al., 2021; Yang & Roy Choudhury, 2021).

This paper aims to explore the potential benefits of personal
HRTFs in binaural source separation, such as for hearing
aids, earphones, or glasses. Our hypothesis is that the per-
sonal HRTF encodes considerable spatial diversity and this
diversity can aid source separation compared to a baseline
with generic HRTFs. Of course, the spatial diversity may
not be enough to separate two sources arriving from nearby
angles; in fact even typical humans cannot achieve more
than 20◦ angular resolution (Yang & Roy Choudhury, 2021).
However, if the diversity can separate sources by broad an-
gular regions (e.g., isolate one mixture per region shown
in Figure 1), various applications may benefit from it. A
user’s hearing aid, for example, could help isolate a target
voice in front of him from all other voices in other regions.
Even if two voices arrive from the front, separating that
two-voice mixture from all other mixtures could still be ben-
eficial to noise cancellation, augmented reality, and other
applications.

Figure 1. K=4 sources in R=3 spatial regions (or cones). The front
and back cones identified as the same region due to spatial aliasing
(i.e., signals arriving from the front and back cones can produce
the same time difference at the ears).

https://uiuc-earable-computing.github.io/binaural/
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Separating voices by region has a second benefit. If the
voices can be separated into R mixtures (with one mixture
per region), the separation algorithm does not need to know
the number of sources, K, in the recorded signal. This offers
an important relaxation from past work (Luo & Mesgarani,
2019; Luo et al., 2020; Tan et al., 2021; Subakan et al.,
2021). Specifically, although recent deep learning models
have performed remarkably well in source separation (sepa-
rating K=4+ sources from 2 microphone recordings), they
have assumed a known K or at least a fixed maximum K
(Nachmani et al., 2020). Region-based separation obviates
the need to pre-specify K since it would always output at
most R mixtures. Of course, the tradeoff is that the output
signals may not be isolated voices, rather they would be
mixtures of voices if more than one are located in the same
region. This paper makes this compromise to gain from
HRTF-based personalization and immunity from K.

The difficulty in harnessing the personalized HRTF lies in
extracting clean binaural signals for any given individual.
Clearly, a user Alice has abundant opportunities to record
ambient signals on her own earphones, but any such bin-
aural recording would likely be polluted and this polluted
data would need separation. Thus, recent work (Han et al.,
2020; Tan et al., 2021) have used generic data (i.e., anechoic
source signals filtered with HRTF databases) and used this
clean dataset to train a general binaural separation model (a
supervised approach).

To gain from HRTF personalization, one potential approach
would be to require the user to record sounds in a quiet
room, from many different directions. This would help train
a personalized supervised model, although at the expense of
significant user effort.

Our idea is to utilize Alice’s own recordings (from everyday
scenarios) and opportunistically extract out relatively clean
signals (whenever possible). We propose a pre-processing
module that uses spectral and spatial techniques to identify
when reliable separation is viable; otherwise, the signal
segment is discarded. Our algorithm relies on a Gaussian
mixture model (GMM) to identify when a signal is rela-
tively clean (i.e., high SINR), versus situations where signal-
clusters have merged deceptively to appear as one signal.
Moreover, given earphone microphones are separated by a
relatively large distance (diameter of human head), the algo-
rithm must also cope with heavy spatial aliasing at higher
frequencies.

The output of our pre-processing module is expected to
yield relatively clean sources that embed the user’s person-
alized HRTF. Using these sources, we synthesize region-
wise voice mixtures, and then train a neural network-based
separation model. Since the reference signals are synthe-
sized from Alice’s own recorded signals, the training is
self-supervised. We show that even though the reference

signals are not perfectly clean, the region-wise separation
model can still learn to separate source mixtures effectively.
Results from our self-trained model outperforms supervised
models trained with generic HRTFs by 2+dB. Our model is
not data-hungry and can achieve voice separation without
requiring any knowledge of K.

Our contributions are: (1) recognizing the combined gain
from personalization, self-supervision, and relaxed assump-
tions on K in exchange for region-wise source separation.
(2) a proposed pre-processing module and a network ar-
chitecture that realize this gain, and (3) extensive compar-
isons that show how spatial cues (embedded in personalized
HRTFs) can play a crucial role in source separation.

2. Formulation and Baseline
2.1. Problem Formulation

Consider two microphones at the human ears that hear multi-
ple ambient voices from all around the head. Assume space
is partitioned into R regions, and the signals from each re-
gion i form a mixture yi. These per-region mixtures can be
modeled at the left and right microphones as:

yli =

Ni∑
j=1

hl
ij ∗ sij yri =

Ni∑
j=1

hr
ij ∗ sij (1)

Here sij ∈ R1×T is the jth signal in the ith region; hl
ij and

hr
ij are the corresponding head-related impulse response

(HRIR) for the direction from which source sij arrives. The
∗ denotes the convolution operation and Ni denotes the
number of sources in the ith region. Then, the recorded
mixture at at each microphone would be a summation over
all region-based mixtures as follows:

ml =

R∑
i=1

yli mr =

R∑
i=1

yri (2)

Here ml and mr are the left and right microphone record-
ings. The goal of region-based separation is to estimate yli
and yri from ml and mr, for all i ∈ [1, R].

2.2. Supervised Separation as Baseline

For a supervised approach, the binaural mixtures ml and
mr are fed into a separation model fθ with parameters θ.
The model predicts R binaural sounds which corresponds
to R regions:

ŷl1, ŷ
r
1, ŷl2, ŷ

r
2, ... , ŷlR, ŷ

r
R = fθ(ml,mr)

To optimize the model parameters θ, the loss function of our
system contains two parts: active loss and inactive loss. The
active loss is for the regions that have voices — we want
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each region’s output to contain all the sources inside that
region. The inactive loss is for the regions those contain no
active voices — we want these regions to output an empty
source. Thus we adopt the loss function in (Wisdom et al.,
2020a) but without permutation invariant training (PIT).
Specifically, assume reference region mixtures we want to
learn are yli, y

r
i , i ∈ [1, R], ordered so that first M reference

region mixtures are active. Then, the loss function is:

Loss =

M∑
i=1

[LSNR(y
l
i, ŷi

l) + LSNR(y
r
i , ŷi

r)]

+

R∑
i=M+1

[Linactive(m
l, ŷi

l) + Linactive(m
r, ŷi

r)]

The LSNR loss in the equation below is the negative SNR
loss with a constant τ=10−SNRmax/10, SNRmax=30dB.

LSNR(y, ŷ) = 10log10(||y − ŷ||2 + τ ||y||2)

The constant τ is to assign a 30dB maximum SNR to pre-
vent the network from optimizing for one single source. The
detailed reasoning is explained clearly in (Wisdom et al.,
2020b;a).

The Linactive is to enforce the network to output empty
source for inactive regions. Thus the inactive loss is:

Linactive(x, ŷ) = 10log10(||ŷ||2 + τ ||x||2)

For supervised training, we generate training data by con-
volving voice sources with human head-related impulse
responses (HRIR)2. We consider two cases: First, we as-
sume we know the person’s HRTF; we use this filter to
create the dataset and train the separation model. Assume
the separation performance is Ppersonal for this case. Second,
assume we don’t know the person’s HRTF and we train
the separation model using a generic HRTF database. Say
the separation performance for this person is Pgeneral. Obvi-
ously, Ppersonal > Pgeneral because the first case is learning
the person’s personalized HRTF. However, Ppersonal is not
achievable since the personal HRTF of a given person is not
known in practice. Our goal is to opportunistically learn
the personalized HRTF at a region-wise granularity — we
expect that these personal spatial cues, even though self-
supervised (hence imperfect), will help outperform Pgeneral
and take us close to Ppersonal.

3. Two Stage Model
The first stage aims to accept binaural recordings from a
user’s ear-device and output relatively clean voice sources
along with their directions of arrival (DoA). The output

2HRIR is the time domain representation of an HRTF. The
HRIR varies as a function of the signal’s direction of arrival.

sources should not be contaminated too much so that they
preserve the personal HRTF (naturally embedded in the
signals). The challenge lies in identifying and eliminating
deceptive mixtures that appear as single or two sources, or
when two sources appear separable but have corrupt spatial
cues.

In stage 2, we use these sources and their DoAs to synthesize
larger mixtures of many sources per region. This region-
wise mixture-dataset is then used to train our separation
model. The output sources from stage 1 serve as reference
signals for our loss function, thereby self-training the model.
We elaborate on the two stages next.

3.1. Stage 1: Reliable Source Extraction

We intend to spatially cluster the two-microphone record-
ings, but such techniques are not without limitations. To-
day, state-of-the-art spatial clustering exploits the inter-
microphone time difference (ITD) and inter-microphone
level difference (ILD) as the key spatial features for clus-
tering (Yilmaz & Rickard, 2004; Mandel et al., 2007; Man-
del & Ellis, 2007; Weiss et al., 2008; Mandel et al., 2009).
Briefly, if M l(t, f) and Mr(t, f) denote the STFT of ml

and mr, we can calculate the inter-microphone phase differ-
ence ∆ϕ(t, f) for each time–frequency (t–f ) bin:

∆ϕ(t, f) = ∠
M l(t, f)

Mr(t, f)
(3)

Assuming the two microphones are sufficiently close to
avoid spatial aliasing, the ITD for each t–f bin can be
directly estimated from ∆ϕ(t, f) as ITD(t, f) = ∆ϕ(t,f)

2πf .
Figure 2 visualizes this where ∆ϕ(t, f) is computed from
two low frequency t-f bins, and mapped to the ITD axis.

Figure 2. From STFT to clustering on the ITD–ILD space.

Similarly, the amplitude-level difference ILD can be com-
puted as:

ILD(t, f) = 20log10
|M l(t, f)|
|Mr(t, f)|

(4)
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Assuming the ILD only varies with direction (and not across
frequency), it is possible to spatially cluster on the ITD+ILD
dimensions. Each cluster maps back to the t–f masks on
the STFT, ultimately achieving decent spatial separation of
the two (red and blue) sources.

Unfortunately, limitations emerge even if all the above as-
sumptions hold: (1) Clustering assumes each t–f bin could
only contain one single source – (Yilmaz & Rickard, 2004)
calls this assumption W-Disjoint Orthogonality (W-DO).
This approximately holds with K = 2 or 3 voice sources;
with more sources, signals “collide” in t–f bins. (2) The
second problem is that if two sources arrive from nearby an-
gles, their spatial features blend into a single cluster, making
separation impossible.

In non-ideal cases, i.e., when the assumptions do not hold,
additional issues emerge. (3) Since human heads are rel-
atively large in comparison to the wavelength at higher
voice frequencies, spatial aliasing becomes a problem. If
∆τmax is the maximum inter-microphone time difference
(between the two ears), the minimum frequency for possible
aliasing is: faliasing = 1

2×∆τmax
. For average human head

shapes, faliasing ≈ 1000Hz, implying that more than 87%
of the frequencies get aliased (Figure 3 shows the multiple
ambiguous ITDs due to spatial aliasing from the high fre-
quency t–f bins). (4) Finally, the human HRTF is frequency
selective, hence the ILD also varies per-frequency; model-
ing this variation is hard since it is unique to each individual.
To mitigate these 4 problems, we design a selective spatial
clustering algorithm, discussed next.

Figure 3. Higher frequencies produce spatial aliasing (i.e., due to
smaller wavelengths, the measured phase difference can translate
to many possible time differences or ITDs). The example blue
signal in the high-frequency t–f bin shows 3 possible ITDs , which
affects the separation of red and blue source signals.

Selective Spatial Clustering

Algorithm 1 presents the pseudo code; we explain the key
steps below.

Step 1: We conservatively estimate faliasing (based on
maximum possible human head size) and use the unaliased
frequency bins to estimate ITD. We cluster on ITD and look
for 1 peak or 2 adequately separated peaks.

Step 2: A single peak indicates either a single source, or
multiple (angularly) nearby sources that have merged (in
ITD) to become a single peak. We fit a Gaussian on this
peak and accept the peak if the estimated variance is less
than a threshold σ2

th.

We show that the standard deviation (STD) of the ITD distri-
bution is a robust indicator of whether voice directions are
angularly nearby or separated. Figure 4 shows a clear STD
gap between a single source and 2-source mixtures when
the 2 sources are 20◦ apart. This guides our choice of σ2

th.

The time-frequency mask corresponding to this ITD peak
gives us one source or one mixture, from a specific region.
We add this source to our database.
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Figure 4. Standard deviation of estimated ITDs for single clean
source and 2-source mixtures with 10 and 20 degree apart. The
wide gap between 10 and 20 degrees allows for reliable separation.

Step 3: Similarly, 2 peaks indicate 2 sources or 2 mixtures,
but we need them to be sufficiently separated in ITD to gain
confidence that they have not mutually contaminated each
other. For this, we fit the ITDs to a 2-component gaussian
mixture model (GMM) and check if the variances are less
than σ2

th, and their means differ more than ∆τmin. If the
fitted Gaussians satisfy none of these (conservative) condi-
tions, we deem the sound segment unsuitable for separation
and discard it. Otherwise, we proceed to further separation.

Step 4: Given audio frequencies far exceed faliasing, we
need to cluster on high frequency bins (and cope with ITD
aliasing). Past work (Mandel et al., 2007; Mandel & Ellis,
2007; Weiss et al., 2008; Mandel et al., 2009) shows that
inter-microphone phase differences (IPD) are highly noisy
at these frequencies, but ILDs are helpful due to greater
frequency-sensitivity. Motivated by this, we aim to estimate
ILDs for the two spatial sources.
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Algorithm 1 Selective Spatial Separation
Input:

Real world binaural recording ml,mr

Aliasing frequency threshold faliasing
Variance threshold for peak detection σ2

th

Dual source ITD difference threshold ∆τmin

Time Domain Dominating Factor α
Step 1: Use unaliasing t-f bins to find ITD distribution
M l(t, f)← STFT (ml) Mr(t, f)← STFT (mr)

∆ϕ(t, f ∈ (0 : faliasing))← ∠ M l(t,f∈(0:faliasing)
Mr(t,f∈(0:faliasing))

ITDs(t, f ∈ (0 : faliasing))← ∆ϕ(t,f∈(0:faliasing))
2πf

Step 2: Output the binaural recording and the esimated
ITD when the ITDs show one single obvious peak
µ∗, σ∗ ← argmax N (ITDs;µ, σ2)
if σ∗ < σth then

Return ml,mr, ITD = µ∗

end if
Step 3: Discard the recordings when the ITDs does not
show two obvious peaks, or the two peaks are too close
Use 2-component Gaussian Mixture Model to fit ITDs
Let µ∗

1, µ
∗
2, σ

∗
1 , σ

∗
2 be the optimized means and standard

deviations of the two components
if σ∗

1 > σth or σ∗
2 > σth or |µ∗

1 − µ∗
2| < ∆τmin then

Discard ml,mr, Return
end if
Step 4: Cluster the non-aliasing frequency bins and
generate non-aliasing t-f bin masks
Cluster the t-f bins using the GMM for f < faliasing , get
two unaliasing t-f bin masks masku1 (t, f),masku2 (t, f)
for the two separable spatial sounds
Step 5: Use each source’s dominating time bins to esti-
mate the source’s ILD(f) for aliasing frequencies.

E1(t)←
∑

f (masku1 ×(|M l(t, f)|2+|Mr(t, f)|2)))
E2(t)←

∑
f (masku2 ×(|M l(t, f)|2+|Mr(t, f)|2)))

repeat
T1 ← {t| E1(t) > α× E2(t)}
T2 ← {t| E2(t) > α× E1(t)}
α← 0.9× α

until None of T1 and T2 is empty
ILDs(t, f)← 20log10

|M l(t,f)|
|Mr(t,f)| ; f ≥ faliasing

ILD1(f)← mean({ILDs(t, f)|t ∈ T1, f ≥ faliasing})
ILD2(f)← mean({ILDs(t, f)|t ∈ T2, f ≥ faliasing})
ILDthreshold(f)← ILD1(f)+ILD2(f)

2
Use the ILDthreshold to get masks for aliasing frequency
t-f masks maska1 ,maska1
Step 7: Apply both masks and return the separated
spatial sounds with ITD labels
mask1(t, f)← concatenate(masku1 (t, f),maska1 (t, f))
mask2(t, f)← concatenate(masku2 (t, f),maska2 (t, f))

sl,r1 ← iSTFT (mask1(t, f)×M l,r)

sl,r2 ← iSTFT (mask2(t, f)×M l,r)

Return sl,r1 , sl,r2 , ITD1 = µ∗
1, ITD2 = µ∗

2

If only one source was active at time t, per-frequency ILD
estimation would be easy — we would record the ILDs
for each high frequency bin. With mixtures of signals, this
is problematic. However, given source signals are mostly
uncorrelated, we expect to find time bins in which only one
of the sources dominate. How can we tell when one source
dominates?

Step 5: We compute the time–frequency masks estimated
from the lower (unaliased) frequencies, compute the en-
ergy corresponding to each mask, and test if energy E1(t)
exceeds E2(t) by a factor of α.

If source 1 dominates at certain time instants Ti, we compute
the mean per-frequency ILD from those time instances. We
perform the same for source 2. This yields the per-frequency
ILD for each source.

Step 6: For all time bins where no source dominates, we
compute the ILD for each high frequency bin and compare
against the mean ILDs recorded in Step 5. That frequency
bin is assigned to the source whose ILD matches better. At
this point, every t-f bin has been assigned a mask.

Step 7: The masks are applied and after an inverse STFT,
the two signals (or mixtures) are extracted. The ITDs corre-
sponding to the signals/mixtures are recorded – this gives us
the region from which the signal arrived. These separated
signals/mixtures and their associated regions are entered
into a region-wise source database.

3.2. Stage 2: Self-trained Region-wise Separation Model

Figure 5 shows our model pipeline – the output from stage
1 is a database of relatively clean sources (and their DoAs).
Stage 2 uses these sources to synthesize region-wise mix-
tures and then mixes these mixtures to create the binaural
recordings. This dataset trains our separation model.

Our neural network model for region-based voice separa-
tion is the feature concatenation TasNet, derived from (Han
et al., 2020). Single-channel TasNet contains three modules:
encoder, Temportal Convolutional Network (TCN), and de-
coder. The linear encoder is a list of kernels to transform
the time domain signal to an STFT-like 2-d representation.
This representation is fed into the TCN module to predict a
real mask for each source. After the masks are applied to
the representation, the linear decoder transforms the masked
representations back to time domain.

The feature concatenation TasNet uses cos(ITD), sin(ITD),
and ILD of all time-frequency bins as co-channel features.
The co-channel features are then concatenated with the en-
coder output of left or right recordings (in the channel dimen-
sion) to generate a new representation for both the left and
right channel’s mixture. Then representations are fed into
TCN to yield left/right separation masks for all sources, re-
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Figure 5. Two stage pipeline for self-supervised region-based separation using real-world personal recordings. The first stage collects
binaural sounds and uses spatial clustering to create a personal database. The second stage uses this database for self-supervised training.

spectively. The remainder is same as single-channel TasNet,
except that our architecture is designed to output sources for
both left and right channels.

We expect our model to learn the spatial cues (from the
personalized HRTFs) embedded in the binaural recordings.
We expect that advantages from the personalized spatial
information will outweigh the disadvantage of partially-
clean reference signals, outperforming supervised training
models that use generic HRTFs. Finally, our model makes
no assumptions on the number of sources, K.

4. Experiments and Evaluation
To configure the feature concatenation TasNet, we set N =
512, L = 32, B = 128, Sc = 128, P = 3, X = 8, R = 3,
following the convention in (Luo & Mesgarani, 2019). To
calculate the co-channel features cos(ITD), sin(ITD), and
ILD, we use 256-bin STFT with hop size 16 to make sure
the STFT can be aligned with the encoder output. Hanning
window is applied when calculating the STFT. The model is
trained on 4 1080ti GPUs using the ADAM optimizer with
batch size 4. The learning rate is set to be 10−3.

4.1. Region-Based Supervised Training

HRTF dataset: For supervised region-based separation, we
use the CIPIC HRTF database (Algazi et al., 2001). The
CIPIC HRTF database contains real-world recorded Head
Related Impulse Responses (HRIR) for 45 subjects, with 50
different azimuths and 25 different elevations, at roughly 5
degrees of angular resolution. For our experiments, we only
use the horizontal plane with 50 different azimuth angles,
divided into three regions, as shown in Figure 1. The front
and back cones of region 1 add up to 90+90 = 180◦, while
regions 2 and 3 are 90◦ each.

Voice source and mixture dataset: We use the LibriMix
dataset (Cosentino et al., 2020), sampled at 16KHz, without
considering noise and reverberation. With the script used
in (Dovrat et al., 2021), Libri5Mix is used for training and
validation, while Libri2Mix, Libri3Mix, Libri4Mix, and
Libri5Mix are used for testing.

Creating binaural mixtures: To form a binaural mixture,
we first assign a voice source to a randomly chosen region,
and then select a random angle θ from within that region.
The voice source is then convolved with the corresponding
HRIR(θ) – this forms one of the components of the mixture.
To create a mixture of K sources, we randomly choose K
from [2, 5], and repeat the same procedure. With K HRIR-
convolved sources, we sum them to generate the mixture.
Observe that the HRIR is distinct for left and right ears, so
we obtain a pair of mixtures – called the binaural mixture.

Generic vs. personalized training: To characterize the
gap between generic and personal HRTF, we train two mod-
els: (1) The training sources are all convolved with the test
subject’s personal HRIR – as discussed earlier, this gives
the upperbound on performance. (2) For the generic model,
the training sources are convolved with a random person’s
HRIR, chosen randomly from a database of 27 people’s
HRIRs. During test, the model is tested with the test sub-
ject’s HRIR.

Total users and models: For both cases, there are 3 sets
of testing data, corresponding to 3 subjects. Thus, overall
we have 4 supervised training models, i.e., 1 generic HRTF-
based model, and 3 personalized models for the 3 testing
sets (from each subject).

Basic metric: We use signal-to-noise-ratio (SNR) to assess
separation quality. Observe that our model outputs binaural
sounds which needs to preserve the ILD, hence the com-
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monly used SI-SDR metric (Roux et al., 2018) does not
apply. Thus, we compute SNR between a reference signal
x ∈ R1×T and the estimated signal x̂ ∈ R1×T as:

SNR(x, x̂) = 10log10(
||x||22
||x− x̂||22

)

Extending metric to region-wise mixtures: For region-
based separation, the notion of a voice source gets extended
to a region-wise mixture. So the reference signal in this case
is the true mixture from that region, while the estimated
signal is the estimated mixture from the same region. In
the special case where all sources are from the same region
(and the other regions have no active sources), we simply
use the same SNR equation from above — we term this
single-region SNR or “S-SNR”. However, when multiple re-
gions are active, we modify the metric to SNR improvement
(SNRi). Assuming that the mixture of region-wise mixtures
is denoted as m ∈ R1×T , we define SNRi as:

SNRi(x, x̂,m) = SNR(x, x̂)− SNR(x,m)

When 2 regions are active, we average the two SNRi and re-
port them as 2-SNRi. Since this is a binaural estimation, we
average over the left/right microphones as well. Similarly,
for samples from 3 active regions, we report 3-SNRi.

Results: Table 1 reports the main performance results aver-
aged over 3 testing subjects for LibriKMix, where K is the
number of sources between 2 and 5. All results are in dB
scale and the model names are summarized below:

- GENERAL: training with generic HRTFs.
- PERSONALIZED: trained with subject’s personal HRTF.
- SELF: self-supervised training from stage 1 outputs.
- SEMI: semi-supervised training with some clean sources.
- FEW-SEMI: semi-supervised with less than 1hr dataset.

Note that GENERAL and PERSONALIZED are supervised,
while SELF, SEMI, and FEW-SEMI are self-supervised.
Evident from the table, the SNR gap between GENERAL
and PERSONALIZED is significant, characterizing the
room for improvement available to self-supervised and
personalization-based approaches.

4.2. Self-supervised Training

Creating the “dirty” source dataset: For fair comparison,
the training data for our self-supervised model is drawn
from the same audio/HRTF dataset, except that they are
deliberately mixed with interfering sources (other binaural
speeches) and then fed to our Selective Spatial Filter in stage
1. The output of stage 1, which still contains interference
(hence called a “dirty” signal) is then used as training and
reference signals in stage 2. Specifically, for each clean
source sr,l in Libri5Mix, we convolve with a randomly cho-
sen HRIR(θ) to create a binaural source. Then we mix this

Table 1. Separation SNR compared between supervised and self-
supervised models for increasing number of sources. The * indi-
cates upper-bound performance with personal, clean sources.

MODEL K S-SNR 2-SNRi 3-SNRi

GENERAL 2 21.0 12.0 N/A
PERSONALIZED* 2 36.5 16.7 N/A
SELF 2 31.4 13.9 N/A
SEMI 2 33.1 15.1 N/A
FEW-SEMI 2 31.0 15.0 N/A

GENERAL 3 20.9 11.2 13.1
PERSONALIZED* 3 36.5 15.3 16.8
SELF 3 32.2 12.8 14.9
SEMI 3 33.5 14.0 15.7
FEW-SEMI 3 31.1 13.8 15.5

GENERAL 4 20.5 10.9 12.7
PERSONALIZED* 4 36.3 14.6 16.0
SELF 4 33.9 12.5 14.4
SEMI 4 33.8 13.4 15.0
FEW-SEMI 4 31.0 13.2 14.8

GENERAL 5 21.4 10.2 12.2
PERSONALIZED* 5 35.8 13.7 15.2
SELF 5 34.3 11.8 13.8
SEMI 5 33.8 12.6 14.3
FEW-SEMI 5 31.0 12.4 14.1

binaural source with other sources that are also convolved
with the same HRIR but a different random angle ω. Of
course, the mixing is done per channel to yield binaural
mixtures. When these mixtures are fed to our stage 1, the
“dirty” output s̃l,r serves as our self-training data.

Configuring stage 1 model: For stage 1’s spatial clus-
tering model, we use 1024-point STFT with 512 overlap
using Hanning window. We set faliasing = 562Hz, which is
about the 36th bin in the FFT. We set α = 5, σth = 0.00007
second — this value was set empirically based on our dis-
cussion on Figure 4.

Result: Figure 6 shows the performance of our spatial
clustering algorithm for 5 subject’s HRTFs. The separation
improves as the angular separation increases between the
sources in the mixture (recall that the filter only accepts 1
or 2 sources and discards 3+ source mixtures).

Creating “dirty” mixtures: Using the dirty sources s̃l,r

we generate the dirty mixtures ỹl,r, m̃l,r. While supervised
training trains on yl,r, self-supervised training — using
only 2-source mixtures — trains on ỹl,r, m̃l,r. The perfor-
mance is tested on many sources (Libri2Mix, Libri3Mix,
Libri4Mix, and Libri5Mix).

Results: Table 1 shows the results. Evidently, even if the
training references are “dirty”, they can still guide the model
to outperform the general supervised model (trained on
clean sources). SELF outperforms GENERAL by 10+dB
in terms of S-SNR and more than 1.5dB in terms of 2-
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Figure 6. Stage 1’s ability to separate 2-source mixtures as a func-
tion of the angular separation between sources.

SNRi and 3-SNRi. Further, the performance improvement
is higher with more sources.

4.3. Semi-supervised and Few-shot training

Semi-supervised (SEMI): Our dirty sources were all de-
rived from mixtures. In practice, when a user wears her
earphone/hearing-aid or glasses in everyday life, their ear-
phone is likely to record single sources as well — in fact,
they should be quite common. To avail this benefit, we
create the training samples with 50% of clean sources and
apply the same method for mixture generation. We call this
the semi-supervised model (SEMI) and add to Table 1 as
another point of comparison.

Few-shot (FEW-SEMI): We further consider the case when
there are limited amount of real-world recordings. Given
that Libri5Mix offers 56 hours of training mixtures, such
a dataset may consume several days if a user must collect
them in the real-world. Thus, we only use 56 minutes of
personal data to fine-tune the GENERALmodel, and then test
if personalization can still outperform the 56-hour trained
generic-HRTF model.

Results: Table 1 shows favorable results, indicating that
FEW-SEMI can learn the personal HRTF even from limited
data, thus preserving most of the gains over GENERAL. Fur-
ther, the small gap between FEW-SEMI and SEMI suggests
that region-based separation generalizes well (instead of
over-fitting).

4.4. Classical Vs. Region-based Source Separation

New metric: It is difficult to compare region-based separa-
tion with classical each-source-separation using permutation
invariant training (PIT). Hence we consider one special case
of target speech extraction where the target speaker is alone
in the front-back region and all other speakers (interferers)
are in other regions. The goal is to compare the SNR of only
the separated target speech.

Dataset: We train the neural network with identical settings

to perform classical source separation using PIT with SNR
loss. We train on Libri4Mix, and Libri5Mix separately, to
obtain 2 models. This means the classical source separa-
tion model is assuming the number of sources is known,
while the proposed region-based model does not. We use
Libri4Mix, and Libri5Mix as the test set for this experiment.
To synthesize binaural sounds, we use a randomly selected
HRIR from region 1 (front-back region) for the target voice,
and then randomly select HRIRs from other two regions for
the interfering voices.

Results: Figure 7 plots the results. Evidently, even though
the classical source separation model assumes the correct
number of sources, its performance for separating the target
speech is substantively worse than the proposed region-
based model. This result is strongly suggestive that spatial
information may be far more valuable than spectral infor-
mation, when it comes to separating multi-channel binaural
voice recordings.

4 5
Number of Sources

10

15
SN

R 
Im

pr
ov

em
en

t(d
B) Classical Source Separation vs. Region Based

Source separation personal model using PIT
Region-based supervised personal model
Region-based self-supervised model
Region-based semi-supervised model
Region-based semi-supervised model with few training data

Figure 7. Classical versus region-based separation: The target
speaker is in region 1 while all interference speakers are in other
regions. SNR improvement reported for target speech extraction.

4.5. Points of Discussion

Why not increase the number of regions? Recall from Figure
1 that the front and back cones together form a single region
(Region 1). This is because we want signals producing the
same ITDs to be located in the same region. It is possible
to increase the number of regions while still satisfying this
property — Figure 8 shows an example with 5 regions.
However, such designs are not free of tradeoffs. Specifically,
at 16kHz, the typical time difference of arrival (TDoA) is
around 0.3ms which translates to 5 audio samples. This
means 5 samples need to embed the spatial signature of any
given region, a fundamentally difficult proposition even for
deep neural networks. As compute power and number of
microphones increase in earables, separating voices into
more regions will become easier.

For our region setup, what if a source lies near the boundary
between two regions? To cope with this, it is possible to
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Figure 8. Example of 5 regions such that sources with same ITDs
fall in the same region.

define soft region boundaries, i.e., assign the source to the
neighbor region if the source is very close to the boundary
(≈ 10◦). However, in our experiments, we did not need to
tackle this issue because we were limited by the resolution
of the HRTF database. In other words, since HRTFs are
available at a granularity of 10◦, we assigned nearby sources
to the closest HRTF angle, which automatically made the
region assignment.

5. Related Work
Single-Channel Speech Separation. Single channel source
separation methods like (Luo & Mesgarani, 2019; Luo et al.,
2020; Subakan et al., 2021) are able to separate speech
sources successfully using only single channel input. These
models are all trained with permutation invariant training(Yu
et al., 2017; Kolbæk et al., 2017). Deep clustering (Hershey
et al., 2015; Wang et al., 2018; Luo et al., 2018; Chen et al.,
2017) is another approach to the permutation problem. Cur-
rent solutions to the unknown number of sources problem
are from 2 strategies. (Chazan et al., 2020; Nachmani et al.,
2020) tries to solve the problem of variable sources by as-
suming a maximum K. (Takahashi et al., 2019) tries to
solve this problem by decoding sources in a recursive man-
ner until no sources are left.

Neural Binaural Speech Separation. Binaural recordings
have also been used for neural speech separation. With
multiple microphones, spatial information offers another cue
for source separation. (Gu et al., 2019; 2020) tries to learn
inter-channel features for multi-channel speech separation.
(Han et al., 2020; Tan et al., 2021) uses parallel shared
encoders for binaural speech separation, while preserving
the interaural cues. (Jenrungrot et al., 2020) proposes a
binary search algorithm to continue searching for active
sources. This work is similar to ours in the sense that it
also uses region-wise separation to solve the unknown K

problem. Since they use 4 microphones in their experiments,
their model can localize sound sources with fine granularity.
However, in the binaural case (e.g., earphones and hearing
aids) front back confusion limits the approaches in literature.

Classical Binaural Speech Separation. Binaural speech
separation without neural models is a well studied topic.
These methods are essentially aims to cluster the T-F bins
of the mixture based on interaural cues. DUET(Yilmaz
& Rickard, 2004) clusters using 2 microphone recordings
assuming no spatial aliasing. EM based methods(Mandel
et al., 2007; Mandel & Ellis, 2007; Weiss et al., 2008; Man-
del et al., 2009) attempt to exploit binaural cues like interau-
ral time difference(ITD) and Interaural level difference(ILD)
to cluster the T-F bins in STFT. To avoid spatial aliasing,
they employ graphical models to model each bin’s ILD and
IPD distributions. These methods also assume approximate
W-disjoint Orthogonality(Yilmaz & Rickard, 2004) which
are violated with many source mixtures. However, these
methods achieve reliable performance with few sources,
especially when they are not close to each other.

Self-Supervised Neural Speech Separation. (Maciejew-
ski et al., 2018) shows that supervised speech separation
model’s performance degrades when channels mismatch
between training and testing data. Certain self-supervised
and unsupervised models are specifically designed to miti-
gate this problem. (Drude et al., 2019; Tzinis et al., 2019;
Seetharaman et al., 2018) uses spatial clustering to guide
deep clustering. A limitation with these methods is that spa-
tial clustering might generate clusters that contain several
very close sources, which cannot guide source separation
models to separate all the sources.

6. Conclusion
The importance of spatial cues in voice separation has been
studied extensively. However, the gap between generic and
personalized spatial cues has been relatively less explored.
This paper finds that the human’s head-related filter em-
beds valuable spatial signatures that can be learnt at coarse
granularity (i.e., region-wise). The performance gains are
robust, and importantly, can be achieved in a self-supervised
manner. Moreover, such region-wise voice separation also
obviates the need to know the number of sources, thus re-
laxing an important assumption in practice. We believe the
findings could aid important applications for hearing aids
and earphones, such as selective hearing, noise cancellation,
and audio-based augmented reality.
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