Scaling-up Diverse Orthogonal Convolutional Networks
by a Paraunitary Framework

Jiahao Su! Wonmin Byeon

Abstract

Enforcing orthogonality in convolutional neu-
ral networks is a remedy for gradient vanish-
ing/exploding problems and sensitivity to pertur-
bation. Many previous approaches for orthog-
onal convolutions enforce orthogonality on its
flattened kernel, which, however, do not lead to
the orthogonality of the operation. Some recent
approaches consider orthogonality for standard
convolutional layers and propose specific classes
of their realizations. In this work, we propose a
theoretical framework that establishes the equiva-
lence between diverse orthogonal convolutional
layers in the spatial domain and the paraunitary
systems in the spectral domain. Since 1D parau-
nitary systems admit a complete factorization, we
can parameterize any separable orthogonal con-
volution as a composition of spatial filters. As
a result, our framework endows high expressive
power to various convolutional layers while main-
taining their exact orthogonality. Furthermore,
our layers are memory and computationally ef-
ficient for deep networks compared to previous
designs. Our versatile framework, for the first
time, enables the study of architectural designs
for deep orthogonal networks, such as choices
of skip connection, initialization, stride, and dila-
tion. Consequently, we scale up orthogonal net-
works to deep architectures, including ResNet
and ShuffleNet, substantially outperforming their
shallower counterparts. Finally, we show how
to construct residual flows, a flow-based genera-
tive model that requires strict Lipschitzness, us-
ing our orthogonal networks. Our code will be
publicly available at https://github.com/
umd-huang-lab/ortho-conv.

| University of Maryland, College Park, MD USA 2 NVIDIA
Research, NVIDIA Corporation, Santa Clara, CA USA . Corre-
spondence to: Jiahao Su <jiahaosu@umd.edu>, Furong Huang
<furongh@umd.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2 Furong Huang'

1. Introduction

Convolutional neural networks, whose deployment has wit-
nessed extensive empirical success, still exhibit limitations
that are not thoroughly studied. Firstly, deep convolutional
networks are in general difficult to learn, and their high
performance heavily relies on techniques that are not fully
understood, such as skip-connections (He et al., 2016a),
batch normalization (Ioffe & Szegedy, 2015), specialized
initialization (Glorot & Bengio, 2010). Secondly, they are
sensitive to imperceptible perturbations, including adversar-
ial attacks (Goodfellow et al., 2014) and geometric transfor-
mations (Azulay & Weiss, 2019). Finally, a precise char-
acterization of their generalizability is still under active
investigation (Neyshabur et al., 2018; Jia et al., 2019).

Orthogonal networks, which have a “flat” spectrum with
all singular values of each linear layer being 1 (thus the
output norm ||y|| equals the input norm ||x||, V), alleviate
all problems above. As shown in recent works, by enforc-
ing orthogonality in neural networks, we obtain (/) easier
optimization (Zhang et al., 2018a; Qi et al., 2020): since
each orthogonal layer preserves the gradient norm during
backpropagation, an orthogonal network is free from gradi-
ent vanishing/ exploding problems; (2) robustness against
adversarial perturbation (Anil et al., 2019; Li et al., 2019b;
Trockman & Kolter, 2021): since each orthogonal layer is
1-Lipschitz, an orthogonal network can not amplify any per-
turbation to the input to flip the output prediction; (3) better
generalizability (Jia et al., 2019): a network’s generalization
error is positively related to the standard deviation of each
linear layer’s singular values, thus encouraging orthogonal-
ity in the network lowers its generalization error.

Despite the benefits, enforcing orthogonality in convolu-
tional networks is challenging. To avoid strict constraint,
orthogonal initialization (dynamical isometry) (Pennington
et al., 2017; 2018; Xiao et al., 2018) and orthogonal regu-
larization (Wang et al., 2019; Qi et al., 2020) are opted for
the gradient vanishing/exploding problems. However, as
they do not enforce strict orthogonality (and Lipschitzness),
these methods are unsuitable for applications that require
strict Lipschitzness, such as adversarial robustness (Anil
et al., 2019) and residual flows (Chen et al., 2019).

https://github.com/umd-huang-lab/ortho-conv
https://github.com/umd-huang-lab/ortho-conv

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Our goal is to enforce exact orthogonality in state-of-the-art
deep convolutional networks without expensive overhead.
We identify three main challenges. Challenge I: Achiev-
ing exact orthogonality throughout training. Prior works
such as orthogonal regularization (Wang et al., 2019) and
reshaped kernel orthogonality (Jia et al., 2017; Cisse et al.,
2017), while enjoying algorithmic simplicity, fail to meet
the requirement of exact orthogonality. Also, note that en-
forcing the constraint during training is necessary since a
post-training orthogonalization can substantially alter the
weight values and jeopardize the performance. Challenge
II: Avoiding expensive computations. An efficient algo-
rithm is crucial for scalability to large networks. Existing
work based on projected gradient descent (Sedghi et al.,
2019), however, requires expensive projection after each up-
date. For instance, the projection step in Sedghi et al. (2019)
computes an SVD and flattens the spectrum to enforce or-
thogonality, which costs O(size(feature) - channels®) for
a convolutional layer. Challenge III: Scaling-up to state-
of-the-art deep convolutional networks. There are many
variants to the standard convolutional layer essential for
state-of-the-art networks, including dilated, strided, group
convolutions. However, none of the existing methods pro-
poses mechanisms to orthogonalize these variants. The lack
of techniques, as a result, limits the broad applications of
orthogonal convolutional layers to state-of-the-art networks.

We resolve challenges I, IT & III by proposing a parame-
terization of orthogonal convolutions. First, using the con-
volution theorem (Oppenheim et al., 1996) (spatial con-
volution is equivalent to spectral product), we reduce the
problem of designing orthogonal convolutions to construct-
ing unitary matrices for all frequencies, i.e., paraunitary
systems (Vaidyanathan, 1993). Further using a complete
factorization theorem of paraunitary systems, we obtain
a parameterization in the spatial domain for all orthogo-
nal 1D-convolutions and separable 2D-convolutions (no
work achieves a complete parameterization of all orthog-
onal 2D-convolutions), which attains high expressiveness,
computational/memory efficiency, and exact orthogonality.
Since no previous approach achieved exact orthogonality,
we are the first to show how essential exact orthogonality
is in different types of networks — we observe that exact
orthogonality in deeper architectures (with > 10 layers) is
beneficial to obtain robust performance. (more discussion
on exact orthogonality in Appendix E.3).

Furthermore, we unify orthogonal convolution variants (di-
lated, strided, and group convolutions) as paraunitary sys-
tems, allowing us to orthogonalize these variants using the
same parameterization for standard convolutions. (No pre-
vious work presents mechanisms for learning these variants’
orthogonal versions.) Since these variants are crucial in ad-
vanced architectures, our work makes it possible to generate
the orthogonal counterparts of these architectures, allowing

us to investigate their performance, which was not possi-
ble before. Combined with our study in skip-connection
and initialization, we scale orthogonal networks to deep ar-
chitectures, including ResNet and ShuffleNet, substantially
outperforming their shallower counterparts (Section 6). Fi-
nally, we show how to deploy our orthogonal networks in
Residual Flow (Chen et al., 2019), a flow-based generative
model that requires strict Lipschitzness (Appendix F).

Summary of Contributions:

(1) We establish the equivalence between orthogonal con-
volutions in the spatial domain and paraunitary systems in
the spectral domain. Thus, we can interpret all existing
approaches as implicit designs of paraunitary systems.

(2) Based on a factorization theorem of paraunitary systems,
we propose a complete parameterization of orthogonal 1D-
convolutions and separable 2D-convolutions, which attains
high expressiveness, exact orthogonality (machine-epsilon),
and computational/memory efficiency (< 50% memory of
previous methods). These features are crucial in learning
deep orthogonal networks with state-of-the-art performance.
(3) We prove that orthogonality for various convolutional
layers (strided, dilated, group) are also entirely characterized
by paraunitary systems. Consequently, our parameterization
easily extends to these variants, ensuring their exact orthog-
onality, completeness, and efficiency.

(4) We study the design considerations (choices of skip
connection, initialization, depth, width, kernel size) for or-
thogonal networks, and show that orthogonal networks can
scale to deep architectures (e.g., ResNet, ShuffleNet).

2. Designing Orthogonal Convolutions via
Paraunitary Systems

Designing an orthogonal convolutional layer {h; , : y; =
h; s * ws}fz’sl)szl (s, t index input and output channels) in
the spatial domain is challenging. Given length-N inputs,
the weight matrix of a convolutional layer is block-circulant,
with its (¢, s)*™® block Cir (h; s) € RV*N as:

}If)_g[l] ht,s[N] ht,s [2]

}L/,,S[Q} }1//,.5[1} }Lt"s[N]

Cir (he,s) = @2.1)

he,s[N] hes[2] hes[1]
Therefore, a convolutional layer is orthogonal if the block-
circulant matrix [Cir (has)]fﬁ’S:l is orthogonal for any
input length N. However, it is not obvious how to enforce
orthogonality in block-circulant matrices.

2.1. Achieving Orthogonal Convolutions by
Paraunitary Systems

We propose a novel design of orthogonal convolutions from
a spectral perspective, motivated by the convolution theorem
(Theorem 2.1). For simplicity, we group the entries at the

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

[Ulfl](U(fl])T’
I_U(—l)(U(—l))T]

i LA A A A
I1-U""(U™)"

Figure 1. Complete design of 1D orthogonal convolution as a cascade of convolutions. The filter coefficients are depicted in each block,

where @Q is orthogonal and U®’s are column-orthogonal.

same locations a vector/matrix, e.g., we denote {z4[n]}5_;
as z[n] € RS and {hy [n]}}>5 ,_; as hln] € RT*S

Theorem 2.1 (Convolution theorem (Oppenheim et al.,
1996)). A convolutional layer h: y[i] =) h[n]x[i — n]
in the spatial domain is equivalent to matrix-vector products
in the spectral domain, i.e., Y (z) = H(2)X (z),Vz € C.
Here, X (2) = >3 ®[n]z"" Y (2) = 3235 ylnl=",
H(z) = ZTLL:_L h[n]z=" denote the z-transforms of input,
output, kernel respectively, where N is the length of x,y

and [—L, L] is the span of the filter h.

The convolution theorem states that a convolution layer is a
matrix-vector product in the spectral domain. If the transfer
matrix H (z) is unitary at z = e/ for all frequencies Vw €
[0, 27) (j is the imaginary unit), the layer h is orthogonal.

As our major novelty, we design orthogonal convolutions
via construction of unitary matrix H (e/) at all frequencies
w € [0,27), known as a paraunitary system (Vaidyanathan,
1993). Theorem B.6 shows that a convolutional layer is or-
thogonal in the spatial domain if and only if it is paraunitary
in the spectral domain.

Theorem 2.2 (Paraunitary theorem (Vaidyanathan, 1993)).
A convolutional layer Y (z) = H(z2)X(z) is orthogo-
nal if and only if its transfer matrix H(z) is parauni-
tary, i.e., H(z)TH(z) = I, V|z| = 1, or equivalently
H(ej“)TH(ej“’) = I, Yw € R. In other words, the trans-
fer matrix H (¢)) is unitary for all frequencies w € R.

Benefits through paraunitary systems. (1) The spectral
representation simplifies the designs of orthogonal convolu-
tions without analyzing block-circulant matrices. (2) Since
paraunitary systems are necessary and sufficient for orthog-
onal convolutions, it is impossible to find an orthogonal con-
volution whose transfer matrix is not paraunitary. (3) There
exists a complete factorization of paraunitary systems: any
paraunitary H (z) is a product of multiple factors in the spec-
tral domain (Equation (2.2a)). (4) Since spectral multipli-
cations correspond to spatial convolutions, any orthogonal
convolution can be realized as cascaded convolutions, each
parameterized by an orthogonal matrix (Equation (2.2b)).
(5) There are mature methods that parameterize orthogonal
matrices via unconstrained parameters. Consequently, we
can learn orthogonal convolutions using standard optimizers
on a model parameterized via our design.

Interpretation of existing methods. Since paraunitary
system is a necessary and sufficient for orthogonal con-
volution, all existing approaches, including singular value
clipping and masking (SVCM) (Sedghi et al., 2019), block
convolution orthogonal parameterization (BCOP) (Li et al.,
2019b), Cayley Convolution (CayleyConv) (Trockman &
Kolter, 2021), skew orthogonal convolution (SOC) design
paraunitary systems implicitly. We discuss these approaches
from the angle of paraunitary systems in Appendix C.3.3

2.2. Parameterization of Paraunitary Systems

After reducing the problem of orthogonal convolutions to pa-
raunitary systems, we are left with how to realize paraunitary
systems. To address this, we use a complete factorization to
realize any paraunitary system — Using Theorem C.7, any
paraunitary system H (z) can be written as

H(2) =V (xUD)...v(zUuY) 020

— .Zza
QV(z"HUW)...v(zUW), where
U1 _yOy®’ oyg®’

V(izUW)=1-UYU +U Ui z, (2.2b)

Vee{-L,---,—1}U{l,--- L}

Here Q is an orthogonal matrix and each U () is a column-
orthogonal matrix whose number of columns is sampled
uniformly from {1,--- ,T}. As spectral multiplications are
equivalent to spatial convolutions, the complete spectral fac-
torization of paraunitary systems in Equation (2.2a) allows
us to parameterize any orthogonal convolution in the spatial
domain as cascaded convolutions of V' (z; U¥))’s spatial
counterparts and the orthogonal matrix Q.

Model design in the spatial domain. Following Equa-
tion (2.2), we obtain a complete design of orthogonal 1D-
convolutions: using learnable (column)-orthogonal matri-
ces {UDY,! , Q,{UD}IL), we parameterize a size
(L + L + 1) convolution as cascaded convolutions of the
following filters in the spatial domain

_pop®T gogoT]\
{[I vy oy HZ_L, s

L

Q, { [U(@Uuﬁ, I— U(é)U(IZ)T} } .
=1

Figure 1 visualizes our design of orthogonal convolution

layers; each block denotes a convolution and the filter coeffi-

cients are displayed in each block. In practice, we compose

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Ortho. Conv. H (=)=2 hn]z 7,” Paraunitary
h(n] H(z)

H(z)=7(0.1U")) Ortho. Factors

Q=exp(4)
U"=exp(A")

Model Params.

0.U") 4,14")

Figure 2. SC-Fac: A pipeline for designing orthogonal convolutional layer. (1) An orthogonal convolution h[n] is equivalent a
paraunitary system H (z) in the spectral domain (Theorem 2.1). (2) The paraunitary system H (z) is multiplications of factors
characterized by (column-)orthogonal matrices ({U“)};:I_L, Q, {U“)}@L:l) (Equation (2.2), Theorem B.6). (3) These orthogonal
matrices are parameterized by skew-symmetric matrices using exponential map.

all (L + L + 1) filters into one for orthogonal convolu-
tion, which not only increases the computational parallelism
but also avoids storing intermediate outputs between filters.
With a complete factorization of paraunitary systems, we
reduce the problem of designing orthogonal convolutions to
the one for orthogonal matrices.

Parameterization for orthogonal matrices. We perform a
comparative study on different parameterizations of orthog-
onal matrices in Appendix C.4, including the Bjorck orthog-
onalization (Anil et al., 2019; Li et al., 2019b), the Cayley
transform (Helfrich et al., 2018; Maduranga et al., 2019),
and the exponential map (Lezcano-Casado & Martinez-
Rubio, 2019). We follow the GeoTorch implementa-
tion (https://github.com/Lezcano/geotorch),
which adopts a modified version of exponential map due to
its efficiency, exactness, and completeness. The exponential
map is a surjective mapping from a skew-symmetry matrix
A to a special orthogonal matrix U (i.e., det(U) = 1) with
U =exp(A) =1+ A+ A?/2+ ---, which is computed
up to machine-precision (Higham, 2009). To parameterize
all orthogonal matrices, GeoTorch introduces an orthogo-
nal matrix V in U = V exp(A), where V is (randomly)
generated at initialization and fixed during training.

Finally, observe that the upper-triangle entries uniquely de-
termine a skew-symmetric matrix. Therefore, we have now
an end-to-end pipeline as shown in Figure 2, which pa-
rameterize orthogonal convolutions by unconstrained upper-
triangle entries in skew-symmetric matrices.

2.3. Separable Orthogonal 2D-Convolutions

As 2D-convolutions are widely used in convolutional net-
works, we extend our orthogonal 1D-convolution to the 2D
version. Analog to the 1D case, a 2D-convolutional layer
is orthogonal if and only if its transfer matrix H (21, 22) is
paraunitary (H (z1, z2) is unitary V|z1| = 1, |22 = 1).

Construction of orthogonal 2D-convolutions. Using two
orthogonal 1D-convolutions, we can readily obtain a com-
plete design of separable orthogonal 2D-convolutions,
where H(z1,22) = Hi(z1)Ha(z2) is a product of two
1D-paraunitary systems H7y(z1) and Ha(z2). As a result,
we can parameterize a separable orthogonal 2D-convolution
with filter size (L1 4L, +1)x (Ly+Ly+1) as a convolution
of two orthogonal 1D-convolutions with learnable (column-

)orthogonal matrices ({Ul(g)}e_:l_L1 ,Q1, {Ul(g) }L,f:ll) and

({UQ(D}[:{L , Qa, {UQ(Z)}@L;). Since our method relies
on separabiﬁgy and complete factorization for 1D parauni-
tary systems, we call it Separable Complete Factorization
(SC-Fac). (See Algorithm 1 in Appendix E for pseudo code).

Benefits compared to other methods. (1) Easier analy-
sis. While BCOP (Li et al., 2019a) and our SC-Fac are
complete in 1D case, none of them is complete in 2D case.
However, since separability reduces the design to the 1D
case, it makes the analysis of various types of convolutional
layers easier, as we will see in Section 3. (2) Efficient in-
ference. Note that CayleyConv (Trockman & Kolter, 2021)
and SOC (Singla & Feizi, 2021) define the convolution
implicitly (as an infinite-length filter), the coefficients for
H (21, z2) can not be saved for repeated inference. In con-
trast, SC-Fac has the same inference expense as a normal
convolutional layer after a one-time computation of the co-
efficients. (3) Efficient training. As analyzed in Table 5
(Appendix C.3.3), SC-Fac also has the lowest computational
complexity among all approaches. (4) Exact orthogonality.
Lastly, as shown in Table 2 (Section 6.1), SC-Fac achieves
exact orthogonality (up to machine-precision), while previ-
ous approaches are approximate to a varying degree.

3. Unifying Orthogonal Convolutions
Variants as Paraunitary Systems

Various convolutional layers (strided, dilated, and group
convolution) are widely used in neural networks. However,
it is not apparent how to enforce their orthogonality, as the
convolution theorem (Theorem 2.1) only holds for standard
convolutions. Previous approaches only deal with standard
convolutions (Sedghi et al., 2019; Li et al., 2019b; Trock-
man & Kolter, 2021), thus orthogonality for state-of-the-art
architectures has never been studied before.

We address this limitation by modifying convolution theo-
rem for each variant of convolution layer, which allows us
to design these variants using paraunitary systems.

Theorem 3.1 (Convolution and paraunitary theorems for
various convolutions). Strided, dilated, and group convolu-
tions can be unified in the spectral domain as Y (z) =
H(2)X(z), where Y (z), H(z), X(z) are modified Z-

transforms of y, h, x. We instantiate the equation for
strided convolutions in Proposition C.4, dilated convolu-

https://github.com/Lezcano/geotorch

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Table 1. Various types of convolutions. In the following table,
we present the modified Z-transforms, Y (z), H(z), and X (z)
for each type of convolution such that Y (z) = H(z)X(z)
holds. For dilated and strided convolutions, X"'f(z) is the
(r,R)-polyphase component of X (z), with which we define
XH(z) &2 [XOR()T . X UR()T]T and XF(2) =
[X O (2),..., X~ E=DIE(3)]. For group convolution, h is
the filter for the ¢*® group with HY(z) being its Z-transform. We
stack matrices from different groups into block-diagonal matrices:
hiGn] = bikdiag ({h9[z]}), H1%} (2) = blkdiag ({R9[2]}).

Spectral Representation

Type Spatial Representation
P pAEREp Y(:) H(x) X

Standard | yli] = Y, o, hn]x[i —n]
R-Dilated | y[i] =3, o, R F[n]zfi —n] | ¥
L R-Strided | y[i] = > 5 h[n]z[Ri—n] | ¥
1 R-Strided | y[i] = 3, 5 hln]aE[i —n] | YIF) (2
G-Group |yli] =3, e, RIS n]z[i — n]| Y(

tion in Proposition C.5, and group convolution in Proposi-
tion C.6. Furthermore, a convolution is orthogonal if and
only if H(z) is paraunitary.

In Table 1, we formulate strided, dilated, and group con-
volutions in the spatial domain, interpreting them as up-
sampled or down-sampled variants of a standard convolu-
tion. Now, we introduce the concept of up-sampling and
down-sampling precisely below.

(a) Up-sample (b) Down-sample

Figure 3. Up and down sampling. In (a), the sequence x[n] is up-
sampled into &"2[n]. In (b), x[n] is down-sampled into x°/[n]
with even entries (red) and 12 [n] with odd entries (blue).

Given a sequence x, we introduce its up-sampled sequence
x T with sampling rate R as '%[n] £ x[n/R] forn = 0
(mod R). On the other hand, its (r, R)-polyphase compo-
nent =" indicates the 7-th down-sampled sequence with
sampling rate R, defined as 2"1%[n] £ xz[nR + r]. We
illustrated an example of 17 and "!I® in Figure 3 when
sampling rate R = 2. The Z-transforms of =™, "% are
denoted as X T#(z), X "% (2) respectively. Their relations
to X (z) are studied in Appendix C.1.

Now we are ready to interpret convolution variants. (1)
Strided convolution is used to adjust the feature resolution:
a strided convolution (| R-strided) decreases the resolu-
tion by down-sampling after a standard convolution, while

a transposed strided convolutional layer (T R-strided) in-
creases the resolution by up-sampling before a standard
convolution. (2) Dilated convolution increases the receptive
field of a convolution without extra parameters: an R-dilated
convolution up-samples its filters before convolution with
the input. (3) Group convolution reduces the parameters and
computations, thus widely used by efficient architectures: a
G-group convolution divides the input/output channels into
G groups and restricts the connections within each group.
In Appendix C.2, we prove that a convolution is orthogonal
if and only if its modified Z-transform H (z) is paraunitary.

4. Scaling-up Lipschitz Orthogonal Networks

In this section, we switch our focus from layer design to
network design. In particular, we aim to study how to scale-
up deep orthogonal networks with Lipschitz bounds.

Lipschitz networks (Anil et al., 2019; Li et al., 2019b;
Trockman & Kolter, 2021), whose Lipschitz bounds are
imposed by their architectures, are proposed as competitive
candidates to guarantee robustness in deep learning. A Lip-
schitz network consists of orthogonal layers and GroupSort
activations — both are 1-Lipschitz and gradient norm pre-
serving (See Appendix D for more discussions on properties
of GroupSort and Lipschitz networks). Given a Lipschitz
constant L, a Lipschitz network f can compute a certified ra-
dius for each input from its output margin. Formally, denote
the output margin of an input x with label c as

M;(a) £ max(0, f(@)e —max f(@);). @AD
i.e., the difference between the correct logit and the second
largest logit. Then the output is robust to perturbation such

that f(z + €) = f(z) =, Ve : |le]| < My(z)/V2L.

Despite the benefit, existing architectures for Lipschitz net-
works remain simple and shallow, and a Lipschitz network
is typically an interleaving cascade of orthogonal layers and
GroupSort activations (Li et al., 2019b). More advanced
architectures, such as ResNet and ShuffleNet, are still out
of reach. While orthogonal layers supposedly substitute the
role of batch normalization (Pennington et al., 2017; Xiao
et al., 2018; Qi et al., 2020), other critical factors, including
skip-connections (He et al., 2016a;b) and proper initializa-
tion (Glorot & Bengio, 2010) are lacking. In this section, we
explore skip-connections and initialization methods toward
addressing this problem.

Skip-connections. Two classes of skip-connections are
widely used in deep networks, one based on addition and an-
other on concatenation. The addition-based one is proposed
in ResNet (He et al., 2016a), and adopted in SE-Net (Hu
et al., 2018) and EffcientNet (Tan & Le, 2019), while the
concatenation-based one is proposed in flow-based genera-
tive models (Dinh et al., 2014; 2016; Kingma & Dhariwal,

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

2018), and adopted in DenseNet (Huang et al., 2017) and
ShuffleNet (Zhang et al., 2018b; Ma et al., 2018). In what
follows, we propose Lipschitz skip-connections with these
two mechanisms, illustrated in Figure 6 (in Appendix D).

Proposition 4.1 (Lipschitzness of residual blocks). Sup-
pose f1, f% are L-Lipschitz and o € [0,1] is a learnable
scalar, then an additive residual block f : f(x) = af!(z)+
(1 —) f?(x) is L-Lipschitz. Alternatively, suppose g', g*
are L-Lipschitz and P is a permutation, then a concate-
native residual block g : g(x) £ P [g"(x'); g?(x?)] is
L-Lipschitz, where [-; -] denotes channel concatenation, and
@ is split into &1 and x», i.e., T = [x1, T3]

Initialization. Proper initialization is crucial in training
deep networks (Glorot & Bengio, 2010; He et al., 2016a).
Various methods are proposed to initialize orthogonal ma-
trices, including the uniform and torus initialization, for
orthogonal RNNs (Henaff et al., 2016; Helfrich et al., 2018;
Lezcano-Casado & Martinez-Rubio, 2019). However, ini-
tialization of orthogonal convolutions was not systematically
studied, and all previous approaches inherit the initializa-
tion from the underlying parameterization (Li et al., 2019b;
Trockman & Kolter, 2021). In Proposition D.1, we study the
condition when a paraunitary system (in the form of Equa-
tion (2.2)) reduces to an orthogonal matrix. This reduction
allows us to apply the initialization methods for orthogonal
matrices (e.g., uniform, torus) to orthogonal convolutions.

In the experiments, we will evaluate the impact of different
choices of skip-connections and initialization methods to
the performance of deep Lipschitz networks.

5. Related Work

Dynamical isometry (Pennington et al., 2017; Xiao et al.,
2018; Chen et al., 2018; Pennington et al., 2018) aims
to address the gradient vanishing/exploding problems in
deep vanilla networks with orthogonal initialization. These
works focus on understanding the interplay between initial-
ization methods and various nonlinear activations. However,
these approaches do not guarantee orthogonality (and Lips-
chitzness) after training, thus are unsuitable for applications
that require strict Lipschitz bounds, such as adversarial ro-
bustness (Anil et al., 2019; Li et al., 2019b) and residual
flows (Behrmann et al., 2019; Chen et al., 2019).

Learning orthogonality has three typical families of meth-
ods: regularization, parameterization (i.e., mapping un-
constrained parameters to the feasible set with a surjective
function), projected gradient descent (PGD) / Riemannian
gradient descent (RGD). While the regularization approach
is approximate, the latter two learn exact orthogonality. Fur-
thermore, PGD/RGD requires modification of the optimizer,
whereas the other two are compatible with standard optimiz-
ers for unconstrained optimization.

(1) For orthogonal matrices, various regularizations are
proposed in Xie et al. (2017) and Bansal et al. (2018). Al-
ternatively, numerous parameterizations exist, including
Householder reflections (Mhammedi et al., 2017), Given
rotations (Dorobantu et al., 2016), Cayley transform (Hel-
frich et al., 2018), matrix exponential (Lezcano-Casado &
Martinez-Rubio, 2019), and algorithmic unrolling (Anil
et al., 2019; Huang et al., 2020). Lastly, Jia et al. (2017)
propose PGD via singular value clipping, and Vorontsov
et al. (2017); Li et al. (2019a) consider RGD.

(2) For orthogonal convolutions, some existing works
learn orthogonality for the flattened matrix (Jia et al., 2017,
Cisse et al., 2017; Bansal et al., 2018) or each output chan-
nel (Liu et al., 2021). However, these methods do not lead
to orthogonality (norm preserving) of the operation. Sedghi
et al. (2019) propose to use PGD via singular value clipping
and masking — however, singular value decomposition is
expensive, and masking can lead to approximate orthogonal-
ity. To the best of our knowledge, there is no accurate PGD
or RGD for orthogonal convolutions. Alternatively, recent
works adopt parameterizations, using block convolutions (Li
et al., 2019b), Cayley transform (Trockman & Kolter, 2021),
or convolution exponential (Singla & Feizi, 2021).

Note that network deconvolution (Ye et al., 2020) aims to
whiten the activations (i.e., make the distribution close to
isometric Gaussian), but the added whitening operations are
not orthogonal (norm-preserving) in general.

Paraunitary systems are extensively studied in filter banks
and wavelets (Vaidyanathan, 1993; Strang & Nguyen, 1996;
Lin & Vaidyanathan, 1996). Classic theory shows that 1D-
paraunitary systems are completely characterized by a spec-
tral factorization (see Chapter 14 of Vaidyanathan (1993)
or Chapter 5 of Strang & Nguyen (1996)), but not all multi-
dimensional (MD) paraunitary systems admit a factorized
form (see Chapter 8 of Lin & Vaidyanathan (1996)). While
the complete characterization of MD-paraunitary systems is
known in theory (which requires solving a system of nonlin-
ear equations) (Venkataraman & Levy, 1995; Zhou, 2005),
most practical constructions use separable paraunitary sys-
tems (Lin & Vaidyanathan, 1996) and special classes of
non-separable paraunitary systems (Hurley & Hurley, 2012).
The equivalence between orthogonal convolutions and pa-
raunitary systems thus opens the opportunities to apply these
classic theories in designing orthogonal convolutions.

6. Experiments

In the experiments, we achieve the following goals. (1)
We demonstrate in Section 6.1 that our separable complete
factorization (SC-Fac) achieves precise orthogonality (up to
machine-precision), resulting in more accurate orthogonal
designs than previous ones (Sedghi et al., 2019; Li et al.,

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

2019b; Trockman & Kolter, 2021). (2) Despite the differ-
ences in preciseness, we show in Section 6.2 that different
realizations of paraunitary systems only have a minor im-
pact on the adversarial robustness of Lipschitz networks.
(3) Due to the versatility of our convolutional layers and
architectures, in Section 6.3, we explore the best strategy to
scale Lipschitz networks to wider/deeper architectures. (4)
In Appendix F, we further demonstrate in a successful ap-
plication of orthogonal convolutions in residual flows (Chen
et al., 2019). Training details are provided in Appendix E.1.

6.1. Exact Orthogonality

Table 2. (Left) Orthogonality evaluation of different designs
for standard convolution. The number ||Conv(x)||/||x| — 1
indicates the difference between the output and input norms of
a layer. A layer is more precisely orthogonal if the number is
closer to 0. As shown, our SC-Fac achieves orders of magnitude
more orthogonal on standard convolution. (Right) Orthogonal-
ity evaluation of our SC-Fac design for various convolutions.
The numbers ||Conv(x)|| /||| — 1 displayed are in the magnitude
of 1078, As shown, our SC-Fac layers achieve machine epsilon
orthogonality on variants of convolution.

Conv. | lIConv(@)]/l|=] — 1 Groups

Type
SC-Fac (+3.14+7.38) x 108
CayleyConv | (+2.88 £ 1.90) x 10~*

1 4 16

1
R-Dilated 2

+3.14 £ 7.38 +1.9446.87 +1.44 +6.29
+3.65+ 7.87 +1.41+6.77 +1.02+6.46

BCOP (+2.59 +6.14) x 107* 4| +3.18£7.46 +1.79£6.87 +1.54 £6.21
0429 + 3.1 —3 2| ~4.694£5.10 +4.3846.30 +1.79+5.78
SVEM (]429 + ‘;";,1 x 1(]4 VR-Suided) L 10.39£5.15 +6.35+ 6.04 +3.05 % 5.79
RKO —0.666 £ 1.74 x 10 FReStided 2| TROTETO0 H138£6.70 41434623
OSSN —0.422 +3.44 x 107° - 4| +3.86+7.09 +1.12+6.81 N/A

We evaluate the orthogonality of our SC-Fac layer verse
previous approaches, including CayleyConv (Trockman &
Kolter, 2021), BCOP (Li et al., 2019b), SVCM (Sedghi et al.,
2019), RKO (Cisse et al., 2017), OSSN (Miyato et al., 2018).
Our experiments are based on a convolutional layer with 64
input channels and 16 x 16 input size. We orthogonalize
the layer using each approach, and evaluate it with Gaussian
inputs. For our SC-Fac layer, We initialize all orthogonal
matrices uniformly, while we use built-in initialization for
others. We evaluate the difference between 1 and the ratio
of the output norm to the input norm — a layer is exactly
orthogonal if the number is close to 0.

(1) Standard convolution. We show in Table 2 (Left) that
our SC-Fac is orders of magnitude more precise than all
other approaches. The SC-Fac layer is in fact exactly orthog-
onal up to machine epsilon, which is 2724 ~ 5.96 x 108
for 32-bits floats. While RKO and OSSN are known not to
be orthogonal, we surprisingly find that SVCM is far from
orthogonal due to its masking step.

(2) Convolutions variants. In Section 3, we construct vari-
ous orthogonal convolutions using paraunitary systems. We
verify our theory in Table 2 (Right): SC-Fac layers are
exactly orthogonal (up to machine precision) for all types.

6.2. Adversarial Robustness

In this part, we evaluate the adversarial robustness of Lips-
chitz networks. Following the setup in Trockman & Kolter
(2021), we adopt KW-Large, ResNet9, WideResNet10-10
as the backbone architectures, and evaluate their robust accu-
racy on CIFAR-10 with different designs of orthogonal con-
volutions. We extensively perform a hyper-parameter search
and choose the best hyper-parameters for each approach
based on the robust accuracy. The details of the hyper-
parameter search is in Appendix E. We run each model with
5 different seeds and report the best accuracy.

(1) Certified robustness. Following Li et al. (2019b), we
use the raw images (without normalization) for network
input to achieve the best certified accuracy. As shown in
Table 3 (Top), different realizations of paraunitary systems,
SC-Fac, CayleyConv and BCOP have comparable perfor-
mance — CayleyConv is < 1% better in clean accuracy, but
the difference in robust accuracy are negligible.

(2) Practical robustness. Trockman & Kolter (2021) shows
that the certified accuracy is too conservative, and it is possi-
ble to increase the practical robustness (against PGD attacks)
with a standard input normalization. Notice that the nor-
malization increases the Lipschitz bound, thus lower the
certified accuracy. Our experiments in Table 3 (Bottom)
are based on ResNet9, WideResNet10-10 (Trockman &
Kolter, 2021) and a deeper WideResNet22. For the shallow
architectures (ResNet9, WideResNet10-10), our SC-Fac,
CayleyConv, and BCOP again achieve comparable perfor-
mance — CayleyConv is slightly ahead in robust accuracy.
For the deeper architecture, our SC-Fac has a clear ad-
vantage in both clean and robustness accuracy, and the
clean accuracy to only 5% lower than a traditional ResNet
32 trained with batch normalization. Surprisingly, we find
that RKO also performs well in robust accuracy while not
exactly orthogonal. In summary, our experiments show that
various paraunitary realizations provide different impacts
on certified and practical robustness. While exact orthog-
onality provides tight Lipschitz bound, there is a trade-off
between the exact orthogonality and the practical robustness
(especially with the shallow architectures).

6.3. Scaling-up Lipschitz Orthogonal Networks

All previous Lipschitz networks (Li et al., 2019b; Trockman
& Kolter, 2021) only consider shallow architectures (< 10
layers). In this part, we investigate various factors to scale
Lipschitz networks to deeper architectures: skip-connection,
depth/width, receptive field, and down-sampling.

(1) Types of skip-connections. Conventional wisdom sug-
gests that skip-connections mainly address gradient van-
ishing/exploding problems; thus, they are not needed for
orthogonal networks. To understand their role, we perform

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Table 3. (Left) Certified robustness for plain convolutional networks (without input normalization). We use KW-Large introduced by
Wong et al. (2018). The results for RKO, OSSN, and SVCM are produced by Trockman & Kolter (2021). (Right) Practical robustness
for residual networks (with input normalization). For 22 layers, the width of SC-Fac is multiplied with 10, CayleyConv with 6, and
BCOP and RKO with 8. We are unable to scale CayleyConv, BCOP, and RKO due to memory constraint. As shown, deeper architectures
perform better than shallow ones for all orthogonal convolution types, and our SC-Fac has a clear advantage.

‘ ‘ KW-Large ‘ ‘

ResNet9 | WideResNet10-10 | WideResNet22-max

€ |Test Acc.| SC-Fac Cayley BCOP|RKO OSSN SVCM

€ ‘Test Acc. ‘SC—FaC Cayley BCOP RKO ‘SC—Fac Cayley BCOP RKO ‘SC—Fac Cayley BCOP RKO

0| CI 74.69 75.57 74.81 |74.47 71.69 7243
| Clean | | 0| Clean |82.19

84.26 83.20 84.07‘ 84.09 8299 84.29 84.51‘ 87.82 85.85 84.50 84.55

36

Certified | 58.68 59.03 58.83 |57.50 55.71 52.11
255 =23

PGD | 67.72 67.78 67.47 [68.32 65.13 6643 2] PGD | 71.21

73.47 173.05 75.03‘ 7429 76.02 74.60 77.14‘ 76.46 7481 75.00 76.41

an experiment that trains deep Lipschitz networks with-
out skip-connection and with additive/concatenative skip-
connections (see Section 4). As shown in Table 4 (left), the
network with additive skip-connection substantially outper-
forms the other two, and the one without skip-connections
performs the worst. Thus, we empirically show that additive
skip-connection is crucial in deep Lipschitz networks.

Table 4. (Left) Comparisons of various skip connection types
on WideResNet22-10 (kernel size equals 5). (Right) Compar-
isons of various receptive field and down-sampling types on
WideResNet10-10. The symbols v/, X indicate whether average
pooling or strided convolution is used for down-sampling. For
“slim” in strided convolution, we set kernel_size = stride; and for
for “wide”, kernel_size = stride * kernel_size’ (where kernel_ size’
is the kernel size for the main branch.

Receptive Field | Down-Sampling | Test Acc.
Kernel Dilation | Pool Stride | Clean PGD
Skib type | Test Acc. -
L [Clon PGD 3 1 X slim | 80.70 68.81
3 1 X wide 82.36 70.36
ConvNet (w/o skip) | 69.59 59.22
ShuffleNet (concat) | 7521 66.00 :) ‘ 7 X ‘g‘l‘g;‘ na
ResNet (add) 87.82 76.46 bt .
5 1 v X 84.09 74.29
5 2 v X 81.28 70.58

(2) Depth and width. Exact orthogonality is criticized for
harming the expressive power of neural networks. We show
that the decrease of expressive power can be alleviated by
increasing the network depth/width. In Table 3 (Bottom)
and Table 7 (Appendix E), we observe that deeper/wider
architectures increase both the clean and robust accuracy.

(3) Initialization methods. We try different initialization
methods, including identical, permutation, uniform, and
torus (Henaff et al., 2016; Helfrich et al., 2018). We find
that identical initialization works the best for deep Lipschitz
networks (> 10 layers), while all methods perform similarly
in shallow networks as shown in Table 6 (Appendix E).

(4) Receptive field and down-sampling. Previous works
(Lietal., 2019b; Trockman & Kolter, 2021) use larger kernel
size and no stride for Lipschitz networks. In Table 4 (Right),
we perform a study on the effects of kernel/dilation size and
down-sampling types for the orthogonal convolutions. We

find that an average pooling as down-sampling consistently
outperforms strided convolutions. Furthermore, a larger
kernel size helps to boost the performance.

(5) Run-time and memory comparison. We find that pre-
vious orthogonal convolutions such as CayleyConv, BCOP,
and RKO require more GPU memory and computation time
than SC-Fac. Therefore, we could not to scale them due to
memory constraints (for 22 and 32 layers using Tesla V100
32G). To scale up Lipschitz networks, economical imple-
mentation of orthogonal convolution is crucial. As shown
in Figure 4, for deep and wide architectures, our SC-Fac
is the most computationally and memory efficient method
and the only method that scales to a width increase of 10 on
WideResNet22. Missing numbers in Figure 4 and Table 7
(Appendix E) are due to the large memory requirement.

-e- Normal —e— SC-Fac -e- Cayley —-e— BCOP -+ RKO
30
2
20
15
10
5
0
1 3 6 8 10 1 36 8 10 1 36 8 10
‘Width Width Width

500
400

200
100

Memory (GB)

Train Time (s)

Inference Time (s)

o

Figure 4. Run-time and memory comparison using WideRes-
Net22 on Tesla V100 32G. x-axis indicates the width factor (chan-
nels = base_channels x factor). Our SC-Fac is the most compu-
tationally and memory-efficient for wide architectures and is the
only method that scales to width factor to 10 on WideResNet22.
We also compare with an ordinary network with regular convo-
lutions and ReLU activations. Note that SC-Fac has the same
inference speed as a regular convolution — the overhead is from
the GroupSort activations.

In summary, additive skip-connections are still essential for
learning deep orthogonal networks. Due to the orthogonal
constraints, it is helpful to increase the depth/width of the
network. However, this significantly increases the memory
requirement; thus, a cheap implementation (like SC-Fac)
is desirable. Finally, we find that a larger kernel size and
down-sampling based on average pooling is helpful, unlike
standard practices in deep networks.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

7. Conclusion

In this paper, we present a paraunitary framework for orthog-
onal convolutions. Specifically, we establish the equivalence
between orthogonal convolutions in the spatial domain and
paraunitary systems in the spectral domain. Therefore, any
design for orthogonal convolutions is implicitly constructing
paraunitary systems. We further show that the orthogonality
for variants of convolution (strided, dilated, and group con-
volutions) is also fully characterized by paraunitary systems.
In summary, paraunitary systems are all we need to ensure
orthogonality for diverse types of convolutions.

Based on the complete factorization of 1D paraunitary sys-
tems, we develop the first exact and complete design of
separable orthogonal 2D-convolutions. Our versatile design
allows us to study the design principles for orthogonal con-
volutional networks. Consequently, we scale orthogonal net-
works to deeper architectures, substantially outperforming
their shallower counterparts. In our experiments, we observe
that exact orthogonality plays a crucial role in learning deep
Lipschitz networks. In the future, we plan to investigate
other use cases that exact orthogonality is essential.

References

Anil, C., Lucas, J., and Grosse, R. Sorting out lipschitz
function approximation. In International Conference on
Machine Learning, pp. 291-301, 2019.

Azulay, A. and Weiss, Y. Why do deep convolutional net-
works generalize so poorly to small image transforma-
tions? Journal of Machine Learning Research, 20(184):
1-25, 2019.

Bansal, N., Chen, X., and Wang, Z. Can we gain more
from orthogonality regularizations in training deep cnns?
In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pp. 4266—4276.
Curran Associates Inc., 2018.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D.,
and Jacobsen, J.-H. Invertible residual networks. In
International Conference on Machine Learning, pp. 573—
582. PMLR, 2019.

Bjorck, A. and Bowie, C. An iterative algorithm for com-
puting the best estimate of an orthogonal matrix. STAM
Journal on Numerical Analysis, 8(2):358-364, 1971.

Chen, M., Pennington, J., and Schoenholz, S. Dynamical
isometry and a mean field theory of rnns: Gating enables
signal propagation in recurrent neural networks. In Inter-
national Conference on Machine Learning, pp. 873-882.
PMLR, 2018.

Chen, R. T., Behrmann, J., Duvenaud, D. K., and Jacobsen,
J.-H. Residual flows for invertible generative modeling.

Advances in Neural Information Processing Systems, 32,

2019.

Chernodub, A. and Nowicki, D. Norm-preserving orthog-
onal permutation linear unit activation functions (oplu).
arXiv preprint arXiv:1604.02313, 2016.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and
Usunier, N. Parseval networks: Improving robustness
to adversarial examples. In International Conference on
Machine Learning, pp. 854-863. PMLR, 2017.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. arXiv preprint arXiv:1605.08803,
2016.

Dorobantu, V., Stromhaug, P. A., and Renteria, J.
Dizzyrnn: Reparameterizing recurrent neural networks
for norm-preserving backpropagation. arXiv preprint
arXiv:1612.04035, 2016.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256. JMLR
Workshop and Conference Proceedings, 2010.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I.,
and Duvenaud, D. Ffjord: Free-form continuous dy-
namics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp- 770-778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European Conference on
Computer Vision, pp. 630-645. Springer, 2016b.

Helfrich, K., Willmott, D., and Ye, Q. Orthogonal recurrent
neural networks with scaled cayley transform. In Interna-
tional Conference on Machine Learning, pp. 1969-1978.
PMLR, 2018.

Henaff, M., Szlam, A., and LeCun, Y. Recurrent orthogo-
nal networks and long-memory tasks. In International
Conference on Machine Learning, pp. 2034-2042, 2016.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Higham, N. J. The scaling and squaring method for the
matrix exponential revisited. SIAM review, 51(4):747—
764, 2009.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7132-7141,
2018.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
CVPR, volume 1, pp. 3, 2017.

Huang, L., Liu, L., Zhu, F., Wan, D., Yuan, Z., Li, B., and
Shao, L. Controllable orthogonalization in training dnns.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 6429-6438,
2020.

Hurley, B. and Hurley, T. Paraunitary matrices. arXiv
preprint arXiv:1205.0703, 2012.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448—
456. PMLR, 2015.

Jia, K., Tao, D., Gao, S., and Xu, X. Improving training
of deep neural networks via singular value bounding. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4344-4352, 2017.

Jia, K., Li, S., Wen, Y., Liu, T., and Tao, D. Orthogonal deep
neural networks. IEEE transactions on pattern analysis
and machine intelligence, 2019.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun,
Y., Tegmark, M., and Solja¢i¢, M. Tunable efficient
unitary neural networks (eunn) and their application to
rnns. In International Conference on Machine Learning,
pp- 1733-1741. PMLR, 2017.

Kautsky, J. and Turcajova, R. A matrix approach to dis-
crete wavelets. In Wavelet Analysis and Its Applications,
volume 5, pp. 117-135. Elsevier, 1994.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in neural
information processing systems, pp. 10215-10224, 2018.

Kobyzev, 1., Prince, S., and Brubaker, M. Normalizing
flows: An introduction and review of current methods.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2020.

Lezcano Casado, M. Trivializations for gradient-based opti-
mization on manifolds. Advances in Neural Information
Processing Systems, 32:9157-9168, 2019.

Lezcano-Casado, M. and Martinez-Rubio, D. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group. In
International Conference on Machine Learning, pp. 3794—
3803, 2019.

Li, J,, Li, F.,, and Todorovic, S. Efficient riemannian opti-
mization on the stiefel manifold via the cayley transform.
In International Conference on Learning Representations,
2019a.

Li, Q., Haque, S., Anil, C., Lucas, J., Grosse, R. B., and
Jacobsen, J.-H. Preventing gradient attenuation in lips-
chitz constrained convolutional networks. In Advances in
neural information processing systems, pp. 15390-15402,
2019b.

Lin, Y.-P. and Vaidyanathan, P. Theory and design of two-
dimensional filter banks: A review. Multidimensional
Systems and Signal Processing, 7(3-4):263-330, 1996.

Liu, S., Li, X., Zhai, Y., You, C., Zhu, Z., Fernandez-Granda,
C., and Qu, Q. Convolutional normalization: Improving
deep convolutional network robustness and training. Ad-

vances in Neural Information Processing Systems, 34,
2021.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. Shufflenet v2:
Practical guidelines for efficient cnn architecture design.
In Proceedings of the European conference on computer
vision (ECCV), pp. 116-131, 2018.

Maduranga, K. D., Helfrich, K. E., and Ye, Q. Complex
unitary recurrent neural networks using scaled cayley
transform. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 4528-4535, 2019.

Mathiasen, A., Hvilshgj, F., Jgrgensen, J. R., Nasery, A.,
and Mottin, D. What if neural networks had svds? arXiv
preprint arXiv:2009.13977, 2020.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J.
Efficient orthogonal parametrisation of recurrent neural
networks using householder reflections. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 2401-2409, 2017.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. A
pac-bayesian approach to spectrally-normalized margin
bounds for neural networks. In International Conference
on Learning Representations, 2018.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. Signals
& Systems (2nd Ed.). Prentice-Hall, Inc., 1996.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019.

Pennington, J., Schoenholz, S. S., and Ganguli, S. Resur-
recting the sigmoid in deep learning through dynamical
isometry: theory and practice. In Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, pp. 47884798, 2017.

Pennington, J., Schoenholz, S., and Ganguli, S. The emer-
gence of spectral universality in deep networks. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 1924-1932. PMLR, 2018.

Qi, H., You, C., Wang, X., Ma, Y., and Malik, J. Deep
isometric learning for visual recognition. In Interna-
tional Conference on Machine Learning, pp. 7824-7835.
PMLR, 2020.

Sedghi, H., Gupta, V., and Long, P. M. The singular values
of convolutional layers. In International Conference on
Learning Representations, 2019.

Singla, S. and Feizi, S. Skew orthogonal convolutions. arXiv
preprint arXiv:2105.11417, 2021.

Strang, G. and Nguyen, T. Wavelets and filter banks. SIAM,
1996.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Con-
ference on Machine Learning, pp. 6105-6114. PMLR,
2019.

Trockman, A. and Kolter, J. Z. Orthogonalizing convolu-
tional layers with the cayley transform. In International
Conference on Learning Representations, 2021.

Vaidyanathan, P. Multirate systems and filter banks.
Prentice-Hall, Inc., 1993.

Van Den Berg, R., Hasenclever, L., Tomczak, J. M., and
Welling, M. Sylvester normalizing flows for variational
inference. In 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, pp. 393—402. Association
For Uncertainty in Artificial Intelligence (AUAI), 2018.

Venkataraman, S. and Levy, B. C. A comparison of design
methods for 2-d fir orthogonal perfect reconstruction filter
banks. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 42(8):525-536,
1995.

Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C. On
orthogonality and learning recurrent networks with long
term dependencies. In International Conference on Ma-
chine Learning, pp. 3570-3578, 2017.

Wang, J., Chen, Y., Chakraborty, R., and Yu, S. X. Orthogo-
nal convolutional neural networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2019.

Wong, E., Schmidt, F. R., Metzen, J. H., and Kolter, J. Z.
Scaling provable adversarial defenses. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, pp. 8410-8419, 2018.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than
free: Revisiting adversarial training. In International
Conference on Learning Representations, 2020.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convo-

lutional neural networks. In International Conference on
Machine Learning, pp. 5393-5402. PMLR, 2018.

Xie, D., Xiong, J., and Pu, S. All you need is beyond a good
init: Exploring better solution for training extremely deep
convolutional neural networks with orthonormality and
modulation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6176—
6185, 2017.

Ye, C., Evanusa, M., He, H., Mitrokhin, A., Goldstein, T.,
Yorke, J. A., Fermuller, C., and Aloimonos, Y. Network
deconvolution. In International Conference on Learning
Representations, 2020.

Zhang, J., Lei, Q., and Dhillon, I. Stabilizing gradients for
deep neural networks via efficient svd parameterization.

In International Conference on Machine Learning, pp.
5806-5814, 2018a.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An
extremely efficient convolutional neural network for mo-
bile devices. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 6848—6856,
2018b.

Zhou, J. Multidimensional Multirate Systems: Characteri-
zation, Design, and Applications. Citeseer, 2005.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Appendices: Scaling-up Diverse Orthogonal Convolutional Networks
by a Paraunitary Framework

Notations. We use non-bold letters for scalar (e.g., x) and bold ones for vectors or matrices (e.g.,). We denote sequences
in the spatial domain using lower-case letters (e.g., z[n], [n]) and their spectral representations using upper-case letters
(e.g., X(z), X (2)). For a positive integer, say R € Z, we abbreviate the set {0,1,--- , R — 1} as [R], and whenever
possible, we use its lower-case letter, say r € [R], as the corresponding iterator.

Assumptions. For simplicity, we assume all sequences are £2 with range Z = {0, +1, 42, --- } (asequence ¢ = {z[n],n €
Z}is L2if Y, o [lz[n][|? < oc). Such assumption is common in the literature, which avoids boundary conditions in signal
analysis. To deal with periodic sequences (finite sequences with circular padding), one can either adopt the Dirac function in
the spectral domain or use discrete Fourier transform to compute the spectral representations. In our implementation, we
address the boundary condition case by case for each convolution type, with which we achieve exact orthogonality in the
experiments (Section 6.1).

A. Pseudo Code for Our SC-Fac Algorithm

We include the pseudo-code for separable complete factorization (Section 2) in Algorithm 1 and diverse orthogonal
convolutions (Section 3) in Algorithm 2. The pseudo-code in Algorithm 1 consists of three parts: (1) First, we obtain
orthogonal matrices from skew-symmetric matrices using matrix exponential. We use GeoTorch library (Lezcano Casado,
2019) for the function matrix_exp in our implementation; (2) Subsequently, we construct two 1D paraunitary systems
using these orthogonal matrices; (3) Lastly, we compose two 1D paraunitary systems to obtain one 2D paraunitary systems
The pseudo-code in Algorithm 2 consists of two parts: (1) First, we reshape each paraunitary system into an orthogonal
convolution depending on the stride; and (5) second, we concatenate the orthogonal kernels for different groups and return
the output.

B. Orthogonal Convolutions via Paraunitary Systems

In this section, we prove the convolution theorem and Parseval’s theorem for standard convolutional layers. Then, we prove
the paraunitary theorem which establishes the equivalence between orthogonal convolutional layers and paraunitary systems.

B.1. Spectral Analysis of Standard Convolution Layers

Standard convolutional layers are the default building blocks for convolutional neural networks. One such layer consists
of a filter bank with T" x S filters h = {h¢s[n],n € Z}ie[7,5¢| 5] where S, T are the number of input and output channels
respectively. The layer maps an S-channel input = {z[i],7 € Z},¢[s) to a T-channel output y = {y:[i],i € Z},em

according to
= > hun]agli —nl, (B.1)

s€[S] n€Z

where ¢ indexes the output location to be computed, and n indexes the filter coefficients. Alternatively, we can rewrite
Equation (B.1) in matrix-vector form as

Zh x[i —n), (B.2)

neZ

where each h[n] € RT*9 is a matrix, and each z[i — n] € R or y[i] € RT is a vector.

Notice that in Equation (B.2), we group entries from all channels into a vector or matrix (e.g., from {zo[n]},¢[s) to z[n]),
different from a common notation that groups entries from all locations into a vector or matrix (e.g., from {z;[n],n € Z}
into x,). In the matrix-vector form, a standard convolutional layer computes a vector sequence y = {y[i] € RT,i € Z}
with a convolution between a matrix sequence h = {h[n] € RT*9 n € Z} and a vector sequence x = {z[i] € R®,i € Z}.

Let us first define the Z-transform and various types of Fourier transform in Definition B.1 before proving the convolution
theorem (Theorem 2.1).

Definition B.1 (Z-transform and Fourier transforms). For a sequence (of scalars, vectors, or matrices) x = {x[n],n € Z},

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Algorithm 1: Separable Complete Factorization (SC-Fac)
Input: Number of channels C, kernel size K = 2L + 1, and
Skew-symmetric matrices { A} with A € RO*C e e [-L, L], d € {1,2}.
Output: A paraunitary system H € REOXCXEXK,
Initialization: Sample N, y) from {1,---,C} uniformly V¢ € [-L, L], d € {1,2}

/+ Iterate for vertical/horizontal dimensions */
ford =1to2do
/* 1) Compute orthogonal matrices from skew-symmetric matrices */
/* Iterate for filter locations */
for /= —Lto L do
if / = 0 then
‘ (Qdé—lﬂatﬁx_exp(flgn)// use matrix_exp() in GeoTorch (Lezcano Casado, 2019)
else
Léé)«—sehct@natﬁx_exp@4g)%cob:: Aéeh // selects the first cols columns of the
matrix
end if
end for
/+ 2) Compose 1D paraunitary systems from orthogonal matrices */
Ha <+ Qq

for / =1to L do

.
Hy « convid(Ha, [UQ‘)UQO

T
o)

T T
H4 < convld({I - Ulg_é)Ué_@ : U;_Z)Uc(l_e) } ,Ha)

end for
end for
/* 3) Compose a 2D paraunitary systems from two 1D paraunitary */
H < Compose(H1,Hz2) // i.e., H..ij=(Ha2)..;j(H1):.: where the 1D paraunitary systems
Hi and Ho are of size OCx(C x K
return H

Algorithm 2: Construct Diverse Orthogonal Convolutions from Paraunitary Systems
Input: Number of base channels C, kernel size K = R(2L + 1),
stride R, dilation D, number of groups G
Output: An orthogonal kernel W € RT*SxKxK
Set K’ +— K /R, number of input channels S <~ GC/R? and output channels T +— GC
forg=0to G —1do
/+ 1) Construct orthogonal convolutions from paraunitary systems x/

Initialize skew-symmetric matrices {{A"?}£__,}2_, for the current g
HI « Algorithm 1: SC-Fac(C, K/, {{AY9} L 12))
HI < reshape(H?, (C,C,K',K') — (C/R?,C,K,K))

end for
/* 2) Concatenate orthogonal convolutions from different groups */
W concatenate({%g}ggol, dim = 0)

return W (where the filter for input channel s and output channel ¢ is W, ;. . € REXK)

its Z-transform X (z) is defined as
X(z) = Zw[n]z_”, (B.3)

nez

where z € C is a complex number such that the infinite sum is convergent. If z is restricted to the unit circle z = e (i.e.,

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

|z| = 1), the z-transform X (z) reduces to a discrete-time Fourier transform (DTFT) X (e}). If w is further restricted to a
finite set w € {27k /N, k € [N]}, the DTFT X (e}) reduces to an N-points discrete Fourier transform (DFT) X (ei27F/N),

Theorem B.2 (Convolution theorem (Oppenheim et al., 1996)). A standard convolution layer in the spatial domain
(Equation (B.2)) is equivalent to matrix-vector products in the spectral domain, i.e.,

Y(z)=H(2)X(2),Vz € C. (B.4)

Proof of Theorem B.2. The proof follows directly from the definitions of standard convolution (Equation (B.2)) and Z-
transform (Equation (B.3)).

Y(2) =) ylilz"" (B.5)

€7

= (Z hln)x[i — n]) P (B.6)
1€Z \n€ZzZ

= Z hln]z=" (Z x[i — n]z_(i_”)> (B.7)
nez €L

— (Z h[n]z"> <Z a:[k]zk> (B.8)

ne”Z kEZ
= H(z)X(2), (B.9)

where Equations (B.5) and (B.9) use the definition of Z-transform, Equation (B.6) uses the definition of convolution, and
Equation (B.8) makes a change of variable k = ¢ — n. O

Next, we introduce the concepts of inner product and Frobenius norm for sequences. We then prove Parseval’s theorem,
which allows us to compute the sequence norm in the spectral domain.

Definition B.3 (Inner product and norm for sequences). Given two sequences x = {x[n],n € Z} and y = {y[n],n € Z}
with x[n], y[n| having the same dimension for all n, the inner product of these two sequences is defined as

(@, y) £ (x[n] y[n]) (B.10)

neE”Z

where (x|n], y[n]) denotes the Frobenius inner product between x[n] and y[n). Subsequently, we can define the Frobenius
norm of a sequence using inner product as

lz|| & v/(z,z) (B.11)

Theorem B.4 (Parsavel’s theorem). Given a sequence x = {x[n],n € Z}, its sequence norm ||x|| can be computed by
X (e) in the spectral domain as

1 i .
lel? = 3 flafn))? = — / 1 (7)o, B.12)

27
nez

where || X ()2 = X (/)T X (el) is an inner product between two complex arrays.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Proof of Theorem B.4. The theorem follows from the definitions of convolution and discrete-time Fourier transform (DTFT).

HX ()| dw = —/ (X (), X () dw (B.13)
— <ZZ;C e iwn chc[m]ej“’m> dw (B.14)
_ Z - (el o | e (B.15)
- EE:Z %(w[n],m[m]} Linen (B.16)
= %Tw[n],w[nb = %IIMHHIQ, (B.17)

where Equation (B.15) is due to the bi-linearity of inner products, and Equation (B.16) makes uses of the fact that
[T e kFdw =0fork #0and [7 e Fdw = [T dw = 27 for k = 0. O
B.2. Equivalence between Orthogonal Convolutions and Paraunitary Systems

With the sequence norm introduced earlier, we formally define orthogonality for convolutional layers.

Definition B.5 (Orthogonal convolutional layer). A convolution layer is orthogonal if the input norm ||x|| is equal to the
output norm ||y|| for arbitrary input x, that is

lyll 2 /> llylall* = > 2]l £), (B.18)

nez neZ

where ||x|| (or ||y||) is defined as the squared root of), _, ||z[n] % (or Y nez ly[n]l|?).

This definition of orthogonality not only applies to standard convolutions in Equation (B.2) but also variants of convolutions
in Appendix C.3. In this section, however, we first establish the equivalence between orthogonality for standard convolutions
and paraunitary systems.

Theorem B.6 (Paraunitary theorem). A standard convolutional layer (in Equation (B.2)) is orthogonal (by Definition B.5)
if and only if its transfer matrix H (2) is paraunitary, i.e.,

HC)H(z) =1, V|2| =1 < H(*) H(é*) = I, Yw € R. (B.19)
In other words, the transfer matrix H () is unitary for all frequencies w € R.

Proof of Theorem B.6. We first prove that a convolutional layer is orthogonal if its transfer matrix H (z) is paraunitary (i.e.,
H (/) is unitary for any frequency w € R).

1
lyl|* = o HY (e7%) H dw (B.20)
= 217r ||H (") X ()| dao (B.21)
= 217r X @))| de (B.22)
= ||||” (B.23)

where Equations (B.20) and (B.23) are due to Parseval’s theorem (Theorem B.4), Equations (B.20) and (B.21) follows from
the convolution theorem (Theorem 2.1), and Equation (B.22) utilizes that H (/%) is unitary for any frequency w € R (thus
[H (e7%) X (/)| = | X ()] for any X (e7)).

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

The ‘only if” part also holds in practice. We here prove by contradiction using periodic inputs (e.g., finite inputs with circular
padding). Suppose there exists a frequency w and H (¢/) is not unitary. Since H (¢/’) is continuous (due to h € £2 and
dominated convergence theorem), there exist integers N, k, such that w ~ 2kw /N and H (ej%k/ N) is also not unitary. As a
result, there exists a complex vector w such that v = H (e/2™*/N)q while ||v| # ||u||. Therefore, we can construct two
periodic sequences = {x[n],n € [N]} and y = {y[n],n € [IN]} such that

x[n] = uel2™EN — y[n] = vel2Tk/N (B.24)

Now the input norm ||z = /3=, c(n l2[n][[* = V/N ||u| is not equal to the output norm ||y|| = Yonern 1Yn)I? =
VN|v

, i.e., the layer is not orthogonal, which leads to a contradiction. O

C. A Paraunitary Framework for Orthogonal Convolutions

Section B.2 Section B.3 Section B.4
Spectral Spectral P terizati
Orthogonal Transformation " paraupitary = Factorization = Qrthegonal * *"™*™"*"*2"" \gnconstrained
Conv. Layers . gundard Cony. Systems « Separable Matrices * Mat. Exp. Parameters
 Dilated Conv. « BCOP . Cg“yley
 Strided Conv. * Bjorck
* Group Conv. Parameterization °* ---

e CayleyConv
* SOC

Figure 5. A framework for designing orthogonal convolutional layers. In Appendix C.2, we unify variants of orthogonal convolutions
in the spectral domain and show that their designs reduce to constructing paraunitary systems. In Appendix C.3, we show that a paraunitary
system can be constructed with different approaches: our approach and BCOP (Li et al., 2019b) represent the paraunitary using orthogonal
matrices, while CayleyConv (Trockman & Kolter, 2021) and SOC (Singla & Feizi, 2021) directly parameterizes it using unconstrained
parameters. In Appendix C.4, we investigate various parameterizations for orthogonal matrices, such as matrix exponential, Cayley
transform, and Bjorck orthogonalization.

C.1. Multi-resolution Analysis

Multi-resolution operations are essential in various convolutional layers, in particular strided and dilated convolutions. In
order to define and analyze these convolutions rigorously, we first review the concepts of up-sampling, down-sampling, and
polyphase components.

(1) Up-sampling. Given a sequence (of scalars, vectors, matrices) € = {x[n],n € Z}, its up-sampled sequence ' =
{x"®[n],n € Z} is defined as

2 R[] & z[n/R] n=0(mod R) C.1)
0 otherwise ’ '

where R € Z7 is the up-sampling rate. Accordingly, we denote the Z-transform of & as

XM (z) = Z x Rnlz~m. (C.2)
nez

The following proposition shows that X T7(z) is easily computed from X (z).

Proposition C.1 (Z-transform of up-sampled sequence). Given a sequence x and its up-sampled sequence x'%, their
Z-transforms X (z) and X% (z) are related by

XMz = X(25). (C.3)

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Proof of Proposition C.1. The proof makes use of the definition of Z-transform (Equation (B.3)).

XM(z) = an)z" (C4)
nez
= Z wTR[mR]z_mR (C.5)
meZ
= Z x[m](z)™™ = X (21), (C.6)
meZ
where Equation (C.5) makes a change of variables m = n/R since %[n] = 0,Vn # mR. O

(2) Down-sampling and polyphase components. Different from the up-sampled sequence, there exist multiple down-
sampled sequences, depending on the phase of down-sampling. These sequences are known as the polyphase components.
Specifically, given a sequence (of scalars, vectors, or matrices) = = {z[n],n € Z}, its ! polyphase component
a1 = {27 1R[n], n € Z} is defined as

z"%[n] £ x[nR + r], (C.7
where R € Z% is the down-sampling rate. We further denote the Z-transform of "I as
X (z) =Y a P n]zm, (C.8)
nez

Note that » € Z is an arbitrary integer, which does not necessarily take values from [R]. In fact, we have
(T tRRIR) = @B n + k] and X" HREIR(Z) = 2k X7IE (%), In Proposition C.2, we establish the relation between
H (z) and {H"®(2)},¢(p), i.e., to represent H (z) in terms of { H"1%(2)}, ¢ (r).

Proposition C.2 (Polyphase decomposition). Given a sequence x and its polyphase components x
X (z) can be represented by {XT‘R(Z)}TE[R] as

"IR°g the Z-transform

X(z)= Y X"RER (C.9)
r€[R]

Proof of Proposition C.2. We start with X (z), and try to decompose it into its polyphase components
XO(z), -, XAZUR(z),

X(z) = Z x[n]z~" (C.10)

nez

_ Z Z w[mR+T]27(mR+T) (C.1D
r€[R] meZ

= Z (Z m[mR+7‘]sz> z7" (C.12)
r€[R] \mg€Z

= Z (Z $T|R[m](2’R)_m> T (C.13)
re[R] \mg€Z

= Z X’“lR(z:R)z_’“7 (C.14)
re[R]

where Equation (C.11) makes a change of variables n = mR + r, and Equation (C.13) is the definition of polyphase
components "% [m] = x[mR + 7). O

For simplicity, we stack R consecutive polyphase components into polyphase matrices as

XOIE(2)
XEl(z) = : , XWH(z) = [X’O‘R(z);--- ;X*<Rfl>|R(z)} : (C.15)

XR—:l\R(Z)

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

The following proposition extends the Parseval’s theorem in Theorem B.4 and shows that the sequence norm ||z|| can also
be computed in terms of the polyphase matrix X [%l(2) (or X XA (2)).

Proposition C.3 (Parseval’s theorem for polyphase matrices). Given a sequence ., its sequence norm ||x|| can be computed
by X (el) (or X B () in the spectral domain as

2 1 /7r
(4l o)

Proof of Proposition C.3. The proof follows the standard Parseval’s theorem in Theorem B.4. We only prove the first part
of the proposition (using X ¥ (el)) as follows.

2 1 (7
X[R}(eJ“)H dw = —

XV[RI(eJW)Hde. (C.16)
2

> =" [ln]|® (C.17)
nez
= > > l=mR +]| (C.18)
re€[R] meZ
=3 3 || m H (C.19)
re R]mEZ
-4 Z / X716 | (C.20)
— ;ﬂ) (e) H (C21)

where Equation (C.17) follows the definition of sequence norm, Equation (C.18) changes variables as n = mR + 7,
Equation (C.19) is the definition of polyphase components, and Equation (C.20) applies Parseval’s theorem to x" 17’5, The
second part (using X [l (el’)) can be proved similarly. O

C.2. Unifying Various Convolutional Layers in the Spectral Domain

In Appendix B, the convolution theorem states that a standard convolutional layer is a matrix-vector product Y (z) =
H (2)X (z) in the spectral domain, and the layer is orthogonal if and only if H (z) is paraunitary (Theorem B.6). However,
the canonical convolution theorem does not hold for variants of convolutions, thus enforcing a paraunitary H (z) may
not lead to orthogonal convolution. In this subsection, we address this limitation by showing that various convolutions
can be uniformly written as Y (z) = H (z) X (z), where Y (z), H(z), X (z) are some spectral representations of y, h, x.
Subsequently, we prove that any of these layers is orthogonal if and only if its H (z) is paraunitary.

(1) Strided convolutional layers are widely used in neural networks to adjust the feature resolution: a strided convolution
layer decreases the resolution by down-sampling after a standard convolution, while a transposed convolution increases the
resolution by up-sampling before a standard convolution.

Formally, a strided convolutional layer with stride R (abbrev. as | R-strided convolution) computes its output following

=Y h[n]@[Ri —n]. (C.22)

nez

In contrast, a transposed strided convolutional layer with stride R (abbrev. as 1 R-strided convolution) computes its output
according to

[i] = hnjz"[i —n]. (C.23)

neZ

Proposition C.4 (Orthogonality of strided convolutional layers). For a | R-strided convolution, the spatial convolution in
Equation (C.22) leads to the following spectral representation:

Y (z) = HH (2) X H(2) (C.24)

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

And for an T R-strided convolution, the spatial convolution is represented in spectral domain as:
Y () = HF(2) X (2) (C.25)

Furthermore, a | R-strided convolution is orthogonal if and only if HIF (2) is paraunitary, and an 1 R-strided convolution
is orthogonal if and only if HF|[2] is paraunitary.

Proof of Proposition C.4. (1a) | R-strided convolutions. We first prove the spectral representation of | R-strided convolu-
tion in Equation (C.24).

Y(z2) =) ylilz"" =) (Z h[n)z[Ri — n]> P (C.26)

1€Z 1€Z \n€EZ

=Y > D hmR—rlxii -m)R+1] |z~ (C.27)

i€Z \re[R] mez

Z (Z himR —r]z™™ (Z z[(i —m)R+ r}z_(i_m)>> (C.28)

re[R] \me€Z %

- Z (Z h[mR—r}z_m> (Z :c[z"R—l—r]z_i/) (C.29)
relR) \mez =

— Z H IR XTI (), (C.30)
re[R]

where Equation (C.26) follows from the definitions of the | R-strided convolution (Equation (C.22)) and the Z-transform
(Equation (B.3)), Equation (C.27) makes a change of variables n = mR — r, Equation (C.29) further changes i’ = i — m,
and Equation (C.30) is due to the definition of polyphase components (Equation (C.7)). Now We rewrite the last equation
concisely as

XO\R(Z)
Y(2) = [H R (z);-- s H- (R0 (2)] : , (C31)
— XR_llR(z)
HIE(z) . ,
X B ()

which is the spectral representation of | R-strided convolutions in Equation (C.24).

Now we prove the orthogonality condition for | R-strided convolutions.

1 s

lyl> = — [¥ () do (C.32)
2
1 T~ . . 2
== H[R](el“’)X[R](eJ“)H dw (C.33)
a —1T0
1 e
=5 X [R](GJ“)H dw (C.34)
Tr —T
= |lz|?, (C.35)

where Equations (C.32) and (C.35) are due to Parseval’s theorems (Theorem B.4 and Proposition C.3), Equation (C.33)
follows from the spectral representation of the | R-strided convolution (Equation (C.24)), and Equation (C.34) utilizes that
the transfer matrix is unitary at each frequency. The “only if” part can be proved by contradiction similar to Theorem B.6.

(1b) T R-strided convolutions. According to Proposition C.1, the Z-transform of ™R is X (zR). Therefore, an application
of the convolution theorem (Theorem 2.1) on Equation (C.23) leads us to

Y (z) = H(2) X (2F) (C.36)

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Expanding Y (z) and H (z) using polyphase decomposition (Proposition C.2), we have

SOYIEGER = [YT HRER)) X () (C.37)
re€[R] re(R]
Sy = Y (HT'R(,ZR)X(ZR)) P (C.38)
r€[R] re€[R]
YRR = HR (2R X (21, vr € [R) (C.39)
Y"IE(2) = H'R(2)X (2), Vr € [R], (C.40)

where Equation (C.39) is due to the uniqueness of Z-transform, and Equation (C.40) changes the variables from 2% to z.
Again,,we can rewrite the last equation in concisely as

YOIB(2) HOE ()

yie) = HIG) X (z) (C.41)
YRfi\R(Z> HR*:HR(Z)

YHl(2) HIE(z)

which is the spectral representation of 1 R-strided convolutions in Equation (C.25).

Lastly, we prove the orthogonality condition for 1 R-strided convolutions.

1 [7 NI
Il = 5 [[y C42)
i X 2

ZQL HI () X ()| dw (C.43)
U —T
I for 112

=5 [1X()]" dw (C.44)

= ||lz|?, (C.45)

where Equations (C.42) and (C.45) are due to Parseval’s theorems (Theorem B.4 and Proposition C.3), Equation (C.43)
follows from the spectral representation of the 1 R-strided convolution (Equation (C.25)), and Equation (C.44) uses the
fact that the transfer matrix is unitary for each frequency. The “only if” part can be proved by contradiction similar to
Theorem B.6. O

(2) Dilated convolutional layer is proposed to increase the receptive field of a convolutional layer without extra parameters
and computation. The layer up-samples its filter bank before convolution with the input. R-dilated convolutional layer)
computes its output with the following equation:

yli] = Y b [n]afi — n] (C.46)
nez

Proposition C.5 (Orthogonality of dilated convolutional layer). For an R-dilated convolution, the spatial convolution in
Equation (C.46) leads to a spectral representation as

Y (2) = H(z®) X (2), (C.47)

Furthermore, an R-dilated convolutional layer is orthogonal if and only if H (2%) is paraunitary.

Proof of Proposition C.5. According to Proposition C.1, the Z-transform of A% is H (2%). Therefore, the “if”” part follows

directly from the convolution theorem. The “only if” part can be proved by constructing a counterexample similar to
Theorem B.6. 0

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Notice that H (z?) is paraunitary if and only if H (e)) is unitary for all frequency w € R, which is the same as X H z being
paraunitary. In other words, any filter bank that is orthogonal for a standard convolution is also orthogonal for a dilated
convolution and vice versa.

(3) Group convolutional layer is proposed to reduce the parameters and computations and used in many efficient architec-
tures, including MobileNet, ShuffleNet. The layer divides both input/output channels into multiple groups and restricts the
connections within each group.

Formally, a group convolutional layer with G groups (abbrev. as G-group convolutions) is parameterized by G filter banks
{h9} 4[> each consists of (T//G) x (S/G) filters. The layer maps an S channels input = to a T' channels output y
according to

yli] = > _ blkdiag ({h?[n]}ge(cy) i — nl, (C.48)

nez
where blkdiag({-}) computes a block diagonal matrix from a set of matrices.
Proposition C.6 (Orthogonality of group convolutional layer). For a G-group convolution, the spatial convolution in
Equation (C.48) leads a spectral representation as , their z-transforms satisfy

Y (z) = blkdiag ({H(2)}ge(a)) X (2), (C.49)

Furthermore, a G-group convolutional layer is orthogonal if and only if the block diagonal matrix is paraunitary, i.e., each
h9(z) is paraunitary.

Proof of Proposition C.6. Due to the convolution theorem, it suffices to prove that the Z-transform of a sequence of block
diagonal matrices is also block diagonal in the spectral domain.

h°[n] > nez W0n)z"
> 2T = (C.50)
nez thl[n] i ZnEZ thl[n}an
blkdiag ({hg [’I’L]}ge[g})
[H(2)
_ . (C.51)
i HE(2)
blkdiag ({Hg(z)}ge[g])
As aresult, we can write the orthogonality condition as
(H(2) [H()
i hG—l(Z) HG—l(z)
[H(2)TH(2)
= =1, V=1 (C.52)
I HE ()T HE ! (2)
The equation implies HY(z) HY(z) = I,V|z| = 1,VYg € [G], i.e., each HY(%) is paraunitary. O

C.3. Realizations of Paraunitary Systems

In this subsection, we first prove that all finite-length 1D-paraunitary systems can be represented in a factorized form. Next,
we show how we can construct MD-paraunitary systems using 1D systems. Lastly, we study the relationship of existing
approaches to paraunitary systems.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

C.3.1. COMPLETE FACTORIZATION OF 1D-PARAUNITARY SYSTEMS

The classic theorem for spectral factorization of paraunitary systems is traditionally developed for causal sys-
tems (Vaidyanathan, 1993; Kautsky & Turcajova, 1994). Given a causal paraunitary system of length L (i.e., polynomial in
271, there always exists a factorization such that

H(z)=QV(z HUW).. V(" {utY), (C.53)
where @ is an orthogonal matrix, U(®) is a column-orthogonal matrix, and V' (z; U) is defined as
V(zU)=I-UU")+UU" 2. (C.54)

In Theorem C.7, we extends this theorem from causal systems to finite-length (but non-causal) ones.

Theorem C.7 (Complete factorization for 1D-paraunitary systems). Suppose that a paraunitary system H (2) is finite-length,

i.e., it can be written as), h[n]z~" for some sequence {h[n],n € [—L, L|}, then it can be factorized in the following
form:

H(z)=V(zUCD) . v(zutQv (" uW) ... vz Lu®), (C.55)

where Q is an orthogonal matrix, UY) is a column-orthogonal matrix, and V(z;U) is defined in Equation (C.54).
Consequently, the paraunitary system H (z) is parameterized by L + L + 1 (column-)orthogonal matrices Q and U®vs.

Proof for Theorem C.7. Given a non-causal paraunitary system H (z), we can always find a causal counterpart H (z) such
that H(z) = LH (z) (This can be done by shifting the causal system backward by L steps, which is equivalent to
multiplying zZ in the spectral domain). Since the causal system EH (z) admits a factorization in Equation (C.55), we can
write the non-causal system H (z) as

H(z) = 22QV (z TW). V(LT ED), (C.56)

Therefore, it suffices to show that for an orthogonal matrix @ and any column-orthogonal matrix U, we can always find
another column-orthogonal matrix U such that

2QV (2L 0) =V(zU)Q. (C.57)

If the equation above is true, we can set U®) = U~1-L) for ¢ < 0 and U® = UL for ¢ > 0, which will convert
Equation (C.56) into Equation (C.55).

Now we start to prove Equation (C.57). Note that any column-orthogonal U has a complement U such that [ﬁ, Ul is
orthogonal and I = UU T + UU T. We then rewrite Equation (C.57) as

2QV(: L U)=22QI-UU0" + U0 271 (C.58)

=QUI-UU"+0U">) (C.59)

=(I-QUU'Q"+QUU'Q"»)Q (C.60)

=(I-UU"+UU"2)Q (C.61)

=V(zU)Q, (C.62)

where in Equation (C.61) we set U = QU. This completes the proof. O

C.3.2. MULTI-DIMENSIONAL (MD) PARAUNITARY SYSTEMS

If the data are multi-dimensional (MD), we will need MD-convolutional layers in neural networks. Analogously, we can
prove the equivalence between orthogonal MD-convolutions in the spatial domain and MD-paraunitary systems in the
spectral domain, i.e.,

H(2)'H(z)=1I,z= (2, ,2p),|2| = 1,Vd € [D], (C.63)

where D is the data dimension. In this work, we adopt a parameterization based on separable systems.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Definition C.8 (Separable MD-paraunitary system). A MD-paraunitary system H (z) is separable if there exists D 1D-
paraunitary systems H1(z1), -+ , Hp(zp) such that

H(z) = H(z1, - ,zp) = H1(z1) -~ Hp(zp). (C.64)

Therefore, we can construct an MD-paraunitary system with D number of 1D-paraunitary systems, each of which is
represented in Equation (C.55). Notice that not all MD-paraunitary systems are separable, thus the parameterization in
Equation (C.64) is not complete (see Section 5 for a discussion). However, we can guarantee that our parameterization
realizes all separable MD-paraunitary systems — each separable paraunitary system admits a factorization in Equation (C.64),
where each 1D-system admits a factorization in Equation (C.55).

C.3.3. INTERPRETATIONS OF PREVIOUS APPROACHES

In Theorem B.6, we have shown that a paraunitary transfer matrix is both necessary and sufficient for a convolution to be
orthogonal. Therefore, we can interpret all approaches for orthogonal convolutions as implicit constructions of paraunitary
systems, including singular value clipping and masking (SVCM) (Sedghi et al., 2019), block convolution orthogonal
parameterization (BCOP) (Li et al., 2019b), Cayley convolution (CayleyConv) (Trockman & Kolter, 2021), skew orthogonal
convolution (SOC) (Singla & Feizi, 2021). Furthermore, we prove how orthogonal regularization (Wang et al., 2019; Qi
et al., 2020) encourages the transfer matrix to be unitary for all frequencies.

(1) Singular value clipping and masking (SVCM) (Sedghi et al., 2019) clips all singular values of H (ej“) to ones for
each frequency w after gradient update. Since the clipping step can arbitrarily enlarge the filter length, SVCM subsequently
masks out the coefficients outside the filter length. However, the masking step breaks the orthogonality, as we have seen in
the experiments (Section 6.1).

(2) Block convolution orthogonal parameterization (BCOP) (Li et al., 2019b) tries to generalize the spectral factoriza-
tion of 1D-paraunitary systems in Equation (C.55) to 2D-paraunitary systems.

K—-1 K-1

H(z1,20) =2, 2 252 QV (21, 22; Ul(l), U2(1)) V(21,295 UI(K_U, UQ(K_l)), (C.65)

where V (21, 22; Ul(e), UZ(Z)) = V(z; Ul(e))V(ZQ; U;Eé)). In other words, this approach makes each V/-block, instead of
the whole paraunitary system, separable. This factorization in BCOP is incomplete for 2D-paraunitary system — unlike
1D-paraunitary systems, not every 2D-paraunitary system admits a factorized form (Lin & Vaidyanathan, 1996).

(2) Calyey convolution (CayleyConv) (Trockman & Kolter, 2021) aims to generalize the Cayley transform for orthogonal
matrices in Equation (C.88) to 2D-paraunitary systems H (z1, z2):

H(z,20) = (I — A(z1,2)) (I + A(21,22)) ", (C.66)
where A(z1,23) is a skew-Hermitian matrix for |z1| = 1, |z2| = 1 (i.e., A(e“1, el¥2)l = A(el1, e2) for any wy, wo).
Since Cayley transform cannot parameterize a matrix with singular value —1 for any frequency, the CayleyConv is not a

complete parameterization.

(4) Skew orthogonal convolution (SOC) (Singla & Feizi, 2021) aims to generalize the matrix exponential for orthogonal
matrices (Equation (C.90)) to convolution exponential for 2D-paraunitary systems H (21, 22):

Az, 2 Az, 22)?
H(z1,22) = exp (A(21,22)) £ Z % =TI+ A(z,2) + % + (C.67)
k=0 ’
where A(z1,z) is skew-Hermitian matrix for any matrix for |z;] = 1,|2z2| = 1 (in other words, A(el“1,e¥2)f =

A(e1 e%2) for any wi,ws). It is not resolved whether all 2D-paraunitary systems can be represented in terms of
convolution exponential.

(5) Orthogonal regularization (Ortho-Reg) (Wang et al., 2019; Qi et al., 2020) is developed to encourage orthogonality
in convolutional layers. We show that such orthogonal regularization is equivalent to a unitary regularization of the

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

paraunitary system with uniform weights on all frequencies.

2
> " hlnlhin - Ri)T - 8[i]| = - [B] (i) R (e IH2 dw, (C.68)

ne”Z

D

€L

where §[0] = I is an identity matrix, §[n] = 0 is a zero matrix for n # 0. We prove the equivalence more generally in
Proposition C.9. However, this approach cannot enforce exact orthogonality and in practice requires hyperparameter search
for a proper regularizer coefficient.

Proposition C.9 (Parseval’s theorem for ridge regularization). Given a sequence of matrices h = {h[n|,n € Z}, the
following four expressions are equivalent:

1 18] (T IR ey — 1)
5 |||) H)—IH duw, (C.69)
Y
2
S hnlThln — Ri] - 8[i]| (C.69b)
i€Z |In€Z
1 R](,j R](joy T 2
o |||) H IR) fIH dw, (C.69¢)
™
2
Z Zh hin — Ri]" —8[i]|| , (C.69d)
1€Z |In€EZ
where || - || denotes the Frobenius norm of a matrix.
Proof of Proposition C.9. We first prove the equivalence between Equations (C.69a) and (C.69c).
(R] (ot 2q[R](jw 2
HIF) () gl (o) _ 1
: : t : .
—tr ((H[R] () ;R () - I) (H[R] () JHIF () - 1) (C.70)
—tr (H[Rl(eiW)TH[R} (&) HF (ej“’)TH[R](ej‘”)) — 2t (HI" (ej“’)TH[R](ej“’)> I C.71)
—tr (H[R](ejw)H[R](ejw)TH[R](ejw)H[R](ejw)T) otr (H[R (ejw)H[R](ejw)T> iy C.72)
. : t .
—tr < (H[R] () HIB () I) (H[Rl(eJW) HR (&) 1 > (C.73)
. . 2
— HH[R](er)H[R}(er)Jr _ [’ 7 (C.74)

where Equations (C.70) and (C.74) make use of | A2 = tr(Af A), Equations (C.71) and (C.73) are due to the linearity of
tr(-), and Equation (C.72) utilizes tr(AB) = tr(BA).

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Next, we prove the equivalence between Equations (C.69a) and (C.69b).

HIE () HIF () - 1 = 3 H1R () BB () — 1 (C.75)
re[R)
=> > (Z R B) TR R [— 4] — 5[1‘}) e Iwi (C.76)
re€[R] i€Z \me€Z
=y N (Z h[Rm +r]"h[R(m — i) + 7] — 6[i]> e i (C.77)
re[R] i€Z \mg€Z
=> | > > h[Rm+r]"h[Rm+r— Ri] - 8[i] | e (C.78)

i€Z \re€[R] mEZ

=y (Z hin)"h[n — Ri] — 6[i]> e v, (C.79)

i€Z \n€Z

where Equation (C.75) follows from the definition of polyphase matrix in Equation (C.15). Equation (C.76) uses a number
of properties of Fourier transform: a Hermitian in the spectral domain is a transposed reflection in the spatial domain, a
frequency-wise multiplication in the spectral domain is a convolution in the spatial domain, and an identical mapping in the
spectral domain is an impulse sequence in the spatial domain. Equation (C.77) follows from the definition of polyphase
components in Equation (C.7), and Equation (C.79) makes a change of variables n = Rm + r. In summary, we show that
the LHS (denoted D(el“)) is a Fourier transform of the RHS (denoted as d[i]):

HIR () gRl oy — 1 = > <Z h[n]"h[n — Ri] — a[n]> e, (C.80)

D(ejw) i€Z \n€Z

dli]
Applying Parseval’s theorem (Theorem B.4) to the sequence d = {d[i],i € Z}, we have

2

1 7 (C.81)

R 'UJT R jw 2 _
o | |E" e B)—IH dw=3"

i€L

Zh h[n — Ri] — 6[i]

neZ

which proves the equivalence between Equations (C.69a) and (C.69b). With almost identical arguments, we can prove the
equivalence between Equations (C.69c) and (C.69d), that is

2

1 .
o ||| e H 7] (i IH dw =S| hinlh[n - Ri]" - 8li]|| |, (C.82)
g 1€Z |In€Z
which completes the proof. O

In Table 5, we compare the computational complexities (forward pass) of orthogonal convolutions against normal convolution.
For simplicity, we assume the feature maps have size N x N, the convolution filters have size L x L, and the maximum of
input/output channels is C'. We use K to denote the number of iterations for Bjorck’s algorithm in BCOP, or Taylor’s series
order in SOC.

* For SC-Fac, BCOP, SVCM, or Ortho-Reg, the first term O(LQN 2C2) is the base cost of a normal convolution, and
the second term is the overhead for reconstruction, projection, or regularization. Note that the overhead in SC-Fac is
comparable to Ortho-Reg, which is lower than SVCM or BCOP. If C' < N?2, the overhead in SC-Fac is negligible
compared to the base cost.

* For CayleyConv, the first term O(N?log(N)C?) is the cost for fast Fourier transform (FFT), and the second term
O(NZ2(3) is the cost for matrix inversion for all frequencies. The cost of SOC is exactly K times as a normal convolution.
The computational complexities of CayleyConv and SOC are significantly higher than the one of normal convolution.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Table 5. Computational complexities of different approaches for orthogonal convolutions.

Approach ‘ Computational Complexity
Normal O (L*N2C?)
SVCM O (L2N2C? + N2C?)

Ortho-Reg O (L*N2C?* 4+ L*C?)

CayleyConv | O (N%log(N)C? + N2C?)

SoC O (KL*N2C?)
BCOP O (L?N?C? + KL*C?)
SC-Fac O (L?N?C? + L*C?)

* For those approaches whose filters can be explicitly obtained (SC-Fac, BCOP, SVCM, and Ortho-Reg), the inference time
of an orthogonal convolution is no different from a normal convolution, i.e., O(LQN 26'2). On the other hand, for those
approaches whose filters are implicitly defined (CayleyConv and SOC), the inference time is the same as the forward pass
in training.

C.4. Constrained Optimization over Orthogonal Matrices

In Theorem C.7, we have shown how orthogonal matrices characterize paraunitary systems. Our remaining goal, therefore,
is to parameterize orthogonal matrices using unconstrained parameters. In this part, we review popular parameterization
methods: Householder reflections (Mhammedi et al., 2017; Mathiasen et al., 2020), Givens rotations (Dorobantu et al.,
2016; Jing et al., 2017), Bjorck orthogonalization (Anil et al., 2019), Cayley transform (Helfrich et al., 2018; Maduranga
et al., 2019), and exponential map (Lezcano-Casado & Martinez-Rubio, 2019; Lezcano Casado, 2019).

(1) Householder reflections (Mhammedi et al., 2017; Mathiasen et al., 2020). The parameterization represents an
orthogonal matrix using a product of Householder matrices. Given N € Nandn € {1,---, N}, we define H™ as a
mapping from a vector v € R” (a scalar v € R for n = 1) to a block-diagonal matrix H (™) (v) € RN*N:

I, — 2w

In-n
H(n) (,v> — l N] , H(l) (’U) = |:IN_1 U:| y (C83)
vl
where I,, € R™*" denotes an identity matrix. Forn > 2, H (n) (v) is the Householder matrix that represents the reflection
with respect to the hyperplane orthogonal to concat(Ox_,,,v) € RY and passing through the origin. For n = 1, the scalar
v takes values {—1, +1}, which makes H (!)(v) either an identity matrix (for v = 1) or a Householder matrix (for v = —1).

This method parameterizes an orthogonal matrix as a product of H (™)’s:

U=H™@)...H®w)HD W), (C.84)

where each v(™) € R" is a learnable vector for n > 2, and v(1) is a fixed constant that is generated at initialization and fixed
afterward. Observing that Equation (C.84) is serial (unfriendly to parallel computing), Mathiasen et al. (2020) proposes to
increase its parallelism using WY transform.

(2) Givens rotations (Dorobantu et al., 2016; Jing et al., 2017). The parameterization represents a special orthogonal
matrix using a product of Given rotations matrices. Given N € Nand i,5 € {1,--- , N} with i # j, we define GUJ) as a
mapping from an angle § € R to the corresponding rotation matrix G(*7) € RVN*N:

... 0 0 e 07
d co.se —s.in€ O
G0 = | D : |- (C.85)
0 --- sinf --- cosf --- 0
0 0 .0 1]

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

This method parameterizes a special orthogonal matrix U as a product of G(7)’s:
U= G(O’l) (9(0,1)) G(O,Q) (9(0,2)) G(l,2) (9(1,2)) . G(N—Q,N—l)(@(N—Q,N—l)), (C86)

where 0(*7)°s are N(N — 1) unconstrained parameters. Since the determinant of each rotation matrix is +1, their product U
also has +1 determinant, thus is a special orthogonal matrix. Again, Equation (C.86) is highly serial, thus both Dorobantu
et al. (2016) and Jing et al. (2017) propose to group N/2 Given rotations into a packed rotation to increase the parallelism.

(2) Bjorck orthogonalization (Anil et al., 2019). The algorithm was first introduced in Bjorck & Bowie (1971) to compute
the closest orthogonal matrix of a given matrix. Given an initial matrix Uy, this algorithm iteratively approaches its closest
orthogonal matrix as:

1 -1\
U1 = U, <I+ Pt (1) (p2) P,f) \Vk € [K], (C.87)

where K is the iterative steps, P, = I — U,;r Uy, and p controls the trade-off between efficiency and accuracy at each
step. When the algorithm is used for parameterization, it maps an unconstrained matrix Uy to an approximately orthogonal
matrix Uk in K steps. Although Bjorck parameterization is complete (since any orthogonal matrix) can be represented by
Uy = @), itis inexact due to the iterative approximation.

(3) Cayley transform (Helfrich et al., 2018; Maduranga et al., 2019). The transform provides a bijective parameterization
of orthogonal matrices without —1 eigenvalue with skew-symmetric matrices (i.e., AT = —A)

U=I-AT+A7", (C.88)

where the skew-symmetric matrix A is represented by its upper-triangle entries. Since orthogonal matrices with —1
eigenvalue are out of consideration, the parameterization is incomplete. Helfrich et al. (2018); Maduranga et al. (2019)
overcome this difficulty by a scaled Cayley transform:

U=DI-AIT+A)", (C.89)

where D is a diagonal matrix with £1 non-zero entries, which is (randomly) generated at initialization and fixed during
training.

(4) Exponential map (Lezcano-Casado & Martinez-Rubio, 2019; Lezcano Casado, 2019). The mapping provides a
surjective parameterization of all special orthogonal matrices (with +1 determinant) with using skew-symmetry matrices
(e, AT = —A).
A AR 1,
U =exp(A) £ ﬁ:I—i-A—I—ﬁA +o (C.90)

k=0
where the infinite sum can be computed exactly up to machine-precision (Higham, 2009). Lezcano-Casado & Martinez-Rubio
(2019) derives an efficient backpropagation algorithm for the mapping, making it an exact and efficient parameterization in
neural networks. To support a complete parameterization for all orthogonal matrices, Lezcano Casado (2019) extends the
mapping as:

U = Qexp(A), (C.91)

where @ is an orthogonal matrix, which is generated at initialization and fixed during training.

In principle, we can use any of these approaches to parameterize the orthogonal matrices. In this work, we choose exponential
map due to its exactness, efficiency, and completeness.

D. Learning Deep Orthogonal Networks with Lipschitz Bounds

In this section, we first discuss the properties of GroupSort and Lipschitz networks. Subsequently, we prove Proposition 4.1,
which exhibits two approaches to construct Lipschitz residual blocks. Lastly, we prove in Proposition D.1 when a paraunitary
system (represented by a complete factorization as in Theorem C.7) reduces to an orthogonal matrix. The reduction allows
us to apply the initialization methods for orthogonal matrices to paraunitary systems.

GroupSort and orthogonality. The GroupSort activation separates inputs into groups and sorts each group into ascending
order (Anil et al., 2019). It guarantees two properties: (1) The activation is norm preserving in the forward pass — a

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

sorting function does not change the norm of any input vector. (2) The activation is gradient norm preserving in the
backward pass — a sorting function acts as a permutation, which is orthogonal. GroupSort with the group size of two is a
spacial case that we use in the paper followed by (Chernodub & Nowicki, 2016; Anil et al., 2019).

A Lipschitz network with orthogonal layers and GroupSort activations is locally orthogonal. Given any input x to the
network, there exists a neighborhood N (x, r) with radius 7 such that the sorting order in each activation does not change. In
this neighborhood N (x, r), each GroupSort layer operates as a constant permutation (thus orthogonal); consequently, the
whole network is locally orthogonal.

Lipschitz residual blocks. In Proposition 4.1, we prove the Lipschitzness of two types of residual blocks, one based on
additive skip-connection and another based on concatenative one (See Figure 6).

Proof for Proposition 4.1. We first prove the Lipschitzness for the additive residual block f : f(z) £ afl(z) + (1 —
a)f?(x). Let z, ' be two inputs to f and f(x), f(x') be their outputs, we have

() = f@)] = ||(af* (@) + (1 - a) f*(2)) - (Oéfl() (1 —a)f*(z))]| (D.1)
= [Ja (/! () (@) +(1—a) (f2 (@) (D.2)
<alf'@) - f{@)|| + (1 -a) ||/ z)|| (D.3)
<alLlx' —wH +(1-a)L|z —z| (D4)
=Ll — =, (D.5)

where Equation (D.3) makes uses of the triangle inequality, and Equation (D.4) is due to the L-Lipschitzness of both f*, f2.
Therefore, we have shown that || f(x') — f(z)| < L||2’ — z||.

Similarly, we prove the Lipschitzness for the concatenative residual block g : g(z) £ P [¢*(x'); g*(x?)]. Let @, @’ be two
inputs to g and g(x), g(x’) be their outputs, we have

2
lg(@) —9(@)|* = | P (I9" @) g* @] — " (@i g*(@)]) | (D.6)
2
= [|lg" (="): g% (@")] = 9" (); g* ()] (D.7)
2 2
= o' @) - g @)+ o2@®) - g2 (D.8)
! 2 !/ 2
< 12||at — a!|| + L2 0¥ - 2| D.9)
2 1, 2! 1o

=L H[w ;@]—[-’v;w]H (D.10)

=L? |2’ — z|”, (D.11)

where Equation (D.7) utilizes || Pz|| = |||, Vz, and Equation (D.9) is due to the L-Lipschitzness of g', g°. The equations
above implies that ||g(z’) — g(z)|| < L||2’ — z||. O

Reduction of a paraunitary system to an orthogonal matrix. In Proposition D.1, we prove a special case when a
paraunitary system reduces to an orthogonal matrix. The reduction allows us to apply the initialization methods for
orthogonal matrices to paraunitary systems.

Proposition D.1 (Reduction of a paraunitary matrix to an orthogonal matrix). Suppose a paraunitary system H (z) takes
the complete factorization in Equation (C.55), and assume L = L with U=9 = QU for all ¢, then the paraunitary
matrix H (z) reduces to an orthogonal matrix Q,

H(z) =V(zUD) .. V(zUuQviE"HuM) ... v Uu®) = Q. (D.12)

Proof for Proposition D.1. In order to prove Equation (D.12), it suffice to show that

V(Z;U(_Z))QV(Z_l;U(@) =Q, (D.13)

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

X

)

v

Channel Split Channel Split
Ortho. Conv.
o o /\
Ortho. Conv.
Ortho. Conv. ‘ S
GroupSort ?ggﬁiec_o‘;‘)" GroupSort . (Stride = 2)
= 0. Conv.
¢ GroupSort (Stride = 2) ‘ GroupSort
Ortho. Conv. Ortho. Conv. Ortho. Conv. ‘ Ortho. Conv.
GroupSort GroupSort
Concatenate Concatenate
Add ¢
‘ Channel Shuffle Channel Shuffle
GroupSort GroupSort *
(a) Basic additive block. (b) Strided additive block. (c) Basic shuffling block. (d) Strided shuffling block.

Figure 6. Variants of residual blocks. In our experiments, we combine (a) & (b) to construct an orthogonal ResNet, and (c¢) & (d)
to construct an orthogonal ShuffleNet. In Proposition 4.1, we prove the Lipschitzness of these building blocks. Since composition of
Lipschitz functions is still Lipschitz, it implies that a network constructed by these building blocks is also Lipschitz.

and Equation (D.12) will reduce recursively to the orthogonal matrix Q. For simplicity, we rewrite U(~% as L and U
as R, by which we have L = QR (or R = Q" L) and we aim to prove V (z; L)QV (2~!; R) = Q. By the definition of

V (z;-) in Equation (C.54), we expand it as

V(xL)QV("R) = [(I-LLT) + LLT:| Q[(1- RRT) + RRT:7"| =
LL'"QI-RR")z2+(I—-LL"YQUI-RR")+LL'"QRR" +(I-LL")QRR' 2" (D.14)

c[-1] c[0] c(1]
Therefore, we will need to show that ¢[—1] = 0, ¢[1] = 0 and ¢[0] = Q.
We first show that both ¢[—1] for z and ¢[1] for 2! are zero matrices.
c[-1]=LL'Q(I-RR")

=LL'"Q-LL"QRR"

—L(Q'L) - L(Q"L)'RR’

—LR" - L(R"TR)R"

—LR" —LR" =0,

cll]=(I-LL")QRR"
=QRR" - LL"QRR'
=(QR)R" - LL"(QR)R'
=LR" - L(L"L)R"
—LR" - LR" =0.

(D.15)
(D.16)
(D.17)
(D.18)
(D.19)

(D.20)
(D.21)
(D.22)
(D.23)
(D.24)

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

100 [~ — .
—%— Train
—x— Test
- ///—H\\ —e—PGD
I3
(_>; 80 [~ —
<
—
3
Q
Q
<
60 [~ —
\ \ \ \ \ \ \ \ \

500 200 100 50 20 10 5 2 1
Margin ¢ (x107%)

Figure 7. Effect of the Lipschitz margin ¢, for WideResNet22-10. It shows a trade-off between clean and robust accuracy with different
margins for multi-class hinge loss. As shown, the training and test accuracy become higher with larger margin, but the robust accuracy
decreases after eg = 0.1.

Lastly, we show that the constant coefficient ¢[0] is equal to Q.

cl0)=(I-LL")Q(I -RR")+ LL"QRR" (D.25)

=Q-LL"Q-QRR" +2LL"QRR' (D.26)

=Q-LR"-LR" +2LR" =Q (D.27)

which completes the proof. O

E. Supplementary Materials for Experiments
E.1. Experimental Setup

Network architectures. For fair comparisons, we follow the architectures by Trockman & Kolter (2021) for KW-Large,
ResNet9, WideResNet10-10 (i.e., shallow networks). We set the group size for GroupSort activations as 2 in all experiments.
For networks deeper than 10 layers, we implement their architectures modifying from the Pytorch official implementation of
ResNet. It is crucial to replace the global pooling before fully-connected layers with an average pooling with a window
size of 4. For the average pooling, we multiply the output with the window size to maintain its 1-Lipschitzness. Other
architectures, including ShuffleNet and plain convolutional network (ConvNet), are further modified from the ResNet, where
only the skip-connections are changed or removed. We use the widen factor to indicate the channel number: we set the
number of channels at each layer as base channels multiplied by the widen factor. The base channels are 16, 32, 64 for three
groups of residual blocks. More details of the ResNet architecture can be found in the official Pytorch implementation.

Learning strategies. We use the CIFAR-10 dataset for all our experiments. We normalize all input images to [0, 1] followed
by standard augmentation, including random cropping and horizontal flipping. We use the Adam optimizer with a maximum
learning rate of 10~2 coupled with a piece-wise triangular learning rate scheduler. We initialize all our SC-Fac layers
as permutation matrices: (1) we select the number of columns for each pair U® , U (=9 uniformly from {1,---,T} at
initialization (the number is fixed during training); (2) for £ > 0, we sample the entries in U¥) uniformly with respect to the
Haar measure; (3) for £/ < 0, we set U9 = QU“) according to Proposition D.1.

E.2. Additional Empirical Results on Hyper-parameters Selection

Multi-class hinge loss. Following previous works on Lipschitz networks (Anil et al., 2019; Li et al., 2019b; Trockman &
Kolter, 2021), we adopt the multi-class hinge loss in training. For each model, we perform a grid search on different margins
€ €{1x1072,2x1072,5x 1072,1 x 1072,2 x 1072,5 x 1072,0.1,0.2, 0.5} and report the best performance in terms
of robust accuracy. Notice that the margin € controls the trade-off between clean and robust accuracy, as shown in Figure 7.

Initialization methods. In Proposition D.1, we have shown how to initialize our orthogonal convolutional layers as

"https://github.com/pytorch/vision/blob/master/torchvision/models/

https://github.com/pytorch/vision/blob/master/torchvision/models/

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Table 6. Comparisons of various initialization methods on WideResNet (kernel size 5).

Initialization ‘ WideResNet10-10 ‘ WideResNet22-10

| Clean (%) PGD (%) | Clean (%) PGD (%)
uniform 83.58 73.20 87.55 75.71
torus 82.40 72.50 88.12 75.43
permutation 83.18 73.16 87.82 76.46
identical 83.29 73.49 87.82 75.49

orthogonal matrices. In Table 6, we perform a study on different initialization methods, including identical, permutation,
uniform, and torus (Henaff et al., 2016; Helfrich et al., 2018). We find that permutation works the best for WideResNet22-10,
while all methods are similar in shallower WideResNet10-10. Therefore, we use permutation initialization for all other
experiments.

Network depth and width. Exact orthogonality is criticized for harming the expressive power of neural networks, and we
find that increasing network depth/width can partially compensate for such loss. In Table 7, we perform a study on the
impact of network depth/width on the predictive performance. As shown, deeper/wider architectures consistently improve
both the clean and robust accuracy for our implementation. However, the best robust accuracy is achieved by a 22-layer
network since we can afford a wide architecture for 34-layer architecture.

Comparison against normal convolutional networks. In Table 8, We perform a comparison between our orthogonal
networks and normal convolutional networks. Their architecture are identical except for the activation function (GroupSort
for ours and ReLU for normal convolutional networks). Since batch normalization is common in normal convolutional
networks but not in Lipschitz networks, we provide both results for normal convolutional networks with or without batch
normalization. In the table, we report the clean/robust accuracy, train time for epoch, and inference time for the test set.

Robustness against /., attacks using adversarial training. Since orthogonality only guarantees /5 Lipschitzness, Lips-
chitz networks with orthogonal layers are not naturally robust to /., perturbations. To further guard Lipschitz networks
against /., attacks, we follow the approach of adversarial training in Wong et al. (2020). For training, we use a FGSM
variant with step size 10/255; for evaluation, we use 50 PGD iterations with step size 2/255 and 10 random restarts. We
report the experimental results in Table 9. We observe that different orthogonal convolution methods achieve similar £,
robustness on WideResNet-22. Furthermore, the Lipschitz networks with WideResNet22 architecture is consistently better
than ResNet-18, which is previously used in Singla & Feizi (2021).

E.3. On the Necessity of Exact Orthogonality

Due to the benefits like generalizability and robustness, achieving exact orthogonality in convolutions is the primary goal of
a current research line (Sedghi et al., 2019; Li et al., 2019b; Trockman & Kolter, 2021; Singla & Feizi, 2021). However,
until our work, no previous approach achieves orthogonality up to machine precision. Therefore, our proposed method
serves as an extreme case in gaining insight into the trade-off between orthogonality and expressiveness.

In Section 6, we have seen that exact orthogonality is not critical in shallow Lipschitz networks for robustness, and various
orthogonal convolutions (with different precision) achieve comparable results. However, our method is more favorable in
deeper networks (with more than 10 layers) — we show the results in Table 7. It indicates that exact orthogonality is crucial
in learning deep Lipschitz networks. However, without our implementation of exact orthogonality (which does not exist
before), it is unclear whether exact orthogonality up to machine precision is needed in Lipschitz networks.

Moreover, exact orthogonality is essential for other important and timely applications. For example, reversible net-
works/normalizing flows (Kingma & Dhariwal, 2018; Van Den Berg et al., 2018) require exact orthogonality to compute
inverse transform and determinants accurately.

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Table 7. Comparison of different depth and width on WideResNet (kernel size 5). Some numbers are missing due to the large memory
requirement (on Tesla V100 32G). The notation width factor indicates (channels = base channels X factor).

10 layers

Width | 1 3 6 8 10 | 1 3 6 8 10
| Clean (%) PGD with € = 36/255 (%)

Ours |79.96 84.17 84.96 84.61 84.09|65.92 69.70 72.18 72.51 74.29
Cayley | 77.88 82.14 82.56 85.53 85.01 | 66.65 73.06 74.33 75.66 76.13
RKO |81.37 83.55 84.67 85.18 84.62|70.55 74.44 7641 76.65 77.02

22 layers
Width | 1 3 6 8 10 | 1 3 6 8 10
| Clean (%) PGD with € = 36/255 (%)
Ours |79.90 82.22 87.21 88.10 87.82]67.95 70.88 74.30 75.12 76.46
Cayley | 79.11 84.82 8585 - - |69.79 6561 7481 - -
RKO | 8271 84.19 84.33 8455 - |7240 7436 75.66 76.41 -
| 34 layers
Width | 1 3 6 8 10 | 1 3 6 8 10
| Clean (%) PGD with € = 36/255 (%)
Ours |81.24 88.17 8892 - - 6921 71.85 75.09 - -
Cayley | 82.46 8429 - - - | 7127 7473 - - -

RKO |81.51 83.24 83.92 71.38 73.84 7503 - -

Table 8. Comparison of orthogonal convolutions and normal convolutions on WideResNet (kernel size 5). The notation width factor
indicates (channels = base channels x factor).

22 layers
Width ‘ 1 3 6 8 10 1 3 6 8 10
‘ Clean (%) PGD with e = 36/255 (%)

Ortho. (SC-Fac) | 79.90 82.22 87.21 88.10 87.82|67.95 70.88 74.30 75.12 76.46
Normal (w/o BN) | 88.81 90.71 91.59 91.64 91.57 | 54.33 66.36 69.35 69.94 74.10
Normal (with BN) | 88.52 91.74 91.20 92.29 92.40|51.53 66.90 73.18 73.89 73.02

‘ Training (s) Inference (s)

Ortho. (SC-Fac) | 1453 1734 250.1 323.1 434.0| 147 435 9.72 12.65 17.56
Normal (w/o BN) | 13.77 30.71 69.35 9994 153,5| 1.01 3.03 6.77 9.12 13.03
Normal (with BN) | 16.56 34.16 87.49 1069 1674 | 1.14 334 733 9.69 13.39

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Table 9. Practical robustness against /., adversarial examples (WideResNet kernel size 5, £ perturbation radius of € = 8/255).
BCOP+ and SOC (Singla & Feizi, 2021) results with ResNet-18 are reported by Singla & Feizi (2021).

Model | Method | Clean (%) PGD (%)
BCOP+| 7926 3485
Resnet-18 SOC | 8224 4373

BCOP 77.57 46.35
WideResNet22-max | Cayley 78.27 45.21
Ours 76.28 46.27

F. Orthogonal Convolutions for Residual Flows

In this section, we first review the class of flow-based generative models (Papamakarios et al., 2019; Kobyzev et al., 2020).
We focus on invertible residual network (Behrmann et al., 2019), a flow-based model that relies on Lipschitz residual block,
and its extended version Residual Flow (Chen et al., 2019). We then show how to construct improved Residual Flow using
our orthogonal convolutions.

Flow-based models. Given an observable vector € R” and a latent vector z € R, we define a bijective mapping
f: RP — RP from the latent vector z to an observation & = f(z). We further define the inverse of f as F' = f~!, with
which we represent the likelihood of @ by the one of z as:

Inpx(x) =Ilnpz(z) + In|det Jp(x)], (D

where px is the data distribution, py is the base distribution (usually a normal distribution), and J () is the Jacobian of F'
at x. In practice, the bijective mapping f is composed by a sequence of K bijective mapping such that f = fx o--- o f1,
where each fj, is named as a flow. Since the inverse mapping F' = Fj o - - - Fi transforms the data distribution px into a
normal distribution pz, flow-based models are also known as normalizing flows. Accordingly, we rewrite Equation (F.1) as:

K

Inpx(x) =lnpz(z)+ Zln|det Jr (2)], (F2)
k=1

In a practical flow-based model, we require efficient computations of (a) each bijective mapping f, (b) its inverse mapping
Fy, = f; ', and (c) the corresponding log-determinant In|det Jp(-)|.

Invertible residual networks (i-ResNets). Behrmann et al. (2019) proposes a flow-based model based on residual network
(ResNet). Note that a block in ResNet is defined as F'(x) = « + g(x), where g is a convolutional network. In (Behrmann
et al., 2019), the authors prove that I is a bijective mapping if g is 1-Lipschitz, and its inverse mapping can be computed by
fixed-point iterations:

Tei1 =y — glaw), (E3)

where y = g(x) is the output of F' and the initialization of the iterative algorithm is «(:= y. From the Banach fixed-point
theorem, we have

Li k
e —], = —22) Sl — ol (F4)

1 — Lip(g
i.e., the convergence rate is exponential in the number of iterations and smaller Lipschitz constant will yield faster
convergence. Furthermore, the log-determinant can be computed as:

Inpx(x) =lnpz(z) +tr(ln (I + J4(x))) (E5)
oo -1 k+1
=Inpy(z) +tr (; % [Jg(w)]k> , (F6)

where the infinite sum is approximated by truncation and the trace is efficiently estimated using the Hutchinson trace
estimator tr(A) = Eyp0,n[v ' Av].

Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework

Table 10. Comparisons of various flow-based models on the MNIST dataset. We report the performance in bits per dimension (bpm),
where a smaller number indicates a better performance.

Model MNIST

Glow (Kingma & Dhariwal, 2018) 1.05
FFJORD (Grathwohl et al., 2018) 0.99
i-ResNet (Behrmann et al., 2019) 1.05
Residual Flow (Chen et al., 2019) 0.97

SC-Fac Residual Flow (Ours) 0.896

To constrain the Lipschitz constant, i-ResNet uses spectral normalization on each linear layer in the block. Moreover, to
improve optimization stability, i-ResNet changes the activation function from ReLLU to ELU, ensuring nonlinear activations
have continous derivatives.

As summarized in the conclusion of Behrmann et al. (2019), there are two remaining problems in this model: (1) The
estimator of the log-determinant is biased and inefficient; (2) Designing and learning networks with a Lipschitz constraint
are challenging — one needs to constrain each linear layer in the block instead of being able to control the Lipschitz constant
of a block.

Residual Flow. Chen et al. (2019) address problem {(1) by proposing an unbiased Russian roulette estimator for Equa-
tion (F.6):
_ ~ (=DF v [Jg@)t] v
tr(In(I+ Jy(x)) =Epo [R SR | (E7)

k=1

where n ~ p(N) and v ~ N(0, I). Residual Flow further changes the activation function from ELU to LipSwish. The
LipSwich activation avoids derivative saturation, which occurs when the second derivative is zero in a large region. However,
problem (2) remains unresolved.

Residual flows with orthogonal convolutions. We propose to address problem (2) by replacing the spectral normalized
layers by our orthogonal convolutional layers (SC-Fac). Note that orthogonal convolutions directly control the Lipschitz
constant of a ResNet block. We keep all other components unchanged — in particular, we use LipSwish activation instead
of GroupSort, as GroupSort suffers from derivative saturation. We experiment our model on MNIST dataset. As shown
in Table 10, our model substantially improve the performance over the original Residual Flow. We display some images
generated by our model in Figure 8.

ol7172]12]3]=] 1]7] <
HEEHRGEEEE
NOEESnEEAD

Figure 8. Random samples from SC-Fac Residual Flow trained on MNIST.

