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Abstract
Partial label learning (PLL), which refers to the
classification task where each training instance
is ambiguously annotated with a set of candidate
labels, has been recently studied in deep learning
paradigm. Despite advances in recent deep PLL
literature, existing methods (e.g., methods based
on self-training or contrastive learning) are con-
fronted with either ineffectiveness or inefficiency.
In this paper, we revisit a simple idea namely con-
sistency regularization, which has been shown
effective in traditional PLL literature, to guide the
training of deep models. Towards this goal, a new
regularized training framework, which performs
supervised learning on non-candidate labels and
employs consistency regularization on candidate
labels, is proposed for PLL. We instantiate the
regularization term by matching the outputs of
multiple augmentations of an instance to a con-
formal label distribution, which can be adaptively
inferred by the closed-form solution. Experiments
on benchmark datasets demonstrate the superior-
ity of the proposed method compared with other
state-of-the-art methods.

1. Introduction
Collecting large scale datasets with high-quality annota-
tions for supervised learning algorithm is generally diffi-
cult. To overcome this problem, weakly supervised learning
has been widely studied in recent years, which includes,
but is not limited to, multi-label learning (Zhang & Zhou,
2013; Liu et al., 2020; Xu & Guo, 2021), noisy-label learn-
ing (Natarajan et al., 2013; Wang et al., 2021), positive-
unlabeled learning (Kiryo et al., 2017; Su et al., 2021), and
semi-supervised learning (Zhu & Goldberg, 2009; Xu et al.,
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2021b). This paper focuses on a typical weakly supervised
learning problem known as partial label learning (PLL),
which refers to the task where each training instance is an-
notated with a set of candidate labels, among which only
one is the ground-truth. This problem naturally arises in
various real-world applications, such as web mining (Luo &
Orabona, 2010), multimedia content analysis (Zeng et al.,
2013), and automatic image annotations (Chen et al., 2017).

The major difficulty of PLL lies in the ambiguity of label
space, since the ground-truth label is concealed in its can-
didate label set and not directly accessible to the learning
algorithm. Traditional PLL methods tackle this problem by
conducting label disambiguation before or during training.
For example, Zhang & Yu (2015) solve the PLL problem
by firstly employing label propagation algorithm to disam-
biguate the partial labels, and then learning a classification
model on the processed dataset. In (Jin & Ghahramani,
2002; Liu & Dietterich, 2012), the ground-truth label of
each instance is regarded as a latent variable which is iden-
tified via the EM algorithm. Furthermore, manifold con-
sistency regularization, which assumes that the manifold
structure in the feature space should also be preserved in
the label space, has been shown very effective to help dis-
ambiguate the candidate labels during training (Zhang et al.,
2016; Feng & An, 2018; Wang et al., 2019). However, these
methods are usually restricted to linear or kenel-based mod-
els and inefficient when dealing with large scale datasets
and hign-dimensional natural features.

As deep neural networks become popular, PLL has been ex-
plosively studied in deep learning paradigm recently. Based
on the uniform partial label generation assumption, Feng
et al. (2020) derive two methods which are risk-consistent
and classifier-consistent respectively. Based on the instance-
dependent partial label generation assumption, Xu et al.
(2021a) propose to recover the latent label distribution with
the variational inference technique. In (Lv et al., 2020; Wen
et al., 2021), self-training technique is adopted in deep learn-
ing framework to progressively identify the ground-truth
labels during training. These methods can be efficiently
trained with stochastic optimization and agnostic in specific
network architectures. However, severe error accumulation
problem may be caused due to the low quality prediction in
initial training stage. A recent research (Wang et al., 2022)
adopts the idea of unsupervised contrastive representation
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learning to PLL and achieves very impressive results on
several image classification benchmarks. Nevertheless, the
contrastive learning procedure is usually time-consuming
and resource-demanding. Overall, existing deep PLL meth-
ods are confronted with either ineffectiveness or inefficiency
(e.g., methods based on self-training or contrastive learn-
ing); Moreover, they usually assume that partial labels come
from a specific generation process and hence cannot handle
all PLL scenarios.

Inspired by the success of manifold consistency regulariza-
tion in traditional PLL literature, we revisit the utilization
of consistency regularization to guide the design of deep
learning method in this paper. Towards this goal, a concise
regularized training framework, which performs supervised
learning on non-candidate labels and employs consistency
regularization on candidate labels, is proposed for PLL. We
instantiate the regularization term by matching the outputs
of multiple augmentations of each instance to a confor-
mal label distribution, which can be adaptively inferred by
the proposed closed-form solution in bi-level optimization
framework. To guarantee robust network training on high-
ambiguity partial label datasets, we propose to gradually
induce the regularization during training by equipping a
dynamic balancing factor in the unified objective function.
Moreover, the proposed method does not make any assump-
tion on the partial label generation process, and hence can
deal with both uniform and instance-dependent partial labels.
Our contributions can be summarized as follows:

• A new regularized training framework is proposed for
deep PLL. To the best of our knowledge, our work
explores the consistency regularization in deep PLL
literature for the first time.

• We propose a powerful regularization term by involv-
ing the conformal label distribution, which could be
adaptively inferred during network training in the bi-
level optimization framework.

• Experimental results on both uniform and instance-
dependent partial label datasets demonstrate the ef-
fectiveness of our concise method compared with the
current state-of-the-art methods.

The rest of this paper is organized as follows. We review
related work in Section 2, and introduce our method in Sec-
tion 3; Section 4 presents the experimental results, followed
by the conclusion in Section 5.

2. Related Work
2.1. Traditional Partial Label Learning

As the principal approach in traditional PLL literature, label
disambiguation can be achieved based on averaging or iden-

tification strategy. Averaging-based methods distinguish
candidate labels from the non-candidate ones while treats
all the candidate labels equally (Hüllermeier & Beringer,
2006; Cour et al., 2011; Zhang & Yu, 2015). Identification-
based strategy progressively refines the confidence of each
individual candidate label by treating it as a latent variable
(Jin & Ghahramani, 2002; Yu & Zhang, 2016). A wealth
of popular learning techniques have been adopted to the
identification-based label disambiguation framework. For
example, Jin & Ghahramani (2002) use maximum likeli-
hood criterion to learn the classier from the unknown tar-
get distribution, which is iteratively inferred from the clas-
sifier itself. Yu & Zhang (2016) employ the maximum
margin constraint in PLL problem, where the margin be-
tween the maximum modeling output from candidate labels
and that from other labels is optimized. Generally speak-
ing, identification-based methods are more effective than
averaging-based methods and have attracted much more
research interest in the past decades (Jin & Ghahramani,
2002; Nguyen & Caruana, 2008; Liu & Dietterich, 2012;
Feng & An, 2019; Ni et al., 2021).

Manifold consistency regularization, which assumes the
manifold structure in feature space should also be preserved
in label space, has been shown work well in PLL problem
and is usually considered as a specific type of identification-
based label disambiguation methods. Zhang et al. (2016)
and Wu et al. (2020) solve the PLL problem by firstly using
manifold learning techniques to disambiguate partial labels,
and then learning a classification model on the processed
dataset. In several later studies, the manifold consistency
assumption is wrapped as a regularization term in the objec-
tive function and hence can be flexibly accomplished during
model training (Gong et al., 2017; Feng & An, 2018; Wang
et al., 2019).

2.2. Deep Partial Label Learning

Traditional methods are restricted to linear models, which
are usually optimized in low-efficiency manners. As deep
neural networks become popular, PLL has been recently
studied in deep learning paradigm, in which the PLL learner
is compatible with highly efficient stochastic optimization.
Yao et al. (2020a) conduct a preliminary study on deep PLL,
in which a temporal-ensembling technique is adopted in the
training of deep neural networks; In (Yao et al., 2020b), they
also propose to utilize a network-cooperation mechanism
to train two networks collaboratively and let them interact
with each others for reducing the disambiguation errors. Lv
et al. (2020) use a simple self-training like strategy to pro-
gressively identify the ground-truth labels during network
training, while impressive results on image classification
benchmarks was achieved for the first time in PLL literature.
Wen et al. (2021) introduce a family of loss functions named
leveraged weighted loss, which takes the method in (Lv
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et al., 2020) as one of its special cases.

Most existing methods assume that partial labels come from
the uniform generation model. Feng et al. (2020) for the
first time provide an mathematical formulation for this uni-
form generation process and derive a risk-consistent method
and a classifier-consistent, which can be easily used for
training deep neural networks. Furthermore, in many real-
world scenario, partial labels can also be generated with the
instance-dependent process. Based on this assumption, Yan
& Guo (2021) propose a GAN-based method which simul-
taneously performs label disambiguation with a generative
network and maps the instances to the disambiguated la-
bels with a classification network; Xu et al. (2021a) employ
variational inference in the network training to adaptively
recover the latent label distribution.

Recently, Wang et al. (2022) adopt contrastive representa-
tion learning to PLL and significantly improve the state-of-
the-art results on several image classification benchmarks.
However, the contrastive learning procedure is usually time-
consuming and resource-demanding. To deployment learn-
ing system in real-world setting, it is desire to design simple
yet effective method for training deep neural networks from
large-scale datasets, and relax the assumption of partial label
generation process. Towards this goal, we next investigate
the consistency regularization for deep PLL.

3. Methodology
In this section, we firstly introduce the preliminaries in
Subsection 3.1. Then we present our regularized training
framework in Subsection 3.2 and the consistency regulariza-
tion term in Subsection 3.3. Finally we describe the detailed
implementations in Subsection 3.4.

3.1. Preliminaries

Notations. Let X ⊂ Rq denote the q-dimensional feature
space and Y = {1, 2, ..., c} denote the label space with c
distinct labels. PLL assumes that the ground-truth label
y∈Y of instance x ∈ X is concealed in its candidate label
set S ⊂ Y , and its goal is to learn a multi-class classifier
g : X → Y that minimizes the classification risk on partial
label dataset D = {(xi,Si)|1≤ i≤n}. For the classifier g,
we use gk(x) to denote the output of classifier g on label k
given input x.

Consistency Regularization for Traditional PLL. Mani-
fold consistency assumes that the manifold structure in fea-
ture space should also be preserved in the label space. This
property is very useful for label disambiguation, and hence
has been employed in previous traditional PLL methods.
Generally speaking, one can formulate a specific manifold
consistency regularization term in the objective function.
For example, based on the locally linear embedding tech-

Candidate Labels

Non-Candidate Labels Supervised Loss Regularization Loss

Figure 1. The label matrix is decoupled into two complementary
parts including candidate labels and non-candidate labels, on which
the supervised loss and regularization loss could be calculated
respectively.

nique, the regularization term on instance xj can be formally
written as:

ζ(xj)=
∥∥xj−

∑
i
wijxi

∥∥+∥∥f(xj)−
∑

i
wijf(xi)

∥∥, (1)

where wij is an element of weighting matrix W and repre-
sents the construction weight from xi to xj , f(xi) is a nor-
malized real-valued vector and each fj(xi) represents the
labeling confidence of the j-th label being the ground-truth
label for xi . The weighting matrix W can be optimized
together with model parameters by alternative optimization
algorithms (Wang et al., 2019).

Although this consistency regularization term has been em-
pirically shown effective in traditional PLL literature, it is
hard to be directly employed in deep learning framework.
On the one hand, the manifold structure in raw feature space
may be inaccurate to reflect the structure in semantic space
when dealing with natural features like RGB values of im-
ages. On the other hand, there are additional parameters
(e.g., weighting matrix W ) to be optimized with some specif-
ically designed algorithms, which may be incompatible with
the gradient-based optimization procedure.

3.2. The Overall Framework

The popular regularized training methods learn predictive
models from the objective that usually consists of a super-
vised loss term as well as an additional regularization term.
For example, the state-of-the-art semi-supervised learning
methods achieve comparable results compared with fully
supervised learning by optimizing both the supervised loss
on labeled data and the regularization loss on unlabeled data
(Sohn et al., 2020; Xie et al., 2020).

Following this framework, we need to firstly obtain the su-
pervised loss, yet directly optimizing the classification loss
on these ambiguous labels would lead the bias caused by
the false positive labels. Nevertheless, one can extracts per-
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fectly accurate supervision from the non-candidate labels,
i.e., the complements of the candidate labels would never
be the ground-truth labels. Therefore, we instantiate the su-
pervised loss term with a monotonically increasing function
of the outputs on these non-candidate labels. Specifically,
given instance x and its candidate label set S , we calculate
the following modified negative log likelihood loss:

LSup(x,S) = −
∑

k/∈S log(1− gk(x)). (2)

The underlying principle behind this modified loss function
is quite simple: Given that the confidences assigned to non-
candidate labels are always zero, the log likelihoods on
the outputs of these labels should be as small as possible.
Despite its simple form, it has been empirically shown that
optimizing this loss on incorrect labels gives reasonable
results (Chou et al., 2020; Gao & Zhang, 2021). After
obtaining the supervised loss on the non-candidate labels,
we further calculate the regularization loss on the candidate
labels. The overall objective function on each instance can
be presented as:

L(x,S) = LSup(x,S) + λΨ(x,S), (3)

where the multiplicative factor λ is used to balance the
contributions of these two loss terms. We instantiate the
regularization term Ψ(x,S) by enabling the consistency of
model outputs for multiple augmentations of an instance on
its candidate labels.

The overall objective can be efficiently optimized in batch-
wise training procedure. As is shown in Figure 1, in each
batch training, the label matrix would be decoupled into two
complementary parts, which could be easily implemented
by the masking process, and the supervised loss and reg-
ularization loss would be calculated on them respectively.
In the next subsection, we will present the details of this
regularization term.

3.3. Consistency Regularization on Candidate Labels

With the help of consistency regularized training, we ex-
pect to encourage the network’s output to be invariant to
small changes applied to the feature space. A simple strat-
egy towards this goal is aligning the output distribution
of different augmentations of each instance. This can be
implemented by minimizing the divergence of each out-
put pair given a set of random augmented instances in
A(x) = {Augi(x)|1 ≤ i ≤ K}, where Aug(x) denotes
a random augmentation of the original instance. However,
there may be some random augmentations which could
cause significant semantic shift, and simply aligning the
outputs of these augmentations would degrade the model
performance.

To avoid these above issues, we hypothesis that there exists
the conformal label distribution for each instance x that can

Algorithm 1 Our Regularized Training Method

Input: Training dataset D = {xi, Si}ni=1;
The classifier g and its initial parameters θ;
Epochs T and iterations I;
The number of augmentations K;
Maximum balancing factor λ;

Procedure:
1: Initialize p for each instance by Eq.(6).
2: for t = 1 to T do
3: for i = 1 to I do
4: Fetch a random batch B from D;
5: Obtain the conformal label distributions by Eq.(7);
6: Calculate the loss on the current batch by Eq. (8);
7: Update network parameter θ via gradient descent;
8: end for
9: end for

Output: Learned multi-class classifier g.

be used to appropriately guide the consistency training of
all the augmentations in A(x). Denote the conformal label
distribution of a given instance x as p, which satisfies that∑

k∈S pk = 1 and pk = 0,∀k /∈ S. Now we implement
the regularization term by minimizing the Kullback-Leibler
(KL) divergence of p and the outputs of all the augmenta-
tions in A(x):

Ψ(x,S) =
∑

z∈A(x)
KL(p||g(z)). (4)

Bi-level optimization. Given this regularization term, we
need to obtain the conformal label distribution of each in-
stance before optimizing the network’s parameters. For a
specific example (x,S), we suggest that its conformal la-
bel distribution p could be treated as latent variable and
optimized simultaneously with the parameters θ from the
objective function. By taking the overall objective L as
the function of θ and p, we set up the following bi-level
optimization problem:

argmin
θ

L(θ,p∗)

subject to p∗=argmin
p

L(θ,p);
∑

k∈Spk=1; pk=0,∀k /∈S.

(5)

Bi-level optimization problem has been proved strongly NP-
hard (Jeroslow, 1985), so getting such an exact solution for
problem (5) is impossible in polynomial time. Fortunately,
the inner optimization problem in (5) has the closed-form so-
lution, which will be presented in Subsection 3.4. Therefore,
we use the alternative optimization strategy to approximately
solve this problem, in which each conformal label distri-
bution p could be updated in every optimization iteration
in an on-the-fly manner. Furthermore, since p reflects the
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label distribution for all augmentations in A(x), the opti-
mization of this inner problem could be considered as the
explicit label disambiguation process for x and work in the
transductive PLL setting.

The overall procedure of our method is presented in Algo-
rithm 1. In the beginning, we need to initialize the conformal
label distribution p for each example (x,S) by normalizing
the candidate labels:

pk =

{
1
|S| if k ∈ S,
0 otherwise.

(6)

Then, in each training iteration, our method firstly obtains
the conformal label distributions for all instance in current
batch, then calculates the overall loss and lastly updates the
network parameters via gradient descent.

3.4. Practical Implementations

Closed-form solution of p∗. We firstly come up with the
following proposition on the convexity of the loss function
with respect to p.

Proposition 1. The loss function L(θ,p) is convex in the
distribution p, i.e.,

L(θ, αp1 + (1− α)p2) ≤ αL(θ,p1) + (1− α)L(θ,p2),

where p1 and p2 are two distributions and 0 ≤ α ≤ 1.

By taking into account the constrains of problem (5), we
can obtain the optimal distribution by using the Lagrangian
Multiplier method. As the result, each element of p∗ on the
candidate labels can be easily calculated as:

p∗k =

(∏
z∈A(x)

gk(z)
) 1

|A(x)|

∑
j∈S

(∏
z∈A(x)

gj(z)
) 1

|A(x)|
, (7)

where |A(x)| means the cardinality of A(x). The detailed
derivation of this equation could be found in the Appendix
A.2.

Note that with fixed θ, the conformal label distribution p
for a specific instance x is independent from each other.
Thus, we focus on the optimization of a specific conformal
label distribution p. In practice, deep neural networks are
usually learned with batch-wise training procedure, thus
the optimization of all conformal label distributions in each
batch could be efficiently conducted with matrix operations.

Gradually Induced Regularization. In objective function
(3), we use a balancing factor λ to control the strength of
regularization. We suggest that using a fixed balancing
factor during the whole training procedure is not a good
choice. In the beginning stage, strong regularization may
degrade the performance due to the low quality of inferred

conformal label distribution. Moreover, as the conformal
label distribution becomes more accurate after some training
epochs, stronger regularization would always benefit the
training. Therefore, we apply a dynamic balancing function
in the objective:

L(x,S) = LSup(x,S) + γ(t)·Ψ(x,S), (8)

where λ is replaced by a non-decreasing balancing function
with respect to the epoch number t, i.e.,

γ(t) = min{ t

T ′λ, λ}. (9)

This dynamic balancing strategy employs small weighting
factor in the initial training stage and gradually increasing
it during training epochs. Specifically, the factor would be
increased to λ at epoch T ′, then it keeps the constant λ until
the end of training.

Data Augmentation. Data augmentation plays an impor-
tant role in the proposed regularization method. Intuitively
speaking, different augmentations should be distinct from
the original instance while retaining the semantic informa-
tion. Among various effectual augmentation techniques,
we adopt two commonly used ones: Autoaugment (Cubuk
et al., 2019) and Cutout(DeVries & Taylor, 2017). For
Autoaugment, we simply use the augmentation policies
released by Cubuk et al. (2019). These policies are auto-
matically searched from Python Image Library (PIL) and
have been empirically shown promising on multiple down-
stream image recognition tasks. In our implementation, we
firstly concatenate these policies into a pool, then randomly
choose an augmentation policy each time to construct an
intermediate augmentation, and lastly apply Cutout on the
intermediate augmentation. Although this paper focuses
on image classification tasks, which are the most natural
choices for evaluating methods based on data augmentation
techniques, data augmentations for other types of feature
have also been studied recently. For example, one can use
back-translation to augment text data, by which consistency
training has been shown very effective for text classification
(Edunov et al., 2018).

4. Experiments
In this section, we conduct experiments on various image
datasets showing the effectiveness of our method compared
with other state-of-the-art deep PLL methods.

4.1. Experiment Setup

Datasets. We employ five commonly used benchmark im-
age datasets including Kuzushiji-MNIST (Clanuwat et al.,
2018), Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer
et al., 2011), CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009). We manually corrupt these datasets into partially
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Table 1. Accuracy (mean±std) comparisons on Fashion-MNIST, Kuzushiji-MNIST, SVHN and CIFAR-10 with uniform partial labels on
different ambiguity levels. The best result among each column is highlighted in bold.

Dataset Method q = 0.1 q = 0.3 q = 0.5 q = 0.7

Fashion-MNIST

Ours 93.79± 0.05% 93.72± 0.20% 93.38± 0.08% 92.19± 0.03%
PiCO 93.36± 0.09% 93.41± 0.08% 92.88± 0.03% 91.73± 0.07%

PRODEN 89.15± 0.58% 89.10± 0.26% 88.22± 0.35% 85.87± 0.28%
VALEN 89.30± 0.72% 89.06± 0.42% 88.23± 0.29% 86.05± 0.25%

LWS 91.44± 0.13% 91.85± 0.14% 90.59± 0.18% 89.46± 0.16%
RC 92.64± 0.14% 92.08± 0.03% 92.01± 0.04% 90.83± 0.35%
CC 92.26± 0.12% 91.75± 0.04% 90.92± 0.06% 89.73± 0.23%

Fully Supervised 93.92± 0.07%

Kuzushiji-MNIST

Ours 98.27± 0.07% 98.08± 0.03% 97.44± 0.04% 95.93± 0.11%
PiCO 97.68± 0.06% 97.34± 0.07% 97.15± 0.03% 91.90± 0.04%

PRODEN 94.61± 0.39% 93.08± 0.46% 90.15± 0.51% 81.10± 0.78%
VALEN 92.14± 0.55% 91.02± 0.50% 88.39± 0.59% 80.80± 0.44%

LWS 96.22± 0.10% 96.15± 0.24% 95.43± 0.02% 93.63± 0.04%
RC 96.84± 0.09% 96.31± 0.15% 96.17± 0.06% 95.84± 0.12%
CC 96.45± 0.04% 96.16± 0.02% 95.62± 0.10% 95.33± 0.14%

Fully Supervised 98.31± 0.05%

SVHN

Ours 97.56± 0.02% 97.19± 0.06% 97.58± 0.05% 95.46± 0.23%
PiCO 96.01± 0.02% 96.24± 0.09% 95.89± 0.06% 94.71± 0.17%

PRODEN 96.35± 0.25% 96.07± 0.23% 95.61± 0.21% 94.35± 0.29%
VALEN 94.51± 0.38% 93.90± 0.20% 93.14± 0.42% 92.21± 0.49%

LWS 96.12± 0.05% 95.72± 0.18% 33.75± 0.09% 19.59± 0.11%
RC 96.20± 0.03% 95.54± 0.03% 96.03± 0.05% 95.73± 0.08%
CC 96.15± 0.02% 95.79± 0.05% 95.35± 0.03% 94.55± 0.15%

Fully Supervised 97.58± 0.03%

CIFAR-10

Ours 97.45± 0.04% 97.28± 0.02% 97.05± 0.05% 95.77± 0.08%
PiCO 95.78± 0.05% 95.25± 0.06% 94.73± 0.11% 92.73± 0.08%

PRODEN 91.94± 0.32% 91.10± 0.50% 89.82± 0.47% 86.48± 0.47%
VALEN 84.87± 0.43% 82.95± 0.72% 80.63± 0.89% 72.59± 0.79%

LWS 86.47± 0.20% 84.31± 0.14% 54.73± 0.19% 38.49± 0.24%
RC 88.96± 0.06% 87.49± 0.17% 83.48± 0.19% 75.01± 0.19%
CC 88.78± 0.05% 86.69± 0.40% 83.75± 0.28% 77.60± 0.22%

Fully Supervised 97.57± 0.03%

labeled versions by uniform (Lv et al., 2020) and instance-
dependent (Xu et al., 2021a) generating process.

To synthesize the uniform partial label datasets, we adopt
the generating procedure used in (Lv et al., 2020). Specif-
ically, we uniformly select each incorrect label ȳ for each
instance into its candidate label set with probability q. For
the cases where none of the labels are flipped, we flip a ran-
dom incorrect label into the candidate label set to guarantee
all training examples are partially labeled.

Instance-dependent partial labels are generated by following
the same generating procedure used in (Xu et al., 2021a).
We corrupt Fashion-MNIST, Kuzushiji-MNIST and CIFAR-
10 with the flipping probability depending on each specific
instance. Specifically, given an instance x, the flipping
probability of each incorrect label is computed by qj(x) =

ĝj(x)
maxk∈S ĝk(x)

, where ĝ denotes a pre-trained neural network.

In our experiments, we directly use the pre-trained network
released by Xu et al. (2021a) to generate instance-dependent
partial labels.

Compared methods. We compare our method against the
following six deep PLL methods: (1) PiCO (Wang et al.,
2022), a contrastive-learning-based method which identifies
the true label using learned prototypes. (2) VALEN (Xu
et al., 2021a), an instance-dependent PLL method which
iteratively recovers the latent label distribution by employ-
ing the variational inference technique in training phase;
(3) PRODEN (Lv et al., 2020), a self-training like method
which progressively identifies the true labels using the out-
put of the classier itself; (4) LWS (Wen et al., 2021), a
discriminative PLL approach which considers the trade-off
between losses in candidate labels and non-candidate labels;
(5) RC (Feng et al., 2020), a risk-consistent PLL method
which utilizes the importance re-weighting strategy; (6) CC
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Table 2. Accuracy (mean±std) comparisons on CIFAR-100 with uniform partial labels on different ambiguity levels.

Dataset Method q = 0.01 q = 0.05 q = 0.1 q = 0.2

CIFAR-100

Ours 83.12± 0.20% 82.77± 0.10% 82.24± 0.07% 80.97± 0.29%
PiCO 74.39± 0.15% 73.97± 0.09% 51.94± 0.11% 20.29± 0.04%

PRODEN 72.55± 0.77% 71.55± 0.94% 70.84± 0.87% 58.86± 0.85%
VALEN 58.82± 0.39% 58.21± 0.67% 54.44± 0.52% 30.28± 0.25%

LWS 58.54± 0.12% 55.19± 0.23% 40.12± 0.34% 23.90± 0.18%
RC 64.95± 0.23% 62.48± 0.14% 57.48± 0.04% 44.13± 0.23%
CC 63.74± 0.17% 61.22± 0.21% 58.65± 0.06% 51.65± 0.49%

Fully Supervised 83.16± 0.19%

Table 3. Accuracy (mean±std) comparisons on Kuzushiji-MNIST,
Fashion-MNIST, CIFAR-10 with instance-dependent partial labels.

Method Kuzushiji-MNIST Fashion-MNIST CIFAR10

Ours 95.07 ± 0.06% 89.21 ± 0.21% 87.80 ± 0.11%

PiCO 92.87 ± 0.08% 86.93 ± 0.20% 92.64 ± 0.07%

PRODEN 87.71 ± 0.62% 84.25 ± 0.61% 76.51 ± 0.69%

VALEN 83.15 ± 0.86% 84.31 ± 0.95% 65.51 ± 2.18%

LWS 91.17 ± 0.18% 86.14 ± 0.34% 44.08 ± 0.15%

RC 94.00 ± 0.12% 89.10 ± 0.24% 75.90 ± 0.34%

CC 94.01 ± 0.05% 88.33 ± 0.17% 79.58 ± 0.22%

(Feng et al., 2020), a classifier-consistent PLL method which
applies the cross entropy loss and transition matrix to form
an empirical risk estimator.

To make fair comparisons, we basically use the same net-
work architecture, learning rate, optimizer and augmenta-
tion strategy for all the comparing methods in the main
experiment. There are particular cases in which the com-
paring methods with these default hyper-parameters fail to
achieve comparable results, hence in these cases we use
the suggested hyper-parameters specified in their original
papers. The detailed description of the hyper-parameters is
presented in the Appendix A.3.

Implementation. Our implementation is based on PyTorch
(Paszke et al., 2019), and experiments were carried out with
NVIDIA Tesla V100 GPU. For Fashion-MNIST, Kuzushiji-
MNIST, we employ LeNet-5 as the backbone neural net-
work, while employ Wide-ResNet-34-10 for SVHN, CIFAR-
10 and CIFAR-100. For all methods, we use SGD as the
optimizer with a momentum of 0.9, a weight decay of 1e-4
and set batch size to 64. We set total epochs as 200, and the
initial learning rate as 0.1 while divided it by 10 after 100
and 150 epochs respectively. For our method, we simply set
T ′ = 100, λ = 1 and K = 3 across all datasets. We present
the mean and standard deviation in each case based on three
independent runs with different random seeds.

4.2. Experiment Results

Table 1 reports the comparison results on Fashion-MNIST,
Kuzushiji-MNIST, SVHN and CIFAR-10. As is shown, our
method consistently outperforms all comparing methods,
and the improvements are particularly noticeable on high

Table 4. Accuracy (mean±std) of the degenerated method with
uniform partial labels.

q = 0.5 q = 0.7

Fashion-MNIST 91.49 ± 0.71% 90.61 ± 0.66%
↓ (1.89%) ↓ (1.58%)

Kuzushiji-MNIST 95.99 ± 0.06% 92.28 ± 0.20%
↓ (1.45%) ↓ (3.65%)

SVHN 96.60 ± 0.71% 95.02 ± 0.09%
↓ (0.98%) ↓ (0.44%)

CIFAR-10 95.39 ± 1.47% 93.29 ± 1.23%
↓ (1.66%) ↓ (2.48%)

q = 0.05 q = 0.1

CIFAR-100 76.07 ± 0.15% 74.93 ± 0.19%
↓ (6.70%) ↓ (7.31%)

ambiguity levels. For example, on CIFAR-10, our method
improves upon the current state-of-the-art method PiCO by
1.67%, 2.03%, 2.32% and 3.04% on four different am-
biguity levels respectively. Our method achieves compara-
ble accuracy even compared with fully supervised learning.
Particularly, with q = 0.1, 0.2 and 0.5, our method gives
very small performance drop (lower than 1%) compared
with fully supervised learning on all these four datasets.
Moreover, even with q = 0.7, the performance drop of our
method is lower than 3% compared with fully supervised
learning. On the contrary, comparing methods like LWS
and VALEN work well on low ambiguity levels, but drop
dramatically as ambiguity increases.

Table 2 reports the comparing results on CIFAR-100. As
is shown, the superiority of our method is more significant
compared with that on previous simpler datasets. Even
with the presence of near 20 false-positive labels for each
instance, our method is still competitive compared with fully
supervised learning (with only 2.19% performance drop).

In addition to the uniform partial label setting, we also con-
ducted experiments with instance-dependent partial labels
on Kuzushiji-MNIST, Fashion-MNIST and CIFAR-10. Ta-
ble 3 shows that our method outperforms all baselines on
Kuzushiji-MNIST and Fashion-MNIST. Although the accu-
racy of our method is lower than that of PiCO on CIFAR-10,
it is still acceptable and significantly higher than the rest of
comparing methods.
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(a) Fixed λ Fashion-MNIST.
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(b) Fixed λ on Kuzushiji-MNIST.
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(c) Fixed λ on SVHN.
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(d) Fixed λ on CIFAR-10.

0 25 50 75 100 125 150 175 200
epoch

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

=0.1
=0.5
=1.0
=5.0
=10.0

(e) Fixed λ on CIFAR-100.
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(f) Dynamic λ Fashion-MNIST.
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(g) Dynamic λ on Kuzushiji-MNIST.
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(h) Dynamic λ on SVHN.
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(i) Dynamic λ on CIFAR-10.
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(j) Dynamic λ on CIFAR-100.

Figure 2. Accuracy curves with different balancing strategies. The top row shows results with fixed λ and the bottom row shows the
results with dynamic λ. Dark colors show the mean accuracy of 5 trials and light colors show standard deviation.

4.3. Ablation Study

In this subsection, we conduct extensive experiments to ver-
ify the importance of different components of our method.

Analysis of the balancing factor. We study the effect of the
balancing factor by comparing performance of our method
with λ ∈ {0.1, 0.5, 1.0, 3.0, 5.0, 10.0} in both fixed and
dynamic strategies. This ablation experiment is conducted
on the first four datasets with q = 0.7 and CIFAR-100 with
q = 0.2, where the implementation details are same with
those in the main experiment. As is shown in Figure 2: (1)
Performance under fixed factor exhibits large fluctuations
in the early stage, especially when large λ is employed;
On the contrary, dynamic strategy gives stable performance
during the entire training phase. (2) Using fixed factor fails
in some cases, while dynamic strategy achieves reasonable
performance in all cases. (3) When using dynamic strategy,
a relative larger λ always gives good performance.

The importance of regularization term. As regularization
plays an important role in our method, we next explore the
influence of the proposed consistency regularization term.
Specifically, we replace the conformal label distribution in-
ferrd by Eq. (7) with simply re-normalized model outputs,
and remaining the augmentation techniques. This degen-
erated method could be considered as the combination of
training with loss (2) and the augmented self-training. The
comparing results on different datasets and ambiguity levels
are shown in Table 4, where the values in bold indicate the
accuracy gap compared to our method. We can see that the
performance declines more obviously in highly ambiguous
cases. The accuracy gap is particularly large on CIFAR-100,
which reflects the superiority of our consistency regulariza-
tion method on difficult learning task.

Table 5. Results with and without the supervised loss.
with supervised loss without supervised loss

F-MNIST (0.7) 92.19 ± 0.03% 91.78 ± 0.09%

K-MNIST (0.7) 95.93 ± 0.11% 94.24 ± 0.09%

SVHN (0.7) 95.46 ± 0.23% 70.92 ± 36.34%

CIFAR-10 (0.7) 95.77 ± 0.08% 92.80 ± 0.14%

CIFAR-100 (0.1) 82.24 ± 0.07% 80.65 ± 0.04%

The important of supervised loss. As we discussed, super-
vised loss on non-candidate labels also plays an important
role in our framework. To examine the impact of supervised
loss, We compare our method with a degenerate method that
only uses regularization loss to learn the model. The results
in Table 5 show that without supervised loss, simply training
with consistency loss degrades the performance and even
fails in the end of training on SVHN. Similar results are
reported in the experiment of the balancing factor (see Fig-
ure 2), in which large balancing factors caused significant
performance drops in some cases.

The influence of backbone network. With more powerful
backbone network, the comparing methods achieve better
performance in most cases compared with the results re-
ported in their original papers. However, there are particular
cases that our re-implemented results are lower than the
original implementations, e.g. PiCO on CIFAR-100. Table
6 shows the comparison of PiCO and our method with dif-
ferent backbones, where ResNet-18 is that used in the PiCO
literature. We report the accuracy decrease of each method
on p = 0.01/0.05/0.10 compared with learning from full
supervision. As is shown, our method yields lower perfor-
mance drop compared with PiCO, when increasing the am-
biguity degree. Especially, with p = 0.10, the performance
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Table 6. Accuracy (mean±std) comparison between PiCO and Our
method with different backbones. WRN-34-10 is short for Wide-
ResNet-34-10.

PiCO Ours

Fully Supervised 73.56 ± 0.10% 79.88 ± 0.03%

p = 0.01
73.09 ± 0.34% 79.54 ± 0.12%
↓ (0.47%) ↓ (0.34%)

ResNet-18 p = 0.05
72.74 ± 0.30% 78.96 ± 0.06%
↓ (0.82%) ↓ (0.92%)

p = 0.10
69.91 ± 0.24% 77.72 ± 0.08%
↓ (3.65%) ↓ (2.15%)

Fully Supervised 74.47 ± 0.14% 83.16 ± 0.19%

p = 0.01
74.39 ± 0.15% 83.12 ± 0.20%
↓ (0.08%) ↓ (0.04%)

WRN-34-10 p = 0.05
73.97 ± 0.09% 82.77 ± 0.10%
↓ (0.50%) ↓ (0.39%)

p = 0.10
51.94 ± 0.11% 82W.24 ± 0.07%
↓ (22.53%) ↓ (0.92%)

of PiCO drops dramatically with Wide-ResNet-34-10, while
our method is robust for different backbone networks.

The influence of K (the number of augmented images).
As stated in Section 4.2, our proposed method performs
well with K = 3. Now we investigate how the performance
varies with different K. We also compare the differences
between optimizing the conformal label distribution and
the KL divergence of all pairs A(x). As shown in Table
7, even with small K, the performance of our method is
quite good and larger K does not achieve very obvious
improvement. Moreover, the performance of optimizing
pairwise KL divergence is worse than that of optimizing
conformal distribution.

The influence of data augmentation. In the above ex-
periments, the consistency loss is calculated using three
augmentations (K = 3) including one weak and two strong
augmentations. Now we compare the performance of dif-
ferent augmentation strategies. As we can see in Table 8
(e.g., 1S+2W means one strong and two weak augmenta-
tions are used simultaneously), using only strong augmenta-
tions or the combinations of strong and weak augmentations
achieves good performance, while only using weak augmen-
tations results in worse performance.

5. Conclusion
In this work, we revisited the utilization of consistency
regularization in PLL literature and for the first time pro-
posed a regularized training framework for deep PLL. We
presented an effective regularization term by involving a
conformal label distribution for each instance, which could
be adaptively inferred during training in the bi-level opti-
mization framework. Experimental results on both uniform
and instance-dependent partial label datasets demonstrated
the effectiveness of our concise method compared with the

Table 7. Results (%) with different choices of K on Fashion-
MNIST, Kuzushiji-MNIST, CIFAR-10 and CIFAR-100.

K=2 K=3 K=4 K=5

F-MNIST (ID)
Pairwise 88.01±0.03 87.23±0.16 85.80±0.16 53.89±31.25

Conformal 89.60±0.01 89.44±0.10 89.54±0.10 89.45±0.07

K-MNIST (ID)
Pairwise 94.01±0.15 91.23±0.13 82.23±0.64 51.48±29.37

Conformal 95.44±0.21 95.15±0.13 95.29±0.16 95.30±0.08

CIFAR-10 (0.7)
Pairwise 94.65±0.10 94.99±0.10 95.28±0.07 95.29±0.03

Conformal 95.44±0.12 95.77±0.08 95.89±0.03 95.83±0.10

CIFAR-10 (ID)
Pairwise 81.01±4.28 83.20±4.50 83.26±4.66 86.62±0.09

Conformal 89.46±1.09 87.80±0.11 87.53±0.19 87.90±0.11

CIFAR-100 (0.1)
Pairwise 81.59±0.20 82.17±0.03 82.41±0.12 82.58±0.30

Conformal 81.94±0.21 82.24±0.07 82.21±0.12 82.20±0.07

Table 8. Result (%) with different augmentations on CIFAR-10. ▼
indicates the worst case of each row.

3×S 1×S + 2×W 2×S + 1×W 3×W

CIFAR-10 (0.7) 95.74±0.17 95.73±0.10 95.77±0.08 93.74±0.12▼

CIFAR-10 (ID) 90.22±0.22 88.78±0.62 87.80±0.11 87.45±0.57▼

CIFAR-100 (0.1) 82.35±0.36 82.37±0.13 82.24±0.07 78.43±0.03▼

current state-of-the-art deep PLL methods. Moreover, our
method achieved competitive performance even compared
with fully supervised learning.
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A. Appendix
A.1. Proof of Proposition 1

Proposition 1. The loss function L(θ,p) is convex in the distribution p, i.e.,

L(θ, αp1 + (1− α)p2) ≤ αL(θ,p1) + (1− α)L(θ,p2),

where p1 and p2 are two distributions and 0 ≤ α ≤ 1.

Proof. For this proof, we use an inequality called the log-sum inequality, which states that for non-negative real numbers
a1, a2, b1, b2, we have

(a1 + a2) · log
(
a1 + a2
b1 + b2

)
≤ a1 · log

(
a1
b1

)
+ a2 · log

(
a2
b2

)
.

For training example (x,S), we have

L(θ, αp1 + (1− α)p2)

=Lsup +
∑

z∈A(x)
KL (αp1 + (1− α)p2||g(z))

=Lsup +
∑

k∈S

∑
z∈A(x)

(
αp1,k + (1− α)p2,k) · log

(
αp1,k + (1− α)p2,k

αgk(z) + (1− α)gk(z)

))
≤Lsup +

∑
k∈S

∑
z∈A(x)

(
αp1,k · log

(
αp1,k
αgk(z)

)
+ (1− α)p2,k · log

(
(1− α)p2,k
(1− α)gk(z)

))
=αLsup + α

∑
z∈A(x)

KL(p1||g(z)) + (1− α)Lsup + (1− α)
∑

z∈A(x)
KL(p2||g(z))

=αL(θ,p1) + (1− α)L(θ,p2).

A.2. Derivation of Eq. (7)

Based on the proposition that the loss function L(θ,p) is convex w.r.t. p, we derive the conformal label distribution p for
an specific instance (x,S) by using Lagrangian Multiplier method. The elements of p on non-candidate labels are simply
revealed in the constraint pk = 0,∀k /∈ S, thus we only focus on the elements of p on candidate labels. We transform the
original inner problem in Eq. (5) into the minimization of the corresponding Lagrangian function:

argmin
pk∀k∈S,µ

(
L(θ,p) + µ

(∑
k∈S

pk − 1
))

,

where µ is the Lagrange multiplier to be optimized. The optimum solution of this problem needs to satisfy the following
KKT conditions:

∂
[
L(θ,p) + µ

(∑
k∈S

pk − 1
)]

∂pk
= 0, ∀k ∈ S;

∑
k∈S

pk − 1 = 0; µ ≥ 0.

Based on the first equation, we have∑
z∈A(x)

(log pk − log gk(z) + 1) + µ = 0, k ∈ S,

=⇒ log pk +

(
1 +

µ

|A(x)|

)
=

1

|A(x)|
log

(∏
z∈A(x)

gk(z)
)
, k ∈ S,

=⇒ pk · exp
(
1 +

µ

|A(x)|

)
=

(∏
z∈A(x)

gk(z)
) 1

|A(x)|
, k ∈ S.
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Let η = exp
(
1 + µ

|A(x)|

)
, then by combining the above derivation and the second KKT conditeion, we have

η =
∑

k∈S

(∏
z∈A(x)

gk(z)
) 1

|A(x)|
.

Therefore, for each k ∈ S, the corresponding optimal p∗k can be calculated as

p∗k =

(∏
z∈A(x)

gk(z)
) 1

|A(x)|

∑
j∈S

(∏
z∈A(x)

gj(z)
) 1

|A(x)|
.

A.3. Experiment Details

A.3.1. DATASETS

We use four widely-used benchmark datasets, i.e., Kuzushiji-MNIST, Fasihon-MNSIT, SVHN, CIFAR-10, CIFAR100. We
describe these five datasets as follows:

• Fashion-MNIST consists of 70,000 28 × 28 grey scale images. It has 10 fashion items as the classes including
T-shirt/top, trouser, pullover, dress, sandal, coat, shirt, sneaker, bag, and ankle boot.

• Kuzushiji-MNIST consists of 70,000 28 × 28 grey scale images and each image is associated with one label of
10-class cursive Japanese (”Kuzushiji”) characters.

• SVHN consists of 73257 32× 32× 3 colored images in RGB format. It has 10 classes from 0 to 9, which denote the
house numbers from Google Street View images.

• CIFAR-10 consists of 60,000 32× 32× 3 colored images in RGB format. It has 10 classes including airplane, bird,
automobile, cat, deer,frog, dog, horse, ship, and truck.

• CIFAR-100 is just like the CIFAR10, consisting of 60,000 32× 32× 3 colored images in RGB format. It has totally
100 classes and each class contains 600 images. These 100 classes are grouped into 20 superclasses. Each image comes
with a“fine” label and a “coarse” label.

The data augmentation techniques used for Fashion-MNIST, Kuzushiji-MNIST are: (1) Random Horizontal Flipping, (2)
Random Cropping, and (2) Cutout. The data augmentation techniques used for CIFAR-10, CIFAR-100 and SVHN are: (1)
Random Horizontal Flipping, (2) Random Cropping, (3) Cutout, and (4) AutoAugment.

A.3.2. IMPLEMENTATIONS OF COMPARING METHODS

The detailed configurations is shown in Table 9 with the following descriptions:

1) The data augmentation strategy in used for PiCO is different from our method. In Table 9, Augmentation* denotes the
data augmentation strategy suggested by the PiCO literature. We also remain the total epochs (800) suggested in their
paper.

2) LWS and VALEN perform poorly on CIFAR-100 when using our default configurations, so we remain the configurations
suggested in their released code package.

3) Since VALEN fails when initial learning rate is set to 1e-1, we set 1e-2 as the initial learning rate on all datasets except
for CIFAR-100.

4) Besides the configurations illustrated in Table 9, we remain the hyper-parameters which are specifically used in each
comparing method according to their released code package.
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Table 9. Implementation details of the comparing methods
Uniform partial labels Instance-depedent partial labels

Fashion-MNIST
Kuzushiji-MNIST

SVHN
CIFAR-10

CIFAR-100
Fashion-MNIST

Kuzushiji-MNIST
CIFAR-10

Ours

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

VALEN

WideResNet
Augmentation

Initial Learning Rate 1e-2
Weight Decay 1e-4

Epochs 200

ResNet
No Augmentation

Initial Learning Rate 5e-2
Weight Decay 1e-3

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-2
Weight Decay 1e-4

Epochs 200

PiCO

WideResNet
Augmentation*

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 800

WideResNet
Augmentation*

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 800

WideResNet
Augmentation*

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 800

LWS

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

ConvNet
No Augmentation

Initial Learning Rate 1e-2
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

PRODEN

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

RC

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

CC

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200

WideResNet
Augmentation

Initial Learning Rate 1e-1
Weight Decay 1e-4

Epochs 200


