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Abstract
Despite considerable advances in deep reinforce-
ment learning, it has been shown to be highly
vulnerable to adversarial perturbations to state ob-
servations. Recent efforts that have attempted to
improve adversarial robustness of reinforcement
learning can nevertheless tolerate only very small
perturbations, and remain fragile as perturbation
size increases. We propose Bootstrapped Oppor-
tunistic Adversarial Curriculum Learning (BCL),
a novel flexible adversarial curriculum learning
framework for robust reinforcement learning. Our
framework combines two ideas: conservatively
bootstrapping each curriculum phase with high-
est quality solutions obtained from multiple runs
of the previous phase, and opportunistically skip-
ping forward in the curriculum. In our experi-
ments we show that the proposed BCL frame-
work enables dramatic improvements in robust-
ness of learned policies to adversarial perturba-
tions. The greatest improvement is for Pong,
where our framework yields robustness to per-
turbations of up to 25/255; in contrast, the best
existing approach can only tolerate adversarial
noise up to 5/255. Our code is available at:
https://github.com/jlwu002/BCL.

1. Introduction
Advances in reinforcement learning coupled with state of
the art deep neural network-based representations have led
to breakthroughs in a broad range of applications, including
the AlphaZero general game-playing approach (Silver et al.,
2018), autonomous driving (Kiran et al., 2021), navigation
of stratospheric baloons (Bellemare et al., 2020), medical
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imaging (Zhou et al., 2021), and many others. However, a
series of recent efforts demonstrated that policies learned
by deep reinforcement learning (DRL) can be extremely
fragile to small adversarial perturbations to input state ob-
servations (Lin et al., 2017; Sun et al., 2020; Wu et al., 2021;
Zhang et al., 2021). Indeed, this echoes a broader pattern
of fragility of neural network architectures to adversarial
perturbation attacks (Athalye et al., 2018; Eykholt et al.,
2018; Carlini & Wagner, 2017; Goodfellow et al., 2015;
Szegedy et al., 2014; Vorobeychik & Kantarcioglu, 2018).

In turn, a series of efforts have emerged aiming to improve
robustness of deep neural networks for supervised learn-
ing (Cai et al., 2018; Cohen et al., 2019; Raghunathan et al.,
2018; Goodfellow et al., 2015; Madry et al., 2018; Vorob-
eychik & Kantarcioglu, 2018), as well as deep reinforce-
ment learning (Oikarinen et al., 2021; Zhang et al., 2020;
2021). However, while variations of adversarial training
have proved relatively successful at attaining robustness of
deep neural networks in supervised settings, success has
been more modest in reinforcement learning, where the best
approaches can tolerate only very small-magnitude pertur-
bations (e.g., up to 5/255 in Pong, which was achieved in
Oikarinen et al. (2021) through RADIAL-A3C training).

We propose a novel curriculum learning framework, Boot-
strapped Opportunistic Adversarial Curriculum Learning
(BCL) to boost robustness of DRL. Our approach is inspired
by recent successful curriculum learning approaches in ad-
versarial supervised learning (Balaji et al., 2019; Cai et al.,
2018; Sitawarin et al., 2021), but also differs substantively
from these. In particular, both Balaji et al. (2019) and Cai
et al. (2018) propose to construct a simple curriculum of
increasing input difficulty; this is what we call naive curricu-
lum learning below, and we show that it is not particularly
effective in achieving robustness in DRL. Sitawarin et al.
(2021) propose an adaptive curriculum by customizing dif-
ficulty to specific inputs as a function of attack success on
each input. This idea, however, is not meaningful in DRL,
where inputs are states and success is measured in terms of
overall reward of a policy, rather than accuracy of predic-
tions on individual inputs. Our approach is also inspired by
recent success of curriculum learning approaches in rein-
forcement learning (Narvekar et al., 2017; 2020); however,
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ours is the first curriculum learning framework for adversar-
ial reinforcement learning.

In the proposed BCL framework, we leverage two key ideas.
First, we bootstrap each phase of the curriculum by ensuring
that the result of the previous phase is successful, which
we do by choosing the best result over multiple adversarial
training runs. Second, we introduce adaptivity by oppor-
tunistically skipping forward in the curriculum if we find
that the model learned in the current phase is already robust
to the adversarial perturbations with higher magnitude.

We evaluate the efficacy of the proposed BCL framework
in boosting robustness of DQN-style approaches with mini-
mal reduction in nominal (non-adversarial) reward through
extensive experiments on the Pong, Freeway, BankHeist,
and RoadRunner OpenAI domains. In all cases, we show
that BCL yields considerable improvements in robustness
compared to the state of the art. In Pong, BCL-trained
policies achieve near-flawless performance under adversar-
ial perturbations of up to ϵ = 25/255; in comparison, the
state-of-the-art RADIAL-DQN performs poorly even with
ϵ = 5/255 (the reward under 30-step PGD attack is -17.7).
In BankHeist, BCL training achieves an order-of-magnitude
higher robustness for ϵ = 15/255 than state of the art (SA-
DQN), and for RoadRunner, it is several orders of magnitude
better (RADIAL-DQN is state of the art).

In summary, we make the following contributions:

1. A novel flexible adversarial curriculum learning frame-
work for reinforcement learning (BCL), in which boot-
strapping each phase from multiple executions of pre-
vious phase plays a key role,

2. A novel opportunistic adaptive generation variant that
opportunistically skips forward in the curriculum,

3. An approach that composes interval bound propagation
and FGSM-based adversarial input generation as a part
of adaptive curriculum generation, and

4. An extensive experimental evaluation using OpenAI
Gym Atari games (main paper) and Procgen (Appendix
A) that demonstrates significant improvement in robust-
ness due to the proposed BCL framework.

2. Related Work
Robustness to adversarial perturbations has been a subject
of considerable attention in machine learning broadly, al-
though much of the focus, and the most significant progress,
has been specifically in supervised learning (Athalye et al.,
2018; Eykholt et al., 2018; Carlini & Wagner, 2017; Good-
fellow et al., 2015; Szegedy et al., 2014; Vorobeychik &
Kantarcioglu, 2018). In particular, in the supervised learn-
ing settings, adversarial training has emerged as a major

paradigm for enhancing robustness (Cai et al., 2018; Cohen
et al., 2019; Raghunathan et al., 2018; Goodfellow et al.,
2015; Madry et al., 2018; Tong et al., 2019; Vorobeychik &
Kantarcioglu, 2018; Wu et al., 2020).

Studies of adversarial state perturbations to policies learned
using deep reinforcement learning are somewhat more re-
cent (Behzadan & Munir, 2017; Kos & Song, 2017; Pat-
tanaik et al., 2018; Wu et al., 2021), as are approaches
for increasing robustness (Akkaya et al., 2019; Fortunato
et al., 2017; Oikarinen et al., 2021; Pattanaik et al., 2018;
Tobin et al., 2017; Zhang et al., 2020; 2021). Adversarial
training techniques, using either lower or upper bounds on
adversarial loss have been explored, but the efficacy of con-
ventional adversarial training has been somewhat limited,
with success restricted to weak FGSM attacks, or relatively
small-size perturbations (Behzadan & Munir, 2017; Kos &
Song, 2017; Pattanaik et al., 2018). A number of heuristic
techniques, such as adding noise at training, have also been
proposed (Akkaya et al., 2019; Fortunato et al., 2017; Tobin
et al., 2017), but these are generally not as effective against
strong attacks as those based on adversarial training. An or-
thogonal idea that attempts to introduce robustness directly
at decision time is CARRL (Everett et al., 2021). How-
ever, their reliance on linear bounds makes it only suitable
for low-dimensional settings (Weng et al., 2018). Among
the most recent and most effective of approaches based on
forms of adversarial training are RADIAL (Oikarinen et al.,
2021) and SA-DQN (Zhang et al., 2020), and we compare
to these directly. Finally, CROP is a recent approach for
certifying robustness of deep reinforcement learning meth-
ods (Wu et al., 2022). However, CROP is not in itself a
method for improving DRL robustness, either empirical or
certified.

Our approach builds on prior work on the use of curricu-
lum learning in adversarial settings (Balaji et al., 2019; Cai
et al., 2018; Sitawarin et al., 2021), as well as curriculum
learning in supervised (Bengio et al., 2009) and reinforce-
ment (Narvekar et al., 2017; 2020) learning. However, as
elaborated in the introduction, ours is the first adversarial
curriculum learning framework in the reinforcement learn-
ing context with a particular attention to how to design
a curriculum; prior approaches for adversarial curriculum
learning either do not consider a curriculum design ques-
tion, or are not applicable in reinforcement learning where
efficacy depends on the process dynamics and cannot be
evaluated independently for each input.

3. Preliminaries
In this section we introduce the basics of deep reinforcement
learning (DRL), focusing primarily on Deep Q-learning that
we leverage in the proposed BCL framework.
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3.1. Deep Reinforcement Learning

Reinforcement learning models the world as a Markov De-
cision Process (MDP). An MDP is a tuple (S,A, P,R, γ),
where S is the state space, A is the action space, P (s′|s, a)
the (in our setting, unknown) transition function that deter-
mines the distribution of the next state s′ given current state
s and action a, and R(s, a) the expected reward function
obtained from taking action a in state s. Finally, γ ∈ [0, 1)
is the temporal discount factor. Solving MDPs amounts
to computing either the Q function, Q(s, a), which is the
maximum discounted sum of rewards that can be achieved
starting in state s and taking an action a, or the value func-
tion V (s) = maxa Q(s, a). A solution to an MDP is a
policy π(s) ∈ argmaxa Q(s, a).

In deep reinforcement learning (DRL), a key step is to ap-
proximate the value function, Q function, and/or policy us-
ing a deep neural network. Algorithms differ both in which
of these they approximate, and the particular ways these
are learned from experience. We focus on Deep Q-Network
(DQN), a class of approaches that learn a parametric repre-
sentation of the Q function.

Specifically, DQN approximates the Q function using a
deep neural network Q(s, a; θ) with parameters θ. A basic
DQN learning algorithm learns Q(s, a; θ) by using the loss
function

L(θ) = E(s,a,s′,r)

[(
r + γmax

a′
Q (s′, a′; θ)−Q(s, a; θ)

)2
]
.

We make use of several improvements on DQN: Double
DQN (Van Hasselt et al., 2016) and Dueling DQN (Wang
et al., 2016). Double DQN uses two Q-networks with Qtarget
for evaluation and Qactor for training, with the loss function

L (θactor) = E(s,a,s′,r)

[(
r + γmax

a′
Qtarget(s

′, a′; θtarget)

−Qactor(s, a; θactor))
2
]
. (1)

Dueling DQN is based on Double DQN and uses two esti-
mators, one for state value function estimation (i.e., VQ(s)),
and one for the state-dependent action advantage function
estimation AQ(s,a), with Q(s, a) = VQ(s) +AQ(s,a).

3.2. Adversarial Deep RL

Adversarial Policy Perturbations In adversarial pertur-
bation attacks on DRL, an adversary adds a perturbation
δ to each observed state s constrained to be ∥δ∥p≤ ϵ (for
exogenously specified lp norm and ϵ) so as to minimize
expected discounted reward of the executed policy π(s).
We take p = ∞ here, as is common. If the policy is
based on maximizing the learned Q function, as in DQN
and its variants, the attack aims to perturb this function,

indirectly affecting the policy, while if DRL is based on
policy learning (e.g., actor-critic), with the policy itself
represented by a neural network π(s; θ), the policy is at-
tacked directly. Specifically, a common attack on DQN aims
maximize L(Softmax(Q(s + δ; θ)), π(s)) with respect to
δ, where L is the cross-entropy loss, Q(s) is the vector
of Q values over all actions in state s. A PGD (projected
gradient descent) attack (Madry et al., 2018) is then im-
plemented with this loss function, which updates δ itera-
tively: δk+1 ← δk + α · sign(∇δL(Q(x + δk; θ), π(s)))
over a fixed number of iterations, projecting to a nearest
feasible state and clipping to ensure that ∥δ∥∞≤ ϵ. In pol-
icy learning methods, a common loss function is instead
L(π(s + δ; θ), π(s)), with PGD attacks implemented just
as above. An important special class of PGD is FGSM (fast
gradient sign method) (Goodfellow et al., 2015), in which
PGD is executed for only a single iteraration and α = ϵ.

Adversarial Training Deep RL is robust to adversarial
policy perturbations with magnitude up to ϵ if attacks do not
significantly reduce the discounted sum of rewards. Com-
mon approaches aimed at robust learning in general use
some form of adversarial training, where after initially train-
ing the model in the regular manner, additional training
phases either add adversarial perturbations to inputs that are
used in further gradient updates (Madry et al., 2018), or take
gradients of an upper bound on adversarial loss (Wong et al.,
2018). A state-of-the-art form of adversarial training uses
PGD attacks to generate adversarial perturbations (Madry
et al., 2018). A recent alternative which is much more com-
putationally efficient and equally efficacious uses FGSM
with random initializations instead (Wong et al., 2020);
henceforth, we term this variant RI-FGSM.

In robust DQN, a recent RADIAL-DQN approach (Oikari-
nen et al., 2021) on which we build defines the loss function
as

LRADIAL = κLstandard + (1− κ)Ladv, (2)

where Lstandard is defined in Equation (1), and

Ladv (θactor, ϵ) = E(s,a,s′,r)

[∑
y

Ly(s, a)

]
,

withLy(s, a) =
(
r + γmaxa′ Qtarget (s

′, a′)− Q̃ϵ
actor(s, y)

)2

when y = a and Ly(s, a) =
(
Qactor(s, y)− Q̃ϵ

actor(s, y)
)2

otherwise. This is referred to as approach # 1 in Oikarinen
et al. (2021), which yields a strict upper bound on the
loss function under adversarial perturbation, that is,
Lstandard(s + δ; ϵ) ≤ Ladv(s; ϵ) with ||δ||p≤ ϵ; approach
# 2 is an alternative that aims to minimize the weighted
overlapped IBP Q-values. Since approach # 2 empirically
outperforms approach # 1 for RADIAL-DQN, we use
approach # 2 in our experiments below for RADIAL
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curriculum training. RADIAL-DQN (both approaches) uses
Q̃ϵ

actor(s, y) which is an upper or lower bound on Qactor(s, y)
derived using interval bound propagation (IBP) for a given
attack budget ϵ. As IBP yields relatively loose bounds,
ϵ must of necessity be small for these to be meaningful,
limiting the ability to achieve robustness beyond relatively
low values of ϵ.

4. Bootstrapped Opportunistic Adversarial
Curriculum Learning

Curriculum learning is an old concept in iterative learning in
which easier examples are provided before more challeng-
ing examples (Bengio et al., 2009). A natural alternative
is to start with small values of ϵ and gradually increase
these during adversarial training. However, as we show
in the experiments, this latter idea works extremely poorly
for DRL. We propose a novel Bootstrapped Opportunistic
Adversarial Curriculum Learning (BCL) framework for iter-
ative adversarial training. The key idea is to bootstrap each
training step to ensure that subsequent iterations begin with
a partially robust baseline, and to also enable the algorithm
to “skip forward” if robustness against several successive
values of ϵ has already been achieved. Our BCL framework
allows one to explicitly trade off between being conserva-
tive (paying more attention to the former) and opportunistic
(greater focus on the latter).

4.1. The BCL Algorithm

At the high level, the proposed BCL algorithmic frame-
work begins by creating a baseline curriculum, that is,
an increasing sequence of L attack budgets {ϵi}, with
ϵ1 < ϵ2 < · · · < ϵL, where ϵL = ϵ is our target robustness
level. It also begins with a sufficiently small ϵ0 > 0 so that
it is either already achievable (e.g., by standard DRL, prior
art such as RADIAL, etc) or not difficult to achieve; we
assume that BCL is initially bootstrapped with a model fθ0
that is indeed able to achieve this relatively low bar. It then
proceeds through a series of phases, where a phase is associ-
ated with attempting to achieve robustness against ϵi in the
curriculum for some i (which is not necessarily identical to
the phase number, as we discuss below). In each phase, we
run adversarial training (AT) up to K times, where each AT
run is bootstrapped by the best model obtained thus far, fθ.
Each model thereby learned is then independently evaluated,
and if the best model obtained thus far in the current phase
exhibits sufficiently good performance (a criterion for this
can depend on ϵi, and represented by a function V (ϵ) in
Algorithm 1), we can stop and move to the next phase as
long as we performed at least a minimum number Kmin AT
runs. The best model in the current phase then becomes
the best model achieved thus far, updating fθ. Algorithm 1
describes this procedure more precisely.

Algorithm 1 BCL algorithm.

Input: ϵ, K, Kmin, V (ϵ), fθ0 .
fθ ← fθ0 // Initialization
{ϵi}Li=1 ← Curriculum(ϵ) // Create curriculum
(i, ϵbest)← ChooseNext(fθ, {ϵi}, 0, V (ϵ))
while ϵbest < ϵ do

for k = 1, . . . ,K do
fθk ← Train(fθ, ϵi)
Vk ← Eval(fθk , ϵi)
if k ≥ Kmin and Vk ≥ V (ϵi) then

break
end if

end for
// Find the best model among training results
k∗ ← argmaxk∈[K] Vk

fθ ← fθk∗

(i, ϵbest)← ChooseNext(fθ, {ϵi}, i, V (ϵ))
end while
return fθ

The next central feature of BCL is the ability to skip forward
in the curriculum, omitting the next budget level ϵi+1, and
potentially others after it, as shown in the ChooseNext step
(Algorithm 2). The most we can skip forward is to the
smallest ϵj to which the current model is not robust (this
is the purpose of EvalRobust function in Algorithm 2).
This skipping feature is most useful because it significantly
reduces the time that BCL needs to run, but as we show
in the experiments, there are times where it also yields
better robustness than obtained by following the baseline
curriculum.

Algorithm 2 ChooseNext

Input: fθ, {ϵi}Li=1, j, V (ϵ).
// Find smallest i such that fθ is not robust for ϵi
i← EvalRobust(fθ, {j + 1, . . . , L}, V (ϵ))
// Select index l to train with next
l← Select({j + 1, . . . , i})
return (l, ϵl−1)

Algorithm 1 takes as input a fixed target ϵ that we wish
to induce robustness to, but in practice it is often the case
that we wish to be more opportunistic, and simply observe
what is possible in trading off robustness and baseline (non-
adversarial) efficacy. For example, we can set ϵ to be very
high, but stop BCL well in advance of reaching it if we
observe significant performance degradation.

For the RADIAL curriculum training, unlike training with
adversarial examples (Section 4.2), it does not have a target
ϵ to be robust against. We choose to always follow the base-
line curriculum for the ϵ. We find that RADIAL training
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does not increase the nominal reward in trend, and many
times the significant decrease in nominal reward is accom-
panied by the decease in robustness as the model begin to
collapse. Thus, we aim at maintaining the nominal reward
at a high level. We set the a threshold for each model, and
re-train the model for maximum K times if the nominal
reward is below the threshold. We stop the training if nomi-
nal reward is below the threshold level for M consecutive
curriculum phases.

Next, we illustrate the BCL framework with several special
cases, noting first that both conventional adversarial training
and naive curriculum learning can also be viewed as variants
of BCL.

Adversarial Training (AT): Standard adversarial training
can be viewed as a special case of BCL if K = 1 and the
baseline curriculum is simply the singleton ϵ.

Naive Curriculum Learning (NCL): Setting K = 1 and
always following the baseline curriculum (i.e., the next
index returned by the ChooseNext function is always i+ 1)
recovers a naive implementation of curriculum learning.

Conservatively Bootstrapped Curriculum Learning
(BCL-C): If we set Kmin = K and always follow the
baseline curriculum, BCL never opportunistically skips for-
ward, and setting K sufficiently high ensures that each step
is bootstrapped with an effective model trained using all
smaller values of ϵ.

Maximum Opportunistic Skipping (BCL-MOS): If we
always choose to skip to the smallest ϵ against which the
current model fθ is not (yet) robust, we obtain the most
opportunistic version of the algorithm.

4.2. Generating Adversarial Perturbations

The key question left open in BCL is precisely how we train
a model in a particular phase to be robust against a given
adversarial budget ϵ. There are two major ways to do this:
using bounds on the impact of adversarial perturbations,
such as those produced by IBP, as done by RADIAL (Oikari-
nen et al., 2021), and using adversarial perturbations (Zhang
et al., 2020; 2021). In addition to using IBP, RADIAL
introduces a crucial insight in robustness training in dis-
tinguishing updates for actions that have been chosen (for
which the immediate reward has been observed) from those
that have not been, as discussed in Section 3.2. We leverage
this idea, but replace IBP with adversarial examples. Next,
we present a novel approach for generating adversarial ex-
amples for adversarial training in each phase of BCL that
specifically leverages DDQN.

Recall that in RADIAL-DQN (approach # 1), Q̃ϵ
actor(s, a)

uses IBP bounds on the Q function that can be achieved
through adversarial perturbations. Alternatively, we can

define it as Q̃ϵ
actor(s, a) = Qactor(s + δ∗, a), where δ∗

(approximately) solves the following optimization problem:

min
||δ||∞≤ϵ

∑
a∈A

π(s+ δ, a)Qtarget(s, a), (3)

where ϵ is the bound on l∞-norm of the perturbation (as is
common in prior literature on robust reinforcement learn-
ing), with π(s+ δ, a) = 1 iff a is the best action to be taken
after observing s+ δ, i.e., a ∈ argmaxa′ Qactor(s+ δ, a′),
and π(s+ δ, a) = 0 otherwise. In other words, Equation (3)
aims to identify δ that minimizes the expected discounted
sum of rewards as approximated by Qtarget(s, a). Note that
here it is crucial to separate the Qactor, which determines the
policy, and Qtarget, which serves as an “objective” evaluation
of state-action values. This is in contrast with typical adver-
sarial perturbation attacks on DRL described in Section 3.2,
where the adversary merely aims to prevent a target (opti-
mal) action from being chosen, but may well incentivize
DRL to choose a near-optimal action instead.

In order to approximately solve the problem in Equation (3),
we first replace a policy π by its differentiable approxima-
tion π̃, where

π̃(s, a) =
eQactor(s,a)∑
a′ eQactor(s,a′)

.

Equivalently, π̃(s + δ) = Softmax(Qactor(s + δ)), where
we use Q(s) to denote a vector with values for each action
a. We then solve the following proxy optimization problem
to approximate δ∗:

min
||δ||∞≤ϵ

Softmax(Qactor(s+ δ))⊙Qtarget(s), (4)

with ⊙ denoting the dot-product.

Commonly, the problem in Equation (4) is solved using
PGD (Madry et al., 2018). However, this becomes a ma-
jor bottleneck in training, particularly when we use a large
number of PGD iterations. We make two improvements to
significantly reduce the time associated with computing δ.
First, we use FGSM + Random Initialization (RI-FGSM)
(see Section 3.2), proposed by Wong et al. (2020) for super-
vised adversarial training, for which it was shown highly
effective. Ours is the first application of this idea in robust
DRL. Second, we dynamically calculate the perturbation
δ and push the entire tuple (s, a, s′, r, δ) (i.e., including δ)
into the replay buffer. This enables us to re-utilize the previ-
ously calculated perturbations to further improve training
efficiency. Consequently, we chose a relatively small replay
buffer size to ensure the perturbations δ stored in the buffer
are frequently updated as the DRL model evolves.

With RADIAL-DQN (approach # 2), which minimize the
weighted overlapping IBP Q-values, as well as the ap-
proach above for generating specific adversarial perturba-
tions, which yields a lower bound on adversarial loss, we



Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum

have two specific ways that we can use to compute gradient
updates in the Train step of BCL for a given perturbation
magnitude ϵ. We refer to the former simply as RADIAL,
and to the latter as AT (for adversarial training). Both can
be “plugged in” to any variant of BCL. Additionally, we can
compose these approaches, giving rise to a novel variant:

RADIAL + AT Bootstrapped Curriculum Learning
(BCL-RADIAL+AT): First, run BCL-RADIAL until it
reaches a point in the curriculum at which its performance
degrades significantly; then, switch to BCL-X-AT (where X
is either C or MOS) for the remainder of the curriculum.

5. Experiments
5.1. Experiment Setup

We evaluate the proposed approach using four Atari-2600
games from the OpenAI Gym (Bellemare et al., 2013): Pong,
Freeway, BankHeist, and RoadRunner. Those environments
have discrete action space. The walltime for all experiments
are documented in the Appendix E. We use Rnominal to de-
note a model’s nominal reward (i.e., average discounted
sum of per-step rewards without adversarial perturbations),
and Rϵ

adv to represent a model’s reward under adversarial
attacks with l∞ perturbation bounded by ϵ. For each model
we calculate a score using Rnominal +

1
3

∑
ϵ R

ϵ
adv for all ϵ

listed in Table 2 to measure the model’s robustness level,
and this score is used to choose the median and best final
result (out of three independent runs); we present the me-
dian here, and the results of all runs, as well as the best
are provided in the Appendix D. We experiment all the
BCL variations in Section 4.1. We compare BCL-based
approaches to six benchmarks: 1) standard Dueling DQN
training (DQN (Vanilla)), 2) SA-DQN using convex relax-
ation (SA-DQN (Convex)) (Zhang et al., 2020), 3) RADIAL-
DQN (Oikarinen et al., 2021), 4) standard adversarial train-
ing (AT-DQN) (Madry et al., 2018), 5) naive curriculum
learning with adversarial examples (NCL-AT-DQN) (Cai
et al., 2018; Sitawarin et al., 2021) and 6) naive curriculum
learning with RADIAL method (NCL-RADIAL-DQN). For
DQN (Vanilla) we use the results from Zhang et al. (2020),
and for AT-DQN, NCL-AT-DQN as well as NCL-RADIAL-
DQN we perform our own training as three restricted vari-
ants of the BCL algorithm. The AT method is the one we
purposed in Section 4.2. The adversarial examples for all
games are generated using RI-FGSM.

DQN Hyperparameters Our implementation is based on
RADIAL-DQN (Oikarinen et al., 2021). For most hyperpa-
rameters we keep them the same as in RADIAL-DQN, with
a few exceptions such as replay initial and replay buffer
size, which are modified according to our model setting
to improve training efficiency. We use buffer size 50,000
across all environments compared to 200,000 used by RA-

DIAL. For replay initial we use 256 compared to 50,000 in
RADIAL. We use RI-FGSM (Algorithm 3 in Wong et al.
(2020), see Section 3.2) with hyperparameter α = 0.375
for approximating δ during training. The detailed DQN
specific hyperparameters for AT runs are in Table 1. The
one exception is BCL-RADIAL+AT-DQN for RoadRunner
environment: for the AT training we use 1.25 × 10−7 as
the learning rate, as we find with learning rate 0.000125 the
nominal reward would decrease significantly after training.
For NCL/BCL-RADIAL-DQN, all hyperparameters are the
same as in RADIAL-DQN.

To ensure a fair comparison, we let all methods to have the
same computational constraints and evaluation metrics: for
all environments we train for 4.5 million frames (same as
RADIAL-DQN) for each run, evaluate over 20 test episodes
and report the averaged reward.

Table 1. DQN specific hyperparameters (AT runs)

PARAMETER VALUE

DISCOUNT FACTOR (γ) 0.99
BUFFER SIZE 50000
REPLAY INITIAL 256
BATCH SIZE 128
OPTIMIZER ADAM
OPTIMIZER LEARNING RATE 0.000125

Adversarial Attacks for DQN As we observe significant
issues with obfuscated gradients with NCL/BCL-RADIAL-
DQN, we apply four types of adversarial attacks for DQN
models: 1) 30-step untargeted PGD attack with step size
0.1 (this is stronger than the 10-step PGD used in Oikari-
nen et al. (2021)); 2) RI-FGSM (α = 0.375); 3) RI-FGSM
(Multi): sample N = 1000 random starts for RI-FGSM,
and takes the first sample where the resulting adversarial
example alters the action; 4) RI-FGSM (Multi-T): sample
N = 1000 random starts for RI-FGSM, and takes the sam-
ple which results the agent taking the action corresponding
to the lowest Q value among those N samples. We report the
lowest reward obtained after running those four attacks. We
observe that with obfuscated gradients, RI-FGSM (Multi-T)
results in the strongest attack in many cases, while 30-step
PGD is typically stronger otherwise (see the Appendix D
for details).

Hyperparameters for AT-DQN and NCL-AT-DQN For
AT-DQN, we experiment with a series of varying values of ϵ,
and present the most effective results, with the comprehen-
sive results deferred to Appendix D. We generate adversarial
perturbations as in Section 4.2, and use DQN (Vanilla) as
fθ0 ,1 setting K = L = 1. For each environment we only

1For the RoadRunner environment we used the implementation
of vanilla DQN from RADIAL-DQN (version 1) as fθ0 , which
yields better results.
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need one run which is 4.5 million frames.

For naive curriculum learning (NCL-AT-DQN), we use
DQN (Vanilla) as fθ0 , as for AT-DQN. We set K = 1 and
ϵ0 = 0, with curriculum increment of 1/255 (i.e., using the
baseline curriculum) until target ϵ is reached. The choice
of ϵ of each environment is the same as the ones in BCL
experiments. However, because NCL-AT-DQN significantly
underperforms BCL and (unlike BCL) when the target ϵ is
reached the final NCL-AT-DQN model performs extremely
poorly, we instead report the best result along the curriculum
path to provide the strongest benchmark.

Hyperparameters for NCL/BCL-RADIAL-DQN In
NCL/BCL-RADIAL-DQN experiments, we bootstrap from
RADIAL-DQN. We set ϵ0 = 1/255, with ϵ always follows
the baseline curriculum. The increments of the baseline
curriculum is 1/255. We set K = 1 for NCL-RADIAL-
DQN and K = 3 for BCL-RADIAL-DQN. We perform
maximum K runs for each curriculum phase; if none of the
K run results has a nominal reward above the threshold, we
choose the one with the highest nominal reward and move
to the next curriculum phase. We stop the training if nom-
inal reward is below the threshold for M = 2 consecutive
curriculum phases. The thresholds are shown in Table 10 in
Appendix C. We report the best result along the curriculum
path for NCL/BCL-RADIAL-DQN.

Hyperparamters for BCL-RADIAL+AT-DQN For BCL-
RADIAL+AT-DQN, we choose the median run among three
BCL-RADIAL-DQN runs and perform BCL-C-AT-DQN
starting with this run. As we are only able to perform
BCL-C-AT-DQN further for BankHeist and RoadRunner,
we choose K = 3 for BankHeist, and K = 1 for Road-
Runner. The baseline curriculum for BankHeist starts from
ϵ0 = 13/255 and for RoadRunner ϵ0 = 12/255, with cur-
riculum increment of 1/255, and target ϵ = 15/255.

Other BCL Hyperparameters In BCL, we also eval-
uate two concrete novel instantiations of the proposed
BCL framework: conservatively bootstrapped curriculum
learning (BCL-C-AT-DQN), and maximum opportunistic
skipping (BCL-MOS-AT-DQN). We bootstrapped all in-
stances by using RADIAL-DQN as fθ0 .2 Further, the base-
line curriculum is created starting with ϵ0 = 3/255, since
RADIAL-DQN (which we use as fθ0) is already robust up
to 3/255. The baseline curriculum is then created by us-
ing increments of 1/255 until reaching the target ϵ. The
BCL hyperparameters (K, Kmin and ϵ) are listed in Table
11 in the Appendix C. The thresholds V (ϵ) for BCL-MOS-
AT-DQN are listed in Table 12 in the Appendix C, where

2For the RoadRunner environment we used the version 1 im-
plementation of RADIAL-DQN (Oikarinen et al., 2021) as fθ0 ,
which yields better bootstrapping performance. Nevertheless, we
always use the best-performing version of RADIAL-DQN (version
2) as the benchmark in Table 2.

V nominal(ϵ) is the threshold for nominal reward, and V adv(ϵ)
is the threshold for rewards under adversarial attacks. As
described in Section 4, if the model in phase i is trained
against ϵi and Rnominal ≥ V nominal(ϵ), we perform evalu-
ation with adversarial attacks, find the maximum j > i
such that Rϵj

adv ≥ V adv(ϵ), and skip forward in the baseline
curriculum, training with ϵj+1 in the next phase. In our im-
plementation of BCL, we further smoothed the curriculum
by gradually increasing the upper bound ϵ on adversarial
perturbations from ϵi to ϵi+1 in phase i+ 1 during the 4.5
million training frames. The function evaluating the quality
of intermediate results in Algorithm 1, Eval(fθk , ϵi), returns
the efficacy score Vk = Rnominal +

1
2 (R

ϵi
adv +R

ϵi−1

adv ), which
allows us to choose the best model among all the intermedi-
ate results. Note that it is crucial to include Rnominal as a part
of the criterion for model selection, as a model with a high
nominal reward tends to show considerably better stability
in subsequent curriculum training.

We used a time-varying κ in Equation 2 for BCL. Specifi-
cally, we let κ decrease from 1 to 0.5 through the 4.5 mil-
lion training frames for all experiments except when we use
RADIAL-DQN as fθ0 in Pong, Freeway and BankHeist;
or when we use RADIAL-DQN (version 2) as fθ0 in
RoadRunner (i.e., NCL/BCL-RADIAL-DQN and BCL-
RADIAL+AT-DQN). In these cases, κ is set to 0.8 through-
out training. The choice of κ = 0.8 ensured consistency
with the κ used in RADIAL-DQN (Oikarinen et al., 2021),
which makes the bootstrapping process more stable.

5.2. Results

Our main results are presented in Table 2, with extensive
additional results and analysis provided in the Appendix.
We can readily observe that the novel instantiations of BCL
outperform all benchmarks in terms of robustness in Pong,
Freeway and BankHeist. The improvement for higher levels
of ϵ is often dramatic.

For Pong, we observe that both BCL-C-AT-DQN and BCL-
MOS-AT-DQN significantly outperform all the benchmark
models as well as BCL-RADIAL-DQN for ϵ ≥ 20/255,
and achieves a near flawless reward. This demonstates the
value of our BCL framework as well as the AT curriculum
learning approach.

In the Freeway setting, both BCL-MOS-AT-DQN and BCL-
RADIAL-DQN achieve high robustness for ϵ up to 20/255.
In terms of benchmark models, while SA-DQN is competi-
tive at ϵ = 20/255, it is far worse at lower levels of ϵ; for
example, when ϵ = 10/255, BCL-MOS-AT-DQN achieves
an average reward that is more than 50% higher than either
SA-DQN or RADIAL-DQN, with DQN (Vanilla) achieving
0 reward at such levels of adversarial perturbations.

Note that we were unable to perform BCL-RADIAL+AT-
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Table 2. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are the most robust models
(selected based on score Rnominal +

1
3

∑
ϵ R

ϵ
adv). Boldface marks the best results for each value of ϵ, including ϵ = 0 (nominal); we marked

multiple row entries as boldface for a given ϵ if they are statistically indistinguishable (i.e., have overlapping confidence intervals).

PONG
METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK
ϵ 0 10/255 20/255 25/255

DQN (VANILLA) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
SA-DQN (CONVEX) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RADIAL-DQN 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN 21.0± 0.0 18.0± 2.2 −0.8± 4.4 −19.4± 0.1
NCL-AT-DQN 21.0± 0.0 20.4± 0.2 −21.0± 0.0 −21.0± 0.0
NCL-RADIAL-DQN 21.0± 0.0 −20.6± 0.1 −21.0± 0.0 −21.0± 0.0

BCL-C-AT-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0
BCL-MOS-AT-DQN 21.0± 0.0 21.0± 0.0 20.9± 0.0 20.9± 0.0
BCL-RADIAL-DQN 21.0± 0.0 21.0± 0.0 −20.9± 0.1 −21.0± 0.0

FREEWAY
METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK
ϵ 0 10/255 15/255 20/255

DQN (VANILLA) 33.9± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 30.0± 0.0 19.3± 0.4 19.3± 0.3 20.0± 0.3
RADIAL-DQN 33.2± 0.2 17.1± 0.3 13.4± 0.2 7.9± 0.3

AT-DQN 32.4± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
NCL-AT-DQN 32.8± 0.2 22.0± 0.5 9.6± 0.4 0.0± 0.0
NCL-RADIAL-DQN 33.5± 0.2 9.7± 0.5 11.6± 0.5 18.0± 0.4

BCL-C-AT-DQN 34.0± 0.0 28.8± 0.4 21.6± 0.5 17.4± 0.2
BCL-MOS-AT-DQN 34.0± 0.0 31.1± 0.3 25.9± 0.4 20.8± 0.3
BCL-RADIAL-DQN 33.1± 0.1 33.4± 0.1 25.9± 0.6 21.2± 0.5

BANKHEIST
METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK
ϵ 0 5/255 10/255 15/255

DQN (VANILLA) 1325.5± 5.7 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 1237.5± 1.7 1126.0± 32.0 63.0± 3.5 16.0± 1.6
RADIAL-DQN 1349.5± 1.7 581.5± 16.7 0.0± 0.0 0.0± 0.0

AT-DQN 1271.0± 15.5 129.0± 10.2 5.5± 1.1 0.0± 0.0
NCL-AT-DQN 1311.0± 4.0 245.0± 23.7 1.0± 0.7 0.0± 0.0
NCL-RADIAL-DQN 1272.0± 10.7 1168.0± 3.4 59.5± 7.6 9.0± 1.9

BCL-C-AT-DQN 1285.5± 5.2 1143.5± 30.0 988.5± 12.3 250.5± 14.6
BCL-MOS-AT-DQN 1307.5± 9.5 1095.5± 6.2 664.0± 60.6 586.5± 105.6
BCL-RADIAL-DQN 1225.5± 4.9 1225.5± 4.9 1223.5± 4.1 228.5± 13.9
BCL-RADIAL+AT-DQN 1215.0± 8.4 1093.0± 5.3 1010.5± 8.0 961.5± 9.2

ROADRUNNER
METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK
ϵ 0 5/255 10/255 15/255

DQN (VANILLA) 43390± 973 0± 0 0± 0 0± 0
SA-DQN (CONVEX) 45870± 1380 985± 207 0± 0 0± 0
RADIAL-DQN 44595± 1165 7195± 929 495± 116 0± 0

AT-DQN 39890± 2092 20160± 1973 0± 0 0± 0
NCL-AT-DQN 47925± 1123 37745± 2014 10± 10 0± 0
NCL-RADIAL-DQN 41045± 1289 37865± 1082 37865± 1082 6350± 590

BCL-C-AT-DQN 45815± 1422 31305± 3590 11405± 1385 6335± 716
BCL-MOS-AT-DQN 44275± 1997 40060± 1828 15785± 1124 1195± 180
BCL-RADIAL-DQN 41045± 1289 37865± 1082 37865± 1082 6350± 590
BCL-RADIAL+AT-DQN 42490± 1309 42490± 1309 37665± 1563 25325± 1057
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DQN training for Pong and Freeway. For Pong, this appears
to be caused by obfuscated gradients, as we find that the
model produced by BCL-RADIAL-DQN have gradients that
are nearly zero almost everywhere. For Freeway, since the
BCL-RADIAL-DQN result is comparable to BCL-MOS-AT-
DQN, BCL-RADIAL-DQN might have already reached the
robustness boundary of the AT curriculum training method.

For BankHeist and RoadRunner, BCL-RADIAL+AT-DQN
models yield the most significant results. The results demon-
strate that performing BCL-C-AT-DQN training on top of
BCL-RADIAL-DQN could further improve the model ro-
bustness. This again demonstrates the value of our BCL
framework as well as our AT curriculum learning method.
Note that for RoadRunner, we find the curriculum training
for BCL-RADIAL-DQN is relatively stable, and two of the
BCL-RADIAL-DQN results are achieved by only perform-
ing one run for each curriculum phase. Consequently, we
include those two runs as the NCL-RADIAL-DQN results.

The AT-DQN and NCL-AT/RADIAL-DQN benchmarks
demonstrate the considerable value of the proposed
BCL framework, which generalizes both methods. In partic-
ular, both AT-DQN and NCL-AT-DQN are not competitive
for moderate or high values of ϵ, neither with our proposed
methods, nor (in most cases) with the other state of the art
robust benchmarks. The NCL-RADIAL-DQN benchmark
is more competitive in a few cases (e.g., RoadRunner), but
is still significantly outperformed by the best BCL variant.
Note that AT-DQN only performs one training phase with
a single fixed ϵ, and we evaluated versions of AT-DQN for
many different values of ϵ values. The results in Table 2 for
AT-DQN correspond to the best-performing result among
these. In general, as shown in Appendix D, the performance
of both AT-DQN and NCL-AT/RADIAL-DQN is relatively
unstable. With AT-DQN in particular, smaller values of ϵ
used in training generally yield poor robustness to stronger
attacks, while higher values of ϵ lead to greater instability
and only slightly higher robustness. In some games, such as
Pong, AT-DQN outperforms several other benchmarks (e.g.,
both SA-DQN and RADIAL-DQN), but it is ineffective in
others, such as Freeway. Similarly, NCL-AT-DQN is also
unreliable, working relatively well in some settings (e.g.,
Freeway), but much worse in others, such as BankHeist.

Our final analysis compares the two proposed methods,
BCL-C-AT-DQN and BCL-MOS-AT-DQN. The key advan-
tage of BCL-MOS-AT-DQN over BCL-C-AT-DQN is that
it potentially significantly reduces training time (in terms
of the number of training phases). And, indeed, it does,
as shown in Table 3: total curriculum training time for all
the experiments is reduced by over 50%, and in the Pong
environment, the reduction is over 70%.

Note that we set the thresholds V (ϵ) quite conservatively,
and such thresholds only allow us to skip 1-2 phases each

time as observed in the experiments. We can further reduce
training time by lowering it, albeit by sacrificing efficacy.
Additionally, we chose an identical threshold for the rewards
across all ϵi, which typically means that for higher values of
ϵ skipping becomes infrequent as attainable reward drops;
making the threshold itself adaptive may further reduce
training time.

Surprisingly, however, in addition to the reduction in train-
ing time, BCL-MOS-AT-DQN also typically outperforms
BCL-C-AT-DQN even in efficacy, both in terms of nomi-
nal reward and robustness. This could be a consequence
of opportunistic skipping serving as a form of regulariza-
tion during training, avoiding overfitting to particular lower-
magnitude perturbations.

Table 3. Averaged number of phases of curriculum learning: com-
paring BCL-C-AT-DQN and BCL-MOS-AT-DQN.

METHOD/ENV. PONG FW BH RR

BCL-C-AT-DQN 66 51 60 36
BCL-MOS-AT-DQN 19.3 24.0 41.7 20.3

6. Conclusion
We purposed a flexible Bootstrapped Opportunistic Adver-
sarial Curriculum Learning (BCL) framework. The frame-
work allows multiple training runs for each curriculum
phase to significantly increase the model stability, as well
as opportunistic skipping forward in the curriculum based
on custom target reward criteria to improve training effi-
ciency. We experimentally study four concrete instantiations
of the BCL framework, varying (a) whether or not we op-
portunistically skip forward in the curriculum (BCL-C-AT
vs. BCL-MOS-AT), and (b) instantiation of the adversarial
loss function (BCL-RADIAL vs. BCL-C-AT vs. hybrid
BCL-RADIAL+AT). In our experiments, BCL-MOS-AT
reduced the training time for all environments by over 50%
compared to BCL-C-AT, demonstrating the value of oppor-
tunistic skipping. On the other hand, we find that there is
no consistent advantage of one adversarial loss function
over the other: in some settings, such as Pong, generat-
ing actual adversarial examples leads to far better results,
while in others, such as RoadRunner, a combination of both
loss functions yields the best performance. Nevertheless, in
all cases the best variant of the proposed BCL framework
significantly outperforms baselines.
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A. Bootstrapped Opportunistic Adversarial Curriculum Learning (BCL) for PPO
In this section, we extend the application of BCL framework to PPO-style approaches. We evaluate our approaches on two
Procgen (Cobbe et al., 2020) environments: FruitBot and Jumper. For FruitBot, both AT-PPO and BCL-MOS-AT-PPO show
higher nominal rewards and significant improvements in terms of robustness for up to 20/255, while the current existing
vanilla PPO and RADIAL-PPO has small or even negative rewards for ϵ ≥ 10/255. For Jumper, BCL-MOS-AT-PPO
achieves significant improvements in terms of robustness for up to 40/255, with rewards under adversarial attacks for
ϵ ≥ 10/255 more than doubled compare to vanilla PPO (the current most robust model). The experiments on Procgen
also demonstrate that our models exhibit good generalization, as the evaluation rewards are high under both training and
evaluation distributions.

PPO PPO (Schulman et al., 2017) is a policy gradient method for reinforcement learning, with the objective function as

L(θ) = E(st,at,rt)

[
−min

(
π (at|st; θ)
π (at|st; θold)

At, clip

(
π (at|st; θ)
π (at|st; θold)

, 1− η, 1 + η

)
At

)]
. (5)

Here π is the policy, At is the advantage function at time t and η is the hyperparameter. PPO modifies the surrogate objective
by clipping the policy ratio to constrain the difference between old and new policy, which stabilizes the training and speeds
up convergence. We use Equation (5) as the Lstandard in Equation (2).

RADIAL-PPO RADIAL-PPO (Oikarinen et al., 2021) defines the adversarial loss function as

Ladv(θ, ϵ) = E(st,at,rt)

[
−min

(
πϵ (at|st, ϵ; θ)
π (at|st; θold)

At, clip

(
πϵ (at|st, ϵ; θ)
π (at|st; θold)

, 1− η, 1 + η

)
At

)]
,

with πϵ the lower bound of the policy network if At ≥ 0, and upper bound otherwise.

The goal for Ladv in RADIAL-PPO is to form a strict upper bound of the loss function under adversarial perturbations, that
is, Lstandard(s+ δ; ϵ) ≤ Ladv(s; ϵ) with ||δ||p≤ ϵ. Robustness is achieved through constraining the strict upper bound of the
loss function. This is referred to as approach # 1 in Oikarinen et al. (2021), and was used for RADIAL-PPO training.

Generating Adversarial Perturbations In our model, we replace the upper and lower bounds πϵ(a|st) in RADIAL-PPO
with π̃ϵ

1(a+ δ∗|st) and π̃ϵ
2(a+ δ∗|st). For RI-FGSM, δ∗ (approximately) solves the following optimization problem:

min
||δ||∞≤ϵ

Softmax(Logits(s+ δ))⊙ Logits(s+ δ), (6)

where Logits(s) is the output vector of the PPO-style neural network and is used to calculate the categorical distribution
π(s). Note that Logits(s) has the same size as the action space. For PGD attacks, it is to (approximately) maximize
L(Softmax(Logits(s+ δ∗; θ)), π(s)) with respect to δ∗, where L is the cross-entropy loss and δ∗ is updated iteratively
over a fixed number of iterations (same as in the PGD attack for DQN models).

Since π is a categorical distribution over possible (discrete) actions, we calculate π̃ϵ
1(a+ δ∗|st) by having the a-th logit as

the one under adversarial perturbation, and the rest are vanilla logits; π̃ϵ
2(a+ δ∗|st) is calculated by having the a-th logit

as the vanilla logit, and the rest are logits under adversarial perturbation. The adversarial loss function is defined as the
maximum loss under those two policies:

Ladv(θ, ϵ) = E(st,at,rt)

[
− min

i∈{1,2}
min

(
π̃ϵ
i (at|st, ϵ; θ)
π (at|st; θold)

At, clip

(
π̃ϵ
i (at|st, ϵ; θ)
π (at|st; θold)

, 1− η, 1 + η

)
At,

)]
. (7)

Note that instead of forming a strict upper bound of the adversarial loss function as in RADIAL-PPO, Ladv in Equation (7)
provides a lower bound of the adversarial loss function with heuristic adversarial examples.

Experiment Setup We evaluate the purposed approach using two Procgen environments (Cobbe et al., 2020) with discrete
action space: FruitBot and Jumper. Note that we did not experiment on the CoinRun environment as in Oikarinen et al. (2021).
We find that for CoinRun environment there is an optimal action: we could achieve a reward comparable to RADIAL-PPO
regardless of the magnitude of ϵ. For each model, we calculate an efficacy score

∑
dist∈{Train, Eval}

(
Rdist

nominal +
1
3

∑
ϵ R

dist,ϵ
PGD

)
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for all ϵ listed in Table 7, where Rdist
nominal is the nominal reward and Rdist,ϵ

PGD is the reward under 30-step PGD attack with
adversarial perturbation size ||δ||∞≤ ϵ under Train/Eval distribution. Similar to DQN experiments, we conduct three
independent runs for each experiment based on the efficacy score and present the median result in the main table (Table 7).
For AT-PPO, we conduct experiments for all the three ϵ listed in Table 7, select the median run for each AT-PPO-ϵ, and
present the best result as the strongest benchmark.

We find that the adversarial training with PPO-style approaches is relatively stable, and that K = 1 suffices. Thus, we
use PPO (Vanilla), RADIAL-PPO (Oikarinen et al., 2021) as well as AT-PPO as benchmarks. For PPO (Vanilla) and
RADIAL-PPO we use the results from Oikarinen et al. (2021), and we perform our own AT-PPO training with the method
purposed above as a restricted version of BCL. We did not perform curriculum learning with RADIAL as it does not work for
Jumper. For FruitBot, we use RI-FGSM to generate adversarial examples. For Jumper, as we find RI-FGSM is not effective,
we instead use 10-step PGD to generate adversarial examples. We skipped BCL-C-AT-PPO experiments due to extensive
computational costs; however, as we will show in the results section, the opportunistic skipping forward mechanism under
the BCL framework makes the training possible for Jumper even with 10-step PGD.

To ensure a fair comparison, we let all methods to have the same computational constraints and evaluation metrics: for all
environments we train for 25 million steps on the easy setting for each run. For evaluation, we use 30-step PGD attack with
step size 0.1 for all models, which is stronger than the 10-step PGD attack used in Oikarinen et al. (2021). We evaluate all
models over 1000 episodes using deterministic policy and report the averaged reward under both training distribution (easy
setting) and evaluation distribution (full distribution), which is the same as in Oikarinen et al. (2021).

Hyperparameters The PPO specific hyperparameters as well as κ for AT-PPO and BCL-MOS-AT-PPO are the same
as in RADIAL-PPO. In FruitBot we use RI-FGSM to generate adversarial examples, with hyperparameter α = 95.5,
which is approximately 0.375 × 255 (note that α = 0.375 is used in DQN experiments for RI-FGSM). This is due to in
RADIAL-PPO code when the gradients are calculated the state space has a range of 0 ∼ 255, instead of being normalized
to 0 ∼ 1 as in RADIAL-DQN. The thresholds for BCL-MOS-AT-PPO are shown in Table 4, where V PGD(Train)(ϵ) is the
threshold for the averaged reward under 30-step PGD attack under training distribution.

Table 4. Thresholds V (ϵ) for BCL-MOS-AT-PPO

CRITERIA/ENV. FRUITBOT JUMPER

V PGD(TRAIN)(ϵ) 25.0 6.0

We find that although RADIAL-PPO increases the robustness for lower ϵ compared to vanilla PPO (e.g., ϵ = 5/255 under
10-step PGD attack as shown in Oikarinen et al. (2021)), it decreases the robustness for higher ϵ, accompanied by a lower
nominal reward. Thus we perform two sets of BCL-MOS-AT-PPO experiments: 1) BCL-MOS(V)-AT-PPO, where we
bootstrap from PPO (Vanilla); and 2) BCL-MOS(R)-AT-PPO, where we bootstrap from RADIAL-PPO.

Our baseline curriculum for PPO has an increment of 1/255, with ϵ0 for each experiment shown in Table 5. For FruitBot
we set target ϵ = 20/255, and for Jumper we set target ϵ = 40/255. For all experiments we set K = 1. We stop the
curriculum training when the model is robust against the target ϵ, meaning the reward under training distribution is above
the threshold in Table 4. Note that for FruitBot, we also stop the training when RI-FGSM attack is ineffective towards the
target ϵ, meaning that although 30-step PGD indicates the model is not robust against ϵi, however, RI-FGSM returns a near
perfect reward (close to nominal reward) when the magnitude of adversarial perturbation for the attack is ϵ. In this case,
since RI-FGSM is not generating any meaningful adversarial examples, continue training will in fact decrease the model
robustness.

Table 5. BCL-MOS-AT-PPO specific hyperparameters (ϵ0).

CRITERIA/ENV. FRUITBOT JUMPER

BCL-MOS(V)-AT-PPO 0/255 1/255
BCL-MOS(R)-AT-PPO 6/255 9/255
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Walltime Each adversarial training run takes 10 hours for FruitBot (with RI-FGSM), and 34 hours for Jumper (with
10-step PGD) on a single GeForce RTX 2080Ti GPU. The number of runs conducted for each experiment is shown in Table
6.

Table 6. Number of runs conducted for each experiment.

FRUITBOT
RUN1 RUN2 RUN3

AT-PPO-ϵ 1 1 1
BCL-MOS(V)-AT-PPO 3 2 2
BCL-MOS(R)-AT-PPO 2 2 2

JUMPER
RUN1 RUN2 RUN3

AT-PPO-ϵ 1 1 1
BCL-MOS(V)-AT-PPO 4 4 4
BCL-MOS(R)-AT-PPO 4 4 4

Results Our main results are shown in Table 7, with detailed results deferred to Table 8 and Table 9. The results show that
the models trained with our BCL-MOS-AT-PPO approach exhibit significant improvements in terms of nominal reward,
robustness as well as generalization compared to state of the art PPO (Vanilla) and RADIAL-PPO.

For FruitBot, both AT-PPO and BCL-MOS-AT-PPO achieve significant improvements in terms of robustness for ϵ up to
20/255, while PPO (Vanilla) and RADIAL-PPO has small or even negative rewards for ϵ ≥ 10/255. Furthermore, our
AT models achieve higher nominal rewards under both training and evaluation distributions. The success of AT-PPO and
BCL-MOS-AT-PPO demonstrate the value of our approach for training with adversarial examples.

For Jumper, BCL-MOS(V)-AT-PPO achieves the most robust model, with rewards under both training and evaluation
distributions significantly outperform all benchmark models for ϵ ≥ 10/255; it also has a higher nominal reward under
evaluation distribution, and comparable high nominal reward under training distribution. Furthermore, we find that BCL-
MOS(V)-AT-PPO outperforms BCL-MOS(R)-AT-PPO both in terms of nominal rewards and robustness for ϵ ≥ 20/255.
This is mainly because RADIAL-PPO has a lower nominal reward and is less robust compared to vanilla PPO for ϵ ≥ 20/255.

We also find that with BCL-MOS-AT-PPO training, the resulting models can be easily robust against a higher ϵ when
trained against a lower one. The final models for BCL-MOS-AT-PPO in the Jumper environment are only trained for 4
curriculum phases to achieve robustness against ϵ = 40/255. This demonstrates the value of the opportunistic skipping
forward mechanism in our BCL framework.

B. Additional Experimental Results for PPO models
Below we show the detailed experimental results for all three independent runs for each experiment. We separate the results
by environments for better visualization and comparison. For PPO (Vanilla) and RADIAL-PPO we use the released models
from Oikarinen et al. (2021). For AT-PPO, we perform our own training as a restricted case of the BCL algorithm.

For AT-PPO, we include all 9 runs for each environment, naming them as AT-PPO-ϵ, where ϵ is the single value of the base
curriculum taken as an input by the model. The choices of ϵ are the ones we use for evaluation. For each AT-PPO-ϵ we
conduct three independent runs, and use the median of those three runs as the representative result. The result reported in
Table 7 for each environment is the best median result among those three ϵ.
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Table 7. Average episode rewards ± standard error of the mean (SEM) over 1000 episodes on both training and evaluation set. The
gray rows are the most robust models, selected based on efficacy score

∑
dist

(
Rdist

nominal +
1
3

∑
ϵ R

dist,ϵ
PGD

)
. Boldface marks the best results

for each value of ϵ; we marked multiple row entries as boldface for a given ϵ if they are statistically indistinguishable (i.e., have overlapping
confidence intervals).

FRUITBOT
MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ϵ = 0 ϵ = 10/255 ϵ= 15/255 ϵ= 20/255

PPO (VANILLA) TRAIN 30.20± 0.23 2.40± 0.21 0.73± 0.16 −0.72± 0.14
EVAL 26.09± 0.33 1.70± 0.20 0.11± 0.14 −0.50± 0.13

RADIAL-PPO TRAIN 28.03± 0.24 −0.90± 0.13 −1.28± 0.10 −1.64± 0.10
EVAL 26.08± 0.29 −1.24± 0.13 −1.53± 0.11 −1.81± 0.11

AT-PPO TRAIN 31.14± 0.19 28.69± 0.29 26.35± 0.32 24.41± 0.35
EVAL 28.26± 0.29 26.47± 0.34 24.56± 0.36 20.44± 0.40

BCL-MOS(V)-AT-PPO TRAIN 32.11± 0.17 29.98± 0.24 27.40± 0.31 24.23± 0.36
EVAL 28.81± 0.28 27.61± 0.31 25.52± 0.35 21.63± 0.39

BCL-MOS(R)-AT-PPO TRAIN 31.40± 0.20 30.80± 0.21 28.22± 0.30 20.18± 0.40
EVAL 26.95± 0.34 26.28± 0.35 24.17± 0.37 17.87± 0.41

JUMPER
MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ϵ = 0 ϵ = 10/255 ϵ= 20/255 ϵ= 40/255

PPO (VANILLA) TRAIN 8.69± 0.11 3.42± 0.15 3.61± 0.15 2.94± 0.14
EVAL 4.22± 0.16 2.81± 0.14 2.62± 0.14 2.50± 0.14

RADIAL-PPO TRAIN 6.59± 0.15 5.43± 0.16 2.45± 0.14 1.44± 0.11
EVAL 3.85± 0.15 3.03± 0.14 2.04± 0.13 1.44± 0.11

AT-PPO TRAIN 7.57± 0.14 4.98± 0.16 4.35± 0.16 3.52± 0.15
EVAL 4.55± 0.16 3.81± 0.15 3.35± 0.15 2.51± 0.14

BCL-MOS(V)-AT-PPO TRAIN 8.67± 0.11 8.15± 0.12 8.40± 0.12 7.84± 0.13
EVAL 4.57± 0.16 4.64± 0.16 4.65± 0.16 4.41± 0.16

BCL-MOS(R)-AT-PPO TRAIN 8.09± 0.12 8.29± 0.12 8.40± 0.12 6.93± 0.15
EVAL 4.39± 0.16 4.29± 0.16 4.09± 0.16 3.85± 0.15
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Table 8. FruitBot environment. Average episode rewards ± standard error of the mean (SEM) over 1000 episodes on both training and
evaluation set. The gray rows are the median of three runs, selected based on efficacy score

∑
dist

(
Rdist

nominal +
1
3

∑
ϵ R

dist,ϵ
PGD

)
.

FRUITBOT
MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ϵ = 0 ϵ = 10/255 ϵ= 15/255 ϵ= 20/255

PPO (VANILLA) TRAIN 30.20± 0.23 2.40± 0.21 0.73± 0.16 −0.72± 0.14
EVAL 26.09± 0.33 1.70± 0.20 0.11± 0.14 −0.50± 0.13

RADIAL-PPO TRAIN 28.03± 0.24 −0.90± 0.13 −1.28± 0.10 −1.64± 0.10
EVAL 26.08± 0.29 −1.24± 0.13 −1.53± 0.11 −1.81± 0.11

AT-PPO-10/255 (RUN1) TRAIN 24.69± 0.46 23.46± 0.46 22.38± 0.45 17.73± 0.47
EVAL 24.38± 0.43 23.69± 0.42 21.66± 0.45 17.26± 0.46

AT-PPO-10/255 (RUN2) TRAIN 30.27± 0.23 28.73± 0.29 27.03± 0.31 22.97± 0.36
EVAL 28.15± 0.28 27.30± 0.30 25.17± 0.34 20.42± 0.40

AT-PPO-10/255 (RUN3) TRAIN 31.20± 0.19 31.08± 0.17 29.13± 0.23 23.83± 0.36
EVAL 28.93± 0.27 27.72± 0.30 25.99± 0.33 21.91± 0.39

AT-PPO-15/255 (RUN1) TRAIN 29.62± 0.27 28.92± 0.29 26.82± 0.32 22.47± 0.38
EVAL 26.48± 0.34 25.71± 0.35 24.10± 0.37 22.00± 0.38

AT-PPO-15/255 (RUN2) TRAIN 31.48± 0.18 29.49± 0.26 28.82± 0.27 24.72± 0.35
EVAL 28.48± 0.28 27.30± 0.30 25.97± 0.32 22.82± 0.37

AT-PPO-15/255 (RUN3) TRAIN 31.04± 0.23 28.75± 0.29 26.76± 0.34 20.92± 0.42
EVAL 28.07± 0.31 26.41± 0.34 24.09± 0.38 20.33± 0.41

AT-PPO-20/255 (RUN1) TRAIN 30.65± 0.23 27.83± 0.32 26.16± 0.34 21.04± 0.39
EVAL 27.44± 0.32 25.64± 0.35 22.67± 0.39 20.57± 0.40

AT-PPO-20/255 (RUN2) TRAIN 31.14± 0.19 28.69± 0.29 26.35± 0.32 24.41± 0.35
EVAL 28.26± 0.29 26.47± 0.34 24.56± 0.36 20.44± 0.40

AT-PPO-20/255 (RUN3) TRAIN 28.62± 0.31 29.83± 0.24 28.12± 0.27 25.96± 0.32
EVAL 27.90± 0.30 27.20± 0.31 25.62± 0.34 23.55± 0.35

BCL-MOS(V)-AT-PPO (RUN1) TRAIN 31.32± 0.21 30.34± 0.23 28.64± 0.30 26.24± 0.35
EVAL 28.94± 0.27 27.57± 0.30 26.34± 0.32 23.55± 0.36

BCL-MOS(V)-AT-PPO (RUN2) TRAIN 31.37± 0.22 29.79± 0.26 26.64± 0.33 24.38± 0.35
EVAL 28.06± 0.31 26.51± 0.33 24.41± 0.36 22.12± 0.39

BCL-MOS(V)-AT-PPO (RUN3) TRAIN 32.11± 0.17 29.98± 0.24 27.40± 0.31 24.23± 0.36
EVAL 28.81± 0.28 27.61± 0.31 25.52± 0.35 21.63± 0.39

BCL-MOS(R)-AT-PPO (RUN1) TRAIN 31.13± 0.22 28.91± 0.26 26.56± 0.32 22.37± 0.37
EVAL 26.62± 0.34 24.67± 0.37 21.76± 0.39 19.54± 0.41

BCL-MOS(R)-AT-PPO (RUN2) TRAIN 30.85± 0.21 29.77± 0.25 26.93± 0.34 23.03± 0.37
EVAL 27.30± 0.32 25.98± 0.34 24.54± 0.35 21.14± 0.39

BCL-MOS(R)-AT-PPO (RUN3) TRAIN 31.40± 0.20 30.80± 0.21 28.22± 0.30 20.18± 0.40
EVAL 26.95± 0.34 26.28± 0.35 24.17± 0.37 17.87± 0.41
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Table 9. Jumper environment. Average episode rewards ± standard error of the mean (SEM) over 1000 episodes on both training and
evaluation set. The gray rows are the median of three runs, selected based on efficacy score
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JUMPER
MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ϵ = 0 ϵ = 10/255 ϵ= 20/255 ϵ= 40/255

PPO (VANILLA) TRAIN 8.69± 0.11 3.42± 0.15 3.61± 0.15 2.94± 0.14
EVAL 4.22± 0.16 2.81± 0.14 2.62± 0.14 2.50± 0.14

RADIAL-PPO TRAIN 6.59± 0.15 5.43± 0.16 2.45± 0.14 1.44± 0.11
EVAL 3.85± 0.15 3.03± 0.14 2.04± 0.13 1.44± 0.11

AT-PPO-10/255 (RUN1) TRAIN 6.58± 0.15 6.96± 0.15 5.54± 0.16 0.97± 0.09
EVAL 4.39± 0.16 4.24± 0.16 3.30± 0.15 0.43± 0.06

AT-PPO-10/255 (RUN2) TRAIN 7.41± 0.14 6.70± 0.15 5.04± 0.16 1.31± 0.11
EVAL 4.50± 0.16 4.05± 0.16 3.35± 0.15 0.68± 0.08

AT-PPO-10/255 (RUN3) TRAIN 7.47± 0.14 6.94± 0.15 5.29± 0.16 1.02± 0.10
EVAL 4.64± 0.16 4.31± 0.16 3.27± 0.15 0.58± 0.07

AT-PPO-20/255 (RUN1) TRAIN 6.90± 0.15 6.35± 0.15 5.23± 0.16 2.41± 0.14
EVAL 4.47± 0.16 4.31± 0.16 3.92± 0.15 1.46± 0.11

AT-PPO-20/255 (RUN2) TRAIN 5.96± 0.16 5.98± 0.16 5.05± 0.16 1.83± 0.12
EVAL 4.56± 0.16 4.29± 0.16 3.85± 0.15 1.78± 0.12

AT-PPO-20/255 (RUN3) TRAIN 6.56± 0.15 6.14± 0.15 5.06± 0.16 1.85± 0.12
EVAL 4.42± 0.16 4.34± 0.16 4.00± 0.15 1.27± 0.11

AT-PPO-40/255 (RUN1) TRAIN 7.57± 0.14 4.98± 0.16 4.35± 0.16 3.52± 0.15
EVAL 4.55± 0.16 3.81± 0.15 3.35± 0.15 2.51± 0.14

AT-PPO-40/255 (RUN2) TRAIN 7.43± 0.14 4.74± 0.16 4.20± 0.16 3.98± 0.15
EVAL 4.54± 0.16 3.88± 0.15 3.24± 0.15 3.39± 0.15

AT-PPO-40/255 (RUN3) TRAIN 6.72± 0.15 4.66± 0.16 4.36± 0.16 4.01± 0.16
EVAL 4.71± 0.16 3.90± 0.15 3.19± 0.15 2.76± 0.14

BCL-MOS(V)-AT-PPO (RUN1) TRAIN 8.67± 0.11 8.15± 0.12 8.40± 0.12 7.84± 0.13
EVAL 4.57± 0.16 4.64± 0.16 4.65± 0.16 4.41± 0.16

BCL-MOS(V)-AT-PPO (RUN2) TRAIN 9.09± 0.09 8.85± 0.10 8.50± 0.11 7.64± 0.13
EVAL 4.77± 0.16 4.77± 0.16 4.78± 0.16 4.43± 0.16

BCL-MOS(V)-AT-PPO (RUN3) TRAIN 8.75± 0.10 8.73± 0.11 8.64± 0.11 5.97± 0.16
EVAL 4.64± 0.16 4.63± 0.16 4.49± 0.16 4.14± 0.16

BCL-MOS(R)-AT-PPO (RUN1) TRAIN 8.09± 0.12 8.29± 0.12 8.40± 0.12 6.93± 0.15
EVAL 4.39± 0.16 4.29± 0.16 4.09± 0.16 3.85± 0.15

BCL-MOS(R)-AT-PPO (RUN2) TRAIN 8.27± 0.12 7.27± 0.14 6.99± 0.15 6.11± 0.15
EVAL 4.53± 0.16 4.33± 0.16 4.25± 0.16 3.91± 0.15

BCL-MOS(R)-AT-PPO (RUN3) TRAIN 8.16± 0.12 8.1± 0.12 8.35± 0.12 7.36± 0.14
EVAL 4.58± 0.16 4.3± 0.16 4.29± 0.16 4.15± 0.16
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C. Hyperparameters for DQN models

Table 10. Thresholds V (ϵ) for NCL/BCL-RADIAL-DQN

CRITERIA/ENV. PONG FW BH RR

V NOMINAL(ϵ) 20 32 1200 35000

Table 11. BCL-AT specific hyperparameters

METHOD/ENV. PONG FREEWAY

K KMIN ϵ K KMIN ϵ

BCL-C-AT-DQN 3 3 30
255

3 3 20
255

BCL-MOS-AT-DQN 3 1 30
255

3 1 20
255

METHOD/ENV. BANKHEIST ROADRUNNER

K KMIN ϵ K KMIN ϵ

BCL-C-AT-DQN 5 5 15
255

3 3 15
255

BCL-MOS-AT-DQN 5 1 15
255

3 1 15
255

BCL-RADIAL+AT-DQN 3 3 15
255

1 1 15
255

Table 12. Thresholds V (ϵ) for BCL-MOS-AT-DQN

CRITERIA/ENV. PONG FW BH RR

V NOMINAL(ϵ) 20 30 1200 40000
V ADV(ϵ) 20 25 1000 12000

D. Additional Experimental Results for DQN models
Below we show the detailed experimental results for all three independent runs for each experiment. We separate the results
by environments for better visualization and comparison. That is, we have four tables, each for Pong (Table 13), Freeway
(Table 17), BankHeist (Table 21) and RoadRunner (Table 25). The discount factor used for evaluation is 1, with maximum
episode length 10000, which is the same as in Oikarinen et al. (2021). For benchmark models DQN (Vanilla) and SA-DQN
(Convex) we use the released models from Zhang et al. (2020), and for RADIAL-DQN we use the released models from
Oikarinen et al. (2021). For benchmark models AT-DQN and NCL-AT-DQN, we perform our own training as two restricted
cases of the BCL algorithm.

For AT-DQN we include all 9 runs for each environment, naming them as AT-DQN-ϵ, where ϵ is the single value of the base
curriculum taken as an input by the model. The choices of ϵ are the ones we use for evaluation. For each AT-DQN-ϵ we
conduct three independent runs, and use the median of those three runs as the representative result. The result reported in
Table 2 for each environment is the best median result among those three ϵ.

For NCL-AT-DQN and NCL-RADIAL-DQN we present the best result along the curriculum path for each run. For better
comparison between different approaches, we set the target robustness level ϵ in curriculum for NCL-AT-DQN the same as
in BCL experiments, that is, ϵ = 25/255 for Pong, ϵ = 20/255 for Freeway, ϵ = 15/255 for BankHeist and ϵ = 15/255 for
RoadRunner.
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Table 13. Pong environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are
the median of three runs (selected based on efficacy score Rnominal +

1
3

∑
ϵ R

ϵ
adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

PONG
MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ϵ 0 10/255 20/255 25/255

DQN (VANILLA) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
SA-DQN (CONVEX) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RADIAL-DQN 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN-10/255 (RUN1) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
AT-DQN-10/255 (RUN2) 21.0± 0.0 −16.7± 2.7 −21.0± 0.0 −20.9± 0.1
AT-DQN-10/255 (RUN3) 20.8± 0.1 −17.7± 1.3 −21.0± 0.0 −21.0± 0.0

AT-DQN-20/255 (RUN1) 21.0± 0.0 7.1± 3.0 −17.9± 2.1 −21.0± 0.0
AT-DQN-20/255 (RUN2) 20.8± 0.1 18.3± 0.4 −20.9± 0.1 −21.0± 0.0
AT-DQN-20/255 (RUN3) 21.0± 0.0 −13.6± 2.6 −20.5± 0.1 −21.0± 0.0

AT-DQN-25/255 (RUN1) 20.8± 0.1 9.9± 3.7 −20.8± 0.1 −21.0± 0.0
AT-DQN-25/255 (RUN2) 20.1± 0.3 −16.9± 2.5 −20.5± 0.2 −21.0± 0.0
AT-DQN-25/255 (RUN3) 21.0± 0.0 18.0± 2.2 −0.8± 4.4 −19.4± 0.1

NCL-AT-DQN (RUN1) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
NCL-AT-DQN (RUN2) 21.0± 0.0 20.4± 0.2 −21.0± 0.0 −21.0± 0.0
NCL-AT-DQN (RUN3) 21.0± 0.0 21.0± 0.0 −21.0± 0.0 −21.0± 0.0

NCL-RADIAL-DQN (RUN1) 21.0± 0.0 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
NCL-RADIAL-DQN (RUN2) 21.0± 0.0 −20.6± 0.1 −21.0± 0.0 −21.0± 0.0
NCL-RADIAL-DQN (RUN3) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-C-AT-DQN (RUN1) 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0
BCL-C-AT-DQN (RUN2) 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0
BCL-C-AT-DQN (RUN3) 21.0± 0.0 20.8± 0.1 20.5± 0.2 20.1± 0.3

BCL-MOS-AT-DQN (RUN1) 21.0± 0.0 21.0± 0.0 20.7± 0.2 20.8± 0.1
BCL-MOS-AT-DQN (RUN2) 21.0± 0.0 21.0± 0.0 21.0± 0.0 20.9± 0.1
BCL-MOS-AT-DQN (RUN3) 21.0± 0.0 21.0± 0.0 20.9± 0.0 20.9± 0.0

BCL-RADIAL-DQN (RUN1) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
BCL-RADIAL-DQN (RUN2) 21.0± 0.0 21.0± 0.0 −20.9± 0.1 −21.0± 0.0
BCL-RADIAL-DQN (RUN3) 21.0± 0.0 21.0± 0.0 21.0± 0.0 −16.6± 1.0
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Table 14. Detailed experiment results for Pong environment. The lowest reward under attacks are marked gray .

PONG
MODEL ATTACK ϵ = 10/255 ϵ= 20/255 ϵ =25/255

DQN (VANILLA) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
SA-DQN (CONVEX) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RADIAL-DQN 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN-10/255 (RUN1) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN-10/255 (RUN2) 30-STEP PGD −16.7± 2.7 −21.0± 0.0 −20.8± 0.1
RI-FGSM 20.1± 0.0 −20.8± 0.1 −20.8± 0.1
RI-FGSM (MULTI) 19.1± 0.4 −20.6± 0.1 −20.8± 0.1
RI-FGSM (MULTI-T) 18.1± 0.8 −21.0± 0.0 −20.9± 0.1

AT-DQN-10/255 (RUN3) 30-STEP PGD −17.7± 1.3 −21.0± 0.0 −20.9± 0.1
RI-FGSM 20.7± 0.1 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) 15.0± 2.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 12.7± 2.8 −21.0± 0.0 −21.0± 0.0

AT-DQN-20/255 (RUN1) 30-STEP PGD 7.1± 3.0 −17.9± 2.1 −21.0± 0.0
RI-FGSM 20.5± 0.2 20.4± 0.2 −20.6± 0.2
RI-FGSM (MULTI) 12.9± 1.8 2.8± 2.7 −20.9± 0.0
RI-FGSM (MULTI-T) 13.0± 1.7 −8.4± 2.2 −21.0± 0.0

AT-DQN-20/255 (RUN2) 30-STEP PGD 18.3± 0.4 −20.9± 0.1 −21.0± 0.0
RI-FGSM 19.9± 0.5 20.6± 0.1 −21.0± 0.0
RI-FGSM (MULTI) 20.3± 0.2 16.4± 0.9 −21.0± 0.0
RI-FGSM (MULTI-T) 20.8± 0.1 6.7± 3.4 −21.0± 0.0

AT-DQN-20/255 (RUN3) 30-STEP PGD −13.6± 2.6 −20.5± 0.1 −20.6± 0.1
RI-FGSM 6.0± 3.7 17.8± 1.9 −21.0± 0.0
RI-FGSM (MULTI) 1.3± 3.8 1.5± 2.7 −21.0± 0.0
RI-FGSM (MULTI-T) 11.1± 2.8 −7.0± 3.1 −21.0± 0.0

AT-DQN-25/255 (RUN1) 30-STEP PGD 20.8± 0.1 −20.8± 0.1 −21.0± 0.0
RI-FGSM 20.4± 0.3 19.8± 0.5 19.6± 0.5
RI-FGSM (MULTI) 18.3± 0.9 −9.3± 3.0 −18.1± 0.6
RI-FGSM (MULTI-T) 9.9± 3.7 −14.8± 1.9 −18.9± 0.4

AT-DQN-25/255 (RUN2) 30-STEP PGD −16.9± 2.5 −20.5± 0.2 −21.0± 0.0
RI-FGSM 18.1± 0.8 17.6± 0.9 19.0± 0.4
RI-FGSM (MULTI) 8.2± 3.8 0.5± 3.5 −4.3± 3.2
RI-FGSM (MULTI-T) 5.8± 4.0 −3.8± 3.6 −15.8± 1.5

AT-DQN-25/255 (RUN3) 30-STEP PGD 20.9± 0.1 −0.8± 4.4 −19.4± 0.1
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 18.0± 2.2 19.6± 0.8 0.1± 3.4
RI-FGSM (MULTI-T) 18.0± 2.2 15.7± 2.0 −8.4± 2.0
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Table 15. Detailed experiment results for Pong environment. The lowest reward under attacks are marked gray .

PONG
MODEL ATTACK ϵ = 10/255 ϵ= 20/255 ϵ =25/255

NCL-AT-DQN (RUN1) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

NCL-AT-DQN (RUN2) 30-STEP PGD 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM 20.9± 0.0 −20.1± 0.2 −20.9± 0.0
RI-FGSM (MULTI) 20.4± 0.2 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 20.9± 0.1 −21.0± 0.0 −21.0± 0.0

NCL-AT-DQN (RUN3) 30-STEP PGD 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-C-AT-DQN (RUN1) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 21.0± 0.0

BCL-C-AT-DQN (RUN2) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 21.0± 0.0

BCL-C-AT-DQN (RUN3) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 20.9± 0.1
RI-FGSM (MULTI) 20.8± 0.1 20.5± 0.2 20.6± 0.1
RI-FGSM (MULTI-T) 20.8± 0.1 20.6± 0.2 20.1± 0.3

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 20.8± 0.1 20.8± 0.1
RI-FGSM (MULTI-T) 21.0± 0.0 20.7± 0.2 20.8± 0.1

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 20.9± 0.1
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 20.9± 0.1

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 20.9± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 20.9± 0.0 20.9± 0.0
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Table 16. Detailed experiment results for Pong environment. The lowest reward under attacks are marked gray .

PONG
MODEL ATTACK ϵ = 10/255 ϵ= 20/255 ϵ =25/255

NCL-RADIAL-DQN (RUN1) 30-STEP PGD 21.0± 0.0 12.9± 2.0 12.8± 2.0
RI-FGSM 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0

NCL-RADIAL-DQN (RUN2) 30-STEP PGD −20.6± 0.1 −21.0± 0.0 −21.0± 0.0
RI-FGSM −6.7± 1.1 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) −17.8± 1.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) −16.1± 1.2 −21.0± 0.0 −21.0± 0.0

NCL-RADIAL-DQN (RUN3) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-RADIAL-DQN (RUN1) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 12.3± 1.2 −20.7± 0.1
RI-FGSM (MULTI) 21.0± 0.0 −20.9± 0.1 −21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 −20.7± 0.2 −21.0± 0.0

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 20.6± 0.2
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 −16.6± 1.0
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 −6.5± 2.0
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Table 17. Freeway environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are
the median of three runs (selected based on efficacy score Rnominal +

1
3

∑
ϵ R

ϵ
adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

FREEWAY
MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ϵ 0 10/255 15/255 20/255

DQN (VANILLA) 33.9± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 30.0± 0.0 19.3± 0.4 19.3± 0.3 20.0± 0.3
RADIAL-DQN 33.2± 0.2 17.1± 0.3 13.4± 0.2 7.9± 0.3

AT-DQN-10/255 (RUN1) 32.4± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-10/255 (RUN2) 33.3± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-10/255 (RUN3) 32.3± 0.2 0.1± 0.1 0.0± 0.0 0.0± 0.0

AT-DQN-15/255 (RUN1) 32.9± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN2) 30.9± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN3) 32.0± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-20/255 (RUN1) 29.1± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN2) 31.4± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN3) 32.2± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0

NCL-AT-DQN (RUN1) 32.8± 0.2 22.0± 0.5 9.6± 0.4 0.0± 0.0
NCL-AT-DQN (RUN2) 32.7± 0.2 26.2± 0.2 17.9± 0.3 3.9± 0.2
NCL-AT-DQN (RUN3) 32.6± 0.3 0.0± 0.0 0.0± 0.0 0.0± 0.0

NCL-RADIAL-DQN (RUN1) 33.8± 0.1 11.9± 0.5 0.2± 0.1 13.0± 0.5
NCL-RADIAL-DQN (RUN2) 33.5± 0.1 33.1± 0.1 22.5± 0.5 21.6± 0.4
NCL-RADIAL-DQN (RUN3) 33.5± 0.2 9.7± 0.5 11.6± 0.5 18.0± 0.4

BCL-C-AT-DQN (RUN1) 34.0± 0.0 31.2± 0.4 25.9± 0.3 17.3± 0.5
BCL-C-AT-DQN (RUN2) 34.0± 0.0 28.8± 0.4 21.6± 0.5 17.4± 0.2
BCL-C-AT-DQN (RUN3) 34.0± 0.0 26.7± 0.3 22.6± 0.2 16.1± 0.3

BCL-MOS-AT-DQN (RUN1) 33.7± 0.1 30.0± 0.4 26.6± 0.3 21.5± 0.4
BCL-MOS-AT-DQN (RUN2) 34.0± 0.0 31.1± 0.3 25.9± 0.4 20.8± 0.3
BCL-MOS-AT-DQN (RUN3) 33.8± 0.1 29.1± 0.5 23.7± 0.5 17.6± 0.4

BCL-RADIAL-DQN (RUN1) 32.2± 0.2 32.2± 0.3 21.2± 0.4 21.1± 0.4
BCL-RADIAL-DQN (RUN2) 33.1± 0.1 33.4± 0.1 25.9± 0.6 21.2± 0.5
BCL-RADIAL-DQN (RUN3) 32.7± 0.2 32.7± 0.2 29.8± 0.5 20.7± 0.3
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Table 18. Detailed experiment results for Freeway environment. The lowest reward under attacks are marked gray .

FREEWAY
MODEL ATTACK ϵ = 10/255 ϵ= 15/255 ϵ =20/255

DQN (VANILLA) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

SA-DQN (CONVEX) 30-STEP PGD 19.3± 0.4 19.3± 0.3 20.0± 0.3
RI-FGSM 21.2± 0.4 21.5± 0.4 21.9± 0.3
RI-FGSM (MULTI) 21.4± 0.3 21.3± 0.3 20.7± 0.5
RI-FGSM (MULTI-T) 21.4± 0.3 21.1± 0.3 21.4± 0.3

RADIAL-DQN 30-STEP PGD 19.9± 0.3 13.4± 0.2 7.9± 0.3
RI-FGSM 21.9± 0.3 21.8± 0.3 21.8± 0.3
RI-FGSM (MULTI) 17.4± 0.4 21.7± 0.3 21.9± 0.3
RI-FGSM (MULTI-T) 17.1± 0.3 21.7± 0.3 21.6± 0.2

AT-DQN-10/255 (RUN1) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-10/255 (RUN2) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-10/255 (RUN3) 30-STEP PGD 0.1± 0.1 0.0± 0.0 0.0± 0.0
RI-FGSM 28.9± 0.3 23.4± 0.4 3.0± 0.2
RI-FGSM (MULTI) 24.4± 0.4 1.9± 0.2 0.0± 0.0
RI-FGSM (MULTI-T) 23.9± 0.3 2.1± 0.2 0.0± 0.0

AT-DQN-15/255 (RUN1) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN2) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN3) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-20/255 (RUN1) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN2) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN3) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
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Table 19. Detailed experiment results for Freeway environment. The lowest reward under attacks are marked gray .

FREEWAY
MODEL ATTACK ϵ = 10/255 ϵ= 15/255 ϵ =20/255

NCL-AT-DQN (RUN1) 30-STEP PGD 22.8± 0.4 17.0± 0.4 0.0± 0.0
RI-FGSM 29.7± 0.3 29.9± 0.4 22.3± 0.3
RI-FGSM (MULTI) 23.6± 0.5 11.3± 0.4 0.0± 0.0
RI-FGSM (MULTI-T) 22.0± 0.5 9.6± 0.4 0.0± 0.0

NCL-AT-DQN (RUN2) 30-STEP PGD 26.2± 0.2 17.9± 0.3 3.9± 0.2
RI-FGSM 30.2± 0.3 30.4± 0.4 30.4± 0.4
RI-FGSM (MULTI) 26.6± 0.4 25.6± 0.5 12.3± 0.3
RI-FGSM (MULTI-T) 27.5± 0.5 25.9± 0.3 11.9± 0.4

NCL-AT-DQN (RUN3) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

BCL-C-AT-DQN (RUN1) 30-STEP PGD 31.6± 0.4 25.9± 0.3 17.3± 0.5
RI-FGSM 33.0± 0.2 32.8± 0.3 33.2± 0.2
RI-FGSM (MULTI) 31.2± 0.4 29.6± 0.4 23.9± 0.4
RI-FGSM (MULTI-T) 31.5± 0.4 29.7± 0.4 24.7± 0.5

BCL-C-AT-DQN (RUN2) 30-STEP PGD 29.2± 0.5 21.6± 0.5 17.4± 0.2
RI-FGSM 32.0± 0.3 32.4± 0.3 33.0± 0.2
RI-FGSM (MULTI) 29.2± 0.4 28.0± 0.4 25.4± 0.4
RI-FGSM (MULTI-T) 28.8± 0.4 28.0± 0.5 24.8± 0.5

BCL-C-AT-DQN (RUN3) 30-STEP PGD 26.7± 0.3 22.6± 0.2 16.1± 0.3
RI-FGSM 31.2± 0.4 31.5± 0.3 32.3± 0.3
RI-FGSM (MULTI) 27.9± 0.4 25.9± 0.6 24.6± 0.3
RI-FGSM (MULTI-T) 28.4± 0.3 25.9± 0.3 22.8± 0.4

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 30.0± 0.4 26.6± 0.3 21.5± 0.4
RI-FGSM 33.0± 0.2 33.0± 0.2 32.8± 0.3
RI-FGSM (MULTI) 31.2± 0.3 30.7± 0.4 26.2± 0.3
RI-FGSM (MULTI-T) 31.4± 0.3 30.0± 0.4 25.4± 0.4

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 31.2± 0.4 25.9± 0.4 20.8± 0.3
RI-FGSM 32.8± 0.3 32.7± 0.3 32.5± 0.3
RI-FGSM (MULTI) 31.1± 0.3 29.1± 0.6 28.4± 0.3
RI-FGSM (MULTI-T) 31.3± 0.4 28.3± 0.4 27.8± 0.3

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 29.2± 0.4 23.7± 0.5 17.6± 0.4
RI-FGSM 32.1± 0.3 32.3± 0.2 32.6± 0.2
RI-FGSM (MULTI) 29.1± 0.4 27.0± 0.4 26.9± 0.5
RI-FGSM (MULTI-T) 29.1± 0.5 27.1± 0.4 25.3± 0.4



Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum

Table 20. Detailed experiment results for Freeway environment. The lowest reward under attacks are marked gray .

FREEWAY
MODEL ATTACK ϵ = 10/255 ϵ= 15/255 ϵ =20/255

NCL-RADIAL-DQN (RUN1) 30-STEP PGD 25.4± 0.4 15.8± 0.3 13.0± 0.5
RI-FGSM 25.8± 0.5 20.6± 0.4 21.8± 0.3
RI-FGSM (MULTI) 11.9± 0.5 0.2± 0.1 21.5± 0.4
RI-FGSM (MULTI-T) 12.1± 0.5 0.3± 0.1 21.3± 0.4

NCL-RADIAL-DQN (RUN2) 30-STEP PGD 33.1± 0.1 23.3± 0.5 22.5± 0.3
RI-FGSM 33.5± 0.1 22.5± 0.5 21.6± 0.4
RI-FGSM (MULTI) 33.1± 0.1 23.4± 0.5 23.4± 0.4
RI-FGSM (MULTI-T) 33.1± 0.1 23.7± 0.5 22.4± 0.4

NCL-RADIAL-DQN (RUN3) 30-STEP PGD 22.0± 0.2 17.8± 0.4 18.0± 0.4
RI-FGSM 24.6± 0.3 21.7± 0.4 21.8± 0.3
RI-FGSM (MULTI) 9.7± 0.5 11.6± 0.5 21.4± 0.2
RI-FGSM (MULTI-T) 10.0± 0.4 11.8± 0.5 21.3± 0.3

BCL-RADIAL-DQN (RUN1) 30-STEP PGD 32.5± 0.3 22.9± 0.4 22.6± 0.4
RI-FGSM 32.8± 0.3 22.6± 0.3 21.7± 0.3
RI-FGSM (MULTI) 32.2± 0.3 21.2± 0.4 21.1± 0.4
RI-FGSM (MULTI-T) 32.2± 0.3 21.3± 0.3 21.2± 0.3

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 33.4± 0.1 30.0± 0.2 24.1± 0.5
RI-FGSM 33.4± 0.1 29.7± 0.3 21.7± 0.3
RI-FGSM (MULTI) 33.4± 0.1 26.5± 0.5 21.2± 0.5
RI-FGSM (MULTI-T) 33.4± 0.1 25.9± 0.6 21.6± 0.3

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 32.7± 0.2 32.0± 0.2 22.2± 0.5
RI-FGSM 32.7± 0.2 32.2± 0.3 20.7± 0.3
RI-FGSM (MULTI) 32.8± 0.2 30.8± 0.4 21.3± 0.2
RI-FGSM (MULTI-T) 32.9± 0.2 29.8± 0.5 21.9± 0.3
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Table 21. BankHeist environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are
the median of three runs (selected based on efficacy score Rnominal +

1
3

∑
ϵ R

ϵ
adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

BANKHEIST
MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ϵ 0 5/255 10/255 15/255

DQN (VANILLA) 1325.5± 5.7 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 1237.5± 1.7 1126.0± 32.0 63.0± 3.5 16.0± 1.6
RADIAL-DQN 1349.5± 1.7 581.5± 16.7 0.0± 0.0 0.0± 0.0

AT-DQN-5/255 (RUN1) 1200.0± 12.1 95.5± 5.9 0.0± 0.0 0.0± 0.0
AT-DQN-5/255 (RUN2) 1217.0± 10.1 407.5± 30.6 4.5± 1.1 1.0± 0.7
AT-DQN-5/255 (RUN3) 778.5± 30.4 129.0± 9.0 0.0± 0.0 0.0± 0.0

AT-DQN-10/255 (RUN1) 1312.5± 5.0 132.0± 4.1 15.0± 2.3 0.0± 0.0
AT-DQN-10/255 (RUN2) 1271.0± 15.5 129.0± 10.2 5.5± 1.1 0.0± 0.0
AT-DQN-10/255 (RUN3) 1244.5± 39.3 49.5± 8.0 8.5± 1.1 0.0± 0.0

AT-DQN-15/255 (RUN1) 1235.0± 12.6 27.5± 19.0 1.0± 0.7 1.0± 0.7
AT-DQN-15/255 (RUN2) 1295.5± 9.6 12.5± 2.1 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN3) 1243.5± 18.1 30.5± 1.8 2.5± 1.0 0.0± 0.0

NCL-AT-DQN (RUN1) 1311.0± 4.0 245.0± 23.7 1.0± 0.7 0.0± 0.0
NCL-AT-DQN (RUN2) 1153.0± 38.1 3.0± 1.0 0.0± 0.0 0.0± 0.0
NCL-AT-DQN (RUN3) 1262.0± 11.4 740.0± 9.7 0.0± 0.0 0.0± 0.0

NCL-RADIAL-DQN (RUN1) 1285.5± 5.2 1265.0± 5.6 1243.0± 7.5 45.5± 2.1
NCL-RADIAL-DQN (RUN2) 1272.0± 10.7 1168.0± 3.4 59.5± 7.6 9.0± 1.9
NCL-RADIAL-DQN (RUN3) 1344.5± 5.4 1342.0± 5.4 198.5± 14.1 10.5± 1.8

BCL-C-AT-DQN (RUN1) 1295.0± 8.9 807.5± 82.5 693.0± 80.1 248.5± 23.7
BCL-C-AT-DQN (RUN2) 1330.5± 3.0 1022.0± 63.2 956.0± 17.9 720.0± 12.8
BCL-C-AT-DQN (RUN3) 1285.5± 5.2 1143.5± 30.0 988.5± 12.3 250.5± 14.6

BCL-MOS-AT-DQN (RUN1) 1307.5± 9.5 1095.5± 6.2 664.0± 60.6 586.5± 105.6
BCL-MOS-AT-DQN (RUN2) 1338.5± 3.0 1165.5± 9.2 922.5± 69.5 470.5± 35.6
BCL-MOS-AT-DQN (RUN3) 1281.5± 5.8 1184.0± 8.6 1003.5± 15.3 113.0± 4.0

BCL-RADIAL-DQN (RUN1) 1225.5± 4.9 1225.5± 4.9 1223.5± 4.1 228.5± 13.9
BCL-RADIAL+AT-DQN (RUN1) 1215.0± 8.4 1093.0± 5.3 1010.5± 8.0 961.5± 9.2

BCL-RADIAL-DQN (RUN2) 1261.0± 9.6 1251.5± 6.0 1200.5± 11.8 127.0± 10.7
BCL-RADIAL-DQN (RUN3) 1296.5± 8.3 1242.5± 11.9 1161.0± 13.9 8.5± 1.6
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Table 22. Detailed experiment results for BankHeist environment. The lowest reward under attacks are marked gray .

BANKHEIST
MODEL ATTACK ϵ = 5/255 ϵ= 10/255 ϵ =15/255

DQN (VANILLA) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

SA-DQN (CONVEX) 30-STEP PGD 1155.5± 6.4 114.0± 3.8 24.5± 3.1
RI-FGSM 1153.5± 29.5 556.0± 25.1 137.5± 8.3
RI-FGSM (MULTI) 1126.0± 32.0 63.0± 3.5 20.0± 1.4
RI-FGSM (MULTI-T) 1128.0± 31.3 75.5± 4.4 16.0± 1.6

RADIAL-DQN 30-STEP PGD 761.0± 24.5 0.0± 0.0 0.0± 0.0
RI-FGSM 832.0± 33.5 348.0± 13.9 139.0± 8.8
RI-FGSM (MULTI) 597.0± 20.5 33.0± 2.6 12.0± 1.7
RI-FGSM (MULTI-T) 581.5± 16.7 40.5± 2.2 22.0± 2.6

AT-DQN-5/255 (RUN1) 30-STEP PGD 95.5± 5.9 0.0± 0.0 0.0± 0.0
RI-FGSM 677.0± 63.5 497.0± 61.8 104.0± 11.9
RI-FGSM (MULTI) 637.5± 66.4 344.5± 48.5 43.5± 4.7
RI-FGSM (MULTI-T) 812.5± 38.8 204.5± 26.8 61.0± 4.7

AT-DQN-5/255 (RUN2) 30-STEP PGD 407.5± 30.6 4.5± 1.1 1.0± 0.7
RI-FGSM 941.5± 15.6 204.0± 17.0 43.0± 3.1
RI-FGSM (MULTI) 890.0± 17.9 97.0± 10.3 20.0± 2.4
RI-FGSM (MULTI-T) 876.5± 22.2 135.0± 16.0 32.0± 3.0

AT-DQN-5/255 (RUN3) 30-STEP PGD 129.0± 9.0 0.0± 0.0 0.0± 0.0
RI-FGSM 643.0± 65.6 445.0± 47.2 48.5± 4.9
RI-FGSM (MULTI) 642.0± 65.0 189.0± 21.9 19.0± 2.1
RI-FGSM (MULTI-T) 668.5± 67.0 212.5± 14.2 46.0± 4.7

AT-DQN-10/255 (RUN1) 30-STEP PGD 132.0± 4.1 15.0± 2.3 0.0± 0.0
RI-FGSM 1002.5± 16.9 802.5± 49.1 525.5± 54.3
RI-FGSM (MULTI) 881.5± 16.4 471.0± 47.3 181.0± 22.0
RI-FGSM (MULTI-T) 904.5± 18.8 511.0± 41.9 226.5± 20.6

AT-DQN-10/255 (RUN2) 30-STEP PGD 129.0± 10.2 5.5± 1.1 0.0± 0.0
RI-FGSM 746.0± 63.1 713.5± 58.3 544.5± 48.1
RI-FGSM (MULTI) 282.0± 30.6 535.5± 43.7 448.5± 36.9
RI-FGSM (MULTI-T) 277.0± 30.7 569.5± 49.9 401.5± 31.7

AT-DQN-10/255 (RUN3) 30-STEP PGD 49.5± 8.0 8.5± 1.1 0.0± 0.0
RI-FGSM 831.5± 50.9 757.0± 33.3 449.5± 36.2
RI-FGSM (MULTI) 758.5± 58.0 713.5± 45.3 460.0± 35.3
RI-FGSM (MULTI-T) 879.5± 27.4 812.5± 32.9 456.0± 37.4

AT-DQN-15/255 (RUN1) 30-STEP PGD 27.5± 19.0 1.0± 0.7 1.0± 0.7
RI-FGSM 946.5± 15.1 836.0± 15.7 771.0± 16.7
RI-FGSM (MULTI) 851.0± 17.0 720.0± 26.8 658.0± 26.2
RI-FGSM (MULTI-T) 838.5± 14.8 654.0± 24.2 645.5± 37.9

AT-DQN-15/255 (RUN2) 30-STEP PGD 12.5± 2.1 0.0± 0.0 0.0± 0.0
RI-FGSM 228.5± 12.5 371.5± 39.9 422.5± 36.8
RI-FGSM (MULTI) 208.0± 9.0 260.0± 28.7 285.0± 29.6
RI-FGSM (MULTI-T) 214.5± 18.7 297.0± 27.1 343.0± 29.2

AT-DQN-15/255 (RUN3) 30-STEP PGD 30.5± 1.8 2.5± 1.0 0.0± 0.0
RI-FGSM 628.5± 61.3 660.0± 45.6 674.0± 10.7
RI-FGSM (MULTI) 301.5± 13.1 521.0± 55.1 553.5± 19.3
RI-FGSM (MULTI-T) 332.5± 15.9 469.0± 58.0 647.5± 14.2
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Table 23. Detailed experiment results for BankHeist environment. The lowest reward under attacks are marked gray .

BANKHEIST
MODEL ATTACK ϵ = 5/255 ϵ= 10/255 ϵ =15/255

NCL-AT-DQN (RUN1) 30-STEP PGD 245.0± 23.7 1.0± 0.7 0.0± 0.0
RI-FGSM 1080.0± 16.6 34.0± 7.8 22.5± 2.0
RI-FGSM (MULTI) 1003.5± 22.7 38.5± 4.7 15.5± 3.0
RI-FGSM (MULTI-T) 1025.5± 25.5 28.5± 6.9 28.0± 3.4

NCL-AT-DQN (RUN2) 30-STEP PGD 3.0± 1.0 0.0± 0.0 0.0± 0.0
RI-FGSM 215.0± 42.4 29.0± 3.4 7.0± 1.7
RI-FGSM (MULTI) 120.5± 14.0 16.5± 2.3 6.5± 1.1
RI-FGSM (MULTI-T) 133.0± 23.7 21.0± 3.4 4.0± 1.5

NCL-AT-DQN (RUN3) 30-STEP PGD 740.0± 9.7 0.0± 0.0 0.0± 0.0
RI-FGSM 1074.0± 32.4 57.5± 5.1 7.0± 1.4
RI-FGSM (MULTI) 1061.0± 18.7 38.0± 3.7 7.5± 1.4
RI-FGSM (MULTI-T) 858.5± 69.9 59.5± 4.7 12.0± 1.7

BCL-C-AT-DQN (RUN1) 30-STEP PGD 807.5± 82.5 693.0± 80.1 248.5± 23.7
RI-FGSM 1281.0± 10.7 1261.0± 15.5 1175.0± 17.6
RI-FGSM (MULTI) 1282.0± 11.1 1252.0± 15.5 1184.5± 17.3
RI-FGSM (MULTI-T) 1243.0± 7.4 1252.5± 14.3 1159.5± 21.3

BCL-C-AT-DQN (RUN2) 30-STEP PGD 1048.0± 8.0 956.0± 17.9 720.0± 12.8
RI-FGSM 1041.0± 63.1 1155.0± 10.1 1201.5± 22.5
RI-FGSM (MULTI) 1022.0± 63.2 1155.5± 11.8 1202.0± 14.6
RI-FGSM (MULTI-T) 1050.5± 58.7 1163.5± 8.9 1186.0± 17.6

BCL-C-AT-DQN (RUN3) 30-STEP PGD 1143.5± 30.0 988.5± 12.3 250.5± 14.6
RI-FGSM 1223.0± 10.4 1202.0± 15.3 1188.5± 19.7
RI-FGSM (MULTI) 1159.0± 19.1 1175.0± 16.4 1147.0± 25.4
RI-FGSM (MULTI-T) 1206.5± 7.7 1220.0± 8.5 1178.5± 26.1

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 1095.5± 6.2 664.0± 60.6 586.5± 105.6
RI-FGSM 1230.0± 11.2 1214.0± 7.5 1255.5± 9.4
RI-FGSM (MULTI) 1213.5± 9.6 1187.5± 8.0 1238.5± 10.9
RI-FGSM (MULTI-T) 1198.5± 9.4 1158.0± 23.3 1233.0± 11.4

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 1165.5± 9.2 922.5± 69.5 470.5± 35.6
RI-FGSM 1281.0± 4.8 1241.0± 7.5 1234.0± 17.0
RI-FGSM (MULTI) 1238.0± 5.8 1225.5± 7.4 1235.5± 13.5
RI-FGSM (MULTI-T) 1182.0± 7.5 1195.0± 12.7 1260.0± 9.1

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 1214.0± 7.7 1003.5± 15.3 113.0± 4.0
RI-FGSM 1258.5± 12.0 1270.0± 9.2 1142.0± 18.7
RI-FGSM (MULTI) 1261.0± 7.7 1258.0± 16.7 1154.0± 22.8
RI-FGSM (MULTI-T) 1184.0± 8.6 1243.0± 10.4 1111.5± 22.4
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Table 24. Detailed experiment results for BankHeist environment. The lowest reward under attacks are marked gray .

BANKHEIST
MODEL ATTACK ϵ = 5/255 ϵ= 10/255 ϵ =15/255

NCL-RADIAL-DQN (RUN1) 30-STEP PGD 1272.0± 2.9 1264.0± 4.1 45.5± 2.1
RI-FGSM 1266.0± 7.0 1253.5± 7.1 968.0± 16.6
RI-FGSM (MULTI) 1265.0± 5.6 1243.0± 7.5 810.5± 14.4
RI-FGSM (MULTI-T) 1265.0± 5.6 1243.0± 7.5 822.0± 18.0

NCL-RADIAL-DQN (RUN2) 30-STEP PGD 1242.5± 3.5 89.5± 9.1 9.0± 1.9
RI-FGSM 1226.5± 2.9 69.0± 10.8 11.5± 1.1
RI-FGSM (MULTI) 1171.0± 4.9 60.5± 6.9 12.5± 1.0
RI-FGSM (MULTI-T) 1168.0± 3.4 59.5± 7.6 10.5± 1.1

NCL-RADIAL-DQN (RUN3) 30-STEP PGD 1342.5± 5.0 323.5± 18.3 18.0± 1.3
RI-FGSM 1342.0± 5.4 324.5± 16.8 18.5± 6.0
RI-FGSM (MULTI) 1347.0± 3.2 214.0± 10.5 10.5± 1.8
RI-FGSM (MULTI-T) 1347.0± 3.2 198.5± 14.1 33.0± 5.5

BCL-RADIAL-DQN (RUN1) 30-STEP PGD 1225.5± 4.9 1225.5± 4.9 931.0± 45.0
RI-FGSM 1225.5± 4.9 1225.5± 4.9 1043.5± 18.1
RI-FGSM (MULTI) 1225.5± 4.9 1223.5± 4.1 228.5± 13.9
RI-FGSM (MULTI-T) 1225.5± 4.9 1224.5± 4.4 248.0± 16.0

BCL-RADIAL+AT-DQN (RUN1) 30-STEP PGD 1113.5± 3.8 1010.5± 8.0 961.5± 9.2
RI-FGSM 1119.0± 7.7 1154.5± 9.8 1190.5± 8.5
RI-FGSM (MULTI) 1099.5± 6.2 1070.5± 8.5 1166.0± 14.8
RI-FGSM (MULTI-T) 1093.0± 5.3 1094.0± 9.1 1169.0± 15.6

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 1270.0± 2.0 1253.0± 2.0 888.5± 20.5
RI-FGSM 1264.5± 5.6 1252.5± 3.9 576.5± 55.4
RI-FGSM (MULTI) 1251.5± 6.0 1226.0± 4.9 127.0± 10.7
RI-FGSM (MULTI-T) 1258.0± 4.2 1200.5± 11.8 137.0± 13.5

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 1271.0± 7.2 1261.5± 9.1 190.5± 14.4
RI-FGSM 1273.5± 10.7 1267.0± 9.1 381.0± 23.2
RI-FGSM (MULTI) 1242.5± 11.9 1161.0± 13.9 8.5± 1.6
RI-FGSM (MULTI-T) 1242.5± 11.9 1161.0± 13.9 17.0± 2.7
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Table 25. RoadRunner environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are
the median of three runs (selected based on efficacy score Rnominal +

1
3

∑
ϵ R

ϵ
adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

ROADRUNNER
MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ϵ 0 5/255 10/255 15/255

DQN (VANILLA) 43390± 973 0± 0 0± 0 0± 0
SA-DQN (CONVEX) 45870± 1380 985± 207 0± 0 0± 0
RADIAL-DQN 44595± 1165 7195± 929 495± 116 0± 0

AT-DQN-5/255 (RUN1) 44065± 1896 13150± 2116 0± 0 0± 0
AT-DQN-5/255 (RUN2) 39890± 2092 20160± 1973 0± 0 0± 0
AT-DQN-5/255 (RUN3) 43945± 1681 375± 200 0± 0 0± 0

AT-DQN-10/255 (RUN1) 42330± 936 22430± 1948 1000± 188 50± 17
AT-DQN-10/255 (RUN2) 37770± 2074 15585± 1647 2360± 352 0± 0
AT-DQN-10/255 (RUN3) 37040± 1269 22225± 1699 2305± 795 0± 0

AT-DQN-15/255 (RUN1) 36580± 1634 15860± 2118 3650± 615 1115± 249
AT-DQN-15/255 (RUN2) 30000± 1314 15640± 845 4690± 469 1555± 307
AT-DQN-15/255 (RUN3) 42085± 2050 5465± 825 20± 9 0± 0

NCL-AT-DQN (RUN1) 43500± 2999 40235± 2261 1100± 234 0± 0
NCL-AT-DQN (RUN2) 49290± 1576 39045± 2382 15± 8 5± 5
NCL-AT-DQN (RUN3) 47925± 1123 37745± 2014 10± 10 0± 0

NCL-RADIAL-DQN (RUN1) 41045± 1289 37865± 1082 37865± 1082 6350± 590
NCL-RADIAL-DQN (RUN2) 45320± 1292 45320± 1292 45320± 1292 4505± 661
NCL-RADIAL-DQN (RUN3) 41230± 1920 40885± 1921 17050± 1092 6100± 428

BCL-C-AT-DQN (RUN1) 44010± 1347 33535± 2369 13205± 1510 4845± 399
BCL-C-AT-DQN (RUN2) 45815± 1422 31305± 3590 11405± 1385 6335± 716
BCL-C-AT-DQN (RUN3) 46575± 966 35535± 1296 19110± 2704 6445± 929

BCL-MOS-AT-DQN (RUN1) 53225± 983 36330± 3105 15670± 1646 300± 78
BCL-MOS-AT-DQN (RUN2) 44275± 1997 40060± 1828 15785± 1124 1195± 180
BCL-MOS-AT-DQN (RUN3) 41620± 1594 30635± 2021 18735± 2363 2905± 505

BCL-RADIAL-DQN (RUN1) 41045± 1289 37865± 1082 37865± 1082 6350± 590
BCL-RADIAL+AT-DQN (RUN1) 42490± 1309 42490± 1309 37665± 1563 25325± 1057

BCL-RADIAL-DQN (RUN2) 45320± 1292 45320± 1292 45320± 1292 4505± 661
BCL-RADIAL-DQN (RUN3) 38725± 933 38025± 1004 37995± 1000 5750± 595
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Table 26. Detailed experiment results for RoadRunner environment. The lowest reward under attacks are marked gray .

ROADRUNNER
MODEL ATTACK ϵ = 5/255 ϵ= 10/255 ϵ =15/255

DQN (VANILLA) 30-STEP PGD 0± 0 0± 0 0± 0

SA-DQN (CONVEX) 30-STEP PGD 985± 207 0± 0 0± 0
RI-FGSM 9740± 677 5615± 645 3575± 490
RI-FGSM (MULTI) 6170± 759 1045± 307 105± 56
RI-FGSM (MULTI-T) 6870± 833 1220± 318 55± 25

RADIAL-DQN 30-STEP PGD 7195± 929 495± 116 0± 0
RI-FGSM 24425± 939 7855± 637 4605± 582
RI-FGSM (MULTI) 21115± 744 9300± 656 2330± 255
RI-FGSM (MULTI-T) 22345± 700 9225± 589 1940± 180

AT-DQN-5/255 (RUN1) 30-STEP PGD 13150± 2116 0± 0 0± 0
RI-FGSM 33110± 2316 16520± 679 4140± 325
RI-FGSM (MULTI) 31240± 1991 10510± 997 3215± 296
RI-FGSM (MULTI-T) 32285± 2134 8795± 1020 820± 273

AT-DQN-5/255 (RUN2) 30-STEP PGD 20160± 1973 0± 0 0± 0
RI-FGSM 33670± 2138 11685± 1295 1725± 221
RI-FGSM (MULTI) 30245± 2492 10750± 1145 1495± 268
RI-FGSM (MULTI-T) 35895± 1553 6500± 908 115± 68

AT-DQN-5/255 (RUN3) 30-STEP PGD 375± 200 0± 0 0± 0
RI-FGSM 29520± 2090 8535± 539 1590± 156
RI-FGSM (MULTI) 25665± 2032 7535± 524 1555± 132
RI-FGSM (MULTI-T) 27275± 2299 6795± 549 235± 95

AT-DQN-10/255 (RUN1) 30-STEP PGD 22430± 1948 1000± 188 50± 17
RI-FGSM 34570± 2092 27860± 1841 9400± 830
RI-FGSM (MULTI) 30510± 1934 25580± 2072 7405± 601
RI-FGSM (MULTI-T) 35115± 1444 25810± 1453 7590± 552

AT-DQN-10/255 (RUN2) 30-STEP PGD 15585± 1647 2360± 352 0± 0
RI-FGSM 26575± 2622 21550± 2148 15635± 1072
RI-FGSM (MULTI) 22940± 2325 19430± 1913 9815± 807
RI-FGSM (MULTI-T) 25825± 1603 19820± 2120 13120± 837

AT-DQN-10/255 (RUN3) 30-STEP PGD 22225± 1699 2305± 795 0± 0
RI-FGSM 29605± 1927 29755± 2168 5610± 398
RI-FGSM (MULTI) 33095± 1701 25010± 2207 4295± 342
RI-FGSM (MULTI-T) 32140± 2227 27540± 2184 4535± 545

AT-DQN-15/255 (RUN1) 30-STEP PGD 15860± 2118 3650± 615 1115± 249
RI-FGSM 31560± 1799 22910± 1709 21275± 1329
RI-FGSM (MULTI) 27450± 2328 23775± 1497 18740± 1355
RI-FGSM (MULTI-T) 24630± 1795 19015± 2005 19375± 1242

AT-DQN-15/255 (RUN2) 30-STEP PGD 15640± 845 4690± 469 1555± 307
RI-FGSM 22430± 1273 21180± 1289 21350± 1069
RI-FGSM (MULTI) 23655± 1662 21615± 1204 20415± 1283
RI-FGSM (MULTI-T) 24195± 1248 23970± 1389 19695± 1540

AT-DQN-15/255 (RUN3) 30-STEP PGD 5465± 825 20± 9 0± 0
RI-FGSM 23305± 2632 23110± 2399 24815± 1342
RI-FGSM (MULTI) 24205± 2379 20985± 2002 18800± 2135
RI-FGSM (MULTI-T) 23790± 2375 18800± 1906 20255± 2058
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Table 27. Detailed experiment results for RoadRunner environment. The lowest reward under attacks are marked gray .

ROADRUNNER
MODEL ATTACK ϵ = 5/255 ϵ= 10/255 ϵ =15/255

NCL-AT-DQN (RUN1) 30-STEP PGD 40235± 2261 1100± 234 0± 0
RI-FGSM 45595± 1781 13750± 1118 5235± 319
RI-FGSM (MULTI) 45645± 1113 10925± 1098 4030± 328
RI-FGSM (MULTI-T) 44035± 1818 5860± 812 985± 228

NCL-AT-DQN (RUN2) 30-STEP PGD 39045± 2382 15± 8 5± 5
RI-FGSM 41365± 1850 14235± 1387 4480± 408
RI-FGSM (MULTI) 41900± 1944 12885± 1023 3475± 335
RI-FGSM (MULTI-T) 41160± 1669 11555± 1141 1775± 325

NCL-AT-DQN (RUN3) 30-STEP PGD 37745± 2014 10± 10 0± 0
RI-FGSM 41145± 1886 23715± 1367 5345± 473
RI-FGSM (MULTI) 43665± 1671 22000± 1434 4710± 382
RI-FGSM (MULTI-T) 38025± 3114 12940± 2058 3475± 416

BCL-C-AT-DQN (RUN1) 30-STEP PGD 33535± 2369 13205± 1510 4845± 399
RI-FGSM 45905± 1408 39650± 2101 40815± 2399
RI-FGSM (MULTI) 43330± 1997 41075± 2426 42560± 1505
RI-FGSM (MULTI-T) 45915± 1440 40320± 2408 42965± 1958

BCL-C-AT-DQN (RUN2) 30-STEP PGD 31305± 3590 11405± 1385 6335± 716
RI-FGSM 39125± 2295 35325± 2971 40395± 1375
RI-FGSM (MULTI) 43580± 2661 38775± 1794 35080± 2420
RI-FGSM (MULTI-T) 44490± 1806 36695± 3274 33810± 3044

BCL-C-AT-DQN (RUN3) 30-STEP PGD 35535± 1296 19110± 2704 6445± 929
RI-FGSM 41405± 2278 42030± 1810 38930± 1571
RI-FGSM (MULTI) 43230± 2042 41785± 2535 36575± 1618
RI-FGSM (MULTI-T) 42640± 1142 40145± 1861 36160± 2858

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 36330± 3105 15670± 1646 300± 78
RI-FGSM 44285± 3146 42440± 2481 9730± 539
RI-FGSM (MULTI) 41195± 3076 44160± 1354 4435± 352
RI-FGSM (MULTI-T) 39615± 3609 40940± 1490 4535± 357

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 40060± 1828 15785± 1124 1195± 180
RI-FGSM 39815± 2273 40440± 2066 12465± 596
RI-FGSM (MULTI) 41645± 1604 37375± 1993 9815± 550
RI-FGSM (MULTI-T) 41390± 1556 39800± 1958 9475± 950

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 30635± 2021 18735± 2363 2905± 505
RI-FGSM 37610± 1186 36775± 1477 13930± 846
RI-FGSM (MULTI) 38470± 1856 38025± 1279 12465± 850
RI-FGSM (MULTI-T) 37130± 1460 32180± 1762 14620± 798
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Table 28. Detailed experiment results for RoadRunner environment. The lowest reward under attacks are marked gray .

ROADRUNNER
MODEL ATTACK ϵ = 5/255 ϵ= 10/255 ϵ =15/255

NCL-RADIAL-DQN (RUN3)* 30-STEP PGD 41230± 1920 41230± 1920 41270± 1926
RI-FGSM 40885± 1921 37275± 2212 9935± 783
RI-FGSM (MULTI) 40885± 1921 18845± 966 6325± 446
RI-FGSM (MULTI-T) 40885± 1921 17050± 1092 6100± 428

BCL-RADIAL-DQN (RUN1) 30-STEP PGD 41045± 1289 41045± 1289 41045± 1289
RI-FGSM 41045± 1289 37865± 1082 12120± 639
RI-FGSM (MULTI) 37865± 1082 38245± 1134 7970± 740
RI-FGSM (MULTI-T) 37865± 1082 38245± 1134 6350± 590

BCL-RADIAL+AT-DQN (RUN1) 30-STEP PGD 42490± 1309 42490± 1309 42490± 1309
RI-FGSM 42490± 1309 42570± 1310 44115± 1726
RI-FGSM (MULTI) 42490± 1309 38650± 1836 27500± 851
RI-FGSM (MULTI-T) 42490± 1309 37665± 1563 25325± 1057

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 45320± 1292 45320± 1292 45320± 1292
RI-FGSM 45320± 1292 45320± 1292 11945± 795
RI-FGSM (MULTI) 45320± 1292 45320± 1292 4845± 450
RI-FGSM (MULTI-T) 45320± 1292 45320± 1292 4505± 661

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 38725± 932 38725± 932 38880± 1008
RI-FGSM 38725± 932 38035± 1004 8420± 652
RI-FGSM (MULTI) 38025± 1004 38685± 959 7240± 663
RI-FGSM (MULTI-T) 38025± 1004 37995± 1000 5750± 595

* NCL-RADIAL-DQN (Run1) & (Run2) are the same as BCL-RADIAL-DQN (Run1) & (Run2).
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E. Walltime for DQN models
The training time for each run takes around 12 hours on a single GeForce RTX 2080Ti GPU. Below in Table 29 we present
the number of runs conducted for each experiment.

Table 29. Number of runs conducted for each experiment.

PONG
RUN1 RUN2 RUN3

AT-DQN-ϵ 1 1 1
NCL-AT-DQN 25 25 25
NCL-RADIAL-DQN 10 4 4
BCL-C-AT-DQN 66 66 66
BCL-MOS-AT-DQN 20 18 20
BCL-RADIAL-DQN 8 21 29

FREEWAY
RUN1 RUN2 RUN3

AT-DQN-ϵ 1 1 1
NCL-AT-DQN 20 20 20
NCL-RADIAL-DQN 6 12 7
BCL-C-AT-DQN 51 51 51
BCL-MOS-AT-DQN 25 26 21
BCL-RADIAL-DQN 20 18 23

BANKHEIST
RUN1 RUN2 RUN3

AT-DQN-ϵ 1 1 1
NCL-AT-DQN 15 15 15
NCL-RADIAL-DQN 10 9 9
BCL-C-AT-DQN 60 60 60
BCL-MOS-AT-DQN 38 43 44
BCL-RADIAL-DQN 18 15 13
BCL-RADIAL+AT-DQN 24 N/A N/A

ROADRUNNER
RUN1 RUN2 RUN3

AT-DQN-ϵ 1 1 1
NCL-AT-DQN 15 15 15
NCL-RADIAL-DQN 13 13 8
BCL-C-AT-DQN 36 36 36
BCL-MOS-AT-DQN 22 21 18
BCL-RADIAL-DQN 17 17 17
BCL-RADIAL+AT-DQN 20 N/A N/A


