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Abstract
Following the success of convolution on non-
Euclidean space, the corresponding pooling ap-
proaches have also been validated on various tasks
regarding graphs. However, because of the fixed
compression quota and stepwise pooling design,
these hierarchical pooling methods still suffer
from local structure damage and suboptimal prob-
lem. In this work, inspired by structural entropy,
we propose a hierarchical pooling approach, SEP,
to tackle the two issues. Specifically, without as-
signing the layer-specific compression quota, a
global optimization algorithm is designed to gen-
erate the cluster assignment matrices for pooling
at once. Then, we present an illustration of the
local structure damage from previous methods
in the reconstruction of ring and grid synthetic
graphs. In addition to SEP, we further design
two classification models, SEP-G and SEP-N for
graph classification and node classification, re-
spectively. The results show that SEP outperforms
state-of-the-art graph pooling methods on graph
classification benchmarks and obtains superior
performance on node classifications.

1. Introduction
Chasing the great success of deep learning in natural lan-
guage processing and images, plenty of research efforts have
been devoted to the adoption of neural networks in tasks
without data on the Euclidean domain, i.e., in graphs (Kipf
& Welling, 2017; Veličković et al., 2018). Thus, recent
years, graph neural networks (GNNs) become ubiquitous
within deep learning for graphs, and have obtained great
accomplishments in various domains, such as node classi-
fication (Kipf & Welling, 2017), link prediction (Zhang &
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Figure 1: Architecture of proposed SEP operator com-
bined with graph neural network. The graph neural net-
work consists of message passing layers and hierarchical
pooling layers. A separate algorithm is proposed for cluster
assignments generation.

Chen, 2018) and graph classification (Xu et al., 2019). In
these works, a key direction is the convolutional mechanism
of GNNs (Wu et al., 2019; Zhu & Koniusz, 2020; Wu et al.,
2022), which aims to learn the structural information in
graphs. Meanwhile, another research direction in GNNs
is the pooling mechanism, which follows the customs in
CNN models that compress a set of nodes into a compact
representation (Lee et al., 2019; Bianchi et al., 2020).

Besides the simplest pooling methods, that sum or aver-
age all nodes, various well-designed pooling approaches
have been proposed to aggregate the node information in
a hierarchical manner. However, despite the effectiveness
of these methods on various tasks, there are still many is-
sues that hinder the development of GNNs. First, pooling
methods based on node drop, like TopKPool (Gao & Ji,
2019), SAGPool (Lee et al., 2019) and ASAP (Ranjan et al.,
2020), unnecessarily cut nodes based on designed ranking
strategy in each pooling layer, resulting in information loss
(Baek et al., 2021). Although other methods based on node
clustering avoid this issue (Ying et al., 2018; Bianchi et al.,
2020), the damage on the graph local structure still can not
be prevented due to the artificially specified node compres-
sion quota (Gao & Ji, 2019; Ranjan et al., 2020), which also
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exists in the node drop methods 1. Furthermore, the clus-
ter assignments produced by these works only rely on the
topology of graph in the current layer without any consider-
ation of the relationships among pooling layers. This would
probably lead to suboptimal results in their tasks. Thus, a
pooling operation that is globally optimized and has natural
node partition is preferred.

In this paper, we present a hierarchical pooling method,
termed SEP, to address the above two issues that hinder the
development of GNNs (Figure 1). Specifically, inspired by
structural entropy (Li & Pan, 2016), a metric designed to
assess the graph structural information, the essential struc-
ture of a graph can be decoded by this metric as a measure
of the complexity of its hierarchical structure. In particular,
the cluster assignments for hierarchical pooling can be di-
rectly obtained from the proposed algorithm for structural
entropy minimization. Note that, the proposed algorithm is
globally optimized and free from learning, which means the
cluster assignments will be generated together to avoid the
suboptimal problem. Moreover, the algorithm does not rely
on a fixed layer-specific compression quota but the number
of compression layers, which would help retain the local
structure of graphs.

Before the validation of SEP on classification benchmarks,
we first present an illustration of the damage caused by pre-
vious hierarchical pooling methods on local structure of
graphs. With seven benchmarks from bioinformatics and
social networks, we then experimentally validate the effec-
tiveness of SEP on tasks regarding graph classification, and
conclude that SEP surpasses the state-of-the-art (SOTA) hi-
erarchical pooling methods on most benchmarks especially
on the social network datasets. Besides the superior perfor-
mance on global attribute discerning, we further evaluate
SEP on node classification tasks to better validate its capa-
bility of information retaining within the process of pooling.
The results show that SEP outperforms the model with the
same architecture (i.e., g-U-Nets) and most baselines. To
sum up, our contributions are listed as follows:

• We uncover two crucial issues in previous hierarchical
pooling works that hinder the development of GNNs,
including the local structure damage and suboptimal
problem because of the fixed compression quota and
stepwise pooling design.

• Through the introduction of the structural informa-
tion theory, we present a novel hierarchical pooling
approach, termed SEP, to address the unveiled issues.

• We extensively validate SEP on graph reconstruction,
graph classification, and node classification tasks, in

1The clustering-based pooling methods require the fixed num-
ber of clusters and the node drop methods require the fixed node
compression ratio.

which outperformances are observed in comparison the
SOTA hierarchical pooling methods.

2. Related Work
Hierarchical pooling. To pursue better generalization
and performance, pooling operations have been adopted
to amplify the receptive fields and reduce the input sizes.
Several designs are proposed from the angle of selecting the
most important k nodes from the original graph to organize
a new one, such as TopKPool (Gao & Ji, 2019), SAGPool
(Lee et al., 2019) and ASAP (Ranjan et al., 2020). Though
efficient, this node-drop design would result in information
loss and isolated subgraphs, which will deteriorate the per-
formance of GNNs. Thus, another design based on node
clustering emerges and avoids this issue, including DiffPool
(Ying et al., 2018) and MinCutPool (Bianchi et al., 2020), in
which the nodes of original graph are merged into a bunch
of clusters. Although preventing information loss, the dam-
age on graph local structures still exists because of the fixed
node compression quota.

Structural entropy. Information entropy stems from the
demand for information measurement in communication
systems (Shannon, 1948). Correspondingly, to measure the
information in graphs, structural entropy was proposed and
used to evaluate the complexity of the hierarchical struc-
ture of a graph (Li & Pan, 2016), which is also a natu-
ral node clustering method for graphs. Furthermore, two-
and three-dimensional structural entropy, which measure
the complexity of two- and three-level hierarchical struc-
tures, respectively, have been applied in medicine (Li et al.,
2016b), bioinformatics (Li et al., 2018), and the security
of networks (Li et al., 2016a). In the light of this global
measurement of graph information, structural entropy can
be used to decode the essential structure of graphs, which
further sparks us the yielding of SEP to address the two
issues that impede the development of GNNs.

3. Proposed Method
In this section, under the guidance of structural entropy, we
present our key idea and an algorithm for the cluster assign-
ments construction. Then, we design a GNN model, which
has several convolutional layers and pooling layers, to learn
global representations for graph classification. Furthermore,
we develop another model, which is made up of additional
convolutional layers and unpooling layers, to obtain local
representations for node classification. Before elaborating
on them, we first show some notations.

3.1. Preliminaries

A graph G can be represented as a multi-tuple (V, E ,X),
where |V| = n is the node set, |E| = m is the edge set,
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and X ∈ Rn×d is the feature matrix for n nodes with d-
dimensional feature vector. The topology structure of graph
G can be found in its adjacency matrix A ∈ Rn×n.

Graph neural networks. In this work, we select Graph
Convolutional Network (i.e., GCN (Kipf & Welling, 2017))
as the convolutional layers of our models. GCN and its
variants have achieved excellent performance in different
kinds of tasks regarding graphs. There is no doubt that our
proposed pooling operator can also work with other GNNs
like GAT (Veličković et al., 2018) and GIN (Xu et al., 2019).
This will be discussed in the experimental section. For a
stacked graph neural networks, the i-th convolutional layer
in the form of GCN can be formally written as:

Hi+1 = ReLU(D̃−
1
2 ÃD̃−

1
2HiWi), (1)

where ReLU is a non-linear activation function, Wi ∈
Rh×h is the trainable matrix for this layer, Hi+1 ∈ Rn×h

is the output of this layer and H0 = X. In particular,
Ã = A + I denotes the adjacency matrix with self-loops,
and D̃ii =

∑
j Ãij . In the process of hyper-parameter

tuning, we fix the same hidden dimension for all layers.

Hierarchical pooling. In general, hierarchical pooling is
a graph coarsening process to dig out a subset of representa-
tive nodes and form a new graph. Let Si ∈ Rni+1×ni denote
the cluster assignment matrix at i-th pooling layer, where
ni and ni+i are the number of nodes before and after graph
coarsening. The new adjacency matrix and node feature
matrix after pooling are calculated by the next equations:

Ai+1 = SiAiS
>
i ; Pi+1 = SiHi, (2)

where Ai ∈ Rni×ni is the adjacency matrix at the i-th layer
and Hi ∈ Rni×h refers to the node feature matrix produced
by the i-th graph convolutional layer. Specifically, according
to the cluster assignments Si, Pi+1 receives the node hidden
features Hi and merges these features to refine the initial
representations for the ni+1 clusters in the novel graph.
Correspondingly, Ai+1 employs the node connectivities Ai

to weave a more delicate origination among ni+1 clusters.

3.2. Cluster Assignments via Structural Entropy
Minimization

Here, we present our methodology for hierarchical pooling.
As claimed above, although plenty of works have been pre-
sented for graph coarsening based on heuristics or theories,
little attention has been paid to the relationships among pool-
ing layers. These studies only produce the cluster assign-
ments based on the graph in the current layer. Meanwhile, in
various tasks regarding graphs, there are graphs constructed
from specific domain (e.g., social networks) or weaved by
human (e.g., synthetic graphs), which are usually not opti-
mal for GNNs because of noisy information. It is thus vital

to eliminate such noisy structure from graphs in the process
of cluster assignments generation. In this paper, inspired by
structural entropy (Li & Pan, 2016), we propose a novel hi-
erarchical pooling approach, denoted as SEP, to address the
aforementioned issues in previous works. Besides the mea-
surement of graph information, structural entropy can also
be used to decode the hierarchical structure of a given graph
as a metric of the complexity of its underlying essential
structure. Thus, through structural entropy minimization,
the hierarchical structure of a graph can be decoded into
a corresponding coding tree, in which disturbance derived
from noise or stochastic variation can be minimized (Li
et al., 2018). We believe an effective structural entropy min-
imization algorithm could uncover the connections among
hierarchical pooling layers and eliminate the noisy structure
in graphs.

Based on the definition in (Li & Pan, 2016), let a two-tuple
(V, E) be a graph G, the formal equation of the structural
entropy for G on coding tree T can be written as:

HT (G) = −
∑
vt∈T

gvt
vol(V)

log
vol(vt)

vol(v+t )
, (3)

where vt is a nonroot node in T that can also be viewed as
a node subset ⊂ V according to its leaf node partition in T ,
v+t is the parent of vt, gvt refers to the number of edges with
an endpoint in the leaf node partition of vt, and vol(V) and
vol(vt) are the sums of degrees of leaf nodes in V and vt,
respectively. The minimum entropy realized by the optimal
coding tree T is the structural entropy of G, which follows
this target equation: H(G) = min∀T {HT (G)}. According
to the definition of structural entropy, we know that the cod-
ing tree is a natural hierarchical division for graphs, and the
connections among different layers are established for the
purpose of structural entropy minimization. Furthermore,
the local structure in graphs will be retained because we do
not need to allocate layer-specific node compression quotas.

Besides the optimal coding tree that realizes the minimized
structural entropy, in most cases, a natural coding tree with
a certain height is preferred, because we only need a few
fixed times of graph coarsening for most tasks (Gao & Ji,
2019; Baek et al., 2021). In this context, the k-dimensional
structural entropy of G is proposed to decode the optimal
coding tree with a fixed height k:

H(k)(G) = min
∀T :Height(T )=k

{HT (G)}. (4)

In this paper, under the guidance of k-dimensional structural
entropy, we aim to investigate the solution for decrypting
the coding tree with a certain height k. Firstly, we define
three functions.

Definition 3.1. Let T be any coding tree for graph G =
(V, E), vr is the root node of T and V are the leaf nodes
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of T . Given any two nodes (vi, vj) in T , in which vi ∈
vr.children and vj ∈ vr.children.

Define a function MERGET (vi, vj) for T to insert a new
node vε between vr and (vi, vj):

vε.children← vi; (5)
vε.children← vj ; (6)
vr.children← vε; (7)

Definition 3.2. Following the setting in Definition 3.1,
given any two nodes (vi, vj), in which vi ∈ vj .children.

Define a function REMOVET (vi) for T to remove vi from
T and merge vi.children to vj .chileren:

vj .children← vi.children; (8)

Definition 3.3. Following the setting in Definition 3.1,
given any two nodes (vi, vj), in which vi ∈ vj .children
and |Heigth(vj)−Height(vi)| > 1.

Define a function FILL(vi, vj) for T to insert a new node
vε between vi and vj :

vε.children← vi; (9)
vj .children← vε; (10)

Based on the three defined functions, a greedy algorithm to
compute the coding tree with a certain height k via structural
entropy minimization can be found in Algorithm 1. Specifi-
cally, a full-height binary coding tree is first generated from
bottom to top. In this stage, two child nodes of root are
merged to form a new division in each iteration, which aims
to maximize the structural entropy reduction. In the second
stage, in order to satisfy a fixed number of graph coarsening,
we need squeeze the previous full-height binary coding tree
by dropping nodes. Each time, we select an inner-node from
T , which makes T have the minimized structural entropy
after removing this node. At the end of the second stage,
we have already obtained a coding tree with a certain height
k under the guidance of structural entropy. However, there
may be nodes that do not have immediate successor in the
next layer because of cross-layer links, which will cause
node missing when realizing hierarchical pooling based on
such a coding tree. Therefore, we need perform the third
stage to ensure the integrity of information transmission
between layers, and also need not interfere with the struc-
tural entropy of G on coding tree T (see Proposition 3.4).
Finally, a coding tree T for the given graph G can be ob-
tained, where T = (VT , ET ), VT = (VT

0 , . . . ,VT
k ) and

VT
0 = V . In addition, the cluster assignment matrices can

also be obtained from ET , that is, S = (S1, . . . ,Sk).
Proposition 3.4. Let T be a coding tree after the sec-
ond stage of Algorithm 1, and given two adjacent nodes
(vi, vj) in T , in which vi ∈ vj .children and |Heigth(vj)−
Height(vi)| > 1. Then,HT (G) = HTFILL(vi,vj)(G).

Algorithm 1 Coding tree with height k via structural en-
tropy minimization
Input: a graph G = (V, E), a positive integer k > 1
Output: a coding tree T with height k

1: Generate a coding tree T with a root node vr and all
nodes in V as leaf nodes;

2: // Stage 1: Bottom to top construction;
3: while |vr.children| > 2 do
4: Select vi and vj from vr.children, conditioned on

argmax(vi,vj){HT (G)−HTMERGE(vi,vj)(G)};
5: MERGE(vi, vj);
6: end while
7: // Stage 2: Compress T to the certain height k;
8: while Height(T ) > k do
9: Select vi from T , conditioned on

argminvi{HTREMOVE(vi)(G)−HT (G)|
vi 6= vr & vi /∈ V};

10: REMOVE(vi);
11: end while
12: // Stage 3: Fill T to avoid cross-layer links;
13: for vi ∈ T do
14: if |Height(vi.parent)− Height(vi)| > 1 then
15: FILL(vi, vi.parent);
16: end if
17: end for
18: return T ;

Proof. Equation 3 shows that the structural entropy of graph
G on T is the summation ofHT

v = − gv
vol(V) log

vol(v)
vol(v+) for

all nonroot nodes in T . That is, HT (G) = HT
vi + H

T
vj +

. . . and HTF (G) = HTF

v′
i

+ HTF
vε + HTF

v′
j

+ . . . , denote

TF = TFILL(vi,vj) for simplicity and (v′i, v
′
j) corresponds to

(vi, vj) after FILL. According to Equation 3, we have:

HTF

v′
i
= −

gv′
i

vol(V)
log

vol(v′i)

vol(v′+i )

= −
gv′

i

vol(V)
log

vol(v′i)

vol(vε)

= 0 with vol(v′i) = vol(vε), (11)

HTF
vε = − gvε

vol(V)
log

vol(vε)

vol(v+ε )

= − gvi
vol(V)

log
vol(vi)

vol(vj)

= HT
vi , (12)

HTF

v′
j
= −

gv′
j

vol(V)
log

vol(v′j)

vol(v′+j )

= −
gvj

vol(V)
log

vol(vj)

vol(v+j )

= HT
vj . (13)
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Thus, we haveHT (G) = HTFILL(vi,vj)(G). �

Complexity analysis. The runtime complexity of Algo-
rithm 1 is O(2n + hmax(m log n + n)), and hmax is the
height of coding tree T after the first stage. Meanwhile,
since coding tree T tends to be balanced in the process of
structural entropy minimization, hmax will be around log n.
Furthermore, graph generally has more edges than nodes,
i.e., m� n, thus the runtime of Algorithm 1 almost scales
linearly in the number of edges.

3.3. Graph Neural Network for Graph Classification

In this subsection, we present the architecture based on SEP
for graph classification, and name it SEP-G. As shown in
Figure 2, the hierarchical pooling architecture follows the
setting in previous pooling studies (Lee et al., 2019; Bianchi
et al., 2020; Baek et al., 2021), which consists of three
blocks and each block has a GCN layer and a SEP layer.
For the graph-level representation, the outputs after each
block are summarized and then fed to a prediction layer
for classification. Based on Equations 1 and 2, the graph
representation with SET-G can be formally written as:

hG = Concat(Readout(SEPi(GCNi(Hi,Ai),Si))

|∀i ∈ {1, 2, 3}). (14)

GCN SEP GCN SEPGCN SEP MLP

Figure 2: The SEP-G architecture for graph classifica-
tion. Following the design of previous works in hierarchical
pooling, the architecture is comprised of three GCN layers
and each is followed by corresponding SEP layer.

Permutation invariance. In graph classification, it is im-
portant to ensure the permutation invariance of designed
graph neural network. In our proposed model for graph
classification, there are two main components, that is, GCN
layer and SEP layer. The permutation invariance of GCN
layer has been confirmed by previous works (Ying et al.,
2018; Ma et al., 2019). Thus, the SEP layer should be
invariant with permutations.

Proposition 3.5. Given a permutation matrix P ∈
{0, 1}n×n, then SEP(A,H) = SEP(PAP>,PH) (i.e.,
SEP is permutation invariant).

Proof. The cluster assignments are derived from the coding
tree via Algorithm 1, which is a traversal algorithm that does
not depend on the order of nodes. Therefore, the generated
assignments S will not change with any permutation. In

addition, we know that the permutation matrix is orthogonal,
thus PP> = I with Equation 2 finishes the proof. �

3.4. Graph Neural Network for Node Classification

Beyond the functionality of cluster assignments to convert
graphs into high-level representations, we can also adopt
the same matrix Si to unpool the compressed graph rep-
resentation Hi and structure Ai to the original space by:

Ai+1 = S>i AiSi; Pi+1 = S>i Hi. (15)

In this context, we present an illustration of the architecture
for node classification in Figure 3, and we call it SEP-N.
SEP-N is an encoder-decoder network analogous to the de-
sign of g-U-nets (Gao & Ji, 2019). In the encoder, several
down-sampling blocks are applied to encode higher-order
features. Each block consists of a GCN layer and a SEP
layer like our SEP-G. In the decoder, we employ the consis-
tent number of decoding components. Thus, we can see the
same GCN layer but with a SEP-U layer for unpooling in the
decoder block. The skip-connections linking corresponding
encoders and decoders are also adopted to enable spatial
information transmission for better performance. Finally, a
GCN layer is used to perform final predictions.

GCN

SEP

GCN SEP-U

GCN

SEP

GCN SEP-U

GCN

Down-sampling Up-sampling

Figure 3: The SEP-N architecture for node classification.
There are two encoder and two decoder blocks and each
block is composed of a GCN layer and a pooling (unpooling)
layer. Skip connection links the same-level encoder and
decoder to enhance spatial feature transmission.

4. Experiments
In this section, we describe the experiment setup for graph
classification and node classification in detail, and validate
the effectiveness of our proposed methods, SEP-G and SEP-
N, in several corresponding benchmarks 2.

2The implementation of Algorithm 1, SEP-G and SEP-N can
be found at https://github.com/Wu-Junran/SEP.

https://github.com/Wu-Junran/SEP
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4.1. Graph Reconstruction

Before the presentation of experiments regarding two ma-
jor classification tasks in GNNs, we first employ a graph
reconstruction experiment, which quantifies the structural
information retained by pooling layer, to directly reveal the
damage caused by previous hierarchical pooling methods to
graph’s local structures.

Configuration. An autoencoder is trained to reconstruct
the input graph with pooling and unpooling layers. The
learning objective is to minimize the mean square error
(MSE) between input features X and output features Xr,
i.e., min‖X − Xr‖2. For configuration, we employ the
Synthetic graphs (Bianchi et al., 2020), including a ring and
a grid that the input features are the coordinates of nodes in
a 2-D Euclidean space. Detailed experiment configuration
and model description can be found in Appendix A.1.

(a) Original (b) TopKPool (c) MinCutPool (d) SEP

Figure 4: Illustration of local structure damage from node
drop and clustering methods in reconstruction of ring and
grid synthetic graphs.

Reconstruction results. Figure 4 shows the original
graphs and the reconstructed graphs by model with various
pooling methods. We select TopKPool to represent meth-
ods with node drop design and MinCutPool to represent
methods with node clustering design 3. We first notice the
reconstructed results of TopKPool, where the basic shape
of original graphs can not even be identified. This confirms
that node drop methods will lead to severe information miss-
ing and implies the poor performance of node drop methods
in graph classification. On the other hand, MinCutPool in-
deed retains the basic shape of original graphs. However,
we can still see the significant distortion in the edge of ring
and the center of grid, which represent the key structures
of ring and grid, and this validates the assumption that the
local structure in graphs would be ruined by the artificially
specified node compression quota. On the contrary, SEP

3Reconstruction results of all hierarchical pooling baselines
can be found in Appendix A.1.

almost reconstructs the ring and retains the essential struc-
ture in grid center which suggests that our pooling method
obtains the key structural information of original graphs.

4.2. Graph Classification

Graph classification aims to label a given graph G with the
maximum probability among several seed categories. To
this end, we need learn the high-level representation from its
component nodes, which enables the final classifier evaluate
the likelihood of category that the graph belongs to.

Datasets. Seven benchmarks for graph classification are
selected from TU datasets (Morris et al., 2020). Specifi-
cally, we employ three social network datasets, including
IMDB-BINARY, IMDB-MULTI, and COLLAB; and four
bioinformatics datasets, including MUTAG, PROTEINS,
D&D and NCI1. Table 1 summarizes the characteristics of
the seven employed datasets, and more detailed descriptions
can be found in the Appendix A.2.

Baselines. We first employ two popular backbones in
GNNs for comparison, that is, GCN (Kipf & Welling, 2017)
and GIN (Xu et al., 2019). Then, we adopt the next five
hierarchical pooling methods as baselines: DiffPool (Ying
et al., 2018), SAGPool(H) (Lee et al., 2019), TopKPool
(Gao & Ji, 2019), ASAP (Ranjan et al., 2020), and Min-
CutPool (Bianchi et al., 2020). Besides various hierarchical
pooling methods, plenty of efforts have also been devoted to
global pooling for graph classification. Thus, we also select
the following five global pooling techniques for compari-
son: Set2Set (Vinyals et al., 2016), SortPool (Zhang et al.,
2018), SAGPool(G) (Lee et al., 2019), StructPool (Yuan &
Ji, 2020), and GMT (Baek et al., 2021).

Configurations. Following (Xu et al., 2019; Lee et al.,
2019), 10-fold cross-validation is conducted, and we present
the average accuracies achieved to validate the performance
of SEP-G in graph classification. In addition, the initial
feature inputs is in line with the fair comparison setting in
(Errica et al., 2020). Additional details about experiment
setup can be found in the Appendix A.2.

Classification results. The classification accuracies of
SEP-G and other baselines are shown in Table 1, and we
can see that our method consistently achieves better or com-
petitive performance as compared to these SOTA methods.
In particular, SEP-G obtains a unified improvement in so-
cial network datasets, which differs from the performance
in bioinformatics datasets. This performance divergence
may be because SEP only relies on the network structure
for hierarchical pooling, while the structural information
in social network datasets is more redundant than that in
bioinformatics datasets (Centola, 2010). It is worth noting
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Table 1: Graph classification accuracies on seven benchmarks (%). The shown accuracies are mean and standard
deviation over 10 different runs. We highlight the best results.

Social Network Bioinformatics
IMDB-BINARY IMDB-MULTI COLLAB MUTAG PROTEINS D&D NCI1

# Graphs 1,000 1,500 5,000 188 1,113 1,178 4,110
# Classes 2 3 3 2 2 2 2
Avg. # Nodes 19.8 13.0 74.5 17.9 39.1 284.3 29.8

Backbones GCN 73.26±0.46 50.39±0.41 80.59±0.27 69.50±1.78 73.24±0.73 72.05±0.55 76.29±1.79
GIN 72.78±0.86 48.13±1.36 78.19±0.63 81.39±1.53 71.46±1.66 70.79±1.17 80.00±1.40

Global
Pooling

Set2Set 72.90±0.75 50.19±0.39 79.55±0.39 69.89±1.94 73.27±0.85 71.94±0.56 68.55±1.92
SortPool 72.12±1.12 48.18±0.83 77.87±0.47 71.94±3.55 73.17±0.88 75.58±0.72 73.82±1.96
SAGPool(G) 72.16±0.88 49.47±0.56 78.85±0.56 76.78±2.12 72.02±1.08 71.54±0.91 74.18±1.20
StructPool 72.06±0.64 50.23±0.53 77.27±0.51 79.50±0.75 75.16±0.86 78.45±0.40 78.64±1.53
GMT 73.48±0.76 50.66±0.82 80.74±0.54 83.44±1.33 75.09±0.59 78.72±0.59 76.35±2.62

Hierarchical
Pooling

DiffPool 73.14±0.70 51.31±0.72 78.68±0.43 79.22±1.02 73.03±1.00 77.56±0.41 62.32±1.90
SAGPool(H) 72.55±1.28 50.23±0.44 78.03±0.31 73.67±4.28 71.56±1.49 74.72±0.82 67.45±1.11
TopKPool 71.58±0.95 48.59±0.72 77.58±0.85 67.61±3.36 70.48±1.01 73.63±0.55 67.02±2.25
ASAP 72.81±0.50 50.78±0.75 78.64±0.5 77.83±1.49 73.92±0.63 76.58±1.04 71.48±0.42
MinCutPool 72.65±0.75 51.04±0.70 80.87±0.34 79.17±1.64 74.72±0.48 78.22±0.54 74.25±0.86
SEP-G 74.12±0.56 51.53±0.65 81.28±0.15 85.56±1.09 76.42±0.39 77.98±0.57 78.35±0.33

that there are not any pooling methods suppress GIN in
NCI1, or, put differently, pooling methods also do not show
unified promotion in comparison with backbones. Consid-
ering the recent finding that message-passing is the crucial
mechanism in graph classification (Mesquita et al., 2020),
this phenomenon may not be so disappointing.

Variants of SEP-G. As discussed in Section 3.1, besides
GCN, our proposed pooling operator can also work with
other GNNs like GAT and GIN. Here, we delve deeper into
the collaboration ability of our pooling method with other
GNNs. Specifically, we employ the ChebNet (Defferrard
et al., 2016), GraphSAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018) and GIN (Xu et al., 2019). The clas-
sification results are shown in Table 2. As can be seen, the
overall superior performance is obtained by these variants,
which suggests the effectiveness and kindness of SEP. No-
tably, a better performance on IMDB-MULTI, PROTEINS,
DD and NCI1 is obtained by SEP with GAT, which further
indicates the huge potential of SEP in collaboration with
other SOTA backbones.

Visualization case study. To better demonstrate the ef-
fectiveness of SEP on essential structure preserving, we
present the clustering results of DiffPool, MinCutPool, and
SEP on samples from the MUTAG dataset after the first
graph coarsening. As shown in Figure 5, DiffPool and Min-
CutPool severely damage the essential structures of the two
compounds, in which the ring structures of two molecular
formulas are arbitrarily torn into several pieces. Fortunately,
SEP manages to take good care of these vital structures in
the process of cluster assignment generation, and this shows
the effectiveness of SEP in issues addressing.

(a) DiffPool (b) MinCutPool (c) SEP

Figure 5: Essential structure preserving on MUTAG.

4.3. Node Classification

Node classification is another important task regarding
graphs in GNNs, which aims to label each node in a given
graph G. Here, we conduct corresponding experiments on
ubiquitous benchmarks to validate the effectiveness of our
proposed SEP-N.

Datasets. We evaluate SEP-N under the transductive
learning setting, which includes three datasets Cora, Cite-
seer and Pubmed (Sen et al., 2008). The three benchmarks
are constructed on the connections of document citations,
which means nodes are documents and edges are citation
links. The node features are different among three datasets.
Specifically, the input features of Cora and Citeseer are one-
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Table 2: Graph classification accuracies of SEP-G with various backbones. The default backbone is GCN, and we
denote it as SEP-G-GCN for a better illustration.

Variants Social Network Bioinformatics
IMDB-BINARY IMDB-MULTI COLLAB MUTAG PROTEINS DD NCI1

SEP-G-GCN 74.12±0.56 51.53±0.65 81.28±0.15 85.56±1.09 76.42±0.39 77.98±0.57 78.35±0.33
SEP-G-GIN 73.37±0.95 51.81±0.98 79.18±0.60 83.22±1.28 74.77±1.42 75.98±1.15 76.59±1.65
SEP-G-GAT 73.24±0.81 51.87±0.45 79.26±0.39 84.45±1.81 76.72±0.92 78.07±0.74 78.43±1.07
SEP-G-ChebNet 73.72±0.42 50.84±0.68 80.73±0.43 83.25±1.13 74.67±0.75 76.69±0.71 77.68±0.97
SEP-G-GraphSAGE 73.14±0.87 50.43±1.31 79.88±0.58 83.75±1.43 75.26±0.86 77.95±0.55 77.65±1.21

hot embedding of words in each document, while the node
features of Pubmed are the TF-IDF weighted word vectors.
Following the experiment setup in previous works (Kipf
& Welling, 2017; Gao & Ji, 2019), the designated train-
ing/validation/testing splits on Cora, Citeseer and Pubmed
are adopted, that is, training set has 20 nodes for each class,
validation set has 500 nodes and testing set has 1,000 nodes.
Table 3 shows the dataset statistics.

Baselines. In addition to g-U-nets (Gao & Ji, 2019) that
has the same encoder-decoder design, we also include three
SOTA backbones in GNNs: GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), and GIN (Xu et al., 2019).
Moreover, other following works based on the three models
are also employed for a comprehensive comparison, such
as FastGCN (Chen et al., 2018), APPNP (Klicpera et al.,
2019), MixHop (Abu-El-Haija et al., 2019), SGC (Wu et al.,
2019), DGI (Velickovic et al., 2019), S2GC (Zhu & Koniusz,
2020), and GCNII (Chen et al., 2020).

Configurations. For node classification tasks, we fix our
SEP-N with two blocks of encoders and decoders as pre-
sented in Figure 3, and plan to obtain the coding tree for
each dataset under the guidance of three-dimensional struc-
tural entropy. In particular, each block has a GCN layer
followed by a SEP (or SEP-U) layer. Finally, a GCN layer is
adopted to make final prediction. There is no doubt that skip
connections between layers are also established between
encoder and decoder analogous to g-U-nets. Note that we
add an additional linear layer after each SEP or SEP-U layer
to learn more task-specific node representations. Dropout
(Srivastava et al., 2014) with ReLU on feature matrices is
applied to all layers in SEP-N, and L2 regularization is
also adopted to avoid over-fitting. Detailed descriptions for
experimental setup are shown in Appendix A.3.

Classification results. The accuracies of our proposed
SEP-N and baselines on three benchmarks are shown in
Table 3. In general, we can observe that the SEP-N does
not achieve the best performance on any datasets, which
are shown in S2GC on Citeseer and GCNII on Cora and
Pubmed. This problem may be attributed to the cluster
assignments generation, which only relies on structural in-

formation, while the tasks regarding node classification are
more dependent on the input features of nodes. However,
SEP-N still obtains competitive results with only 5 GCN
layers, which is much less than the design of S2GC (16) and
GCNII (64 for Cora, 32 for Citeseer, 16 for Pubmed). In par-
ticular, the accuracies of SEP-N on three datasets are consis-
tently better than the three backbones (i.e., GCN, GAT and
GIN). Furthermore, compared with g-U-nets, which is also
designed with GCN and hierarchical pooling mechanism,
our method also surpasses it on two out of three datasets
(Cora and Pubmed) even with fewer learning blocks. Note
that superior performance of SEP-N on Citeseer has also
been achieved with different numbers of blocks, which we
will describe it in the next experiments. In summary, we
can confirm the effectiveness of the proposed hierarchical
pooling operation in node representation learning.

Table 3: Node classification accuracies on Cora, Citeseer,
and Pubmed (%). We highlight our results and those that
are significantly higher than all other methods.

Cora Citeseer Pubmed
# Nodes 2,708 3,327 19,717
# Edges 5,429 4,732 44,338
# Features 1,433 3,703 4,500
# Classes 7 6 3
GCN 81.4±0.4 70.9±0.5 79.0±0.4
GAT 83.3±0.7 72.6±0.6 78.5±0.3
GIN 77.6±1.1 66.1±0.9 77.0±1.2
FastGCN 79.8±0.3 68.8±0.6 77.4±0.3
APPNP 83.3±0.5 71.7±0.6 80.1±0.2
MixHop 81.8±0.6 71.4±0.8 80.0±1.1
DGI 82.5±0.7 71.6±0.7 78.4±0.7
SGC 81.0±0.03 71.9±0.11 78.9±0.01
S2GC 83.5±0.02 73.6±0.09 80.2±0.02
GCNII 85.5±0.5 73.4±0.6 80.3±0.4
g-U-Nets 84.4±0.6 73.2±0.5 79.6±0.2
SEP-N 84.8±0.4 72.9±0.7 80.2±0.8

Ablation Study of Network Depth. Besides the other
bunch of hyper-parameters in GNNs, the network depth,
corresponding to the number of blocks, is also another cru-
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Table 4: Node classification accuracies with different network depths (%). We highlight the best results with different
depths for SEP-N and g-U-Nets.

Cora Citeseer Pubmed
Depth g-U-Nets SEP-N g-U-Nets SEP-N g-U-Nets SEP-N
1 − 84.3±0.6 − 73.3±0.6 − 78.9±0.6
2 82.6±0.6 84.8±0.4 71.8±0.5 72.9±0.7 79.1±0.3 80.2±0.8
3 83.8±0.7 84.5±0.3 72.7±0.7 72.1±0.6 79.4±0.4 79.5±0.5
4 84.4±0.6 83.6±0.6 73.2±0.5 72.1±0.2 79.6±0.2 78.5±0.3
5 84.1±0.5 83.9±0.5 72.8±0.6 72.4±0.6 79.5±0.3 79.8±0.7

cial setting in model construction. We, thus, delve deeper
into the effect of model depth on node classification perfor-
mance. We iteratively test SEP-N with various numbers of
blocks ∈ {1, 2, 3, 4, 5}, and the results are shown in Table 4.
As we mentioned above, SEP-N achieves superior perfor-
mance on Citeseer with only one encoder and decoder. In
particular, compared with g-U-Nets, we can see that the best
performance of SEP-N on three datasets is achieved with
at most 2 blocks, which once again proves the capacity of
shallow networks in high-level feature encoding (Gao & Ji,
2019). Moreover, this scene also reveals that additional con-
nection information among layers for cluster assignments
generation is helpful for representation learning, as well as
benefits model optimization that better performance with
fewer parameters and computations.

5. Conclusions
In this paper, we develop an optimization algorithm to ad-
dress several limitations of existing hierarchical pooling
approaches. In particular, under the guidance of structural
entropy minimization, our pooling method, SEP, can not
only capture the connectivities among pooling layers but
also fix the problem of destroying local structure due to
the hyper-parameter for node compression. Based on the
proposed SEP, we introduce two learning models, SEP-G
and SEP-N, for graph classification and node classifica-
tion, respectively. Experimental results suggest that SEP-G
achieves significant improvements on graph classification,
and SEP-N obtains superior performance as compared to
other GNNs on node classification tasks. An interesting
direction for future work is shown in the combination of
structural entropy and node features.
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A. Experiment Setup
In this section, we introduce the experimental details about graph reconstruction, graph classification, and node classification
tasks respectively.

A.1. Graph Reconstruction

Dataset. Graph reconstruction experiments with synthetic graphs represented in a 2-D Euclidean space, such as ring and
grid structures. The node features of a graph consist of their location in a 2-D coordinate space, and the adjacency matrix
indicates the connectivity pattern of nodes. The goal here is to restore all node locations from compressed features after
pooling, with the intact adjacency matrix.

GCN SEP GCNGCN SEP-U GCN GCN

Figure A.1: The architecture for graph reconstruction.

Implementation details. Following (Bianchi et al., 2020), we use the two message passing layers both right before the
pooling operation and right after the unpooling operation. Also, both pooling and unpooling operations are performed once
and sequentially connected, as illustrated in the Figure A.1. We compare our methods against both the node drop methods,
including TopKPool (Gao & Ji, 2019), SAGPool (Lee et al., 2019) and ASAP (Ranjan et al., 2020), and node clustering
methods, including DiffPool (Ying et al., 2018) and MinCutPool (Bianchi et al., 2020). For the node drop methods, we use
the unpooling operation proposed in the graph U-net (Gao & Ji, 2019). For the node clustering methods, we use the graph
coarsening schemes described in the Equation 15, with their specific implementations on generating an assignment matrix.
For our proposed method, we follow the setting of node clustering methods. In particular, we finely tuned the height of
coding tree produced by Algorithm 1 to make sure the number of nodes compressed in the first layer close to the setting of
baselines. For model configuration, the pooling ratio of all models is set to 25%, the learning rate is set to 5× 10−3, and
hidden size is set to 32. For the loss function, we use the Mean Squared Error (MSE) to train models. We then optimize
the network with Adam optimizer. We use the early stopping criterion, where we stop the training if there is no further
improvement on the training loss during 1,000 epochs. Further, the maximum number of epochs is set to 10,000. Note that,
there is no other available graphs for validation of the synthetic graph, such that we train and test the models only with the
given graph in the Figure 3(a).

Reconstruction results on all hierarchical pooling methods. Figure A.2 and A.3 show the results of reconstructed
graphs by model with various pooling methods. As can be seen from the first row of Figure A.2 and A.3, the node drop
methods suffer from the issue of information loss, resulting in the basic shape of original graphs can not be identified. For
node clustering methods, DiffPool and MinCutPool, the basic shape of original graphs is basically retained. However, we
can still see the significant distortion in the edge of ring and the center of grid, which are almost prevented in SEP.

A.2. Graph Classification

Social network datasets. IMDB-BINARY and IMDB-MULTI are derived from the collaboration of a movie set. In these
two datasets, every graph consists of actors or actresses, and each edge between two nodes represents their cooperation
in a certain movie. Each graph is derived from a prespecified movie, and its label corresponds to the genre of this movie.
Similarly, COLLAB is also a collaboration dataset but from a scientific realm, which includes three public collaboration
datasets (i.e., Astro Physics, High Energy Physics and Condensed Matter Physics). Many researchers from each field form
various ego networks for the graphs in this benchmark. The label of each graph is the research field to which the nodes
belong.

Bioinformatic datasets. D&D contains graphs of protein structures. A node represents an amino acid and edges are
constructed if the distance of two nodes is less than 6Å. A label denotes whether a protein is an enzyme or non-enzyme.
PROTEINS is a dataset where the nodes are secondary structure elements (SSEs), and there is an edge between two nodes if
they are neighbors in the given amino acid sequence or in 3D space. The dataset has 3 discrete labels, representing helixes,
sheets or turns. PTC is a dataset containing 344 chemical compounds that reports the carcinogenicity of male and female
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(a) TopKPool (b) SAGPool (c) ASAPPool

(d) DiffPool (e) minCutPool (f) SEP

Figure A.2: Reconstruction results of ring synthetic graphs, compared to node drop and clustering methods.

(a) TopKPool (b) SAGPool (c) ASAPPool

(d) DiffPool (e) minCutPool (f) SEP

Figure A.3: Reconstruction results of grid synthetic graphs, compared to node drop and clustering methods.
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rats and has 19 discrete labels. NCI1 is a dataset made publicly available by the National Cancer Institute (NCI) and is a
subset of balanced datasets containing chemical compounds screened for their ability to suppress or inhibit the growth of
a panel of human tumor cell lines; this dataset possesses 37 discrete labels. MUTAG has seven kinds of graphs that are
derived from 188 mutagenic aromatic and heteroaromatic nitro compounds. PTC includes 19 discrete labels and reports the
carcinogenicity of 344 chemical compounds for male and female rats.

Initial inputs. The data of the bioinformatic datasets and social network datasets differ in that the nodes in bioinformatics
graphs have categorical labels that do not exist in social networks. Thus, the initial node features of the HRN inputs are set
to one-hot encodings of the node degrees for social networks and a combination of the one-hot encodings of the degrees and
categorical labels for bioinformatic graphs.

Implementation details. We evaluate the model performance with a 10-fold cross validation setting, where the dataset
split is based on the conventionally used training/test splits (Zhang et al., 2018; Bianchi et al., 2020; Baek et al., 2021).
In addition, we use the 10 percent of the training data as a validation data following the fair comparison setup (Errica
et al., 2020). We use the early stopping criterion, where we stop the training if there is no further improvement on the
validation loss during 50 epochs. Furthermore, the maximum number of epochs is set to 500. We then report the average
performances on test sets, by performing overall experiments 10 times. In particular, following the implementation of (Xu
et al., 2019), we train each epoch with a fixed number of iterations (i.e., 50) for small datasets. We set the pooling ratio as
25% in each pooling layer for baselines as previous works (Baek et al., 2021; Bianchi et al., 2020), while our model follows
the natural cluster assignments produced by Algorithm 1 with given height 3. For model configuration, the learning rate is
set to 5× 10−4, the hidden size is set ∈ {64, 128}, the batch size is set ∈ {32, 128}, weight decay is set to 1× 10−4, and
dropout rate is set ∈ {0, 0.5}. Then we optimize the network with Adam optimizer. For a fair comparison of baselines (Lee
et al., 2019), we use the three GCN layers (Kipf & Welling, 2017) as a message passing function for all models with skip
connections, and only change the pooling architecture throughout all models. Because GMT is the most recent work that
replicates these popular pooling approaches in previous studies, and we implement SEP-G based on the code of GMT 4,
thus the accuracies of baselines are derived from (Baek et al., 2021).

A.3. Node Classification

Citation datasets. We utilize three standard citation network benchmark datasets: Cora, Citeseer and Pubmed (Sen et al.,
2008). In all of these datasets, nodes correspond to documents and edges to (undirected) citations. Node features correspond
to elements of a bag-of-words representation of a document. Each node has a class label. In particular, the node features are
different among three datasets. Specifically, the input features of Cora and Citeseer are one-hot embedding of words in
each document, while the node features of Pubmed are the TF-IDF weighted word vectors. The Cora dataset contains 2708
nodes, 5429 edges, 7 classes and 1433 features per node. The Citeseer dataset contains 3327 nodes, 4732 edges, 6 classes
and 3703 features per node. The Pubmed dataset contains 19717 nodes, 44338 edges, 3 classes and 500 features per node.

Implementation details. We closely follow the transductive experimental setup in (Kipf & Welling, 2017). Each class
is only allowed 20 nodes for training, which honors the transductive setup, and the training algorithm has access to all of
the nodes’ feature vectors. The predictive power of the trained models is evaluated on 1000 test nodes, and we use 500
additional nodes for validation purposes. We also use the early stopping criterion, where we stop the training if there is no
further improvement on the validation loss during 50 epochs. Furthermore, the maximum number of epochs is set to 1000.
We obtain cluster assignment matrices of each dataset under the guidance of three-dimensional structural entropy, and adopt
the first two layers for hierarchical pooling. For model configuration, the learning rate is set to 0.01, the hidden size is set
∈ {16, 32, 128, 256}, weight decay is set ∈ {0.02, 5× 10−4}, and dropout rate for each layer is set ∈ {0, . . . , 0.9}. Finally,
we optimize the network with Adam optimizer.

Fair comparison with SOTA methods. To make a fair comparison with S2GC and GCNII, we present the results of the
two methods with similar convolutional layers. As shown in Table A.1, SEP-N obtains competitive results with only 5 GCN
layers, which is much less than the requirement of S2GC (16) and GCNII (64 for Cora, 32 for Citeseer, 16 for Pubmed).
Furthermore, SEP-N outperforms S2GC and GCNII when putting similar number of convolution layers, which reveals the
effectiveness of hierarchical graph pooling in node classification tasks when facing limited computing resources.

4https://github.com/JinheonBaek/GMT

https://github.com/JinheonBaek/GMT
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Table A.1: S2GC and GCNII with similar #Convs of SEP-N.

Model (#Convs)
S2GC(4) S2GC(8) GCNII(4) GCNII(8) SEP-N(5)

Cora 79.8 82.2 82.6 84.2 84.8
Citeseer 72.6 72.7 68.9 70.6 72.9
Pubmed 79.2 79.7 78.8 79.3 80.2


