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Abstract
In scalable machine learning systems, model train-
ing is often parallelized over multiple nodes that
run without tight synchronization. Most analysis
results for the related asynchronous algorithms
use an upper bound on the information delays
in the system to determine learning rates. Not
only are such bounds hard to obtain in advance,
but they also result in unnecessarily slow conver-
gence. In this paper, we show that it is possible
to use learning rates that depend on the actual
time-varying delays in the system. We develop
general convergence results for delay-adaptive
asynchronous iterations and specialize these to
proximal incremental gradient descent and block-
coordinate descent algorithms. For each of these
methods, we demonstrate how delays can be mea-
sured on-line, present delay-adaptive step-size
policies, and illustrate their theoretical and practi-
cal advantages over the state-of-the-art.

1. Introduction
This paper considers step-sizes that adapt to the true de-
lays in asynchronous algorithms for solving optimization
problems in the form

min
x∈Rd

P (x) = f(x) +R(x), (1)

where f : Rd → R is a smooth but possibly non-convex loss
function and R : Rd → R ∪ {+∞} is a convex nonsmooth
function. Here, R is typically a regularizer, promoting de-
sired solution properties such as sparsity, or the indicator
function of a closed convex set (the constraint set for x).

When either the data dimension (the number of samples
defining f ) or the variable dimension d is large, we may
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need to distribute the optimization process over multiple
compute nodes. In a distributed environment, synchronous
algorithms such as gradient descent or block coordinate
descent, are often inefficient. Since they need to wait for
the slowest worker node to complete its task, the system
tends to spend a significant time idle and becomes sensitive
to single node failures. This motivates the development of
asynchronous algorithms which allow all nodes to run at
their maximal capacity without synchronization overhead.

In the past decade, numerous asynchronous algorithms have
been proposed to solve large-scale problems on the form (1).
Notable examples include ARock (Peng et al., 2016), PIAG
(Aytekin et al., 2016; Vanli et al., 2018), Async-BCD (Liu
et al., 2014), AsyFLEXA (Cannelli et al., 2016), DAve-RPG
(Mishchenko et al., 2018), and the widely studied asyn-
chronous SGD (Dean et al., 2012; Recht et al., 2011; Sra
et al., 2016), to mention a few. Algorithms that use fixed
step-sizes often assume bounded asynchrony and require
an upper bound of the worst-case information delay to de-
termine the step-size. However, such an upper bound is
usually difficult to obtain in advance, and is a crude model
for actual system delays. Indeed, actual latencies may be
significantly smaller than the worst case for most nodes, and
for most of the time. This makes the algorithm hard to tune
and inefficient to run, since a large worst-case delay leads
to a small step-size and a slow iterate convergence.

1.1. Algorithms and related work

In this paper, we develop general principles and convergence
results for asynchronous optimization algorithms that adjust
the learning rate on-line to the actual information delays.
We then present concrete delay-tracking algorithms and
adaptive step-size policies for two specific asynchronous
optimization algorithms, PIAG and Async-BCD. These al-
gorithms address two distinct variations of distributed model
training: distribution of data over samples (PIAG) and dis-
tribution of variable updates across features (Async-BCD).
To put our work in context, we review the related literature
below.

PIAG: PIAG solves problem (1) with aggregated loss
f(x) = 1

n

∑n
i=1 f

(i)(x). Here, each f (i) could represent
the training loss on sample i, on mini-batch i or on the
complete data set held by some worker node. The PIAG
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algorithm is often implemented in a parameter server archi-
tecture (Li et al., 2013), where a master node updates the
iterate xk based on the most recent gradient information
from each worker. The new iterate is broadcast to idle work-
ers, who proceed to compute the gradient of the training
loss on their local data set, and return the gradient to the
master node. Both master and worker nodes operate in an
event-driven fashion without any global synchronization.

Early works on PIAG (Blatt et al., 2007; Roux et al., 2012;
Gurbuzbalaban et al., 2017) focused on smooth problems,
i.e., let R ≡ 0 in (1). Extensions of PIAG that allow for a
non-smooth regularizer include (Aytekin et al., 2016; Vanli
et al., 2018; Feyzmahdavian & Johansson, 2021) for convex
f and (Deng et al., 2020; Sun et al., 2019) for non-convex f .
In addition, a recent work (Wai et al., 2020) compensates for
the information delays in PIAG using Hessian information.
However, all these papers use an upper bound of the worst-
case delay to determine the step-size.

Async-BCD: Async-BCD splits the whole variable x into
multiple blocks {x(i)}mi=1 and solves problem (1) with sep-
arable nonsmooth function R(x) =

∑m
i=1R

(i)(x(i)). The
algorithm is usually implemented in a shared memory ar-
chitecture (Peng et al., 2016), where the iterate is stored in
shared memory and multiple servers asynchronously and
continuously update one block at a time based on the de-
layed iterates they read from the shared memory.

Existing works on Async-BCD include (Liu et al., 2014;
Liu & Wright, 2015; Davis, 2016; Sun et al., 2017), among
which (Sun et al., 2017) considers smooth problems (R(i) ≡
0), (Liu et al., 2014) requiresR(i) to be an indicator function,
and (Liu & Wright, 2015; Davis, 2016) allow for general
convex R(i). In addition, some asynchronous methods use
updates that are similar to Async-BCD, such as ARock
(Peng et al., 2016; Hannah & Yin, 2018; Feyzmahdavian &
Johansson, 2021) and AsyFLEXA (Cannelli et al., 2016).
All these papers except (Hannah & Yin, 2018) consider
fixed step-sizes tuned based on a uniform upper bound of
the delays. The work (Hannah & Yin, 2018) suggests a
step-size that relies on the actual delays but is relatively
conservative.

1.2. Contributions

This paper introduces delay-adaptive step-sizes for asyn-
chronous optimization algorithms. We demonstrate how
information delays can be accurately recorded on-line, in-
troduce a family of dynamic step-size policies that adapt to
the true amount of asynchrony in the system, and give a for-
mal proof for convergence under all bounded delays. This
eliminates the need to know an upper bound of the delays to
set the learning rate and removes the (typically significant)
performance penalty that occurs when this upper bound is
larger than the true system delays. We make the following

specific contributions:

• We develop simple and practical delay tracking algo-
rithms for PIAG in the parameter server and for Async-
BCD in shared memory.

• We derive a novel convergence result that simplifies the
analysis of broad classes of asynchronous optimization
algorithms, and allows to analyze the effect of a time-
varying and delay-dependent learning rate.

• We demonstrate how a natural extension of the fixed
step-sizes proposed for asynchronous optimization to
the delay-adaptive setting fails, and suggest a general
step-size principle that ensures convergence under all
bounded delays, even if their upper bound is unknown.

• Under the step-size principle, we design two delay-
adaptive step-size policies that use the true delay. We
derive explicit convergence rate guarantees for PIAG
and Async-BCD under these step-size policies, com-
pare these with the state-of-the-art, and identify scenar-
ios where our new step-sizes give large speed-ups.

Experiments on a classification problem show that the pro-
posed delay-adaptive step-sizes accelerate the convergence
of the two methods compared to the best known fixed step-
sizes from the literature.

Notation and Preliminaries

We use N and N0 to denote the set of natural numbers
and the set of natural numbers including zero, respectively.
We let [m] = {1, . . . ,m} for any m ∈ N and define the
proximal operator of a function R : Rd → R ∪ {+∞} as

proxR(x) = argmin
y∈Rd

R(y) +
1

2
‖y − x‖2.

We say a function f : Rd → R is L-smooth if it is differen-
tiable and

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

For L-smooth function f : Rd → R and convex function
R : Rd → R ∪ {+∞}, we say that P (x) = f(x) + R(x)
satisfies the proximal PL condition (Karimi et al., 2016)
with some σ > 0 if

σ(P (x)− P ?) ≤ −LP̂ (x), ∀x ∈ dom(P ), (2)

where P̂ (x) = miny∈Rd {〈∇f(x), y − x〉+ L
2 ‖y − x‖

2 +
R(y)−R(x)} and P ? = minx∈Rd P (x).



Delay-adaptive Step-sizes for Asynchronous Learning

2. Algorithms with delay-tracking
In this section, we first introduce the PIAG and Async-BCD
algorithms and demonstrate how they can record actual
system delays with almost no overhead. The key to this
observation is that delays in asynchronous algorithms are
typically not measured in physical time, but rather in the
number of write events that have occurred since the model
parameters that are used in the update were computed (see,
e.g., (Leblond et al., 2018)). Hence, in the parameter server
architecture and the shared memory systems, delays can
often be computed accurately without any intricate time
synchronization between distributed nodes. We then demon-
strate how the natural extension of the state-of-the-art step-
size rules for worst-case delays fails to extend to actual
delays.

2.1. PIAG in a parameter server architecture

PIAG solves problem (1) with aggregated loss f(x) =
1
n

∑n
i=1 f

(i)(x) and takes the following form:

gk =
1

n

n∑
i=1

∇f (i)(x
k−τ(i)

k

), (3)

xk+1 = proxγkR(xk − γkgk), (4)

where τ (i)k ∈ [0, k] is the delay of ∇f (i) at the kth iteration.

Parameter server: PIAG is usually implemented in a pa-
rameter server framework (Li et al., 2013) with one master
and n workers, each one capable of computing (stochastic,
mini-batch, or full) gradients of a specific f (i). The master
maintains the most recent iterate xk and the most recently
received gradients g(i) = ∇f (i)(x

k−τ(i)
k

) from each worker.
Once the master receives new gradients, it revises the cor-
responding g(i), updates the iterate, and pushes the new
parameters back to idle workers. A detailed implementation
of PIAG (3) – (4) in the parameter server setting without
delay-tracking is presented in (Aytekin et al., 2016).

Delay-tracking: To compute the delays τ (i)k , the PIAG
algorithm needs to know the iteration index of the model
parameters used to compute each g(i). In Algorithm 1, we
maintain this information using a simple time-stamping
procedure. Specifically, in iteration l, the master pushes the
tuple (xl, l) to idle workers. Workers return (∇f (i)(xl), l)
which the master stores as g(i) ← ∇f (i)(xl), s(i) ← l. At
any iteration k ≥ l, the delay τ (i)k is then given by k − s(i).

The tracking scheme in Algorithm 1 can be extended to other
approaches that can also be implemented in the parameter
server setting, such as Asynchronous SGD (Dean et al.,
2012; Recht et al., 2011; Sra et al., 2016).

Algorithm 1 PIAG with delay-tracking
1: Input: initial iterate x0, number of iteration kmax ∈ N.
2: Initialization:
3: The master sets s(i) ← 0, g(i) ← ∇f (i)(x0) ∀i ∈ [n],

and g0 ← 1
n

∑n
i=1∇f (i)(x0).

4: The master sets k ← 1, x1 ← proxγ0R(x0−γ0g0) and
broadcast x1 to all workers.

5: while k ≤ kmax: each worker i ∈ [n] asynchronously
and continuously do

6: receive (xk, k) from the master.
7: compute ∇f (i)(xk).
8: send (∇f (i)(xk), k) to the master.
9: end while

10: while k ≤ kmax: the master do
11: wait until a setRk of workers return.
12: for all w ∈ Rk do
13: update (g(w), s(w))← (∇f (w)(xl), l).
14: end for
15: set gk ← 1

n

∑n
i=1 g

(i).
16: calculate the delay τ (i)k = k − s(i) ∀i ∈ [n].
17: determine the step-size γk based on τ (i)k ∀i ∈ [n].
18: update xk+1 ← proxγkR(xk − γkgk).
19: set k ← k + 1.
20: for all w ∈ Rk do
21: send (xk, k) to worker w.
22: end for
23: end while

2.2. Async-BCD in the shared memory setting

Block-coordinate descent, BCD, (Hong et al., 2017) can be
a powerful alternative for solving (1) when the regularizer
is separable. Assume that R(x) =

∑m
i=1R

(i)(x(i)) where
x = (x(1), . . . , x(m)), x(i) ∈ Rdi and

∑m
i=1 di = d. At

each iteration of BCD, a random j ∈ [m] is drawn and

x
(j)
k+1=proxγkR(j)(x

(j)
k − γk∇jf(xk)).

Async-BCD parallelizes this update over n workers in a
shared memory architecture (Peng et al., 2016). Workers
operate without synchronization, repeatedly read the current
iterate from shared memory, and update a randomly chosen
block. More specifically, suppose that at time k, worker ik
updates the jth block x(j)k based on the partial gradient∇jf
at x̂k, where x̂k is what the server ik read from the shared
memory. Then, the kth update is

x
(j)
k+1=proxγkR(j)(x

(j)
k − γk∇jf(x̂k)). (5)

A specific aspect of Async-BCD is that while ik reads from
the shared memory, other workers may be in the process
of writing. Hence, x̂k itself may never have existed in the
shared memory. This phenomenon is known as inconsistent
read (Liu & Wright, 2015). However, if we assume that
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Algorithm 2 Async-BCD with delay tracking
1: Setup: initial iterate x0, number of iteration kmax ∈ N.
2: while k ≤ kmax: each worker i ∈ [n] asynchronously

and continuously do
3: sample j ∈ [m] uniformly at random.
4: compute ∇jf(x̂k) based on x̂k read at time s(i).
5: calculate τk = k − s(i).
6: determine the step-size γk.
7: compute x(j)k+1 by (5).
8: write on the shared memory.
9: set k ← k + 1.

10: set s(i) = k and read xk from the shared memory.
11: end while

each (block) write is atomic, then we can express xk as

xk = x̂k +
∑
j∈Jk

(xj+1 − xj). (6)

where Jk ⊆ {0, 1, . . . , k}. The sum represents all updates
that have occurred since ik began reading x̂k until the block
update is written back to memory. We call τk = k−min{j :
j ∈ Jk} the delay of x̂k at iteration k.

Delay-tracking: To track the delays in Async-BCD, work-
ers need to record the value of the iterate counter when they
begin reading from shared memory, and then again when
they begin writing back their result. When worker i begins
to read x from the shared memory in Algorithm 2, it stores
the current value of the iterate counter into a local variable
s(i). In this way, it can compute the delay τk = k − s(i)
when it is time to write back the result at iteration k. We
assume that during steps 5-9, worker ik is the only one that
updates the shared memory. This is a little more restrictive
than standard Async-BCD that only assumes that the write
operation on Line 8 is atomic, but is needed to make sure
that γk calculated in step 6 is used in (5) to update x(j)k+1.

The tracking technique in Algorithm 2 is applicable to many
other methods for shared memory systems, such as ARock
(Peng et al., 2016), asynchronous BCD (Recht et al., 2011),
and AsyFLEXA (Cannelli et al., 2016).

2.3. Intuitive extension of a fixed step-size fails

Several of the least conservative results for PIAG (Sun et al.,
2019; Deng et al., 2020; Feyzmahdavian & Johansson, 2021)
and Async-BCD (Davis, 2016; Sun et al., 2017) use step-
sizes on the form γk = c

τ+b where b and c are positive
constants (independent of the delays) and τ is the maximal
delay. A natural candidate for a delay-adaptive step-size
would be one where the upper delay bound is replaced by
the true system delay, i.e.

γk =
c

τk + b
. (7)

However, as the next example demonstrates, this step-size
can lead to divergence even for simple problems.
Example 1. Consider problem (1) with n = d = 1, f(x) =
1
2x

2, and R(x) = 0. Suppose that τk = kmodT for all
k ∈ N0 for some T > b(e2/c − 1). Then, the delays are
bounded by T−1 and both PIAG and Async-BCD update as

xk+1 = xk − γk∇f(xk−τk) = xk − γkxT ·bk/Tc,

so that x(k+1)T = (1 −
∑T−1
t=0 γkT+t)xkT . Then, {xkT }

diverges if
∑T−1
t=0 γkT+t > 2, which is indeed true by (7):

T−1∑
t=0

γkT+t ≥
T−1∑
t=0

c

t+ b
≥
∫ T+b

b

c

s
ds = c ln

T + b

b
> 2.

However, as we will demonstrate next, convergence can be
guaranteed under a slightly more advanced step-size policy.

3. Delay-adaptive step-size
In this section, we prove that both PIAG and Async-BCD
converge under step-size policies that satisfy

0 ≤ γk ≤ max(0, γ′ −
k−1∑

t=k−τk

γt) (8)

provided that also
∑∞
t=0 γt = +∞. Here, the constant γ′

only depends on loss function properties, and there is no
need to know the maximal value of the system delay to tune,
run, or certify the system.

The convergence analysis is based on a new sequence result
for asynchronous iterations, that could be applicable to many
algorithms beyond the scope of this paper. We provide
convergence results for PIAG and Async-BCD for several
classes of problems in sections 3.2 and 3.3, respectively. In
Section 3.4, we introduce a few specific step-size policies
that satisfy the general principle (8) and demonstrate how
they extend and improve existing fixed step-sizes both in
theory and practice.

3.1. Novel sequence result for delay-adaptive sequences

Lyapunov theory, and related sequence results, are the basis
for the convergence analysis of many optimization algo-
rithms (Polyak, 1987). Asynchronous algorithms are no
different (Aytekin et al., 2016; Peng et al., 2016; Davis,
2016; Bertsekas & Tsitsiklis, 1989). Several convergence
results for asynchronous algorithms are unified and gen-
eralized in a recent work (Feyzmahdavian & Johansson,
2021). However, previous work has focused on only sce-
narios where the maximum delay is known, and existing
results cannot be used to analyse delay-adaptive step-sizes
like (8). The following theorem generalizes these results to
allow adaption to the actually observed delay.



Delay-adaptive Step-sizes for Asynchronous Learning

Theorem 1. Suppose that the non-negative sequences {Vk},
{Xk}, {Wk}, {pk}, {rk}, and {qk} satisfy

Xk+1 + Vk+1 ≤ qkVk + pk

k−1∑
`=k−τk

W` − rkWk (9)

for all k ∈ N0, where qk ∈ (0, 1] and τk ∈ [0, k]. Let
Qk = Πk−1

j=0qj , k ∈ N0. If for all k ∈ N0, either pk = 0 or

pk
Qk+1

≤ r`
Q`+1

−
k−1∑
t=`+1

pt
Qt+1

, ∀` ∈ [k − τk, k], (10)

then
Vk ≤ QkV0, ∀k ∈ N (11)

and
∞∑
k=1

Xk

Qk
≤ V0. (12)

Proof. See Appendix A.

The theorem is a tool for establishing the convergence and
convergence rate of Xk and Vk. The condition (9) is quite
general, so the result may be useful for many methods be-
yond PIAG and Async-BCD that we focus on in this paper.

The theorem can be used to establish a linear convergence
rate of algorithms. In particular, if qk ≤ q for all k ∈ N0

and some q ∈ (0, 1) then (11)–(12) imply the linear rates

Vk ≤ qkV0, Xk ≤ qkV0.

If we can only say that qk ≤ 1, then (12) yields that
∞∑
k=1

Xk < +∞,

from which we conclude that limk→∞Xk = 0.

3.2. Convergence of PIAG under principle (8)

With the help of Theorem 1, we are able to establish the fol-
lowing convergence guarantees for PIAG under the general
step-size principle (8). The main proof idea is to show that
some quantities generated by PIAG satisfy the equation (9)
when (8) holds (see Lemma 1 in the Appendix).
Theorem 2. Suppose that each f (i) is Li-smooth, R is
convex and closed, and P ? := minx P (x) > −∞. Define
L =

√
(1/n)

∑n
i=1 L

2
i . Let {xk} be generated by the PIAG

algorithm with a step-size sequence {γt} that satisfies (8)
with γ′ = h/L for some h ∈ (0, 1). Then,

(1) For each k ∈ N, there exists ξk ∈ ∂R(xk) such that

∞∑
k=1

γk−1‖∇f(xk)+ξk‖2≤
2(h2−h+1)(P (x0)−P ?)

1− h
.

(2) If each f (i) is convex, then

P (xk)− P ? ≤
P (x0)− P ? + 1

2a0
‖x0 − x?‖2

1 + 1
a0

∑k−1
t=0 γt

,

where a0 = h(h+1)
L(1−h) .

(3) If P satisfies the proximal PL-condition (2), then

P (xk)−P (x?)≤e−
3cσ(1−h̃)

4(h̃2−h̃+1)

∑k−1
t=0 γt(P (x0)−P ?),

where h̃ = 1+h
2 and c = min

(
1, 1−h2h

L
σ

)
.

Proof. See Appendix B.

The three cases roughly represent non-convex (1), convex
(2) and strongly convex (3) objective functions, but note that
the proximal PL condition is less restrictive that strong con-
vexity and can be satisfied by some non-convex functions.

To get explicit convergence rates, we need to specialize
the results to a specific step-size policy; we will do this in
Section 3.4. Still, we can already now notice that the sum
of the step-sizes,

∑k−1
t=0 γt, dictates the convergence speed.

This is immediate in case (2) and (3), but is also true in case
(1), since the non-convex result also implies that

min
1≤t≤k

‖∇f(xt)+ ξt‖2≤
2(h2−h+1)(P (x0)−P ?)

(1− h)
∑k−1
t=0 γt

.

3.3. Convergence of Async-BCD under principle (8)

Next, we establish the convergence of Async-BCD with
adaptive step-sizes for non-convex optimization problems.
The following assumption is useful.

Assumption 1. f is differentiable and there exists L̂ > 0
such that for all i, j ∈ [m] and x ∈ Rd the following holds1

‖∇if(x+ Ujhj)−∇if(x)‖ ≤ L̂‖hj‖, ∀hj ∈ Rdj .

The assumption implies that f is L-smooth for some L ∈
[L̂,mL̂]. We consider the block-wise constant L̂ rather than
L because the former one is smaller, which in turn leads to
larger step-sizes and faster convergence.

By showing that some quantities generated by Async-BCD
satisfy equation (9) in Theorem 1 (see Lemma 2 in the
Appendix), we derive the following theorem.

Theorem 3. Suppose that each R(i) is convex and closed,
P ? := minx P (x) > −∞, and Assumption 1 holds. Let

1Uj : Rdj → Rd maps x(j) ∈ Rdj into a d-dimensional vector
where the jth block is x(j) and other blocks are 0.
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{xk} be generated by the Async-BCD algorithm with a step-
size sequence {γt} that satisfies (8) with γ′ = h/L̂ for some
h ∈ (0, 1). Then,

∞∑
k=0

γkE[‖∇̃P (xk)‖2] ≤ 4m(P (x0)− P ?)
1− h

,

where ∇̃P (xk) = L̂(prox 1
L̂
R(xk − 1

L̂
∇f(xk))− xk).

Proof. See Appendix C.

The theorem establishes the convergence of Async-BCD
under adaptive step-sizes. Note that ∇̃P (x) = 0 if and only
if 0 ∈ ∂P (x), i.e., x is a stationary point of problem (1).
Moreover, Theorem 3 implies

min
1≤t≤k

E[‖∇̃P (xt)‖2] ≤ 4m(P (x0)− P ?)
(1− h)

∑k
t=0 γt

.

Similar to PIAG, a larger step-size integral leads to a smaller
error bound in the above equation, which intuitively implies
faster convergence of Async-BCD.

3.4. Delay-adaptive step-size satisfying (8)

By the analysis in Section 3.2–3.3, all step-sizes satisfying∑∞
t=0 γt = +∞ and the principle (8) guarantee conver-

gence of PIAG and Async-BCD. In this section, we make
these results more concrete for two specific adaptive step-
size policies that both satisfy (8):

Adaptive 1: for some α ∈ (0, 1],

γk = αmax{γ′ −
k−1∑

t=k−τk

γt, 0}. (13)

Adaptive 2:

γk =

{
γ′

τk+1 ,
γ′

τk+1 ≤ γ
′ −
∑k−1
t=k−τk γt,

0, otherwise.
(14)

In contrast to existing step-size proposals for asynchronous
optimization algorithms, these step-size policies use the
actual system delays and do not depend on a (potentially
large) upper bound of the maximal delay. When the system
operates with small or no delays, these step-sizes approach
γ′, and if the delays grow large, the step-sizes will be auto-
matically reduced (and occasional updates may be skipped)
to guarantee convergence. The performance improvements
of these policies over fixed step-size policies depend on the
precise nature of the actual delays.

We begin by proving that the two adaptive step-size policies
are no worse than the state-of-the-art step-sizes (that require

knowledge of the maximal delay). As shown in sections 3.2–
3.3, the convergence speed depends on the sum of step-sizes.
Our first observation is therefore the following.

Proposition 1. Suppose that τk ≤ τ for all k ∈ N0. Under
the step-size policy (13), it holds that

k∑
t=0

γt ≥ (k + 1) · αγ
′

τ + 1
, (15)

while the step-size policy (14) guarantees that

k∑
t=0

γt ≥ (k + 1) · τγ′

(τ + 1)2
. (16)

Proof. See Appendix D.

The lower bounds in Proposition 1 are comparable with
k + 1 applications of the state-of-the-art fixed step-sizes for
PIAG (Sun et al., 2019; Deng et al., 2020) and for Async-
BCD (Davis, 2016), respectively. This suggests that the
adaptive step-size policies should be able to guarantee the
same convergence rate. The next result shows that this is
indeed the case.

Corollary 1. Suppose that τk ≤ τ for all k ∈ N0 and that
the step-size is determined using either (13) or (14). Then

• for PIAG under the conditions of Theorem 2, in case
(1) min1≤t≤k ‖∇f(xt) + ξt‖2 = O(1/k), in case (2)
P (xk)−P ? = O(1/k), and in case (3) P (xk)−P ? ≤
O(λk) for some λ ∈ (0, 1).

• for Async-BCD under the conditions in Theorem 3,
min1≤t≤k E[‖∇̃P (xt)‖2] = O(1/k).

Proof. Immediate from Theorem 2–3 and Prop. 1.

Although the two adaptive step-sizes do not rely on the
delay bound, the rates in Corollary 1 still reach the best-
known order compared to related works on PIAG (Aytekin
et al., 2016; Vanli et al., 2018; Sun et al., 2019; Deng et al.,
2020; Feyzmahdavian & Johansson, 2021) and Async-BCD
(Davis, 2016; Sun et al., 2017; Liu et al., 2014; Liu &
Wright, 2015) that use such information in their step-sizes.

On the other hand, there are time-varying delays for which
the adaptive step-sizes are guaranteed to perform much
better than the fixed step-sizes. At the extreme, if the worst-
case delay only occurs once and the system operates without
delays afterwards (we call this a “burst” delay) the adaptive
step-sizes will run with step-size γ′. The sum of step-sizes
then tends to a value that is τ + 1 times larger than for the
fixed step-sizes, with a corresponding speed-up.

To obtain a more balanced comparison, we simulate the two
adaptive step-size policies under the following delays:
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Figure 1. Comparison of delay-adaptive step-size and fixed step-size in delay models. The legends in (b),(c) follow those in (a).

delay

step-size

Adaptive 1

Adaptive 2

Fixed

step-size integral

Adaptive 1

Adaptive 2

Fixed

(a) constant delay

delay

step-size

step-size integral

(b) random delay

delay

step-size

step-size integral

(c) burst delay

1) constant: τk = τ .

2) random: τk is drawn from [0, τ ] uniformly at random.

3) burst: τk = τ at one epoch and τk = 0 otherwise.

and compare these with the fixed step-size γk = γ′/(τ + 1).
This step-size satisfies (8) and is comparable to state-of-the-
art fixed step-sizes for PIAG and Async-BCD.

We visualize the three delay models, the step-size γk, and
the step-size integral

∑k
t=0 γt in Figure 1, in which we set

α = 0.9 in Adaptive 1 and τ = 5 in all three models. We
can make the following observations:

• In all three delay models, the sum of step-sizes for the
two adaptive policies are at least similar to that of the
fixed step-size, which validates Proposition 1.

• The adaptive policies show the greatest superiority
compared to the fixed step-size under the burst delay,
where the sum is asymptotically α(τ + 1) and τ + 1
times that of the fixed step-size, respectively.

• When the proportion of small delays increases
(constant→random→burst), so does the sum of step-
sizes for the two delay-adaptive policies, reflecting
their excellent adaption abilities to the true delay.

• Adaptive 2 is smoother and closer to its average be-
haviour than Adaptive 1, which often implies better
robustness against noise.

4. Numerical experiments
Although the case for delay-adaptive step-sizes should be
clear by now, we also demonstrate the end-effect on a sim-
ple machine learning problem. We consider classification
problem on the training data sets of RCV1 (Lewis et al.,
2004), MNIST (Deng, 2012), and CIFAR100 (Krizhevsky
et al., 2009), using the regularized logistic regression model:

f(x) =
1

N

N∑
i=1

(
log(1 + e−bi(a

T
i x)) +

λ2
2
‖x‖2

)
,

R(x) = λ1‖x‖1,

where ai is the feature of the ith sample, bi is the corre-
sponding label, and N is the number of samples. We pick
(λ1, λ2) = (10−3, 10−4) for all three datasets. We run
both PIAG and Async-BCD on a 10-core machine and com-
pare the performance of delay-adaptive step-sizes and fixed
step-sizes. In the first adaptive policy (Adaptive 1), we let
α = 0.9.

4.1. PIAG

We split the samples in each data set into n = 8 batches and
assign each batch to a single worker. We choose one core as
master and 8 cores as workers.

We compare the two delay-adaptive step-sizes with γ′ = h
L

against the fixed step-size γk = h
L(τ+1/2) from Sun et al.

(2019); Deng et al. (2020), where h = 0.99 for all three step-
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Figure 2. Convergence of PIAG
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(b) MNIST
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sizes (larger step-sizes usually lead to faster convergence).
In each iteration, the master updates all mini-batch gradi-
ents that it has received. The distributions of the realized
delays {τk} are plotted in Figure 3(a). Note that the maxi-
mal delays for the three datasets, 19, 27, and 28 iterations,
respectively, are much larger than the typical τk’s (over 94%
τk’s are smaller than or equal to 10, 19, 18, respectively,
for the three data sets). Moreover, in repeated runs of this
experiment, the delay distribution remained similar, but the
maximum delay varied and could be as large as 50, which
reinforces our message that the maximum delay is hard to
estimate and can be much larger than the average delay.

The objective value of PIAG with the three step-sizes is
shown in Figure 2. Clearly, PIAG converges much faster
under the delay-adaptive step-sizes than under the fixed step-
size on all data sets. For example in Figure 2(a), compared
to the fixed step-size, PIAG with Adaptive 1 and Adaptive
2 only need approximately 1/3 and 1/2 the number of it-
erations, respectively, to achieve the objective value of 7.5.
This demonstrates the effectiveness of our adaptive policies.

4.2. Async-BCD

We use n = 8 workers and split x into m = 20 blocks
almost evenly, with some blocks having one dimension
more than the others. We compare the two delay-adaptive
step-sizes with γ′ = h

L̂
against the fixed step-sizes γk =

h
L(τ+1/2) from Sun et al. (2017) and γk = h

L̂+2Lτ/
√
m

from
Davis (2016). In all cases, we use h = 0.99.

Figure 4 plots the objective value of Async-BCD with the
aforementioned step-sizes. For all datasets, Async-BCD
needs a substantially longer time to converge under the fixed
step-sizes than under the adaptive policies. This exhibits
once again the advantages of our delay-adaptive step-sizes.
The distributions of the realized {τk} for the three data sets

are plotted in Figure 3(b), where the maximal delays are 23,
19, and 14 for RCV1, MNIST, and CIFAR100, respectively.
Once again, these are much larger than the typical τk’s (over
95% τk’s are smaller than 8, 10, 9, respectively). Moreover,
in repeated runs of this experiment, the delay distribution
was similar but the maximal delay could be as large as 55.

5. Conclusions
We have shown that it is possible to design, implement and
analyze asynchronous optimization algorithms that adapt
to the true system delays. This is a significant departure
from the state-of-the-art, that rely on an (often conservative)
upper bound of the system delays and use fixed learning
rates that are tuned to the worst-case situation.

Although many of the principles that we have put forward ap-
ply to broad classes of algorithms and systems, we have pro-
vided detailed treatments of two specific algorithms: PIAG
and Async-BCD. Explicit convergence rate bounds and nu-
merical experiments on different data sets and delay traces
demonstrate substantial advantages over the state-of-the-art.

Future work includes developing delay-adaptive step-sizes
for other asynchronous algorithms such as Asynchronous
SGD (Dean et al., 2012; Recht et al., 2011; Sra et al., 2016)
and extending the adaptive mechanism to also estimate the
Lipschitz constant (and possibly other parameters) on-line.
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Figure 3. Delay distribution (the largest xtick is the observed maximal delay)
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Figure 4. Convergence of Async-BCD.
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A. Proof of Theorem 1
Dividing both sides of (9) by Qk+1 and summing the resulting equation from k = 0 to k = K − 1, we obtain

VK
QK

+

K∑
k=1

Xk

Qk
≤V0 +

K−1∑
k=0

(
− rk
Qk+1

Wk +
pk
Qk+1

k−1∑
`=k−τk

W`

)
. (17)

Define T` := {t ∈ N0 : ` ∈ [t− τt, t− 1]}. We have

K−1∑
k=0

pk
Qk+1

k−1∑
`=k−τk

W` ≤
K−2∑
`=0

(∑
k∈T`

pk
Qk+1

)
W`. (18)

To see (18), note that in the left-hand side, W` occurs only if ` ∈ {0, 1, . . . ,K − 2} and pk
Qk+1

W` occurs only if k ∈ T`. Fix
` ∈ N0. For any k ∈ T`, because ` ∈ [k − τk, k − 1] and because of (10), either pk = 0 or

pk
Qk+1

≤ r`
Q`+1

−
k−1∑
t=`+1

pt
Qt+1

.

Let k′ := max{k ∈ T` : pk > 0}. By the above equation,

r`
Q`+1

≥
k′∑

t=`+1

pt
Qt+1

≥
∑
t∈T`

pt
Qt+1

.

Substituting (18) and the above equation into (17) gives

VK
QK

+

K∑
k=1

Xk

Qk
≤ V0 −

rK−1
QK

WK−1 ≤ V0,

which derives the result.

B. Proof of Theorem 2
For any k ∈ N, if γk−1 > 0, then

ξk = − 1

γk−1
(xk − xk−1)− gk−1.

Otherwise, ξk can be any subgradient of R at xk. By the first-order optimality condition of (4),

ξk ∈ ∂R(xk), ∀k ∈ N. (19)

The proof mainly uses Theorem 1 and the following lemma, which shows that some quantities in PIAG satisfy the
asynchronous sequence (9).

Lemma 1. Suppose that all the conditions in Theorem 2 hold. Then, the asynchronous sequence (9) holds with

Wk =

{
1
γk
‖xk+1 − xk‖2, γk > 0,

0, γk = 0,
∀k ∈ N0,

and

(1) Non-convex:

Xk+1 =
γk
2

1− h
h2 − h+ 1

‖∇f(xk+1) + ξk+1‖2,

Vk = P (xk)− P ?, pk =
γkhL

2
,

qk = 1, rk =
h2

2
− pk.
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(2) Convex: If each f (i) is convex, then

Xk = 0, Vk = ak(P (xk)− P ?) +
1

2
‖xk − x?‖2,

pk =
γk
2

(akL+ 1), rk =
ak
2
− pk, qk = 1,

where ak = h(h+1)
L(1−h) +

∑k−1
`=0 γ`.

(3) PL: If P satisfies the proximal PL-condition (2), then

Vk = P (xk)− P ?, qk =
1

1 + cσ(1−h̃)
h̃2−h̃+1

γk
,

Xk+1 = 0, pk =
γkh̃L

2
, rk =

qkh̃
2

2
− γkh̃L

2
,

where h̃ = 1+h
2 and c = min

(
1, 1−h2h

L
σ

)
.

In all the three cases, either pk = 0 or (10) holds.

Using Lemma 1 and Theorem 1, the result on nonconvex and convex case in Theorem 2 is straightforward. To see the
proximal-PL case in Theorem 2, note that because c ≤ 1, γk ≤ γ′ = h

L ≤
h̃
L , and σ ≤ L,

cσ(1− h̃)

h̃2 − h̃+ 1
γk ≤

cσ

L

h̃(1− h̃)

h̃2 − h̃+ 1
≤ h̃(1− h̃)

h̃2 − h̃+ 1
≤ 1

3
.

In addition, for any ε ∈ (0, 1/3], 1
1+ε ≤ 1− 3

4ε ≤ e
− 3

4 ε. Therefore,

1

1 + cσ(1−h̃)
h̃2−h̃+1

γk
≤ e−

3
4
cσ(1−h̃)
h̃2−h̃+1

γk ,

which further gives

Qk ≤ e
− 3cσ(1−h̃)

4(h̃2−h̃+1)

∑k−1
t=0 γt .

Using the above equation and (11), we obtain the result.

B.1. Proof of Lemma 1

When γk = 0, pk = 0 in all three cases. Below, we assume γk > 0 and prove (10) in all the three cases.

B.1.1. PROOF OF THE NONCONVEX CASE

We first prove that for any k ∈ N0,

P (xk+1)− P ? − (P (xk)− P ?) ≤1

2
γkhL

k−1∑
j=k−τk

Wj −
γk
2
‖∇f(xk) + ξk+1‖2 −

1− γkL
2

Wk. (20)

By (19) and the convexity of R,
R(xk+1)−R(xk) ≤ 〈ξk+1, xk+1 − xk〉. (21)

Moreover, f is L−smooth due to the Li-smoothness of each f (i). Then,

f(xk+1)− f(xk) ≤〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2. (22)

By adding (21) and (22), we have

P (xk+1)− P (xk) ≤ 〈∇f(xk) + ξk+1, xk+1 − xk〉+
L

2
‖xk+1 − xk‖2, (23)
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where

〈∇f(xk) + ξk+1, xk+1 − xk〉 = γk〈∇f(xk) + ξk+1,
1

γk
(xk+1 − xk)〉

=
γk
2
‖∇f(xk) + ξk+1 +

1

γk
(xk+1 − xk)‖2 − γk

2
‖∇f(xk) + ξk+1‖2 −

1

2γk
‖xk+1 − xk‖2.

(24)

From the definition of ξk+1, we have

∇f(xk) + ξk+1 +
1

γk
(xk+1 − xk) = ∇f(xk)− gk.

Substituting this equation into (24) yields

〈∇f(xk) + ξk+1, xk+1 − xk〉 ≤
γk
2
‖∇f(xk)− gk‖2 −

γk
2
‖∇f(xk) + ξk+1‖2 −

1

2γk
‖xk+1 − xk‖2. (25)

By the Li-smoothness of each f (i) and the definition of gk,

‖∇f(xk)− gk‖2 = ‖ 1

n

n∑
i=1

(∇f (i)(xk)−∇f (i)(x
k−τ(i)

k

))‖2

=
1

n2
‖

n∑
i=1

(∇f (i)(xk)−∇f (i)(x
k−τ(i)

k

))‖2

≤ 1

n

n∑
i=1

‖∇f (i)(xk)−∇f (i)(x
k−τ(i)

k

)‖2

≤ 1

n

n∑
i=1

L2
i ‖xk − xk−τ(i)

k

‖2

=
1

n

n∑
i=1

L2
i ‖

k−1∑
j=k−τ(i)

k

(xj+1 − xj)‖2.

(26)

In addition,

‖
k−1∑

j=k−τ(i)
k

(xj+1 − xj)‖2 ≤(

k−1∑
j=k−τ(i)

k

‖xj+1 − xj‖)2 = (

k−1∑
j=k−τ(i)

k

√
γjWj)

2

≤(

k−1∑
j=k−τ(i)

k

√
γj

2)(

k−1∑
j=k−τ(i)

k

√
Wj

2
)

=(

k−1∑
j=k−τ(i)

k

γj)(

k−1∑
j=k−τ(i)

k

Wj) ≤
h

L

k−1∑
j=k−τk

Wj ,

(27)

where the second inequality is due to the Cauchy–Schwarz inequality and the last step is due to τ (i)k ≤ τk, (8) with γ′ = h
L ,

and γk > 0. By (26), (27), and 1
n

∑n
i=1 L

2
i = L2,

‖∇f(xk)− gk‖2 ≤ hL
k−1∑

j=k−τk

Wj .

Combining the above equation with (25) and (23) yields (20).

Next, we use (20) to derive (9). The equation (20) can be rewritten as

P (xk+1)− P ? − (P (xk)− P ?)

≤1

2
γkhL

k−1∑
j=k−τk

Wj −
γk
2
‖∇f(xk) + ξk+1‖2 −

1− h2 − (1− h)γkL

2
Wk −

h2 − γkhL
2

Wk.
(28)
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Because of (8) with γ′ = h
L , we have γk ≤ h

L and

γk
2
‖∇f(xk)+ξk+1‖2+

1− h2−(1− h)γkL

2
Wk

=
γk
2

(‖∇f(xk) + ξk+1‖2 +
1− h2 − (1− h)γkL

γ2kL
2

L2‖xk+1 − xk‖2)

≥γk
2

(‖∇f(xk)+ξk+1‖2+
1−h
h2

L2‖xk+1−xk‖2),

(29)

where the last step is due to 1−h2− (1−h)γkL ≥ 1−h2− (1−h)h = 1−h > 0 and γ2kL
2 ≤ h2. By the L-smoothness

of f and the AM-GM inequality, for any η > 0,

‖∇f(xk+1) + ξk+1‖2

=‖(∇f(xk+1)−∇f(xk)) + (∇f(xk) + ξk+1)‖2

≤(1 + η)‖∇f(xk) + ξk+1‖2 + (1 + 1/η)‖∇f(xk+1)−∇f(xk)‖2

≤(1 + η)‖∇f(xk) + ξk+1‖2 + (1 + 1/η)L2‖xk+1 − xk‖2.

Letting η = h2

1−h in the above equation, we have

1− h
h2 − h+ 1

‖∇f(xk+1) + ξk+1‖2 ≤ ‖∇f(xk) + ξk+1‖2 +
(1− h)L2

h2
‖xk+1 − xk‖2,

which, together with (29) and (28), gives

P (xk+1)− P ? − (P (xk)− P ?)

≤1

2
γkhL

k−1∑
j=k−τk

Wj −
h2 − γkhL

2
Wk −

γk
2

1− h
h2 − h+ 1

‖∇f(xk+1) + ξk+1‖2,
(30)

i.e., (9) holds.

Finally, it is straightforward to see that (8) with γ′ = h/L guarantees (10).

B.1.2. PROOF OF THE CONVEX CASE

Define a0 = h(h+1)
L(1−h) and ak = a0 +

∑k−1
`=0 γ` for all k ∈ N. Multiplying both sides of (20) by ak and using h < 1 gives

ak(P (xk+1)− P ?)− ak(P (xk)− P ?) ≤akγkL
2

k−1∑
j=k−τk

Wj −
ak(1− γkL)

2
Wk. (31)

In addition, using a similar derivation of equation (47) in (Feyzmahdavian & Johansson, 2021), we have

γk(P (xk+1)− P ?) ≤ γk
n∑
i=1

Li
2n
‖xk − xk−τ(i)

k

‖2 +
1

2
(‖xk − x?‖2 − ‖xk+1 − x?‖2 − ‖xk+1 − xk‖2),

which, together with (27), h < 1, and 1
n

∑n
i=1 Li ≤

√
1
n

∑n
i=1 L

2
i = L, leads to

γk(P (xk+1)− P ?) ≤ 1

2
γk

k−1∑
j=k−τk

Wj −
1

2
γkWk +

1

2
(‖xk − x?‖2 − ‖xk+1 − x?‖2). (32)

Adding (32) with (31) gives

ak+1(P (xk+1)− P ?) +
1

2
‖xk+1 − x?‖2 − (ak(P (xk)− P ?) +

1

2
‖xk − x?‖2)

≤γk
2

(akL+ 1)

k−1∑
j=k−τk

Wj −
1

2
(ak(1− γkL) + γk)Wk

=
γk
2

(akL+ 1)

k−1∑
j=k−τk

Wj −
1

2
(ak − γk(akL+ 1))Wk,
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i.e., (9) holds.

Finally, we prove (10). In this case, (10) reduces to

k∑
j=`

γj(ajL+ 1) ≤ a`,∀` ∈ [k − τk, k], ∀k ∈ N0.

Since ak is monotonically non-decreasing, the above equation is equivalent to

k∑
j=k−τk

γj(ajL+ 1) ≤ ak−τk , ∀k ∈ N0. (33)

Since for each j ∈ [k − τk, k], aj ≤ ak = ak−τk +
∑k−1
j=k−τk γt ≤ ak−τk + h

L by (8) and γ′ = h
L , we have

k∑
j=k−τk

γj(ajL+ 1) ≤ h(ak−τkL+ h+ 1)

L
.

Moreover, since ak−τk ≥ a0 and Lak−τk
h(ak−τkL+h+1) increases at ak−τk ,

Lak−τk
h(ak−τkL+ h+ 1)

≥ La0
h(a0L+ h+ 1)

= 1.

Combining the above two equations, we have (33), so that (10) also holds.

B.1.3. PROOF OF THE PROXIMAL PL CASE

By Appendix G in (Karimi et al., 2016), (2) is equivalent to:

σ(P (x)− P ?) ≤ ‖s‖
2

2
, ∀s ∈ ∂P (x), ∀x ∈ Rd. (34)

Because
∑k
t=k−τk γt ≤

h
L ≤

h̃
L , (30) with h being replaced by h̃ also holds by its derivation, which, together with (34) and

c ≤ 1, yields

(1+
cσ(1−h̃)γk

h̃2−h̃+1
)(P (xk+1)−P ?)−(P (xk)− P ?)

≤ 1

2
γkh̃L

k−1∑
j=k−τk

Wj −
h̃2 − γkh̃L

2
Wk.

(35)

Dividing both sides of (35) by 1 + cσ(1−h̃)γk
h̃2−h̃+1

ensures

P (xk+1)− P ? − P (xk)− P ?

1 + cσ(1−h̃)γk
h̃2−h̃+1

≤
1
2γkh̃L

∑k−1
j=k−τkWj − h̃2

2 Wk + γkh̃L
2 Wk

1 + cσ(1−h̃)γk
h̃2−h̃+1

≤1

2
γkh̃L

k−1∑
j=k−τk

Wj + (
γkh̃L

2
− h̃2

2(1 + cσ(1−h̃)γk
h̃2−h̃+1

)
)Wk,

i.e., (9) holds.
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Below, we derive (10). Since Qk+1 ≤ Qt+1 ∀t ∈ [k − τk, k], (10) can be guaranteed by

k∑
t=`+1

pt ≤ r`
Qk+1

Q`+1
, ∀` ∈ [k − τk, k], ∀k ∈ N0. (36)

Note that because Qk+1 ≤ Q`+1,

r`
Qk+1

Q`+1
=
Qk+1

Q`+1
(
h̃2q`

2
− γ`h̃L

2
)

≥ Qk+1

Q`+1

h̃2q`
2
− γ`h̃L

2

≥ (Πk
t=`qt)

h̃2

2
− γ`h̃L

2

≥ (Πk
t=k−τkqt)

h̃2

2
− γ`h̃L

2
.

(37)

Because σ ≤ L, h̃ = 1+h
2 , c ≤ 1−h

2h
L
σ , and because of (8) and γ′ = h

L , we have

k∑
t=k−τk

γt ≤
h

L
≤ h̃

L+ cσ
,

and therefore,

Πk
t=k−τkqt = Πk

t=k−τk
1

1 + cσ(1−h̃)γt
h̃2−h̃+1

≥ Πk
t=k−τk(1− cσ(1− h̃)γt

h̃2 − h̃+ 1
)

≥ 1−
k∑

t=k−τk

cσ(1− h̃)γt

h̃2 − h̃+ 1

≥ 1− cσ

L+ cσ

h̃(1− h̃)

h̃2 − h̃+ 1

≥ L

L+ cσ
,

(38)

where the last step is due to h̃(1−h̃)
h̃2−h̃+1

≤ 1 because of h̃ ∈ (0, 1). By (37), (38), (8), γ′ = h/L, and c ≤ 1−h
2h

L
σ , for any

` ∈ [k − τk, k],

k∑
t=`+1

pt − r`
Qk+1

Q`+1
≤ h̃L

2

k∑
t=`

γt −
1

2

Lh̃2

L+ cσ
≤ 0,

i.e., (36) holds, which guarantees (10).

C. Proof of Theorem 3
The proof mainly uses Theorem 1 and following Lemma, which indicates that some quantities produced by Async-BCD
satisfy (9).
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Lemma 2. Suppose that all the conditions in Theorem 3 hold. Then, (9) holds with

Wk =

{
1
γk
E[‖xk+1 − xk‖2], γk > 0,

0, γk = 0,
,

Xk+1 =
γk(1− h)

4m
E[‖∇̃P (xk)‖2],

Vk=E[P (xk)]−P ?, pk=
L̂γk

2
, qk = 1, rk =

h

2
−pk.

In addition, (10) holds.

By Theorem 1 and Lemma 2, Theorem 3 is straightforward.

C.1. Proof of Lemma 2

If γk = 0, then pk = 0. Below we consider the case where γk > 0 and prove (9) and (10).

Suppose that at the kth iteration, the j′-th block is updated. Define uk =
x
(j′)
k −x(j′)

k+1

γk
− ∇j′f(x̂k). By the first-order

optimality condition of (5),

uk ∈ ∂R(j′)(x
(j′)
k+1),

which, together with the convexity of R(j′), yields

R(xk+1)−R(xk) = R(j′)(x
(j′)
k+1)−R(j′)(x

(j′)
k )

≤ 〈uk, x(j
′)

k+1 − x
(j′)
k 〉.

By the Lipschitz continuity in Assumption 1,

f(xk+1)− f(xk) ≤〈∇j′f(xk), x
(j′)
k+1 − x

(j′)
k 〉+

L̂

2
‖x(j

′)
k+1−x

(j′)
k ‖

2.

Adding two equations above gives

P (xk+1)− P (xk) ≤〈∇j′f(xk)+uk, x
(j′)
k+1−x

(j′)
k 〉+

L̂

2
‖x(j

′)
k+1−x

(j′)
k ‖

2. (39)

In the above equation,

〈∇j′f(xk) + uk, x
(j′)
k+1 − x

(j′)
k 〉

=
γk
2
‖∇j′f(xk) + uk +

x
(j′)
k+1 − x

(j′)
k

γk
‖2 − γk

2
‖∇j′f(xk)+uk‖2−

1

2γk
‖x(j

′)
k+1−x

(j′)
k ‖

2.
(40)

By the definition of uk,

‖∇j′f(xk) + uk +
x
(j′)
k+1 − x

(j′)
k

γk
‖2 = ‖∇j′f(xk)−∇j′f(x̂k)‖2. (41)

Substituting (40) and (41) into (39) gives

P (xk+1)− P (xk)

≤γk
2
‖∇j′f(xk)−∇j′f(x̂k)‖2 − γk

2
‖∇j′f(xk)+uk‖2 −

1/γk − L̂
2

‖x(j
′)

k+1−x
(j′)
k ‖

2.
(42)
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In addition,

γk‖
proxγkR(j′)(x

(j′)
k − γk∇j′f(xk))− x(j

′)
k

γk
‖2

≤ 2

γk
‖ proxγkR(j′)(x

(j′)
k − γk∇j′f(xk))− x(j

′)
k+1‖

2

+
2

γk
‖x(j

′)
k+1 − x

(j′)
k ‖

2

≤2γk‖∇j′f(x̂k)−∇j′f(xk)‖2+
2

γk
‖x(j

′)
k+1−x

(j′)
k ‖

2,

(43)

where the last inequality comes from the non-expansive property of the proximal operator. Multiplying both sides of (43) by
1−h
4 and adding the resulting equation with (42), we derive

P (xk+1)− P (xk) ≤ −γk(1− h)

4

· ‖
proxγkR(j)(x

(j′)
k − γk∇j′f(xk))− x(j

′)
k

γk
‖2

+
γk(2− h)

2
‖∇j′f(xk)−∇j′f(x̂k)‖2

− h/γk − L̂
2

‖x(j
′)

k+1−x
(j′)
k ‖

2.

(44)

Moreover, by (6), Jk ⊆ [k − τk, k], Assumption 1, the step-size condition (8), γ′ = h
L̂

, and the Cauchy-Schwartz inequality,

‖∇j′f(xk)−∇j′f(x̂k)‖2

=‖
∑
t∈Jk

∇j′f(xt+1)−∇j′f(xt)‖2

≤‖
k−1∑

t=k−τk

∇j′f(xt+1)−∇j′f(xt)‖2

≤(

k−1∑
t=k−τk

‖∇j′f(xt+1)−∇j′f(xt)‖)2

=(

k−1∑
t=k−τk

√
γt
‖∇j′f(xt+1)−∇j′f(xt)‖√

γt
)2

≤(

k−1∑
t=k−τk

γt)

k−1∑
t=k−τk

‖∇j′f(xt+1)−∇j′f(xt)‖2

γt

≤L̂h
k−1∑

t=k−τk

‖xt+1 − xt‖2

γt
,

(45)

and according to Lemma 1 in (Karimi et al., 2016), because γk ≤ 1
L̂

,

‖
proxγkR(xk − γk∇f(xk))− xk

γk
‖ ≥ ‖∇̃P (xk)‖. (46)

Substituting (45) and (46) into (44) and using (2− h)h ≤ 1, we have

E[P (xk+1)|xk]− P (xk)

≤− γk(1− h)

4m
‖∇̃P (xk)‖2 +

L̂γk
2

k−1∑
t=k−τk

Wt −
h− L̂γk

2
Wk.

Therefore, (9) holds.
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D. Proof of Proposition 1
Proof of (15): To derive (15) for adaptive step-size (13), define {tk}∞k=0 as t0 = 0, tk+1 = min{t : t− τt > tk} ∀k ∈ N0

and Nk = 1 + max{j : tj ≤ k} ∀k ∈ N0. Because τj ≤ τ ∀j ∈ N0, by the definition of tj ,

tj+1 ≤ tj + τ + 1, ∀j ∈ N0.

In addition, t0 = 0. Then, we have tj ≤ j(τ + 1), which implies tbk/(τ+1)c ≤ k. By definition of Nk,

Nk ≥ 1 + max{j : tj ≤ k}

≥ 1 + bk/(τ + 1)c ≥ k + 1

τ + 1
.

Note that because tk + 1 ≤ tk+1 − τtk+1
,

tk+1∑
j=tk+1

γj ≥
tk+1∑

j=tk+1−τtk+1

γj .

In addition, by the definition of Nk, tNk−1 ≤ k, which, together with the above equation, gives

k∑
j=0

γj ≥
tNk−1∑
j=0

γj = γ0 +

Nk−2∑
`=0

t`+1∑
j=t`+1

γj

≥ γ0 +

Nk−2∑
`=0

t`+1∑
j=t`+1−τt`+1

γj .

(47)

If γt`+1
= 0, then at`+1

< γ′ −
∑t`+1−1
j=t`+1−τt`+1

γj , which implies

t`+1−1∑
j=t`+1−τt`+1

γj ≥ γ′.

Otherwise, γt`+1
= α(γ′ −

∑t`+1−1
j=t`+1−τt`+1

γj) and

t`+1∑
j=t`+1−τt`+1

γj = αγ′ + (1− α)

t`+1−1∑
j=t`+1−τt`+1

≥ αγ′.

From the above two equations, we have
∑t`+1

j=t`+1−τ`+1
γj ≥ αγ′. In addition, because τk ∈ [0, k] ∀k ∈ N0, τ0 = 0 and

γ0 = αγ′. Substituting these into (47) yields (15).

Proof of (16): We use mathematical induction to prove (16) for adaptive step-size (14). Suppose that the following equation
holds at some k ∈ N0: ∑̀

j=0

γj ≥
τ

τ + 1
· γ
′(`+ 1)

τ + 1
,∀` ≤ k − 1, (48)

which naturally holds when k = 0. Below, we prove that (48) holds at k + 1 by showing

k∑
j=0

γj ≥
τ

τ + 1
· γ
′(k + 1)

τ + 1
. (49)

If γk = 0, which is possible only when τk > 0, then by (14),

k−1∑
j=k−τk

γj >
τkγ
′

τk + 1
≥ τ

τ + 1
· (τk + 1)γ′

τ + 1
,
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where the last step is due to τk
(τk+1)2 ≥

τ
(τ+1)2 when τk ∈ [1, τ ]. In addition, because k − τk − 1 ≤ k − 1, by (48),

k−τk−1∑
j=0

γj ≥
τ

τ + 1
· γ
′(k − τk)

τ + 1
.

Adding the two equations above and using γk = 0, we have (49). If γk > 0, then by (14), γk ≥ γ′

τk+1 ≥
γ′

τ+1 . In addition,∑k−1
j=0 γj ≥

γ′k
τ+1 by (48). Then, we have (49), which indicates (48) at k + 1. Conclude all the above, (48) as well as (16)

holds for all k ∈ N0.

E. Wall-clock-time Convergence and Comparison with Synchronous Counterparts
We also plot the convergence of PIAG and Async-BCD in terms of wall-clock time and compare them with their synchronous
counterparts by solving the same problem in Section 4 under the same experiment settings. We provide the details of the
three simulated datasets in Table 1.

Table 1. data sets
Data set sample number feature dimension
RCV1 20242 47236

MNIST 60000 784
CIFAR100 50000 3072

E.1. PIAG

The synchronous version of PIAG is distributed proximal gradient (PG) method, where at each iteration, the master updates
after it received mini-batch gradients from all the workers. We set the step-size in distributed PG as 1/L and plot the
experiment result in Figure 5.

Figure 5. PIAG vs. distributed PG.
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Observe from Figure 5 that in terms of running time, PIAG with the two adaptive step-sizes still converge significantly
faster than that with the fixed step-size. Although intuitively, asynchronous algorithms are supposed to outperform the
synchronous version in terms of running time, it is not true for PIAG in our experiment. This may mainly because of the
small step-sizes in PIAG caused by delays.
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E.2. Async-BCD

The synchronous counterpart of Async-BCD is synchronous distributed BCD. We run synchronous distributed BCD with
8 workers and randomly sample 8 blocks over 20 blocks to update at each iteration. We set the step-size in synchronous
distributed BCD as 8/L̂ (still significantly smaller than 1/L in the experiment), which is a standard step-size because each
iteration of synchronous distributed BCD updates 8 blocks. The experiment result is plotted in Figure 6.

Figure 6. Async-BCD vs. synchronous distributed BCD.
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Observe from Figure 6 that Async-BCD with two adaptive step-sizes outperforms not only Async-BCD with fixed step-sizes
but also synchronous distributed BCD.


