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Abstract

Policy gradient (PG) estimation becomes a chal-
lenge when we are not allowed to sample with the
target policy but only have access to a dataset gen-
erated by some unknown behavior policy. Con-
ventional methods for off-policy PG estimation
often suffer from either significant bias or expo-
nentially large variance. In this paper, we propose
the double Fitted PG estimation (FPG) algorithm.
FPG can work with an arbitrary policy parameter-
ization, assuming access to a Bellman-complete
value function class. In the case of linear value
function approximation, we provide a tight finite-
sample upper bound on policy gradient estimation
error, that is governed by the amount of distri-
bution mismatch measured in feature space. We
also establish the asymptotic normality of FPG
estimation error with a precise covariance char-
acterization, which is further shown to be statisti-
cally optimal with a matching Cramer-Rao lower
bound. Empirically, we evaluate the performance
of FPG on both policy gradient estimation and
policy optimization, using either softmax tabular
or ReLU policy networks. Under various metrics,
our results show that FPG significantly outper-
forms existing off-policy PG estimation methods
based on importance sampling and variance re-
duction techniques.

1. Introduction

Policy gradient plays a key role in policy-based reinforce-
ment learning (RL). We focus on the estimation of policy
gradient in off-policy reinforcement learning. In the off-
policy setting, we are given episodic trajectories that were
generated by some unknown behavior policy. Our goal
is to estimate the single policy gradient of a target policy
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g, 1.e., Vyv™, based on the off-policy data only. This is
motivated by applications such as medical diagnosis and
ICU management, in which sampling data with a proposed
policy is prohibitive or extremely costly. In these applica-
tions, one may not expect to learn the full optimal policy
from limited data, but rather learn a single gradient vector
for directions of improvement. To handle the distribution
mismatch between behavior and target policy, a classic ap-
proach is importance sampling (IS) (Jie & Abbeel, 2010).
However, IS is known to be sample-expensive and unstable,
as the importance sampling weight can grow exponentially
with respect to time horizon and causing uncontrollably
large variances.

In this work, we design an algorithm to avoid the high vari-
ance of importance sampling by utilizing a good (to be
defined in Sec. 4) value function approximation should they
be available. The key idea is to perform PG estimation in
an iterative way, similar to the well-known Fitted Q Itera-
tion (FQI) algorithm. We propose the double Fitted Policy
Gradient (FPG) estimation algorithm, which conducts itera-
tive regression to estimate () functions and V(@ functions
jointly. The FPG algorithm is able to provide an accurate es-
timation under mild data coverage assumption and without
the knowledge of the behavior policy, in contrast to vanilla
IS which must know the behavior policy.

When the function approximator is linear, we show that
FPG is equivalent to a model-based plugin estimator and
can give an e-close PG estimator using a sample size of
N = O (CH?/£%), where H is the horizon length and C'is
a constant to be specified that measures the distribution shift
between behavior policy and target policy. Notably, this dis-
tribution shift C' = O(1 + x%(u, 1)) can be bounded by a
form of relative condition number or a restricted chi-square
divergence, measuring the mismatch between the behavior
and target policy in feature space. We additionally establish
the asymptotic normality of our FPG estimator with closed
form variance expression. We also provide a matching
information-theoretic Cramer-Rao lower bound, showing
that our estimator is in fact asymptotically optimal. See
Table 1 for a summary of theoretical results for off-policy
PG estimation. FPG can be easily applied as a plug-in PG
estimator in any off-policy PG algorithm. Under standard
assumptions, a PG algorithm with FPG estimator can find
an e-stationary policy using at most N = O (dim(©)?/<?)
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samples. If the policy optimization landscape happens to sat-
isfy the Polyak-lojasiewicz condition (Polyak, 1963; Bhan-
dari & Russo, 2019), the sample complexity can be further
improved to N' = O (dim(©)? /<) for finding an -optimal
policy.

2. Problem Definitions

Markov Decision Process An instance of MDP is defined
by the tuple (S, A, p,r, &, H) where S and A are the state
and action spaces, H € N, is the horizon, py, : § x A —
Ag, h € [H] is the transition probability (where A s denotes
the probability simplex over S), 7, : S X A — [0,1],h €
[H] is the reward function and £ € Ag is the initial state dis-
tribution. Given an MDP, a policy 7, : S — A4, h € [H|
is a distribution over the action space given the state s and
time step h. At each time step h, the agent observes sp
and action aj, according to its behavior policy m. The
agent then observes a reward r, (s, aj,) and the next state
Sp+1 sampled according to sp4+1 ~ pr(-|sn,an). A pol-
icy 7 is measured by the Q function Q™ and the value
v™, defined by Q7 (s,a) = E”[Zgzh Th(Spryap)|sn =
s,ap, = a],Vh € [H],(s,a) € § x A and v =
E™ [Zthl rh(Sh,an)|s1 ~ €], where E™ denotes the expec-
tation over trajectories by following policy 7. The optimal
policy of the MDP is defined as 7* := arg max, v”.

Off-Policy Policy Gradient Estimation Direct policy op-
timization methods are popular in RL due to their effective-
ness and generalizability. Among them, the classic Policy
Gradient (PG) method represents policies via a parametric
function approximation and perform gradient ascent on the
policy parameters (Sutton et al., 2000).

Denote a parametrized policy as 7y, where 0 € O is the
policy parameters. Policy Gradient is defined as the gradient
of policy value vg with respect to the policy parameter 6:
Vovg = VoE™ [0 1, (sn,an)|s1 ~ €. With policy
gradients, one may directly search in the policy parameter
space © using gradient ascent iterations, giving rise to the
class of PG algorithms. However, directly differentiating
through the value function is very difficult, especially when
we do not have access to the transition probability of the
MDP. The policy gradient theorem (Sutton et al., 2000) pro-
vides a convenient formula for estimating PG using Monte
Carlo sampling:

H H
Vevg = Eﬂe |:Z (Z Th/> VQ logﬂ'g,h (ah|sh)

h=1 \h'=h

S1Nf:|.

In the online RL setting, one can interact with the envi-
ronment directly with target policy 7y and directly estimate
the PG by averaging over sample trajectories (Degris et al.,
2012; Kakade, 2001; Peters & Schaal, 2008; Sutton et al.,
2000; Williams, 1992).

We focus on the more challenging offline RL setting, where

we are not allowed to interact with the environment with the
target policy 7y. Instead, we only have access to offline
logged data, D = {(Sgk)v aék)’ 55:21’ T}(Lk))}he[H],ke[K],
which consists of K i.i.d. trajectories, each of length I
and is generated from an unknown behavior policy 7. The
goal of off-policy PG estimation is to construct an estimator
m based solely on the off-policy data D that approxi-
mates the true gradient with low sample and computational
complexity.

Notations Let my be a policy parameterized by § € © C
R™, where © is compact and m = dim(¢). Let * =
arg maxgece vg. Denote for short that Q¢ := Bl e =

v™. Define the transition operator Py by

(Ponf) (s,a) :=E" [f(Sh+1,an+1)|sn = s,an = a],
Vi:Sx A—-Rhe[H|,s€S,ac A

where [N] is the set of integer 1,2,...,N. Given a
real-valued function class F and vector-valued function
u:SxA—R" wesayu € Fifu; € F, Vj € [m].
For any matrix £ € R%*92 (which includes scalars and
vectors as special cases), we define its Jacobian as Vg Ey =
(V4Eg,V2Ey, ...,V Ey) € RU1xmdz_ where V7 is the

partial derivative w.r.t. the jth entry, i.e., Vé = a%j.

3. Related Work

When it comes to off-policy PG estimation, one demand-
ing challenge is the distribution shift between the possibly
unknown behavior policy and target policy (Agarwal et al.,
2021). The basic Importance Sampling (IS) estimator for
off-policy PG, which is still the most common approach
used in practice, is

K H H
— 1
S eSS (350 ) e (o)

h/=h

wo.n (i |55

Th aglk) sglm
sical PG methods includ(ing REINFORCE and GPOMDP
(Sutton et al., 2000; Williams, 1992) are all based on this
idea or its modifications (Degris et al., 2012; Kakade, 2001;
Peters & Schaal, 2008). A severe drawback of the IS method
is its huge variance that can be as large as 2°()) | resulting
in ill-behaved gradient steps in practice. IS also requires
prior knowledge of 7 to compute the IS weights, which
often is not available. (Kallus & Uehara, 2020) proposes a
meta-algorithm called (EOOPG) that performs doubly ro-
bust off-policy PG estimation, assuming access to a number
of nuisance estimators including Q function and density
estimators. They show that if the state-action density ra-
tio function ™ /[ can be estimated with error rate K /2,
the EOOPG would be asymptotically efficient with a limit
variance ©(H*/K). (Xu et al., 2021) extends the doubly

where wj, = HhH:1 is the IS weight. Clas-
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Require
Algorithm Variance BIE:EZ\‘Zgr Required Estimators  Finite Sample
Policy?
REINFO;)%IIZ)(Kakade, 20(H)g( % ) Yes None Yes
GPOMDP (Kakade, ~
2001; Shelton, 2013) 20U00(%) Yes Q) Yes
EOOPG (Kallus & 4 ? (s.a) L, ——
Uehara, 2020) O( % max qh Z:(S@)) Yes 1, Veus, Q1. VoQ) No
. . 7Y .
FPG (This Paper, with (9(7 min{C1d, H}(1+ No None Yes

d-dim Features) X% (1l i)

Table 1. Comparison of Off-Policy PG Estimation Methods. Both REINFORCE and GPOMDP suffers from exponential variance

in the worst case. EOOPG’s bound scales with the maximum density ratio maxs q,n

1 (s,a)
Ap(s,a)

), whereas our bound only scales with the

x2-divergence which can be much smaller. For example, the density ratio between two standard Gaussian distribution is infinite, but the
x2-divergence is always bounded. In addition, our method also does not require the knowledge of the behavior policy or assume access to
any high-performing value or gradient estimators, which may not be available in practice.

robust approach to the case of discounted MDP and with
a finite sample guarantee. However, both work require
the density ratio be precisely estimated, which is arguably
an even harder problem. Note that density ratio estima-
tion requires learning a function that maps from the raw
state space, which can be arbitrarily high dimensional and
complex, whereas policy gradient estimation only requires
estimating a vector of length being the number of policy
parameters. They did not provide a guarantee on the error
of such an estimator and leave the estimation error in the
final result as a irreducible term. (Morimura et al., 2010)
proposes a temporal difference method and estimates the
policy gradient via linear function approximation of the
stationary state distribution, but does not provide a formal
statistical guarantee. Several other methods for off-policy
PG, including Non-parametric OPPG (Tosatto et al., 2020)
and Q-Prop (Gu et al., 2016), are found to be empirically
effective but no theoretical guarantee is provided. In gen-
eral, theoretical understanding for off-policy PG remains
rather limited. We summarize known variance bounds for
off-policy PG estimation in Table 1.

Off-policy PG estimation is closely related to PG-based
policy optimization. For example, even in online policy
optimization, one can use past data for more efficient PG
estimation. Several works (Papini et al., 2018; Xu et al.,
2020; 2019) combines IS with variance reduction technique,
but their theories are based on the assumption that the vari-
ance of the IS estimator is bounded at some controllable
level instead of grow exponentially (Jiang & Li, 2016; De-
gris et al., 2012; Kallus & Uehara, 2020) or that Lipschitz
continuity holds (Zhang et al., 2021a). (Tosatto et al., 2020)
provides a non-parametric OPPG method with some error
analysis. (Liu et al., 2019; Gu et al., 2016) combine off pol-

icy PG estimation with actor-critic/policy gradient schemes.
(Zhang et al., 2020) generalizes the notion of policy gradient
to RL with general utilities and shows that such PG can be
estimated by solving a stochastic saddle point.

Another closely related topic is the Offline Policy Evaluation
(OPE), i.e., to estimate the target policy’s value given offline
data generated by some behavior policy 7. Various methods,
from importance sampling to doubly robust estimators have
been proposed (Tokdar & Kass, 2010; Precup et al., 2000;
Jiang & Li, 2016; Thomas & Brunskill, 2016). A marginal-
ized importance sampling (Xie et al., 2019) for tabular MDP
and a fitted Q evaluation (Duan et al., 2020) approach for
linear MDP provably achieve minimax-optimal error bound
with matching information-theoretic lower bounds. The
fitted Q evaluation method was later shown to work with
bootstrapping (Hao et al., 2021), kernel function approxima-
tion (Duan et al., 2021), third-order differentiable function
approximation (Zhang et al., 2022) and ReLU networks (Ji
etal., 2022).

Another line of works use the pessimism principle to design
algorithms that can perform stable estimation even under
weaker coverage assumption (Jin et al., 2020; Rashidinejad
et al., 2021; Zanette et al., 2021; Zhang et al., 2021b; Chang
et al., 2021; Yin et al., 2022). However, to the best of our
knowledge, these algorithms do not achieve the minimax
optimal rate for OPE and it’s unclear how to apply them to
PG estimation.

4. Assumptions

In this paper, we focus on a setting where Q° and VQ"?
can both be represented within a function class . Assume
without loss of generality that 1 € F.
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Assumption 4.1 (Bellman Completeness). For any f € F
and h € [H], we have Py, f € F, and we suppose 7, €
F,Vh € [H]. It follows that QY € F,Vh € [H],0 € ©.

The Bellman Completeness assumption has been commonly
made in the theoretical offline RL literature (Xie et al., 2021;
Duan et al., 2020). It requires F to be closed under the tran-
sition operator Py, so that the function approximation incurs
zero Bellman error. In fact, it is known both theoretically
(Wang et al., 2020) and empirically (Wang et al., 2021) that
without such assumption FQI can diverge. We similarly
assume that the gradient map also belongs to F.

Assumption 4.2. VQY € F,Vh € [H],0 € ©.

In the theoretical results, we will focus on the tractable case
where F is a linear function class, since even OPE with
general nonlinear function class remains an open problem.
However, we remark that our algorithm (see Alg. 1) applies
to any function class, including neural networks.

Linear function approximation Let¢ : S x A — R?
be a state-action feature map. Let F be the class of linear
functions given by F = {¢(-,-) Tw|w € R¢}. Then for any
policy mg and h € [H], Assumption 4.1 implies there exist
w, € R and wf € R? such that

QZ(Sa a’) = (;5(8, a)waL‘

Furthermore, we show that Assumption 4.1 alone is suffi-
cient to ensure the expressiveness of F for PG estimation in
case of the linear function class.

Proposition 4.3. If F = {¢(-, ) "w|w € R4}, Assumption
4.1 implies Assumption 4.2. In particular, we have wZ is

differentiable w.r.t. 0 and

VGQZ(Sv a) = ¢(S, CL)TVQUJZ,

Th(sv a’) = ¢(37 a)Twr,ha

Vh € [H].

In other word, as long as one can use linear function approx-
imation for policy evaluation, the same feature map auto-
matically allows linear function approximation of Vg Qz.

5. Algorithm

In this section, we describe our double Fitted Policy Gra-
dient iteration (FPG) algorithm, designed to estimate the
policy gradient Vyvy from an arbitrary batch data D.

5.1. Policy Gradient Bellman Equation

Notice that by Bellman’s equation, we have
Qh(s,a) = (s, a)

+/ pr(s']s,a)mg i1 (a'[s)Q 11 (s',a)ds'da’.
SxA

Differentiating on both sides w.r.t. 6, we get
v& QZ (S, a)

- / pu('15,0) (Voo pr (@]5) Q241 (', ') ds'da
SxA

—|—/ ph(s'|s,a)7r97h+1(a'|s’)V9QZ+1(s’,a’)ds’da’
SxA

=E™ [(Vglog 76,n11(an+1]5n11)) Qi1 (She1, ans1)
+ VQQZ+1(Sh+1,U,h+1)|Sh =s,ap =a.
Here we use the convention that the gradient of VQ9 or
Vog,p 18 a function from S x A to a row vector in Rxm,
Thus, we get the Policy Gradient Bellman equation, given
by
0 _ 0
Qn =1n+PonQpyi1
Vo@h = Pon (VologIy ni1) @hyy + VeQhi1)

where we define the operator Vg log Iy 5, by
((VologHy,n) f) (s, a) = (Vg logmo n(als)) f(s,a).

Once we get the estimations of QY and V,Qf, we
can calculate the policy gradient Vgvy using the for-

mula: Vv Jsxa&(s)ma1(als)(VoQi(s,a) +
(Vg logma,1(als)) Q1(s,a))dsda.

)

5.2. Double Fitted Policy Gradient Iteration

In a similar spirit to Fitted Q Iteration (FQI), we develop our
PG estimator based on the gradient Bellman equations (1).
We derive our estimator by applying regression iteratively:

Let @Zlflc = VéQ?ﬁ’f =0,Vj € [m]. Forh = H,H —
1,...,1and j € [m], let

K
@\Z,FPG = arg min |:)\p(f) + Z (f (sﬁf), al(lk)) — r}(Lk)

fer k=1
K\ A k 2
oo (0 2) 2 (s} |
A
. K
Vi@ = argmin | 3o() + 3 (£ (55,0l
fer —
k T A0F k
_ /0471'97}14_1 (a/ ‘52_&1) (VJGQ‘ZLI?;G (si_&ha’)

2
+ Qz’EG (s(hlfgl, a/) V3 log o, ht1 (a' ’5&21) )da/) :| 3)

After the computation of @‘Z’FPG, Vo QZ’FPG, the policy gra-
dient can be estimated straightforwardly. The full algorithm
is summarized in Algorithm 1.

5.3. Equivalence to a Model-based Plug-in Estimator

Next we show that the FPG estimator is equivalent to a
model-based plugin estimator. Define the model-based re-
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Algorithm 1 Fitted PG Algorithm
1: Input: Dataset D, target policy g, initial state distribu-
tion &.

2: Initialize Q%TIG = 0and V) Q(ZTIG =0, Vj € [m].
3: forh=H,H—1,...,1do

4:  Calculate @Z’FPG, VQQZ’FPG by solving (2) and (3).
5. end for

6: Return

Voo = [ A&(sm,l(ms)(vle*”’G(s,w
X

+Q7(s,a) Ve log 7T9,1(a|s)) dsda.

ward estimate 7 and transition operator estimate Py as fol-
lowings: for any (possibly vector-valued) function f on
S x Aand h € [H|,

Th = argmin [i (f (szk),ag )) - 7‘2“)2 + )\P(f,)] )

rer k=1

K
Po.nf 1= arg min |:Z (f (ngmvaglk))
k=1

fler
2
*/ To,h41 (a' ‘Szk)) f (82’1)176/) dal) + )\P(f/)}
A

Plugging 739 and 7 into (1), we may calculate the policy
gradient associated with the estimated model. Let Q?fﬁ =

ngi,Dﬁ?—OJe[ . Forh=H,H—-1,...,1,

~6,MB ~6,MB
Qh =Th+ PO th+1 )

Vg _ B, ((vg log HMH) QUM 47 Qﬁﬂf) .

Then the model-based gradient estimator is

= [ XA&(s)m(@s)( Vo QI (s, )

+ Q\?MB(Sa a)Vglogmp 1 (a|s)> dsda.

Note that the model-based plug-in approach makes intuitive
sense, but is intractable to implement.

Remarkably, we show that the model-based plug-in estima-

-

tor Voul'® is essentially equivalent to the fitted PG estima-
tor, when F is the class of linear functions.

Proposition 5.1. When F = {¢(-,-) "w|w € R%} and the
regulator p is chosen to be p(¢' w) = 2, we have

20, FPG _ A0MB « 0,FPC —o.MB
*Qy =Q;" ", VeQ; =VoQyM" Vh € [H);

_
. Vool = Vyul®,

In the remainder, we focus on linear F and let p(¢ ' w) =
lw]|?. We will omlt the superscrlpt FPG and MB , and

simply denote Q b VgQ b ngg as our estimators.

5.4. FPG with Linear Function Approximation

Define the empirical covariance matrix: For h € [H],

S (AId+Z¢ (si"%ah )¢ (sglk),%m)r)’

where I; € R4*4 is the identity matrix. In the case of linear
function class, one could write down the expression of 7

and 739 explicitly:

= ¢(a ')T@T‘Ju

(C))

() =

Z¢>(Sh 7 <k>) )

(Ponf) () =0, S5 S [ (s1.a1)
k=1

./A7're,h+1 ( Sh+1) f (S;Li)l,a ) da/]‘

-)Tw € F, the above become concise

For f(v ) = (ZS(,

closed forms:
(ﬁe,hf) () = 6(-) Mo pw,
(ﬁe,h (VologIlg py1) f) (,) = o(, -)TW/M\M (Im @ w) .

where the notation ® is used tod denote the Kronecker
product between two matrices, M9 p € Rdxd V9M9 =
R?*™d are defined by

K
Vo = i;l%z {¢( Elk)7a§lk))

k=1
T
/ o h+1( ‘Sh+1) (2)217a/) da
K
VgMe B = V@MQ h = Eh K |:¢( 2}6)7@%))

Lo Chn) (Sron () 1)

/\

In this way, one can easily compute Q‘9 and VoQY in a
matrix recursive form, which we illustrate in Algorithm 2.

] ®)

Runtime Complexity Algorithm 2 is computationally
very efficient. Suppose that caculating integral against
action distribution takes time O(1 ) In Algorithm 2, the
calculation of w, h,Mg n and VgMg n require at most
O(K Hmd?) numeric operations. The recursive function
fitting steps at line 3-5 require at most O( Hmd?) numeric
operations. Thus the total runtime is only O(K Hmd?).
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Algorithm 2 FPG Estimation with Linear Approximation

1: Input: Dataset D, target policy g, initial state distribu-
tion £.

2: Calculate @r,h,ﬂg’h,VM}“ h € [H] according to
), (5), (6) N

3: Let @}, ; = 0gand W | = 0gym.

4: forh=H H —1,...,1do

5: Set @z = ﬁ)\r,h + M@,h@z.l,_lv /W,f = Ve/]w\g,h(fm ®

WY q) + Mo WY,

6: end for

7: Return Vovg = [q, 4 &(s)m0.1(als)o(s,
WV logmy1(als))dsda.

a)’ (ﬁ/\f +

6. Main Results

In this section we study the statistical properties of
the FPG estimator with linear function approximation.
Define the population covariance matrix as Y; :=

T
E {¢ ( ;7,1)7 aﬁf)) ¢ («9;11)&;11)) , h € [H], where E rep-

resents the expectation over the data generating distribution
by the behavior policy.

Assumption 6.1 (Boundedness Conditions). Assume for
any h € [HJ|, ¥, is invertible. There exist absolute con-
stants C,G such that for any h € [H] and (s,a) €
S x A, j € [m], we have ¢(s,a) "%} d(s,a) < C1d and

V7 log 7rg7h(a|s)’ <G.

Assumption 6.1 requires the data generating distribution
to have a full-rank covariance matrix, effectively cover-
ing all d directions in the feature space. Note that this is
a much weaker condition compared to the uniform cov-

erage condition (max; 4 p, Z :Ei Z;) < ©00) made in prior

works (Kallus & Uehara, 2020), which requires coverage
on all (s, a) pairs. Define vf := E™[¢(sp,, a)|s1 ~ &] and
So.n = E™ (¢ (sn, an)p(sn, an) " [s1 ~ €.

6.1. Finite-Sample Variance-Aware Error Bound

Let us first consider finite-sample analysis of our es-
timator. We present a variance-aware error bound.

R — 0 —
Denote ¢gn(s) = E™[p(s',a')[s" = s|, e, =

Qh (517, al) =i B @f 41 (5 )

a)ls = 5h+1] and
Ag =1 Cov|Vy (5}1 10 (sh ,a )

)

Theorem 6.2 (Finite Sample Guarantee). For anyt € R™,
when K > 36k (4 + Ko + k3)2C1dH? log % and \ <
8‘“”H , with probability 1 — 6,

Cid minhe [H] Omin (Eh) IOg

we have,

2t T Aot 8
-log

K 0

Co||t]| log P25

(6, Vovs — Vouo)| < "

where Cpy = 24OCld\FH3f<;1(5 4+ Ky +
1
K3 )(Max;em HZQfVJ \|+HGH291V1|\)and
1 1
Omax <Zh 2 z:Q,hX:h 2)
K1 = max 9

helH] 1 1
Omin (Ehf1297h+12hf1) Al

2

_1 T _1
o = s [ (g (s2) b (22) |52

)

== ma
s G je[m],h)é[H]

[sihe [(Thonnos (s2)) (S (22)) ] i

Theorem 6.2 shows that the finite-sample FPG error is

1
2

largely determined by |/ £"2et. Here Ay gives a precise
characterization of the error’s covariance.

6.2. Worst-Case Error Bound and Distribution Shift

Next we derive a worst-case error bound that depends only
on the distribution shift but not on reward/variance proper-
ties. The following theorem provides a worst-case guarantee
under arbitrary choice of the reward function.

Theorem 6.3 (Finite Sample Guarantee - Reward Free). Let

the conditions in Theorem 6.2 hold, with probability 1 — 6,
we have Vj € [m),

— ) Chd, H}1 8m Cy log 12mdH
’V?ﬂ}o—vjeve §4b9\/mm{ ! K Flog 75" 2 OgK s

H2G maxpem) |2, 2 vl +

and Cy is the same
If we in addition have

be =

1.
H maxye(m 1%, Zv‘;nyH
as that in Theorem 6.2.

where

o(s',a") TS p(s,a) > 0,Y(s,a),(s',a") € S x Ah €
[H], we have
’nge — Vive
9 min{C1d, H}log 52" 1,
<4H G\/ 7 }{rel[H] Eh vy,

20,1 72mdH
ik B Oi S Vjem].
The complete proofs of Theorem 6.2 and Theorem 6.3 are
deferred to Appendix B.1 and B.2. To further simplify
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the expression in Theorem 6.3, we define a variant of X2_
divergence restricted to the family F: for any two groups of
probability distributions p1 = {p1 » }HL |, p2 = {p2.n}}_ ..
define

2
EPl,h [f (:C)

max sup ———————
neth] rer By, , [f(2)?]

T —1
= max v, X 1% -1
he[H] P1,h " P2,n Pl,h ’

XF(p1n,p2) 1 = -1

where v, = E,[¢(s,a)], &, = E,[é(s,a)¢(s,a)"]. Let
i = {in}L | be the occupancy distribution of observa-
tion (s,(ll),ag)). Let p? = {uf}L | be the occupancy
distribution of (s, ay) under policy my. When we have
o(s',a") T2 p(s,a) > 0, ¥(s,a),(s',a') € S x A h €
[H], the result of Theorem 6.3 implies Vj € [m],

—

|Vive — Viuel

min{C1d, H} log & ~ (1
§4H2G\/ & K} . (1+x3r(ug7ﬂ))+0<?>.

The result of Theorem 6.3 matches the asymptotic bound
provided in (Kallus & Uehara, 2020), but holds in finite
sample regime and requires less stringent conditions.

The case of tabular MDP. In the tabular case, the con-
dition ¢(s,a) "%} ' #(s’,a’) > 0 automatically holds. Fur-
thermore, we have the following simplified guarantee:

Theorem 6.4 (Upper bound in tabular case). In the tabular

case with F = RS*A if K is sufficiently large and A = 0,
then with probability at least 1 — 0, Vj € [m]

— . ~ 1 N log 8m
|Vive — Vivg| < O (R) +4H*G K5
0 0
-4/ min max lfh(s’ a) ,C1d max E™o M
he[H],s€S,acA [in (8, a) he[H) in(sh,an)

6.3. Asymptotic Normality and Cramer-Rao Lower
Bound

Next we show that FPG is an asymptotically normal and
efficient estimator.

Theorem 6.5 (Asymptotic Normality). The FPG estimator
given by Algorithm 2 is asymptotically normal:

\/E (V/e\vg - ngg) i) /\/(0, Ae).
An obvious corollary of Theorem 6.5 is that for any £ € R™,
\/?<t, m — V9U9> i> N (O,tTAgt) .

An asymptotically efficient estimator has the minimal vari-
ance among all the unbiased estimators. The next theorem
states the Cramer-Rao lower bound for PG estimation.

Theorem 6.6 (Cramer-Rao Lower Bound). Letr Assumption
4.1 hold. For any vector t € R™, the variance of any unbi-
ased estimator for (t,Vgvg) is lower bounded by %tTAgt.

The proofs of Theorem 6.5 and 6.6 are deferred to Appendix
B.4, B.5. Theorem 6.6 along with Theorem 6.5 show that
the FQI estimator is statistically optimal.

6.4. FPG for Policy Optimization

Lastly we briefly consider the use of FPG for off-policy
policy optimization. Assume in the ideal setting we can
reliably estimate the PG for all policies, obtaining V/Q\’Ue for
all # € ©. Then we can simply set V/g\vg = 0, identify all
the stationary solutions, and pick the best one. For MDP
with Lipschitz continuous policy gradients, we show that a

policy with m = 0 would be nearly stationary/optimal.

Assumption 6.7. Suppose the parameter space O is
bounded and the policy gradient is L-Lipschitz continuous
and X%_- is L'-Lipschitz continuous, i.e.,

||V91’U91 - v92092H < L||01 - 02”7 V1,02 € ®a
IXF (17 1) — x5 (1%, )] < L'[|61 — 62|, V61,0 € ©.

Proposition 6.8. Suppose assumption 6.7 and the condition
of Theorem 6.3 hold. When K is sufficiently large, we have
with probability at least 1 — 0,

|V gve—Vevg| < 64H2Gm~/min{C1d, H}

log 24DKLL’
L+ &, ) SHG W9 e ®.

where D is the diameter of ©. In addition, if the Polyak-
Lojasiewicz condition holds, i.e., there exists a constant
¢ > 0 such that for any 6 € ©, 1| Vouvgl|> > c(vg- — ve),
then for any 0 such that V/g\%\ = 0, we have vg — vz <
A (m2H4 min{C;d,H}G? )

K

In general, Proposition 6.8 implies a O(1/£2) sample com-
plexity for finding e-stationary policies. This off-policy
sample efficiency is remarkably better than the best know
O(1/e?) on-policy sample efficiency obtained by variance-
reduced PG algorithm (Zhang et al., 2021a), as long as
distribution shift is uniformly bounded. This improvement
is due to that FPG makes full usage of data to evaluate PG
at every 6. We remark that the discussion in this section
is more of a stylish observation than a practically sound
algorithm. How to incorporate FPG into policy gradient
algorithms is an important future direction.

7. Experiments

We empirically evaluate the performance of FPG using the
OpenAl gym FrozenLake and CliffWalking environment.
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Figure 1. Sample efficiency of FPG on off-policy data. The oft-

policy PG estimation accuracy is evaluated using two metrics:
[[Vove—Vouvell

——
cos Z(Vvg, Vgvp) and the relative error norm Togvg]

For FrozenLake, we use softmax tabular policy parameteri-
zation and H = 100. For CliffWalking, we use softmax on
top of a two-layer ReLU network for policy parameteriza-
tion. We pick the target policy to be a fixed near-optimal
policy, and test using dataset generated from different behav-
ior policies. For comparison, we compute the true gradient
using the policy gradient theorem and on-policy Monte
Carlo simulation.

FPG’s data efficiency Choosing the behavior policy to be
the e-greedy modification of the target policy for € = 0.1,
we generate datasets with varying sizes and evaluate the
FPG’s estimation error on two metrics: the cosine angle
between the true policy gradient and the FPG estimator,
and the relative estimation error in £5-norm. The closer the
cosine is to 1 and the smaller the relative norm error is, the
better the estimated policy gradient is. Figure 1 shows that
FPG gives good estimate even when the data is rather small.
The FPG estimate converges to the true gradient with rather
moderate variance. In comparison, importance sampling
(IS) converges much slower and incurs substantially larger
variance.

The effect of distributional mismatch Next we investi-
gate the effect of distribution shift on off-policy PG esti-
mation. We consider 5 choices of behavior policies: the
target policy, the e-greedy policies of the target policy, with
€ =0.1,0.3, 0.5 and 0.7. We generate a dataset containing
200 episodes with each of these behavior policies, run FPG
and IS, and evaluate their estimation errors. Figure 2 shows
that larger distribution mismatch leads to larger estimation
error in both methods. However, when compared to IS, FPG
is significantly more robust to off-policy distribution shift.
The accuracy of FPG only degrades slightly with larger
distribution mismatch, while IS suffers from exponentially
blowing-up error and stops generating reasonable estimates.

FPG for policy optimization We further showcase FPG’s
applicability to policy optimization. In particular, we test
FPG as a gradient estimation module in policy gradient
optimization methods. We conduct an experiment using

1.0- o—o—‘.___.\. . 6.0

—e— FPG

o
tSO ~- IS
2 0.5- ]
S £4.0
2 £
5 0.0- 23.0
e, (]
2 220
<-05 =
~o— FPG 1.0
il S o —
-1.0- 0.0
9 16 60 183 548 9 16 60 183 548

Distributional mismatch Distributional mismatch

Figure 2. Tolerance to off-policy distribution shift. The distribu-
tional mismatch is measured by cond(i% IREIE ), where X is the
data covariance and X is the target policy’s occupancy measure.
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Figure 3. FPG for policy optimization. FPG is used as a module
for PG estimates in REINFORCE, compared with other baselines.

FPG in on-policy REINFORCE and compare it with the
vanilla REINFORCE and SVRPG (Papini et al., 2018). All
methods are configured to sample 100 on-policy episodes
per iteration. When implementing the FPG-REINFORCE,
we take advantage of FPG’s off-policy capability and use
data from the recent 5 iterations to improve the gradient
estimation accuracy. Figure 3 shows that such design indeed
allows FPG-REINFORCE to converge significantly faster
than the two baselines.

Next we test the use of FPG for offline policy optimization.
Let the target policy be the optimal policy of the problem,
and let the behavior policy be a 0.3-greedy variant of the
target policy. We generate a dataset consisting of K =
500 episodes by simulating the behavior policy. For PG
estimation, we only use the offline dataset and do not sample
for fresh data. Thus, we replace the online policy gradient
estimator in REINFORCE with an off-policy one using
FPG, and for comparison we also test REINFORCE with
an IS estimator. Figure 4 shows that FPG-REINFORCE
converges reasonably fast and approaches the optimal value.
However, IS-REINFORCE appears to converge to a highly
biased solution, due to that all PGs are estimated using
the same small batch dataset and suffer from bias due to
distribution shift.

FPG with deep neural network policy parameterization
Further, we evaluate the efficiency of FPG when using a
deep policy network for policy learning in the CliffWalking
environment, where H = 100. Specifically, the environ-
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Figure 4. FPG for offline policy optimization. FPG is compared
with IS as the PG estimator module in offline REINFORCE.

1.0- > 620 o~ FPG
/ g - IS
8 0.5 v15
5 00 510
2 2
<-0.5 © 5
o FPG o
- IS o

25 50 100 200 500 25 50 100 200 500
# episodes in dataset # episodes in dataset

|
=
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Figure 6. Tolerance to off-policy distribution shift with deep
policy networks. The distributional mismatch is measured by
cond(XYV/2% ! $1/2), where 3. is the data covariance and 3 is the
target policy’s occupancy measure.

ment is modified by adding artificial randomness for stochas-
tic transitions, that is, at each transition, a random action
is taken with probability 0.1. The policy is parameterized
with a neural network with one ReLU hidden layer and a
softmax layer.

As before, we test the performance of FPG against the size
of off-policy data and the degree of distribution shift, using
the same cosine and relative norm error metrics. We test
FPG varying the size of the dataset. Figure 5 shows that
FPG still gives accurate estimates with moderate variance, in
contrast to IS’s inaccuracy and high variance. Both methods
become more accurate asymptotically as the dataset size
increases.

We also test FPG on datasets with different amount of mis-
match from the target policy. Figure 6 shows that FPG’s

K=200 K=500

B

6, 61

Figure 7. Bootstrapped confidence region for FPG estimator,
with sample size K = 200, 500. The red dot marks the true
gradient. Blue and red areas are confidence sets obtained by boot-
strapping FPG and IS respectively. The green oracle gives the
empirical confidence region for FPG estimates.

estimation error is much lower and less affected by en-
larging distributional mismatch than IS’s. The distribution
mismatch is large in the CliffWalking experiments because
some state-action pairs are almost never visited by the tar-
get policy and seldom visited by the behavior policy. Such
state-action pairs cause /25 '£1/2 to be nearly singu-
lar, but they are irrelevant to our estimation. The general
trends in these CliffWalking experiments with deep neural
network policy are consistent with our theoretical results
and FrozenLake experiments.

Bootstrap inference for FPG Finally we apply bootstrap
inference to construct confidence regions of FPG estimates
by subsampling episodes and estimating the bootstrapped
probability distribution. We plot contours of bootstrapped
confidence regions via quantile KDE. Figure 7 visualizes
the bootstrapped confidence regions in 2D, compared with
the confidence region for IS and the ground-truth confidence
set. Across all experiments, we observe that the contours
of bootstrapping FPG are much smaller and more accurate
than the ones of bootstrapping IS. As the K increases, the
bootstrapped confidence regions become more concentrated,
confirming our theoretical results.

8. Conclusion

We propose double Fitted Policy Gradient iteration (FPG)
for off-policy PG estimation. FPG theoretically achieves
near-optimal rate that matches the Cramar-Rao lower bound
and empirically outperforms classic methods on a variety of
tasks. Future work includes extension to non-linear function
approximation and evaluation on more complex domains.

Acknowledgement This work is supported by NSF grants
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A. Technical Lemmas

Let U = Po.1, (Vologg i) Q) 1, UL = Pos (Vologppi1) Q) 1, UL = Pos (VologTgpir) Q) 1.
Lemma A.1. We have

H h'—1 - H h'—1

0 _ 0 _ D P~

Qh=> 1T Powr | s Q= 11 Pon | P,

h'=h \h''=h h'=h \h''=h
H h'—1 o H h'—1

0 _ 0 0 _ 5 70

VoQh = I1 Pon | UL VoQ) = 11 Pow | UL

h'=h \h"=h h'=h \h"=h

Proof. By Bellman’s equation, we have Q% = rj, + Py, Q% ;. Therefore, by induction and use the fact that Q% ,, =0,
we have proved the first equation. By the policy gradient Bellman’s equation, we have

VGQ(ZL(Sa Cl) =E" [(VG log 9, h+1 (a/|s’)) QZ-}-I (S/a Cl/)|8, a, h] + E™ [VGQZ—ﬁ-l(S/a a/)|87 a, h’] 3

ie., V(;QZ = U{f + P97hV9QZ+1. By induction, we have proved the third equation. The expressions of @Z and VQQZ can
be derived directly from their definitions and induction. O

The decomposition leads to the following boundedness result:
Lemma A.2. We have |QY(s,a)] < H —h+1, |[VoQY(s,a)|lcc < G(H —h)?, Vs € S,a € A h e [H].

Now we consider the decomposition of QZ - @Z:
Lemma A.3. We have

H h'—1

Q-0 = > | TI Powe | (@~ ~Pose@ins) . e (a1

h'!=h \h''=h

Proof. Simply note that

H h'—1 H h'—1
Qh—-Qn="> 1T o | rw =D 11 Por | 7
h’=h \h''=h h’=h \h''=h
H h'—1 h -1 H h'—1
= E H 7)07h// — H P@,h” Th' —|— E H 7307}7// (Th/ — ?h’)
h'=h h''=h h''=h h’=h \h'"'=h
H k-1 [h'-1 R'—1 H h'—1
= E E H P@}hu/ (Pe,h" — ,P‘97h//) H 7397h'” Th' —|— E H P@,h” (’r‘h/ — ?h’)
h'=h h""=h \h'"'=h R =h"+1 h'=h \h'=h
H R —1 H h'—1 H h'—1
= E H P@,h'” (Pe,hu — P@,h”) E H PG,}L'” T + E H P@,h” (’["h/ — 7/"\h/)
h''=h \R''=h R'=h"4+1 \h"'=h"+1 h'=h \h'=h
H h'—1 H h'—1
= E H Po,n (Pe,h/ - Po,w) QY1+ E H Powr | (rh —Thr)
h'=h \h''=h h'=h \h''=h
H h'—1
~ P R ~ 0
= g H Po, e (Qh/ —Thr — PO,h’QhUrl) )
h'=h \h''=h

which is the desired result. O
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The following lemma provides an upper bound of matrix production, which will be used when bounding the higher order
terms of the finite sample bound.

Lemma A.4. For any series of matrices A1, As, ..., A, and AA1,AAs, ... AA,, we have

n n

[T4: +a4) - A

i=1 i=1

n

< [T A+ naas = TT 1Al
=1 i=1

Proof. We have

[IcAi +24) -] A > [TA¥ @A)~ < > [T A aa;)—
=1 =1 5e{0, 13"\ {(1,1,...,1)} i=1 6€{0,13"\{(1,1,...,1)} i=1
= H (1Al + [[AAs]]) — H | Al
i=1 i=1

When F is the class of the linear functions, there exists matrix Mp ;, such that the transition probability satisfies
E™ [d)(s/a a/)T|sv a, h] = ¢(Sa a)TMa,h’
The following lemma gives an upper bound on the 2-norm of My 5, and its derivatives.

1 _1 1 - _1
Lemma A.5. We have |25, Mo || < 1and |55, (ViMon) Sgi|| < G, ¥ € [l e [H],

Proof. Note that forany f : S x A — R, f(s,a) := u' ¢(s,a), we have
E™ [f*(shi1,ang1)ls1 ~ €] = E™ [E™ [f*(sni1, ant1)lsn, an] [s1 ~ €]
> E™[E™ [f($ht1, ant1)sn, an)]s1 ~ €]
The LHS satisfies
E™ [f2(sht1,an41) |51 ~ €] = i Ty

and the RHS satisfies
E™[E™ [f(Sh+1, ang1)|sn, an)?[s1 ~ & = E™ (" My ¢ (s, an)d(sn,an) T Mo pplsy ~ €] = " My, So.n Mo ppe

1 _1
Therefore, we have MT297h+1u > /LTMgThzgthg’h/uL, Vi, which implies || X5, Mg n¥, 7. 1|l < 1. Similarly, let
g:SxA—=R, g(s,a) = (Vg log 7 p+1(s, a)) w' (s, a), we have

E™ [g*(sh+1, ant1)|s1 ~ & =E™ [E™ [¢*(sh+1, ant1)|sn, anl|s1 ~ €]
>E™[E™ [g(sht1, ant1)|sn, anl?|s1 ~ €]

The LHS satisfies

. 2
E™ g% (sh+1,ant1)|s1 ~ & = p  E™ [(Vé log 7707h+1(a|5)) O(Shr1s ans1)d(Sha1,ant1)  |s1 ~ €|

<GP E™ [$(sha1, ant1)(snat,ant1) sy~ &l p=G*u" Sopiap
and the RHS satisfies

E™ [E™ [g(sh+1, ant1)|sn, an)?[s1 ~ €]
T i T T i
=E™[u (VéMG,h> & (sn, an)P(sn, an) (VéMo,h) pls1 ~ €

=p' (VgMe,h)T Yo,n (VgMe,h) I8
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. T . 1
Therefore, we get G2 Soui1p > 17 (VMo ) Son (VMo ) . ¥p, which implies H in (ViMo) =5 +1H <
O

< 2C1dlog % N 2C1dlog %
- K 3K '

G.
Lemma A.6. We have with probability at least 1 — 0,

K
L ( Sl it 7 )zhzzd

Proof. Define

T 1
X,(Ik = qb (Sgk),ahk)) 1) (sglk), aglk)) ¥, e R4,
It’s easy to see that xW X(Q), ceey X,SK) are independent and E {X,(lk)} = I;. In the remaining part of the proof, we will
+ Zszl X f(bk). We first consider the matrix-valued

apply the matrix Bernstein’s inequality to analyze the concentration of
2 2
variance Var (X,Sk)) =E [(X,(lk) - Id) } =K {(X,(lk)) } — 1. For any vector p1 € R,

_1 _1 2
oo (40 ()

® N\ et | &)\ %
¢ (s sa Xt d’ Sh aah Eh H

—Cidu"E [Xg“] = Oy,

(] s el

2
< it (o)

T

< C1dE

T 2
where we used the identity H(b sgk), Elk)) >z, ZMH = MTX,(lk)M and E {X,(lk)} = I;. We have

2
Var(X") < E {(X}L’”) } < Cydl,.

Additionally,
_1
(’”) 5,7 — Iy = Chdly — I,

—[de,(lk)—Id qﬁ(s;f), ))d)(Sé),ah
X% are i d., by the matrix-form Bernstein inequality, we have

Therefore, HXf(Lk) — I4]] < C4d. Since X}(Ll),X}(L .. .

K 2

2
PSS x® p)>e)<2dep(-o 2 ) veso
(k:l o —E>— P\ "CWK + Cidef3) 7

With probability at least 1 — 9,

K 2d 2d
1 (k) QCldIOgT 201d10g7
—3(x —I) <
K;( wo )l ST YT 3R

Taking a union bound over h € [H]|, we derive the desired result.

Let AX; H =51 — 5,

Lemma A7. If |3, $45, 7 — | < 4 hen |2 (a5 5| <22 80m - 1|
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Proof. Note that

|=4 (azih) =

_ HZ% (i—l _ 271) 72
= {|%n \&n h h

_ 1~ _ 1
D —IdH. 7

Sl ~
Because we have HthZhEh —IdH < 35, we get Opmin (Eh Zh2h2> > 2,whlch implies HZQZ 122
ing this result with (7) finishes the proof.

< 2. Combin-

-
Let AY,, = LK (82’”»% ) Bonr1 (s;;;)l) — Mg,
Lemma A.8. With probability at least 1 — 6, the following inequalities hold simultaneously:

2C1dlog 22 4Cydlog 441
HE (AYs.1) h+1H< V1) \ K * 3K ®
1 20 dlog 4mdH 4O dG log 4mdH ,
|50 (Vi @vow) iy | < (s v 6y | e - SRR e ), ©)

where k2, k3 are defined in Theorem 6.2.

Proof. Take
,;
9(12) = h 2 ¢ (SELIC)7 agk)) ¢9,h+1 (557‘]:21> Ehﬁl’ Vk 6 [K]

1 1 -1
Then, 33, ¥ (AYp0) S5y = % X245, (YA — S Mo, 0, ) Note that

. .
E[VR] =B 2,56 (s, ) doner (s Zhjl}

=E _Zh %(;5 (sgk), (k)> E™o [d) (s’,a’)T |5§lk), a(k) h] Ehjl] (10)

:]E Eh §¢ (sék)’ agﬂ)) ¢ (sgf)7 a%’@) MO hEh-&-l:| 2 M9 hzh-&-l’

To this end, X, (AYg R) YRl = K Z el (YQ(IZ) —-E [YG(Z)} ) Since the trajectories are i.i.d., we use the matrix-form

Bernstein inequality to estimate HE w2 (AYp p)E, £ H For any i € R?, we have

T T 2 1 2
k k k -1 k) (k
NTE {YG(,h) (Y“)(,h)) ] u=E H (y:g{}}) MH -E thflfﬁe,hﬂ ( EHZI) ¢ (SEL )’agl )) Eh " ’ ]
-1 ® \|I? <k> <k>
HEh+1¢9,h+1 (5h+1> H ¢ Sh 7ah

1 2
Parallel to the proof of Lemma A.6, it holds that HE A +21¢97h+1 (sgﬁzl) H < (C4d. Therefore,

.
k k
p'E [Ye(,h) (Ye(,h)) } p<E

2
ooy ]

_1 1
_ Cldlff—rzh 3 ) |:¢ (SEL )7a§Lk)) ) (SELk)Jl;Lk)) :| DRI

= Cld”:uHQ’
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where we have used the fact ¥, = E {¢ (sﬁl ), aﬁlk)) 0] (sff), agk)) ] It follows that
T T
var (v§3) =5 | (v~ B [vd]) (v -2 [vi)) | =& v ()| = cuae
Analogously,
) T T
var (v31) =2 | (vi8) - B [vi%]) " (v - 2 [r])] < | (v) ¥
1
<Cyds, 2 B {dm,m (1) G0 (s } S

Therefore, max { HVan (YG(’;L)>

(Y;ﬁg) H} < C1d (k3 Vv 1). It also holds that ||Y9(f;) || < Cid. Hence,

v® sz, w72 || < 20yd
0,h hH0h || = 1a.

Applying Matrix Bernstein’s inequality, we derive for any € > 0,

2/2
< _
F < ~ 5) < 2dexp ( CrdK (R2V 1) + 2C’1dz—:/3) ’

which implies (8) holds with probability 1 — 2. For (9), notice that for any j € [m], we have Zfl (Vé(AY&h))E;_él =
i (k i (k i (k -1 k k j k i
% Z,i{:l (Vngg{h) —E [VéYe(,h)D, and VJQYQ(’,L) =3%,%¢ (sg ), agL )) (v‘;¢0,h+1 (sg_gl)) Eh-s—l For any p € RY,

we have
2
-3 j k k) (k -3
s, (tonsr (20)) 0 (42.%) 57

2 ® N\ et |
qzﬁ(sh ,ah) thuH .

K

Z (Ye(,];z) - EéMB,hZf:i)
k=1

uTE[(VéYe(,’Z)) (Vivi?) ]u =E

ki ()]
Since we have
<V§¢9,h+1 (sﬂl)) E;H §¢a,h+1 (32]21)
Z/AXAwe,hH (a ‘5&21) TG, ht1 (a’ 82]21) (Véﬁ log ™o, h+1 (a ‘sgﬂl)) (Vg log o h+1 (a’ ‘551121»
"¢ (Sgﬁl’ a) Zi:+1¢ (5h+1> ) dada’
<[ s oo () [k () )

which implies

Cid,

| (Vi) (Vi) |us e [H¢> (s.a) " 5, “M — GCud|ulP,
Therefore,
vary (V3Y,)) = [(vgye(,’;) ~E[VivR]) (Vivsy - E [vgyg){’;)DT] <E [(vggygfzg) (vgye()’;))T] < G20ydl,.

Meanwhile, we have

var, (V3YSR) < E {(Vg%(7i)) VJy(k} < Cyds;, °E {(vg@,hﬂ (s1h)) (Voo (sgﬁl)y] 5t
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In conclusion, we get

max { HVarl (nge(,]:z))

|

Note that vaYe(f;) H < C1dG, we know HV{;YQ()IZ) —E [VgYe(y]Z)} H < 2(C1dG. By Matrix Bernstein’s inequality, we get
forany € > 0,

&

taking a union bound over all j € [m] and h € [H| proves that (9) holds with probability 1 — %. Using a union bound
argument again, we know with probability 1 — J, (8) and (9) hold simultaneously, which has finished the proof. O

(Vivi)|} = crcra (v,

K

. 1 ; -1
(Vi - =i (VhMon) =7
k=1

2/2
> < -
> g) < 2dexp ( G2C1dK (k2 V 1) + 2C1dGE/3) ’

Lemma A.9. For h € [H], with probability at least 1 — 0, the following inequalities hold simultaneously: Vj € [m),

K 8dH 8dH 8dH\ 5
_% 1 (k) (k) 2 log 2/ C’ldlog 5 201([ (10g 5 )
2, K};Qb(sh ) @y, ) Ehk <Vd(H - h+1) 7 7 + Y

(1)

3

2log Smdil N 2y/Cydlog 48 L 26:d (log SmdfL) >
3
K K 3K>

K
6 (s, ail") Vieh || < 2VaG(H — n)?

12)

Proof. Let X, (k) =X, H 1o} ( ;7 aﬁ?) e‘,g% L € R? and let F.i be o-algebra generated by the history up to step h at episode

k, we have E [X o0.h ’ thk} = 0. We apply matrix-form Freedman’s inequality to analyze the concentration property.

T
Consider conditional variances Vary {X(Sfﬁ,z‘fh,k] =K {Xékg (X(Sk,z)

]-'h’k] € R4 and Var, [ng“,z‘fh,k} -

.
E [(ngzg) X(Sf“,2|]-"h7k] € R. It holds that

[ vary [ X85 ]| =H]E [ng,z (x5 T’fh,k] ‘ <E [ngﬁi (ng“,z)T fhﬁ}
=E {HXQ I ‘}'h k} Vary { 9h F, k}
and
Vars [ X{5)| i E[ [Rey ‘fh k] SEf),aﬁf)) 510 (s, afl) Var [ef ] st o) 1]
(

<(H —h+1)%¢ (shk) aflk)) 2t (sglk)ﬂh )) )

wherewehaveusedVar[shk‘si ,ah),h} (H — h+ 1)?. Note that
SNACIRG (k) (k) (1=, (0w IO
Zqﬁ( ,ay, ) z, d)(sh ,ay, ):Kd+KTr X, ?Z (sh ) )d)(sh ,ay, ) by
k=1 k=1
- (k) OINGIATT
Z (sh ,ay, )qb(sh ,ay, ) X% —1qg

s
N|=
I
P
N———

<Kd+ Kd|X
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2C,dlog 84H  2Cdlog 84
_ _ 2 5 5
=Kd(H —h+1)* [ 144/ % + 3 . (13)

According to Lemma A.6, it holds that

K
I[D <
k=1

Additionally, we have HX (Sk,z H < (H — h + 1)y/C1d. The Freedman’s inequality therefore implies that for any £ > 0,
S X > vary [ X8| Fu]

IP’( > e, max{
k=1 k=1

2/2
<2dexp [ —
==aexp < o> (H—h+ 1)\/Cld5/3> ’

where o2 is defined in (13). We take

/ 2(H — 1)/
g:=0 2log85d—|— A h;_ ) Cldlog%.

K
> e, max{| ZVarl [Xék,z‘ ]—"h7k]

We take

{Xéﬁz‘}"h,k} (14)

IR

K
< ZVarQ [Xék,z‘ ]-'h,k} < U2> >1-—
k=1

K

ZVar2 Res ‘]-‘h,k}} < 02>

15)

Then we get

K

Sty

k=1
K
Zng,z > €, max{HZVarl [ ’Fh k}

which implies
k=1
ZVarl { Oh’]:hk}

i
s

which, combined with a union bound over h € [H], has proved (11). We use Freedman’s inequality again to prove (12). For
afixed j € [m], we have

us 5
,ZVarg [Xé{c}z‘fh,k}} S UQ) S Za

g

> Xy

k=1

K

ZV&I’Q Gh‘}_}bk } )
ZVarg [Xé}z‘}'hk}}>o> g

k=1

: ; , T
Hv:m {véXé{C}z‘]:h,k} H - H]E {(vgxéfﬁi) (vgngi{) ‘fm}

‘ <E H’(vgxgg) (vgx(gf“,z)TH’fh,k}
—E Mvéxéﬁf“zl J-'m] = Vary [ ViX{) | Fir ]
and
Var, [vgngg\fh,k] —E [Hvﬂx H ’}'h k} - gzs(s}f),ag’“)) b ¢( >> Var [Vjshk‘sflk)7a2k)}
<AGA(H = 1)%6 (s h>,a;k>) ito (s,
where we have used Var [Vesh k‘ s;, s ap, ),h} < 4G?*(H — h)?. Furthermore, notice that HV]X H < 2G(H —h)y/Cd,

the remaining steps will be exactly the same as those in the proof of (11), combined with a union bound over j € [m]. In
this way, we have proved (12). Taking a union bound again finishes the proof. O
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B. Proofs of Main Theorems

Define ﬁfb = ( Z,;ll ]\//.76—,r h/> Y. We may prove the following decomposition of Vyvg — V/(;?g:

Lemma B.1. We have Vyvg — m = k1 + Es + E3, where

H 1 K
B =30V |04) St 30 (s o) eh
E iv (@)= 1—(y9)TZ_1)1ZK:¢(S(k) af?) e
2—h=1 0 h h h h Kk=1 h »%h

The proof of Lemma B.1 is deferred to appendix C. Based on this observation, here we show the proofs of our main
theorems.

B.1. Proof of Theorem 6.2

Proof. We use Lemma B.1 to decompose (Vgvy — m, t) = (Eq,t) + (E2,t) + (Es,t). To bound each term individually,
we introduce the following lemmas, whose proofs are deferred to appendix C.

Lemma B.2. For anyt € R™, with probability 1 — 6, we have

2t T Agtlog(2/9) n 2log(2/0)v/Cimd||t|| B

Eqi,t)| <
(B, )] < p Y

T .
where B = I (H — b+ 1) max;em \/(vﬂ 1) SRV 2GS (H = 1) ()T 5

Lemma B.3. Let EJ be the jth entry of Es, suppose K > 3651 (4 + ko 4 £3)2C1dH? log % and
A < Crdmingepg) Omin(Xn) log =275+ 24de , then with probability 1 — 6,

) R 1 lo 24dmH
|E§|§2401ﬁ/<;1(2+/£2+f£3)\/01dH3(HEe’fV{;ufH+HG“29712V1‘9“) max Hzghz gT, Vi e [m).

he[H]

Lemma B.4. Ler Ej be the jth entry of E3, suppose K > 36rk1(4 + Ko + k3)? log %CldH?’ and
A < C1dH minge (g Omin(Sn) log 22425 with probability 1 — 6,

24de

IR
|El| <6C,dH? max Hz (Hz H +HG HEG’%V?H) " 5 vjie[ml.

K )

. . T .
Let Bl =7 (H—h+ 1)\/(vgug) S VI By = I (H — h)2Gy/ (vf) | 55, then we have the relation
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B = max¢[ BJ + 2B,. For any j € [m], note that

:
H H h—1
Bl =Y (H-h+1) |, Uiy A EDILA DSl DAy (H ngh/> ”
h=1 h'=1
h—1
(L bt it
h'=1

H 1 _1
=Y H|=E

h=1
h—1
1 —1 1
# 0 T i Mone ol ) 280 (300 ) [0
h/=1 h”#h/

H
< i (e it + 10 fot]) < 1% g 57 ?

(i wirt] + 6 [ vi])
where we use the result of Lemma A.5. Similarly,

H

= > (H -2 |5 <ZH2GHE

o
PR R

0
(H Hze h'M9 h’ 0h’+1H> HE 1V1H

0 11/1H < HSG’frelax HEO hE

91”1”

We conclude that when K > 36C1dH?k1(4 + k2 + k3)? log %, we have

<max Bj + 2B
J€[m]

) 2log 2+/Cymd||t|
K

1 1
<2 HW N3
> }{2?3] 0,h™h

1
(max =08 Vit | + 2HG 25t v

J€[m]

H) 2log 5\/T|\t||

and therefore, with probability 1 — 34, we have

2tT Agtlog(2/6
)]+ 1B, ] 4 (B, 1) < 2Rt 08l
_1 _1|| 240CdH? log 24mH
VR4 ) (s [ 0+ Gyt ) s 8, 2O
’ he[H) K
2t T Agtlog(2/0 _1 240C1dH3\/m|t|| log 244mi
< M—i—m@—i—@—!—mg) maXHEG%V] H—&-HGHE 1V1H ! V[t log =55
K j€[m] ’ K
replacing § by %, we have finished the proof. O

B.2. Proof of Theorem 6.3

Proof. According to the result of Theorem 6.2, we know

24T Agt 8 Oyllt| log Z2mdH
o g S 4 ol|t]| log =

— . <
|(t, Vove — Vovg)| < % 3 % ;
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Pick t = e;, j € [m], we have

H

2
t7 Aot =E lz (vg <5h1¢> (st ap) Ehlyz>>
h=1
@) " . EONNe)) o\’
<Vj5h 1(;3( s, ay, ) Eh11/2> E Z <sz,1 (sh ,ay, ) h1V§1/2> ]
h=1 h=1
1 1y M\ ? 1 ) AN
> crH - (<z> (51.a) Ehle) SO(H—h+1) (¢ (s0.a0) Névz) 1
h=1 h=1

2
<2Z<H nic? ||z, t uhH +(H = h 12 55,2 vt >
h=1

<2E

M=

<2E +2E

On the other hand, we have

H

tT Agt =E Z (Vg (Engf) (521), ag))—r Ehlyz>)2
o : i . 2
<2E lz (Vgaz,lqﬁ (sé”,aé”) Zhlue) +2E Z (5‘,91’1¢ (821)’a21)) v ) ]
h=1 N 2 h:lH 2
cocue 3 (it g i e+ 203 4, g ]

Define
Ch = VZ,Qh ( s) ’agll)) /~A’]T9,h+1 (a ’8&21) (V‘éQzﬂ (8&217 ) + Q?LH (S&Zpa) Vg log 9 h41 (a ’3&21)) da

m= [ mones (o) (Vs (sh0) + @ (s00) T tommansa (o o ) ao

j 1 1 1
- VJQQZ+1 (32117‘1211) Qh+1 ( Sh+1 a;H-l) vj log mp h+1 (angl ‘3211)

Note that the sequence (1, 71,2,z - - ., (i, ng forms a martingale difference sequence, therefore, we have
H ) H 2
[z (vieh,) ] =E z gl <x [z«:z )| =2 (z G+ m)
h=1 h=1 h=1

2
=E <V0Q9 (31 ,al ) ZQhH ( &rpagﬁl) Vo log mg py1 (ah+1 ’Sh+1)>

<4H*G?.

Similarly,
H 5 H 2
E[Z () 1 —E [Z <Q (Si”»aif)) Til)_Aﬂe’h+1< ‘S;H)Qhﬂ (sﬁ,H, )da) 1
h=1
H 2
3 (f o (o) @b (s200) - 08 (2082 )

h=1

H 2
_F (cyg (1,0 — Zr;y) < H”.
h=1
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Therefore,

7 Apt <8C1dHG? max th th + 20140 ma ||, F Vi H .
he[H] he[H]

Therefore, taking a union bound over j, we get

— 3 8m 72mdH
‘ <4b0\/m1n{Cld,H}log5 N 2Cy/m log H5EE

VJQ'UQ — Vﬂ,vg S K K ) V] € [m]7

where

b = HG max |, VhHJeraXHE o
he[H] he[H]

When we in addition have ¢(s’,a’) "%, ' ¢(s,a) > 0,Yh € [H], (s,a), (s',a’) € S x A, we have for any (s,a) € S x A,

(T2) = otea)

i h
= Eﬂe ¢(Sh, ah)Egqu(& a) Z V; 10g We’h/(ah/|8h/)‘| ‘
L h'=1

<E™®

h
S(sn,an)T; d(s,a) Y \vz log .1 (an |51 1
h'=1

<GRE™ [p(sn, )55 6(s, )]
=Gh () =57 6(s, a),

which implies

2 2
<¢ (521)7a§11)> ;1V§v2> < G212 <¢< 21)@21)) h1V2> '

Therefore, we get

H 2
tTAgt =E | (vg (527“25( 511),%1)) z;luﬁ))
h=1
S (1) ’ S W ,m)" o)
<2E lz (V759 19 (Sh » A, ) o' ) E Z (Sg,ﬂb (Sh ) O, ) EhlvéVg) ]
h=1 h=1
H 2 H 2
<9E |3 G*(H — h)* <¢ (s;1>,a§j>) hlug) +2E | S GPR3(H — b+ 1)2 <¢ (s;1>,a§j>) hly,‘j) ]
h= h=1

2

1
H 1
<2H’G* Y (H — h+1)? Hz,jfuﬁ‘ :
h=1
and

+2E

H ‘ 2 H T ‘ 5
tTApt <2FE [Z <Vj96;91’1¢ (s?,a%”) Zhlug) Z <5‘Z 10 (sg),agl)) Ehlwgug) ]

ij: (VJE}L 1) ] }erl[aéi HZh VhH +201dG*H*E [i (52)1)21 }?61%(] HEh uhH2

1

<2C1dE

h=
2
Repeating the steps that we bound E {ZhH_l (5,91’1> ] and E [Zh 1 VJ 9Eh1 ] we get

Vi € [m].

— ) min{C-d H} IOg 8m 1 209 10g 72mdH
Tve — V| < AH? n{Ch ’K 2 H i 9H K :
‘Vevg Vigvg| < 4H G\/ }{ré?% b)) + ,
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B.3. Proof of Theorem 6.4

Proof. When the MDP is tabular and ¢ is the one-hot vector, we have
Vg,s,a = M@,h(‘& a)a Zh = dlag(ﬁh(87 a))

which implies

H 2
tT At =E <v]< 16 (st ai”) z,ﬁﬁ))
h=1
H . 2 H - 2
o3 (s () 50 5 s () 53]
h=1 h=1
—9E i(vjs‘) )2(““”h<8’a)>2 +2G2H?E i(ee )’ (Me’h(&a)f
he1 ot lah(saa) h—1 ot ﬂh/(87a)
— 9™ i (Vj€9 )2 Me»h(saa) + 2G2 H2E™ i (69 )2 ,UQJL(S,CE)
h—1 ot ﬂh(sva) h—1 ol ﬂh(sva)
<o ZH:(V%@ )2 max  P0r5:9) o ge g i(ee | e Hon(®9)
X — X —_
= —~ 0=h1) | he(m) ses.aeA fin(s,a) — VU hefn)seSacA fin(s,a)

Following the same argument above, we can derive

0
TApt <AH'GE max M09
he[H],s€S,acA ip (8, a)

ie.,

: , log 8 pi(s,a) | 2Colog P25ttt
T < uHC 7 a r\S; + ) , Vje .
pUo pUo| = K he[Hf;e)é,aeA fin(s, a) K e

‘ —

On the other hand, the result of Theorem 6.3 implies

o ; min{Cyd, H} log 32 2Cp log 2mdi
‘Véva — Viue| < 4H2G\/ e e Hos & max HEh VhH + MT‘S, Vj € [m).
_1 9 (s,a
Using the relation th 2 nyH = \/Z(s,a)ESXA % = y/Eme % and taking minimum over the above two
inequalities, we have finished the proof. O

B.4. Proof of Theorem 6.5

Proof. We use the same decomposition as in Theorem 6.2. Define a martingale difference sequence {eZ}szl by

H
1
ei = \/fzv9 (( ) X ¢(Sh ) (k)) hk:)
h=1
H H
> (V) S0 el S () B ol et
\/[?hzl h:l 7

we have

H
1 1
”62”00S\/?Z;E%“thvéyhll\/cl (H—h+1)+ ZIIEh vhllv/Crd(H = h)*G — 0,
h=1

N



Optimal Estimation of Policy Gradient via Double Fitted Iteration

where we use the result of Lemma A.2. Furthermore,

et )], =2 [ 7o () sttt [on () mvoetti)] ||
_ [Aalyy
K

Therefore,by WLLN, we have

K

>[4 ()], =0 Y B[ (D], =,

k=1 k=1 Y
To finish the rest of the proof, we introduce the following lemmas,

Lemma B.5 (Martingale CLT, Corollary 2.8 in (McLeish et al., 1974)). Let {X,n,n=1,...,k,} be a martingale
difference array (row-wise) on the probability triple (Q0, F, P).Suppose X .., satisfy the following two conditions:

km
P P
max |Xmn| = 0, and g X2 52
1<n<km 1
-

for ky, — oco. Then Zi’”il Xomn AN (0,0?).

Lemma B.6 (Cramér—Wold Theorem). Let X,, = (X}, X2,..., X¥)T be a k-dimensional random vector series and

X = (XY, X2 ..., X")T be a random vector of same dimension. Then X,, converges in distribution to X if and only if for
any constant vector t = (t1,ta, . .. ,tk)T, t' X, converges to tT X in distribution.

Lemma B.5 implies S5 | tTey, —4 N(0, 7 Agt) for any ¢, and Lemma B.6 implies
K
VEE; = e —p N(0, Ag).
k=1

Furthermore, notice that the results of Lemma B.3 and Lemma B.4 imply K Es —p 0, VKE3 —p 0. Combining the
above results, we have finished the proof. O

B.5. Proof of Theorem 6.6

Proof. Our proof is similar to that of (Hao et al., 2021). We first derive the influence function of policy gradient estimator
for sake of completeness. We denote each of the K sampled trajectories as

T:=(81,01,71,82,02,72, - -, SH,GH,TH, SH+1)
We denote 7(a | s) as the behavior policy. The distribution of trajectory is then given by
P(dT) = & (dsy,day) p1 (dss | s1,a1) 7o (dag | s2) ... 7g (dag | sg) pr (dsga1 | s, am)
Define p,, = p + n/Ap as a new transition probability function and P,, := P + nAP where AP satisfies
(APL)F C F,Yh € [H].
Define g, 5 (s’ | s,a) := 6% log py.1 (8" | s,a) and the score function as

H
0
gy(T) = 8 log P, (dT) Zgn h(Sh1 | Shyan) .
h=1

Without loss of generality, we assume p,, is continuously derivative with respect to 7). This guarantees that we can change
the order of taking derivatives with respect to 1 and 6. When the subscript 77 vanishes, it means 1 = 0 and the underlying
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)

transition probability is p(s’|s, a), i.e. po(s’|s,a) = p(s'|s,a). Then we denote gy, (s'|s,a) := 3% log py,n (8|5, a) .
n=

and g(7) = Zle 9n(Sh+1|5h, an). We define the policy value under new transition kernel is

5 5h7ah

vy, 1= E"°

S1 .~ 5 ) PT]]
Then, our objective function is

’l/)n = V(ﬂ)gm = Eﬂ—e

h=1 h'=h

H H
Z VQ IOg TT0,h (ah | Sh) . (Z Th (sh/,ah,)>

S1 ~£,77n] .

We are going to compute the influence function with respect to the above objective function. We denote this influence
function as Z (7). By definition, it satisfies that

0
¥y =E[g(r)Z(7)]
o o
By exchanging the order of derivatives, we find that
0 0
71/117 = Vg —vgm .
on n=0 on n=0
Therefore, we calculate the derivatives.
9 o | h—1 h
sronn =50 (2 [ o nan)€6s0) [T (5521 1530 [T o (0 )
377n877,;(5x,4)h j:l_[lnaj JJ]];[lj]J
H h—1 h—1 h
Z/ n(smran) | D g (si1 | sj,05) | €(s0) T] on (8541 | s5,a5) [] 0.5 (a5 | 55) dmo
h=1 SXA)h j=1 j=1 j=1
h—1 H H
/ Z?‘h (snoan) | Y gng (sjx1 Isjoa5) | [&(s1) [ pai (si41 | 85.05) [] mo.s (aj | s5) | dr.
(SxA)H j=1 j=1 j=1

We denote sz and Vy QZ’ , as the state-action function and its gradient with underlying transition probability being p,.
For sake of simplicity, we define the state value function as

H

Vi (s) := E™ l Z 7h(8hs an)

h'=h

sp=s,P

We denote V,‘f " (s) as the same function except for transition probability substituted by p,,. Therefore,

[ H
0
5,00 = e Z (sn,an) Zgn, Sj+1 | s],aj) s1~ &Py
677 _h:l
G H
=B | Y gy (sjt1 | s5:05) Y rh(snan)|s1~ &Py
=1 h=j+1
[ = H
=E™ | Y gn (5541 | 57,05) " E™ | Y v (snan)| a1 | | 51~ &Py
=1 h=j+1
[ =
0
=E™ E gy, (i1 | 55,05) Vi1, (siia)| si, 5] s1 ~ &Py
j=1
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Therefore,
H
oy lon| = E™ | > E[gn (sni1 | sn,an) Vitri(snia)| sn, an] | s1 ~ S,Pn] : (16)
n=0 h=1
We notice that ¥, = E [qﬁ(sg),ag))qﬁ(sg),ag)) } We denote wy(s,a) = ¢'(s,a)%;'v) =
¢ (s5,a)2;, "E™ [¢(sn, an) | 81 ~ &]. We leverage the following fact to rewrite (16): for any f(s,a) = w}—gb(s, a) € F

where w; € R?, we have
E™ [f(sn,an)] = E™ [w] ¢(sn, an)]
=E™ [wTE [¢(s§3>, ai)oT (1, af)] =7 o (snsan)|
—E [uw] (st o) (55, )55 B [9(sn, an)]]

—E |f(s}, a§3>> w(sh )]

Since 5
E [gh (s' | 5,a) Vf?+1(s’)|5,a} = 5777 (sz(s,a) - rn(s,a)) ) e F,
n=
we have
0
Srvon| = th i al D [on (5 8”) Vi () s;”,aé”ﬂ
n=0
r H
=E ]Es’Np (1),0,(1)) lz Wh Sh ’a’h (8 ‘ sh ’ ;zl)) : Vf?Jrl (S/)‘|‘|
L h=1
r H
1 e 1
=K ]Eé (st alD) lz w( 551 ), Wy (5 \ 551 )aaé )) (Vh?+1 (s) —E [Vh,e+1 () 551 ),aé )DH
h=1

-F th san”) h( 511“ 5, gl)) (Vheﬂ ( gllll) —E {Vif+1 (SSH) sk ’al(zl)})]
~E Z“% (51 ) (Vi (5200) ~ B [Vl (s6220) 1 mm |

Taking gradient in both sides and we have

3 o) (8 (5£2) 5 [t (42 )]}

h=1

The implies that the influence function we want is

v, [th (st o) (Vf+1( 221) E [V,f+1 ( Eﬁl) |50, (1)])1 .

Insert the expression of wy, (s, a) and exploit € , = Qh(sh 5, agk)) - r,(L — [amo.n1 (a | 32’21) Q1 (82]’21, a’) da/,

we can rewrite the influence function as

—1.6 0
=—-Vy [E :‘Zﬁ Sh 7ah X, Eh,lyh]

Therefore, since the cross terms vanish by taking conditional expectation, we have

i(w (0068, T8) ) o (<h 10068 af2) T8 )

h=1

E[Z(r)'Z(r)] =E = Ag.
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For any vector ¢ € R™, when it comes to (¢, 1,) , by linearity we have

0
677'] <t7 ¢n>

= Elg(7) (¢, Z(7))].

n=0

Then the influence function of (¢, Vyug) is (¢,Z(7)) . The Cramer-Rao lower bound for (¢, Vgvp) is
E [(t,z(r)ﬂ =t "E[Z(r)"Z(r)] t =t Agt.
By continuous mapping theorem, a trivial corollary of Theorem 6.6 is that for any ¢t € R™,
VE ((:Vovs = Vovg)) 5 N (0,67 Aot)
This implies that the variance of any unbiased estimator for (¢, Vyuvg) € R is lower bounded by \/%tTAgt. O

C. Missing Proofs
C.1. Proof of Proposition 4.3

Proof. The differentiability of wz comes from the differentiability of Qz. And simply taking derivatives w.r.t. § on both
sides of QY = ¢ " w, we get the desired result. O

C.2. Proof of Proposition 5.1

Proof. To prove the equality, it suffices to prove that given the same input @Z 11 Vg @‘Z 11> We have

K 2
arg min (Z (f<s2>,a§f>> ) — /A mﬂ(a'|s2?1>c22+1(s£’21,a’)da') +Ap<f>> =7+ PonQh

fer 1

K 2
arg min <Z (f(sglb’a;lk)) /A7r97h+1(a’|5§1’21) ((Vé logwe,h+1(a’|52’21)> Qh+1(s§l+1, "+ V h+1(s§1)21, )) da')

fer  \k=1

+ Ap(f))

:739,h <(V§ log HG) @ZH + VgQ?H—I) :

The second equation holds due to the definition of ﬁ& n- For the first equation, note that when F is the class of linear
functions and p(¢ " w) = 2, the LHS has a closed form solution:

K 2
k E) \A E
arjglgm <Z< Sh , @ 7'2)_/A7T€,h+1(al52421)@%-&-1(52.&1’ /)dal) +)\P(f)>
€ _

K
= 5! Z(;(L /7T9,h+1(a'|8§g1)QZ+1(Sﬁ)p /)da')

K

1 k k
:¢T2h1[( Z )+¢T2h1}( Z/ mola |5§HZ1 QZH( 2+)17a')da'
=7y + Pe,thH-

Therefore, we have finished the proof. O
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C.3. Proof of Proposition 6.8

Proof. The result of Theorem 6.3 implies for any fixed 6, when we choose A < log %= Sde Cy

K > 36k1(4 + ko + Kk3)? log SdeC dH? sufficiently large such that

9 . . |2log %Tm
4H G\/I?[lll’l{(jld7 H} 1 +X2_7_—(/J/97M) T

>480C1dm™* H> " (5+f€2+f”v3)(maxH291V]VfH+HGH f 4l

dminge(g) Omin(Xr), and

log 72ngdH

K )

then we have

210 24m
HV@U@ — Vovg|| < 8H*G/mmin{C1d, H}/1+ x%(u?, i) g

Note that when the diameter of © is bounded by D, for any ¢ > 0, it’s always possible to find an e-net A such that
V| < (mTD)m. Taking a union bound over N, we get with probability 1 — 6,

/\ 1 24mD
1908 — Vol < 16H2Gmy/min{Crd, H}\/1 + x2 (1, ) Og VO eN..

Therefore, for any 6 € ©, pick 8’ € N, such that || — &’|| < &, we have

||V91)9 - V@Ue” <2Le+ HV@’U@' — V@U@/”

IOg 24mD

< 2Le + 16H?*Gmy/min{C1d, H}\/1 + x%(u?', i) T

Because X%_—(/f)/, i) is L'-Lipschitz in 0, we have

o lo 24mD
|¥o0s — Vool < 2Le + 16H>Gmy/min{Crd, H)\/1 + 2L + x3(u8. ) gT

. 16H2Gm [min{Cyd, H}
€ =min§ -, 7 1/ % )
24DKLL!

I
1908 — Vool < 64H2Gm/min{Crd, H /1 + X% (1f, i)\ | —2 “ESHE | vheo,

In particular, pick

we get

C.4. Proof of Lemma B.1
Proof. Note that

H /h-1 H o (h-1 i
V@) — VoQf = Z (H PG,h’) Up - Z (H P@,h’) 0f4

h=1 \h'=1 h=1 \h'=1

H h—1 H h—1 N N
=Z<H%,h'> (Hm) ot (11 Ao} (52-02)

h=1 \h'=1 h=1 \h'=1 h=1 \h'=1
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For the first term, we have

h-1
(H 739,h/> (Van -0 - ﬁe,hveQZH)

h=1 \h'=1
H h—1 N

S (1I 9,,,> qu(sg«),ah )
h=1 \h'=1

k
5h+1)> Qh+1 (524217 ) + To,h+1 (

: <V9QZ (ng)»ah )) */ ((VWTF),h-H (
A H h—1 4 .
+KZ<H7’9M>¢E Vo),

52+1) V9Qh+1 ( h?l’ /)) da’)

h=1 \h'=1
H h—l K A H h—1
k k o S—
=3 (T w537 e 30 (42 W ¢ 3o (T e ) 5090t
h=1 h'=1 k h=1 h'=1

H [h—1 S
/SXAf(S)We,l(a|S) <Z (H ﬁe,h/) (VeQZ -Uf - nghvleH_l)) (s,a)dsda
H o~
Z 2}71V9w2.
h=1

a7

N\V

I
M=
2

4|

N}
S|

==
M
<
/N

V2]

;"Q

) alk )) Voel s

For the second term, by Lemma A.3, we have

H h—1 N N H h N
3 (T 7w ) (2 02) = 3 (T P ) otostonn (2 Q1)
h=1 F

h'=1
H h'—1

H h
=> (H Po h/) VologTgni1) Y I Pon (QZ/ - 7397}L/Qzl+1)

h'=h+1 \h'=h+1

h—1

h/
H Pon | (VologIy pry1) ( H 7’9,h~> (QZ —Th — Pe,hQZH) .
he=1

h''=h'+1

Meanwhile, again by Lemma A.3, we have

H [h-1
(VologTly 1) (QF — QF) = (ValogTlpy) Y <H 7797h'> (QZ —Th— 7’9711@2“) )
h

=1 \h'=1
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which implies

H _
Z ( 779th> (U,f - Uﬁ) + (VologTly1) (QY — QY)
h=1 \h'=1
H h=1 [ n" h=1 .
=> | (VologTls, (H Po h’) + > | ] Pon | (VologTgpia) < 11 P@,h“) (QZ —Th — Pa,;,,QZ+1)
h=1 =1 w=1 \h=1 h=h'+1
H oh-1 [ W S R
=) H (Vo logIly pry1) ( 11 PG,h“) (QZ —Th — P@,ILQZ+1>
h=1h'=0 \h=1 W=h'+1
H oh-1 [ W -1 R
=) H o.n | (Vologly pii1) ( 11 PG,h“) o' 8!
h=1h'=0 \h=1 W=h'+1
L
1o 00 (sa) (@1 (s al) =1 = [ monn (/[ ) Qs (s82100) o)
k=1

H h—1
A - - o
t % Z H Ponr | (VologIly pri) ( H Pe,h//) ¢S, wh.

h'=h'4+1

For each j € [m], notice the relation

_ T [h=l h—1 + h'—1 e — h—1
(Véuf) <H MO,h’) + Z (1/10) H M0,h” (VJQMQJ,/) < H MG,h”)

h W' =h'+1
h—1 R h—1
—/ &(s)mo1(als) Z H Pon | (Vo logH97h/+1)< H P@,h”) o' | (s,a)dsda.
SxA

h'=h/41

Therefore, we have

H -1 —
V $)70,1(als) (Z(Hm) (0 - Uh)+<velogne,1><c2§@§>> <s,a>dsda]

h'=1 J
:i (vgag)T f};lfl{i(ﬁ (SE{‘%% ) (Qh( ¢ ,aglm) o8 _ /Am’h“ ( ’sthl) Q. (shﬂ,a’) da’)
h=1 k=1
T 3 (vih) Situf
H hfl T 1 K )\ H
=Z(Véﬁi) Z;1§Z¢( W )ghk ?Z( sz) =
h=1 k=1 h=1

(18)



Optimal Estimation of Policy Gradient via Double Fitted Iteration

Combing the results of (17) and (18), we get for each j € [m)],

—

Vive — Vivg = /S Af(s)W971(a|s) (ng‘{ ~V5Q) + (vg 1ogn0,1) QY — @{)) (s,a)dsda
X
A TS A 1wy ; _
:Z( 9 b KZQS(S;Lk)ﬂh )vg h’“+K( 9) hIVZ)wa—&-(Vél/z) Eh EZ(b(s;f),aEl))sz,k

. T
+ 2 (i) E;wg>

h=1 1

=t Ta 1 K k k A T
S (0S5 20 () e+ ) 57
h=1 k=1

(0055 - (0 53) e 3o (sl )

Rewriting the above decomposition in a vector form, we get

H
Vovg — Vovg = Z Vo ( Vh E; Z ) (Sh ,agk)) hk
h=1

A Tl T o T 1 K
+ K (’/l(z) Ehlwz + ((VZ) St - (VZ) X 1) K Z ¢ (52]6)»‘1;1@) h,k)v
k=1

which is the desired result.

C.5. Proof of Lemma B.2
Proof. Note that,

<E1,t>:ZH:<v9< 2112¢((k> )’k>,t>

h=1
H T 1 H 1 K
_ k k — k k
:z<<veuz> 5L S0 (o af) ot >+z< thz¢(s;>,ag>)vgez,k,t>.
h=1 k=1 h=1 k=1

Letey, = S0, <V9 ((Vz)T DI (sﬁf%a?) h,k) ,t>, we have

T , A
lex| <+/Cidm]|t]] Z (H—-h+1) m[ax} \/(V@Vﬁ) 3,V 4 2GA/Crdm|t|| Z(H —h)? (VZ)TZ}:lVZ
h=1
=B+/Cidml|t]|.
We have

K 2
ZV&I‘ ek = ZE <Z Vo ( Vh (b (Sh 7ahk)) gz’k) 7t> = KtTAgt.
k=1 k=1 h=1

We pick 02 = Kt ' Agt, the Bernstein’s inequality implies that for any ¢ € R,

'

K

>

k=1

2/2
> <2 — .
= 5) = exp( 02+\/701dmt||35/3>




Optimal Estimation of Policy Gradient via Double Fitted Iteration

Therefore, if we pick € = 04/21og(2/0) + 21og(2/d)v/Crdm||t]| B/3, we get
K

P ( > 6) <9
k=1

D e
2t T Agtlog(2/9) 210g(2/5)\/01 m||t|| B
K 3K

i.e., we have with probability 1 — 4,

1 K
?Zek =
k=1

C.6. Proof of Lemma B.3

Proof. For an arbitrarily given 0, let X, 5, = E™0 [¢(sn, an)¢(sn,an) '], we have
T T 1 &
=~ _ k) (k
((ﬁz) 5= () Eh1> }Zéb( 5&@2 )) h,k
- h=1 .
(s - (T ) 5 S
h'=1 h'=1
_1
= (Eeoflyle)
h'=1

nk Z¢( gk)ﬂgk)) Ehk-

Taking derivatives on both sides, and let 6y = 6, we get

—

h'=1

H

bl 1 1 1 1~ 1y 1 h=1
2 2 2 2 2 - 2
I I Zeo,h/Me,h’an,hurl Eeo,hzh Zh Eh h I I 290 h/M9 h’

K
) ) ~_ _ 1 . . )
ViE: =V} (Z (@) St =) =) 220 (i al) <, ) = By + By + Fly,

1 _1
g2

h=1 k=1

H - h—1 h—1
=3 (5,00 SN2 MywSo? |2 ninis-ing N2 My S
Ey = E9,1 V1 H 0,h/ P1O,h" =g pryq 6,h“h h“h “h — H 0,h/ H1O,h" =g pryq

h'=1 h'=1

K
-11 k) (k i
X, Z?Z¢ (32 )7a§L )> VH,k

k=1
; H T h—1 ,l—,liA,ll h—1
Esy :Z (E ,12V9V1) H 20 h/MO h’ze /41 2(5, 2y PN, hy, — H Ee M, h’ze /41
h=1 h'=1 h'=1
S R
2y §Z¢(Sh »ay, >€hk
k=1
J ‘ o) "
Ess :Z (29,12’/1)
h=1
j hl RN S N gt y hl o _1
7 H an h’M9 h’ze /41 onZn EREy X — Vy H B0 Mo X, 1
h'=1 0o=06 h'=1

: Zh % K Z ¢ (Sgk)vaglk)>

1 _1
E(92,h2h :

0o=6

b o5od
20 ,h+1 E Zh

1
2 -2
Ee,hzh

-
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Therefore, using the result of Lemma A.4, we get

1

1
2
Eh

)

((H (1+ ]| Z (AMp ) zg,,a+1\|)> (1+ =4 (A
h'/=1

H

) 1 1

| B3| < Z Hze,fV?H HEQQ,hZ
7l k? .

S0 (o) Vi

-1y 52 )-1)

(T 0 b amrssdal)) 1ot o

T

Bl <> ||zat vt | |26,z
h=1

31y (k)
2*2 (h ) A )5hk

N

H h-1

1 0 1 1
E E 2 2 2
H2071 I/lH Hzg’hzh

)—1

) (1 ok itz

1 (VI (AMpw)\ -1
Ea,h’ (GG Za,h/

) <1+

1 1
H (1 + Hzé,m (AMp,1) 5y o
%
1] P
hZEZ (h ’ah ) Eh.k

1 _1 1 ,
where AY 7! = Y71 — 3, and we use the fact HZ; nMo. 2y ;‘;HH < 1and HE;h (VéM91h> 2y h’HH < @ from Lemma
A.5. Furthermore, we have

1 _1
Hzg,h (AMG,h) EG,;+1 ‘
Z+1EQ_E+1H HEE (AMG,h) E}_L—El

1
(k) /) T9,h+1 ( ‘5h+1> da’ — My h> X0

(Ehl‘;l(Z‘é( Sho (k)>/Aq§(shH,a

1 1
<VF ((1 [ sy sif) (o e ma]) -1).
(k) BT . .
) ®0,h+1 (sh+1> — XMy j, and the last inequality uses Lemma A.4 again. Simi-

where AYj j, = % Zszl ¢ (Sh @
) - 1> |

)

= Vh1 HEZ (AMp,p) ZZE1H

1 1
b

larly, we have

% Vj (AMG h) 1
20 h ( 29 ,h+1

-1 Vj (AYg7h) -1
E ( ¢ G Eh-‘rl

- <\ﬁ<(1+H22 (AS,) 27 )<1+

Now, define o = 6,/k1(4 + K2 + K3)1/ % and pick
8dmH
)

dmH
SL A < (C1d min Umin(zh) : IOg
§ H]

)

K > 36k (4 + rg + #3)2C1dH? 1o , A<Cidmi
(S

we get a < . Using the results of Lemma A.6, Lemma A.7, Lemma A.8, we get with probability 1 — 2§

a1 2C1dlog 24 40 dlog 22 o)=Y
< 2 3 < 5 5 h
_2th SLs IdH <24/ = e
(19)
C dl 8dmH
<4y % <a<l,

=2 (ash =
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and Vj € [m],
3 Cydlog S V7 (AYy.p) Chdlog 84mi
=2 (aYau) h+1H<2/§2—|—1) ——— <1 |z = S| < 2ks+ 1)1 = <1,
which implies
1 1 1
H o.n (AMo 1) 9h+1H < 2Vk (H i (A _1) Xp| + HE (AYp,n) h+1H) <a (20)

where we use the fact (1 + z1)(1 + z2) — 1 < 2(x1 + x2) whenever 21, 22 € [0, 1]. Similarly, we get

1 (VI (AM, _1 ,
X (9(G€,h)> Sors1| <o, Vie[m] 2n
Meanwhile, by Lemma A.9, we get with probability 1 — 4,
) K log 84mH
St S0 (s,a) el )| < v - nov 1y <52 22)
k;:
1 K k . IOg 8dmH
; Z 6 (58, 0ll?) Viet | < sVAG(H — 1?22 23)

Combining the results of (19), (20), (21), (22),(23) and use a union bound, we have with probability 1 — 34,

log 8de
|<Z16hafGH h) HZ“VlHHE =t
4 10g Sde
SUSZIRE) DT ma [ =t
_ H log Sde
E§2|§Z8hm/g(H7h+1)HE VV1H HE =t
h=1
Sde
1 i log =#+=
<saVdH® |2, 1 Vi | man HEG o =i
lo 8dmH
3|<Z16Ghaf(H h+1)(h—1) HXMVIH Hz gT
h=1
4 IOg 8d7(§LH
<16aVdH GHZQIVI‘ ;{Iel[aé{ HZQhZ — %

where we use the fact (1 + a)h — 1 < 2ha whenever ah < 1. Summing up the above terms and using the definition of «,
we get

8de

log

T’ Vj € [m]

J [oram? (s 2,0 ~3,0
|Ey| < 240\/K1(4 + k2 + K3)/ C1dH” ( ||Z4 T Vi || + HG || S T 1y max 29 hE

Replacing J by %, we have finished the proof. O
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C.7. Proof of Lemma B.4

Proof. Similar to the decomposition in the proof of Lemma B.3, we have

) I vt

(n ([ @rmar i)} (1 ok omi) o

h—1
(H (14 <AMe,hf>z;,z/+1H)) (1+]|=k @zt sk|) 1= || =t

g

) w\»—A

)

H 1+H29 por (Mg 1) S o

1 1
(14 |2 Moz |) | {1+
h''#£h!

) (14 |5f (axy o

<vg§ (AMM,)> o
- a 0,h'

(Imaivt] [=awit] + o wimt i ] + o= ot it

\ A
§}2(1+0‘ 1= HEM
h=1

where « is defined in the same way as that in the proof of Lemma B.3. Similarly, we have o < % with probability 1 — 3§
and we have

HEQVewhH = {( Qh( 5\ ,aﬁ?)) } < G2(H — h)*
HzéngQ =E [(Qi (st7,a5)) } < (H—h+1)%
We conclude
| E3]
<o 3|1 o4,

A
<6 H max [55] Hzeh

log Sdg”H C1dH? HE E
K }52?13(] o,h

(HZelulHGH h)2 +Hz | (= n+1)+ G HZglylH(H h+1))

(I=aivt] e+ [aivint])

(ot o+ [z wint]).
Replacing 4 by %, we have finished the proof. O

D. Extension to Time-homogeneous Discounted MDP

D.1. Approach

Our method can be easily extended to the case of time-homogeneous discounted MDP. Similar to the time-inhomogeneous
case, under the setting of the time-homogeneous discounted MDP, an instance of MDP is defined by (S, A, p,r,&,7)
where S and A are the state and action spaces, vy € (%, 1) is the discount factor, p : S X A x S — R, is the transition
probability, r : S x A — [0, 1] is the reward function and £ : § — R, is the initial state distribution. Similarly, the policy
m: S x A — Ry is adistribution over the action space conditioned on an arbitrary given state s. We define the value
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function and @ function by

=E Z'Yh_lr(shaah)] , Q%(s,a) =
h=1

Note that here the reward and Q function no longer contain the subscript h. We still consider the class of linear functions F
with state-action feature ¢, and denote Py as the transition operator where § € R™ is the parameter of the policy.

Assumption D.1. For any f € F, we have Py f € F, and we suppose © € F.

oo
Z ’Yh_lr(sm ah)

S§1 = S§,a1 = G;|
h=1

In addition, we assume that the constant function belongs to F, i.e., there exists some wy such that ¢(s, a)Two =1,Vs €
S, a € A. Define the covariance matrix X and its empirical version X by

(o () o) ], Sim e (e £ (0 )0 ()

k=1h=1

where I; € R is the identity matrix.
Assumption D.2 (Boundedness Conditions). Assume X is invertible. There exist absolute constants C, GG such that for any
(s,a) € S x A, j € [m], we have

B(s,a) T8 p(s,a) < C1d, ‘VJ log 7 (als )’

Define @, € R, My € RI*4, VM, € R4 j € [m] by

K H
. a1 k) (k k
Wy =3 1ﬁzz¢<sé),a2))r,§),
k=1 h=1
= a1 ¢ (9,0 ® 0\ da’
Mg =3 ﬁzz Sy, aah S}L+1 ¢<Sh+1’a) da’
k=1h=1
o K H
VjM . i_l 1 / V (k) d / .
070 = KHZZ Sh+1’a 0T 3h+1 a', jé€[m]

=~
Il
-
>
Il
—

In this way, one can compute
QG('7') = ¢("')T{U\97 Vng(a) = (/)(,’_)Tvgwe
where

—1 — -1

= (Id — 7]/\4\9) ﬁ}\,«, ng" = (Id - ’}/M\g) nggﬁ}\e

Then the estimator is derived from

Vove = /S Ag(s)ﬂg(a\s) (V/g@(s, a) + (Vg logmy(als)) @e(s,a)) dsda.

D.2. Results
Define 1/2 =™ [¢(sp, an)|s1 ~ €] ,0% = Yo 'yh_lug and Xy := E™ [¢(s,a)¢(s, a)T‘ s~&,an~ 71'9(-\8)] where

&p is the stationary distribution under mg. Define

00(s) = [ mo(@lo)os,a)da’, el = Q" (sia) < <y [ o (|52, ) @ (si8) ) da
A A

and

H T
Ag=E l; 3 (ve <5h 1 (2.0 g—1y9)> Y (gh 10 (s, af! >) w)] .

h=1

We first give the finite sample guarantee.
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Theorem D.3 (Finite Sample Guarantee). For any t € R™, when K > 36#1 (4 + k2 + £3)2C1d(1 — ) =2 log 12428 gpg
A < log Sd%HC& domin (), with probability 1 — 0, we have,

2ATAgt |8, Coll|log 2321

t —— B < .1
|(t, Vove — Vovg)| < T 1085 TR ,
where Cy = 240C1dm°5(1 — v) 3Ky (5 + Ko + K3) (maxje[m] HZ;%V] H + = HEQ VY H) and

1
2

Omax (37537 H)
i (27%2927%) A1l

e (o (2) (7 42)) ]

Theorem D.4 (Finite Sample Guarantee - Reward Free). Let the conditions in Theorem D.3 hold, with probability 1 — 6, we
have for any reward function r,

K1 =

Ko = H K [qbg (sh+1) do (shﬂ)q Y3

1
2

1
K3 = — max

G jeim)

log 8™ 2C, log 32mdH
< 4b 9 3 j
> 0 oK + oK 9 Vj € [m]a

Vé?)g — Vévg

’ —

where by = ﬁ *%VGH + # HE*%Vj 9H and Cy is the same as that in Theorem D.3. If we in addition have

#(s',a") T2 1p(s,a) > 0,Y(s,a), (s',a’) € S x A, we have

16G log 8m 1 209\/77“0g 32mdH
n- H 1 -
e\ T 1= lesCad) + HEK

‘Ve’l}g V'Z.UQ <

Vi € [m].

The complete proofs of Theorem D.3 and Theorem D.4 are deferred to Appendix D.6.1 and D.6.2. Next we show that FPG
is an asymptotically normal and efficient estimator.

Theorem D.5 (Asymptotic Normality). The FPG estimator is asymptotically normal:

VHE (V/Je - nge) 4 N(0, Ag).

The proof of Theorem D.5 is deferred to Appendix D.6.3. An obvious corollary of Theorem D.5 is that for any vector
teR™,

vVHK <t, Vovg — V9U9> i> N (0, tTAgt) .
The following theorem states the Cramer Rao bound for FPG estimation.

Theorem D.6. Let Assumption D.1 hold. For any vector t € R™, the variance of any unbiased estimator for t " Vovg € R
is lower bounded by \/1}17

The proof of Theorem D.6 is deferred to Appendix D.6.4.

D.3. Additional Notations

Define
()=o) Dy,
U? .= Py (Vg logﬂg)Q
Ul .= ’Yﬁe (Vg logﬂg)Q
U .= Py (Vg logﬂg)@
L v (k) () ®) \ "
AYy := TRk ;};(b(sh ,ay, ) (sh+1) — XMy
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When F is the class of the linear functions, there exists matrix My such that the transition probability satisfies
E™ [¢(s, a)' s, a] = ¢(s, a)" Mp.

D.4. Technical Lemmas

Lemma D.7. We have

_ Z,yh—l (P@)h71 r, VGQG Z,yh 1 9 UG.
h=1

h=1

Proof. By Bellman’s equation, we have Q? = r 4+ yP¢Q?, which implies
Q" =1 +7PeQ’ =r+7Por +7° (Po)’ Q° = Z e

which proves the first equation. Differentiating on both sides of the Bellman’s equation w.r.t. §, we have
V@’ (s,a) = YE™ [(Vglogma(a|s') Q°(s', )]s, a] +vE™ [VeQ'(s',a)]s.a] ,

ie., V(;QG =U?+ 7779V9Q9. By induction, we have proved the second equation.

The decomposition leads to the following boundedness result:
Lemma D.8. We have |Q°(s,a)| < = 7, [VeQ%(s,a)||_, < = 7)27 Vs € S,a€ A
Lemma D.9. For any series of matrices Ay, As, ..., A, and AA1, AAs, ... AA,, we have

H [ Azl + |1AA;]) - H | As|-
i=1 i=1

n n

[Ai + a4) -] A

i=1 i=1

Proof. We have

n n

H(Ai +AA;) — HAi

i=1 i=1

n

- > Tareay)< > I

5€{0,13"\{(1,1,...,1)} i=1 6€{0,1}"\{(1,1,...,1)} i=1

=TT Al + A4l = T 114l
i=1 i=1

The following lemma gives an upper bound on the 2-norm of My and its derivatives.

Lemma D.10. We have Hz My, H <1andHE2 (VJMQ) [m).

Proof. Note that forany f : S x A — R, f(s,a) := u' é(s,a), and any fixed h € N, we have

E™ [f*(sh+1, an1)ls1 ~ o] = E™ [E™ [f*(sni1, ant1)|sn, an] [s1 ~ €]
> E™ [E™ [f(Sht1, an+1)|Sh, an)?|s1 ~ ol
The LHS satisfies
E™[f2(sh41, an+t1)]s1 ~ &o] = 1" Sop,
and the RHS satisfies

E™ [E™ [f(Sh+1, ani1)|sn, an)?|s1 ~ & = E™[u" My ¢(sn, an)d(sn, an) " Mopls1 ~ &) = " My SoMop.
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1 1
Therefore, we have u' Sou > p' M, SgMppu, Vu, which implies ||X2 MY, 2| < 1. Similarly, let g : S x A —
R, g(s,a) := (Vg log mo (s, a)) w' (s, a), we have

E™ (g (sh+1, ant1)|s1 ~ &o] =E™[E™ [g° (Sh+1, ant1)|sn. an]|s1 ~ &)
>E™ [E™ [g(Sht1, ant1)|8h, an)?|s1 ~ &)
The LHS satisfies
. 2
E™ (g% (sht1, ant1)]s1 ~ &) = p E™ [(Vé log WG(G\S)) D(Sha1s ang1)d(snr1ant1) |1~ &o| 1

< G*UTE™ [(sht1, ahs1)d(Shats ans1) |1~ &) p=G*u" Sop,
and the RHS satisfies

E™[E™ [g(Sht1, an+1)|sh, an)’|s1 ~ Eo]
. T .
—E™ [ (V4Mo)  $lsnsan)é(snsan)” (VHMo) ulsi ~ &
. T .
=" (ViMg) S (ViMo)
. T i 1 ) 1
Therefore, we get G2uT Sop > " (V@MQ) o (nga) 1, Yy, which implies Hzg (v;MG) 5, H <a. 0

D.5. Probabilistic Events
We define the following probabilistic events: For j € [m],

1 1 KXz T 1
(e S (o) ) -

&t

< ,[2Cudlog 84H | 20Cidlog 84H
- K 3K ’

k=1 h=1

2C1dlog 42 4Cydlog 1941
< (k2 V1) 1alog —5 + 10 10g —5 7
K 3K
2C dlog X¥maH 4 dG log 16mdH
< 1 5 é
< (ks V1) Gy e + 3K ;

Evo: HZ’% (AYy) T2

Ev Hz‘% (vg (AYG)) PR

& =) Evy
j=0
K H 32dH 32dH 32dH\ 5
2log 2=£~ 2+/Chdlog 2=~ 2C1d (log == 2
Eros[EH LS5 0 (s, a) | < YL (2B 2VOUIIoB T | 2Cd (Lo 5T
KHk:lh:l 1—7 KH KVH 3K>vH
K H 32de 32mdH 32mdH\ 5
_1 1 2vd 21 2y/C1dlog === 2C1d (log ==122) 2
| 3 Zzé(sék)’a;k))vézk < \fG2 0og ~—5— " 1d log =5 L ( % ) 7
KH &=~ 1-=7) KH KVH 3KSVH

We have the following guarantees on the above high probability events:
LemmaD.11. P (£x) > 1 &

Proof. Define

x k) — ](f)) p (31(1 ),agk)) $-% ¢ Rixd.

i M &
N)‘)—‘
/\
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It’s easy to see that X1, X2 X(K) are independent and E [ Xk )] = I4. In the remaining part of the proof, we will
apply the matrix Bernsteln S mequahty to analyze the concentration of - Z 1 X (%) We first consider the matrix-valued

variance Var (X(*)) = E {(X(k) —I4) } =E {(X(k)) } — I, Let

k) .= [¢ (sgk),agk)) o) (sék),aé )> ) (s(lf),agq)ﬂ e RXH

Then X®) = Lx=20® (¢M)
21

'y
WE [(X(’“)ﬂ p=E [HX(k)um = %E
ey

—1
2

. For any vector i1 € R?,

Hg;qm ((b(k))Ty%u

T 2
<—1[<: Hz: cb<k>H2H(¢><k>) Z_%MH <%E

T

~C1dpE [ X P p = Crdl|ul?,
L2
where we used the identity H (CIJ(’“))T E_EuH =p" X®pand E [X®] = I,. We have

2
Var(X®)) < E {(X(’“)) } < Cydl,.

Additionally,
H 1 T 1
L= X, = Z ) (sgk), ag@) & (sg@,ag“) NF I, < Cydl, — I,
H=
Therefore, | X *) — I|| < C1d. Since XM, X . X K) are i.i.d., by the matrix-form Bernstein inequality, we have

al (k) e2/2
P X® -1 >e| <2d-exp (-7 |, Ve>0,

Pt CidK + C1de/3
i.e., with probability at least 1 — g,

K 8d 8d

1 2C1dlog &¢ 2Cidlog =%

_ X(k) -1 < ) §

K ;( ) ‘ VT xk T3k
which has finished the proof. O
LemmaD.12. P (£y) > 1 - 2.
Proof. Take

Y P = Z 2740 (s, i) 00 (sﬁfjl) S5, ke [K).

Then, %~ (AYy) 2% = £ 3210, (3 = 2 M3~ ). Note that

W] 1w [emt, (0 L
E{Ye }:ﬁZE % 2¢(3 )¢0 (5h+1> by 2}
h=1 -
Z% hi“‘: :27% (SW aﬁk)) Ll [¢ CRONE aﬂ E*%} (24)
~ S E[st (s a7) o (51" %a;’“))TM@z—é] —siasd,

=

Il

—
T
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To this end, 72 (AYp)

K k
= %Zkﬂ (Ye( )

1
2

Bernstein inequality to estimate H S72(AYy)S

E [Yg(k)] ) Since the trajectories are i.i.d., we use the matrix-form

. Let

o® = [6 (s{,al") 6 (58,0l ..o (s aff) ] € RO,
@ék) = [¢0 (sgc)) , Pg (sék)> ey g (s%ﬂl_l)} e R*H,

# _ 1y-tg® (e®) n-1 a
We have Y, :ﬁﬂ’icb()(cbe) 37 2. For any p© € R%, we have

)]
Hmwu H( ) 5]

Jlwy" s

_Od reip [qm (@(k))T} w4,

TR |:Y9(k) (Ye(k)>T} B . Hz_éq)gk) ((I)(k)>T -y

T

<1
72

<—IE

H
=Crd| %,

where we have used the fact & = 4 E {cb(’“) (@) } It follows that

Analogously,

Varg (Ye(k)) =
Cl “ly-iE [@““) (@"“’) ] N3

Therefore, max { HVan (Ye(k)>

(Ye(k)> H} < C1d (k3 V 1). It also holds that ||Y9(k) | < C1d. Hence,

HY;’“) _simyyi| < 2004

Applying Matrix Bernstein’s inequality, we derive for any € > 0,

K 2 /9

( ; ’ ’ 7)o C1dK (k3 V1) +2C1de/3
which implies Ey,o holds with probability 1 — 2. For Ey,;,j € [m], notice that for any j € [m], we have
Z_%(VZ(AYQ))E_% = % Zf:l (Véye(k) —E »VéYo(’“)D’ and ngg(k) = L E"@ (V“I)(k)) ¥~2. For any

u € R we have
e [(wan) (w) =g [ (i) (8) 5

Ll ()|? T 1
A N [CR N




Optimal Estimation of Policy Gradient via Double Fitted Iteration

Since we have
(Vigo (s12,)) " £ Vi0y ()
:/AXAWQ( ’Sh+1) 9 (a h+1> (Vg log g (a‘sﬁﬂlw (Vg log g (a/
¢ (551’1)1’ a) 270 (82’21, a’) dada’
SGZ/AXA (a|8h+1) T ( 2’21) HE_f(ﬁ (sh+1, )H HZ—§¢ (52]217 )

which implies

S

)

) dadd’ < G2Cyd,

2

. . T GQO
e | () (i) | e S | (30) b | = e

Therefore,
var, (Vv = [(V’Y(k E[viv,"]) (vivy" - E [vgY;’”DT] <K [(vgY;‘”) (vgY9<’“))T] < G20yl
Meanwhile, we have
var, (V") <E [(vgY;}k))T vgye””} < C—lsz]E {(vg@fﬁ) (vg¢§k>)T] n-3
In conclusion, we get

max { HVar1 (VgYe(k))

|

Note that HV%Y@W H < C1dG, we know HVZYQUC) —E [VgYe(k)} H < 2C1dG. By Matrix Bernstein’s inequality, we get
forany € > 0,

(viv)|} = c*cra (w3 vy,

K 2
; 1 1 1 2
P (VJYQ—E’ (VJM)E") >e| < 2dexp (- / :
( 2o\ Vol m 2\ Vol ) = 2 ) =€ | = S0P T G20,dK (w3 V 1) + 2C1dGe /3
taking a union bound over all j € [m] proves that ﬂm Ey,; holds with probability 1 — %. Using a union bound argument
again, we know with probability 1 — & Ey holds, which has finished the proof. O
g p y p

Lemma D.13. P(£.) > 1 — &

Proof. Let X é()k,i = E’%d) (sgk) (k)) €k € R and let F, 1. be o-algebra generated by the history up to step & at episode

k, we have E [X (gkh) ’ }—h,k} = 0. We apply matrix-form Freedman’s inequality to analyze the concentration property.

. . . (k) ®) ()"
Consider conditional variances Vary [Xe h’ ]—"h7k] =E | X, (Xe h)

Fh,k] € R and Var, [ng“,j’fh,k} =

B
E {(ngjf) X§f2|]-'h7k] € R. It holds that

Jvars (x5 ] | = 682 (x02) | 7

AN T
< [ () |

=K |:HX§{€,2H ‘Fh,k:| = Var2 |:X9,h‘ fh,k:|
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and

2
o 57 = | ] 0 (47) 50 Al

< e () 7 (s,

(k) (k)}

where we have used Var {EZ k‘ sy, ap Note that

1
= (1-7)?*"

i¢(s§f%a2’“>) 10 (4, 0)

Nk

k=1h=1
LoxSn (00 k) )Yyt
—KHd+ KHTr M§;¢(sh o) (sp)al) ) ot -0
I R RIS IO
<KHd+ KHd lef;(b(s}l o) o (sp)al) ) = - L

We take

dH dH
o2 KHd 14 QCldlog% N QCldlog% 25)
(I1—7)2 K 3K '

The result of Lemma D.11 implies that
K H

]P’( SZZVarQ {Xék,z
k=1h=1

Additionally, we have HX ékﬁ H < —Vfiyd. The Freedman’s inequality therefore implies that for any € > 0,

K H

Z Z Var; [Xékh) ‘ fh,k}

k=1h=1

5
fh,k} < 02> >1- (26)

L K H K H
]P’( Xéf?i > ¢, max{ Varl {Xékg‘fhk} ,ZZVaIQ {Xémj-‘h7k}}§02>
==l k=1h=1 27
2/2
<2dex
BRIV T AE )
where o2 is defined in (25). We take
32d 2\/? 32
=0 e
0
Then we get
3 o 53 ShS (k) 0
P Xx® > [ ‘ }7 V[Xk’ }<2<77
<kz—1h—1 o.h| =< max{ ;g ary | Xg | Fhok ;; ary | Xop| Fak| ¢ <0 <1

which implies

K H K H K H
<P ZZXe(,k,z > e, max{ ZZVarl [Xék}z‘}—h k} ,ZZVarz [X(gk}z’]—'h k}} <o )
k=1h=1 k=1h=1 k=1h=1
K H . K H . 5
+ P (max ;;Varl {Xé ,3‘]-';17k] ,’;;Varg [Xéyh‘}';%k}} > 02> < 3
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which has proved P (€ 9) > 1 — %. For any fixed j € [m], we use Freedman’s inequality again to prove P (&, ;) > 1 — %.
We have

| Var, [ 93X Fus] || = H]E [ (Vixih) (vhxit) T‘ ]:h,lc:|

’ <E [H(vgng“,i) (VgXéﬁz)TH’fh,k}

. 2 .
o] ] = von [ ]

and
. A 2
Vara [V3300| 73] =8 [T | | = 0 (s108) 2710 (s, o) Var [ Thet| 8.l
4G? k) (K _ k) (k
<o (k) o (4.

where we have used Var [Vész’k 551 ,aﬁlk)} (14 ER Furthermore, notice that HV] X, (k) H < QGV Cl , the remaining
steps will be exactly the same as those in the proof of the case £, o. Taking a union bound over j € [ ] and & o, we have
proved P (ﬂj —0 ) >1- Wthh has finished the proof. O

Combining the results of Lemma D.11, Lemma D.12, Lemma D.13 and take a union bound, we conclude
3
PE)>1- 15.

Next, we prove some immediate results when the event £ holds.
Lemma D.14. When Ex; holds and

8dmH 8dmH
K > Cydlog ;” . A< Crdon(T) - log 7:; ,

1 Cidlog L’&”H
—x

we have

IN

[=* (az-1) =t

Proof. Note that

HZ% (An—1) o :Hz% (2—1—2—1)2% SHZ%E—T% Hz—%iz—%—IdH. (28)
When Es: holds, with the condition
8dmH 8dmH
K > Cidlog ? . A< Crdogin(2) - log 7;'; 7

we have

e 2C;dlog 84E 207, dlog 842 -1 log 8dmH
HE_EEE_E B IdH < Cidlog 5 Cidlog 5 /\||E H <9 Cidlog 5 < 17
K 3K K K 2

which further implies i (2—%22—%) > 1 and Hzéi—lz% H < 2. Combining this result with (28), we get

A Cldlog 8d7(;LH .
K

which has finished the proof. O

IN
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Lemma D.15. When Es. and Ey hold, and

K > 36k1(4+ kg + K3)? (1(/:1%2 log 16d:5nH, A < Crdoyin(X) - log 8d;nH7
we have
HZ"’ (AMy) ¥ % < 6yk1(4+ k2 + K3) W>
and
29 <Vf (2Me>> z, 3l < 6y/k1(4 + K2 + K3) %, Vi € [m)].

Proof. We have

1

=5 an) =5 — VR[5t (an) =

o (85t 330 () ()
k=1h=1 A
)-1)

where AYy = HK Zk 1 Zh 19 ( s, aglk)) o7 (52]21) — 3 My and the last inequality uses Lemma D.9. Similarly, we

have
1 (VI(AY) )\ s
)<1+ n 2<9G ")E : )—1).

Cidlog Sdg’H

’z% (AMy) 5%

szz 3

szz

st ) da’ - M9> n-

N

1

< \/a((1 + |5t (az) o

) (1+ HE*% (AY,) 53

3 (Vo (AMy)\ (s
% <0G %

< m((u HE% (AX) X3

Using the result of Lemma D.14 the event &y, we get

3 Nyyif <y /2S5 <
|=t (A=t <4 <,
and Vj € [m],
C1dlog 16dmH I (AY, C:dlog 16dmH
|2} avo) st < 20m + 1) B <1, |5 L(G D) w4 < 2+ 1)y LB L <,

which implies

Hzg (AM,) 3,

1
2

Cdl 16dmH
yo3 )§6\//£1(4+/€2+l€3)“41 Oi- 2 )

where we use the fact (1 + z1)(1 + z2) — 1 < 2(x1 + x2) whenever z1, 22 € [0, 1]. Similarly, we get

C,dl 16dmH
< 6y/k1(4+ ko + /ﬁg)“ %, Vi € [m],

which has finished the proof. O

+ Hz% (AYy)

<2y (|5 (az) 2
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Lemma D.16. When Es. and Ey hold, and

16dmH H
(1(/:1%2 og Gd;n ; A§C1damm(2)-10g78dm ,

K > 36;‘4,1(44—%2 +I€3)2 5

we have
~p = & SNl — X, ~\hL
Q=>4 (779> VeI =) A" (739) U’
h=1 h=1

Proof. Firstly, note that given the conditions, the result of Lemma D.15 implies

s 1 Cydlog 164mH
|25 (any)=5?|| < 6y + mo +@W <1-7.

1

1~ _1 1~ _1 1 — _1
= Momy b <o (|28 Moy || + |56 (a8 =52

Therefore,

)<ae- <t
1 ~ _1
where we use the result of Lemma D.10 to get HZ; MyX, * H < 1. Therefore, we have
-1 1 1~ 1\l 1 B A e e I R T Tt
(fa=v0) =55 (L= Moz ?) 23 =203 (BaMomy ) =5 = YA,
h=1 h=1
Based on this result, we prove the main result by definition:

Q) =00 (Ta=2AD) e =6, )T YA W = (thl (B)" ?) (),
h=1 h=1

— —~\—1 = ° o~ — s ~\h—1 _
VoQU(,) = 6T (Ia=7My)  ViMyi” = o) 30" M My = (Z 7 (Py) U9> ()

h=1
which has finished the proof.

Now we consider the decomposition of QY — @9:
Lemma D.17. Under the same condition of Lemma D.16, we have

@ -Q =3 (B) T (@ -7,
h=1

Proof. Simply note that

Qe _ @9 _ ivhq (Pg)h_l r_ Z ’yhfl (A9> h—1 -

h=1 h=1

- ;%_1 ((7)0) - (739) hl) T ’;1 7 (ﬁe)hil (r—7)

= i,yh_l h-t (739> h'—1 (739 3 A@) P )h—h/—l _— i’}/h_l (ﬁe)hﬂ _—
=t =1 h=1

= i (Ae)h’fl (7)9 _ 739) i A1 (P )h—h’—l 4 iWh_l (ﬁe)hil 7
h'=1 h=h' 41 Pt

=3 (R) T () X () e
h=1 —
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which is the desired result. O
D.6. Proofs of Main Theorems

— h—1 —
Define ! := (M0T ) v¥ and 09 = Y")7 | 4" ~10Y. We may prove the following decomposition of Vyvy — Vyvy:

Lemma D.18. Given the same condition of Lemma D.16, we have Vgvg — V/Q?g = k1 + Ey + E3, where
T T 1 K A
—~ a_ _ k k
EQ :Vg [((Ve) by L (1/0) b)) 1) ﬁ E E ¢ (SEL ),aé )) 8Z7k‘|

The proof of Lemma D.18 is deferred to appendix D.7. Based on this observation, here we show the proofs of our main
theorems.

D.6.1. PROOF OF THEOREM D.3

Proof. We use Lemma D.18 to decompose (Vyvg — V/g\vg, t) = (Ey,t)+ (Ea,t)+ (Es3, t). To bound each term individually,
we introduce the following lemmas, whose proofs are deferred to appendix D.7.

Lemma D.19. For anyt € R™, with probability 1 — g, we have

2t T Agt log(8/5) 21og(8/0)v/Cim ||t||B
HK 3HK

(B, t)] <

where B = 1 17 max; e, \/(VJVH) N1V (13(5/)2 W0) " 10,

Lemma D.20. Let Ej be the jth entry of Es, suppose € holds and K > 36k1(4 + ko + ,{3)201d(1 7)™ 2]g 16dmH 16‘de and
A < Crdomin(X) log 24222 Sde , then we have

1og 32de

Bl < 0575
|By| < KH ’

240%(2 + K2 +I€3)\/Cld <H29é - vj e [m]

vird] + 125 [ ] ) ks
(1_7)3 0”1 [ 1

Lemma D.21. Ler Ej be the jth entry of Es3, suppose € holds and K > 36k1(4 + ko + k3)2C1d(1 — v) =2 log 104t 16de and
A < Crdomin(X) log 2422 Sde , we have

1 10g Sde '
<H29 ZVgiH + — HEG VlH) 7KH . Vje[m].

B3] < s =5

(1-

. . T . .
Let B = &\/(V%VG) S-IVY0, By = 2S5/ (v%) T 57107, then we have the relation BB = max;c(y, B} + 2Ba.
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For any j € [m], note that

2V (=)o) |

. . > h—1
Bl Hz—%vgu‘)H <y
1—7v — 1-—-

Mg

h=1
S | s by St s (v
- H%Ma% [=o o+ - gy H| g () 20 | 44
<o o (et o]+ 25 sl
where we use the result of Lemma D.10. Similarly,
o G h—1 . o G h—1 1, 1 B
B2 < 3 g i < X i [ \W@Ze et
=1 h=1 v
0 GAh—1 it
| ERa B | el

We conclude that when K > 36C1d(1 — 7)™ 2k1 (4 + k2 + k3)? log L2475 | we have

2log 2v/Crmd|lt]
B +2B, 0
(}2?35 > KH
1 21 Cimd||t
< [ (s [ vt + 2y g ) 2oy Temald,
(1—-9) j€[m) KH
Now, take a union bound on £ and the event in Lemma D.19, we get with probability 1 — §, we have
2t T Agt log(8/9)
E E E <y ="
(B, 8] + (B2, )] + (B, 1)] < ik
240C, d log 324mH
v vt + 125 ot ) i
+ k1(5+ K2 + K3) (Jrrel%icH Vori|| + —— || X 1 = )3KH
2t T Ayt log(8/9) _1 2400 dv/m||t|| log 324mH
T sy ot -1 o) PO 2
< K + £1(5 + Ko + K3) jnelfi’;r}f]H \% A=) HK

we have finished the proof.

D.6.2. PROOF OF THEOREM D.4

Proof. According to the result of Theorem D.3, we know
2t T Agt 8 n Co||t||log %

/\_ < .1
[(t, Vovg — Voug)| < K 1085 Ik :
Pick t = e;, j € [m], we have
| A . 2
tT Apt = EZ (V?, (Eh 19 (sh),agl)) T 11/9>)
h=1
1 = 2 1 H 2
j 1) @ _ o1 L
<2E *Z VéEz,lﬁb( ;),aé)) 0 +2E *Z €h1¢(S§L)7a§L)) v
H H —
@ ? S 1 1 ) ?
<2E »10 oF _ AV
Lzlﬂ (e (i) 7] |2 |3 g (o () 5w

<9 7“2 3 H2+71 HE*%VJ'VOH
T\l -9) (1—7)2 o '
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Therefore, take a union bound over j € [m], we get

1 8m 20 1 32mdH
< 4bg O}gng + ‘)WHCE 0 Vje[m]

’ —

V{ﬂ)o — Vévg

where

e e et e |

(
When ¢(s',a’) TS ¢(s,a) > 0, V(s,a),(s',a’) € S x A, forany h € Ny and (s,a) € S x A, we have

h
=|E™ | ¢(sn,an)X " o(s,0) Z %) logwg’hf(ahﬁsh/)} ‘

h'=1

’(VévZ)T 519(s,a)

<E™

h
S(sn,an) S (s, a) Y ’Vé log o, (an’|sn) ]
=1

<GRE™ [¢(sn,an)5 " "¢(s,a)]
=Gh ()" 7 2¢(s, a).

Meanwhile, for any positive integer H, we have

o (sa?) = = 30 (o)) v

h=1
aH 00
_ 1) @ 1w _ 1) @ -
:th ) (sé),aé)) 1Vfguz+ Z Yt (sé),aé)) IVéI/Z.
h=1

h=H+1

For the second term, we have

Z fyhflqb(s;l),a;l)) 71V§I/2§ Z thyhflqﬁ(sg),ag)) 2711/2

h=H+1 h=H+1

<GCd > !
h=H+1

For the first term, we have

it . _ A . =
Z'yh*1¢ (s?,aﬁ?) E*1VJ9VZ < GHZ’yhilgi) (s?,a?) 2711/}91 < GHZ’yhd(i) (sgl),ag)) 2711/2
h=1 h=1

Therefore,

H
tT Agt =21 [Z

h=1

i

G2
+2E

H 1 T ] 2
D TR (¢ (st ap) 21VW> ]

2
i (o (80l )
5 1 1) 40 Lo\ | acrcid? 1 \? L5
a <H +7(1_7)2 gzﬁ(sh ) YTy +7(1_7)2 H+71—fy vy
1 Hsz 0” JrC«2d2 2 i
-
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In particular, pick

1 C1d
2log(Crd) _ o = 4]
1—y = log3

H= :

where we use the fact 1og > 1 T whenever y € (%, 1), and

T 0)2 1
271 6 — ( >
v ,fél]gd wllw — (1 —7)2

(")

where the inequality is due to the fact that F includes the constant functions. We have

21;

Thars 2 (e ) i < 2 LGN

Taking a union bound w.r.t. m, we get
16G log Cl HZ H \/E 209\/>10g 32de

‘V@'UQ — Ve’l}g
O
D.6.3. PROOF OF THEOREM D.5
Proof. We use the same decomposition as in Theorem D.3. Define a martingale difference sequence {ez}szl by
1 k) (k
€Z,k = \/ﬁve (( ) X ¢(3§L)v )) h,k)
1 H
k k
= \/ﬁ (VGVG) ¢(5h 7@2 )) Z ( ) )V95 h,k>
we have
1 2 1
0 j .0 -1.9
e 0037 xE?V d+ —|¥7 27|V C1dG — 0,
where we use the result of Lemma D.8. Furthermore,

A T 1 A ; T (k) (k) j T (k) (k) T
SE[efn ()] =7gE [Z Vo, ()" 2700 af et )| [ V5, (7)) 270061, a)er, )| ]
h=1 J = 01 =0>=0

_[Aali;
K

Therefore,by WLLN, we have

ZZ[ehk h.1) } piZH:E{ehk (e9 1 TLj:[Ag]ij,
k=1h=1

k=1h=1
To finish the rest of the proof, we introduce the following lemmas,

Lemma D.22 (Martingale CLT, Corollary 2.8 in (McLeish et al., 1974)). Let {Xn,n=1,...,kn} be a martingale
difference array (row-wise) on the probability triple (Q, F, P).Suppose X ., satisfy the following two conditions:

Ko
o2
 Jnax | Xnn| 2 0, and g 1X,,m
n=

for kp, — o0. Thenz " X iN(0,02).
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Lemma D.23 (Cramér—Wold Theorem). Let X,, = (X}, X2,..., X*)T be a k-dimensional random vector series and
X = (XY, X2 ..., X"T be a random vector of same dimension. Then X,, converges in distribution to X if and only if for
any constant vector t = (t1,ta, . .. 7tk)—r, t' X, converges to t" X in distribution.

Lemma D.22 implies 31, S35 #Tep 1 —a N(0,¢7 Agt) for any ¢, and Lemma D.23 implies

K H
VHKE, = Zzeh,k‘ —7p N(O7A9)

k=1h=1

Furthermore, notice that the results of Lemma D.20 and Lemma D.21 imply vV HK E> —, 0, HK E3 —, 0. Combining
the above results, we have finished the proof. O

D.6.4. PROOF OF THEOREM D.6

Proof. We first derive the influence function of policy gradient estimator for sake of completeness. We denote each of the
K sampled trajectories as
T 1= (81,01,71,82,02,72, ..., SH, GH,TH, SH+1)

We denote 7 (a | s) as the behavior policy. The distribution of trajectory is then given by
P(dr) = £ (ds1,day) p(dsa | s1,a1) 7 (dag | s2) ... 7 (dag | sg)p(dsmir | sw,am)
Define p,, = p + n/Ap as a new transition probability function and P, := P + nAP where AP satisfies
(AP)F C F.
Define g,, (s’ | s,a) := % log p, (s’ | s,a) and the score function as

0
gy(T) = a—logP (dr) Zg" Sh+1 | Shyap) .
h=1

Without loss of generality, we assume p,, is continuously derivative with respect to 7). This guarantees that we can change
the order of taking derivatives with respect to 77 and #. When the subscript 77 vanishes, it means 7 = 0 and the underlying

transition probability is p(s’|s, a), i.e. po(s'|s,a) = p(s’|s,a). Then we denote g(s’|s,a) := a% log py, (8|, a)’ , and
n=0

g(T) = ZhH:1 9(Sh+1|sh, an). We define the policy value under new transition kernel is

> A" r(sn, an)

h=1

Vo,n = E™e

S1 ~ 57 PT]]
Then, our objective function is

Yy = Vg, = E™ 51~ &Py

ZV@]OgTI'g ap | S}L <Z ’yh, Ly Sh/ am))

h=1

We are going to compute the influence function with respect to the above objective function. We denote this influence
function as Z (7). By definition, it satisfies that

0
— =E|g(m)Z(T
|, =Bl
By exchanging the order of derivatives, we find that
0 0
-V = Vo | 5-ve, .
877 ! n=0 87] ! n=0
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Therefore, we calculate the derivatives.

P h—1 h
SRl
Fplen = / r(sp,an)&(s1) Hpn (sj4+1 | 85,a;) H o (aj | s;)dm,
n SxA) j=1

00 h—1 h
Z,yh 1/ Shaah Zgn Sj+1 | 8]70,]) 5(81) Hpn (Sj+1 ‘ Sj,CLJ H a] | S] d'Th
h=1 (SxA)n j=1 j=1

h

) h—1
/Z 7 (8h,an) Zgn (sj+1 | 85, a5) £(s1) Hpn (8541 85, a5) H o (aj|s;)| dr.
h=1 j=1 j=1

>

We denote Q and Vg Qf, as the state-action function and its gradient with underlying transition probability being p,,. For
sake of simplicity, we define the state value function as

[ee]
> A (sn, an)

h=1

VG(S) =™ s1=s,P

We denote Vng(s) as the same function except for transition probability substituted by p,,. Therefore,

0 ro | o= —
a0 = E™ th br (s, an) Zgn (sj+1 | s5,a5) || 51~ & Py
=E™ Zgn (sj+1 | s5,a5) Z V"N (s an)| 51~ &Py
_JJ,»l
[ (o)
=E™ | gy (sj41 | 55,05) - E™ Z VT (s an) | sy | [ 51~ € Py
| =1 h=j+1
- |
= [E™e ZE [’}/Jgn (Sj+1 | sj,aj) Vn6(8j+1)’ Sj,a,j] 81~ f,,Pn
j=1
Therefore,
8 o0
aylen| = E™ | Y B [v"g (sht1 | sn,an) VO (snia)| snran] | s1 ~ &Py (29)
n=0 h=1
: | H (1) (1) W )" T 1,0
We notice that ¥ = E thzlgﬁ(sh ,ay, )d)(sh ,ay, ) . We denote wp(s,a) = ¢'(s,a)2 'y, =

o' (s,a)SE™ [¢(sn, an) | 51 ~ €] . We leverage the following fact to rewrite (29): for any f(s,a) = w; ¢(s,a) € F

where w; € R?, we have

E™ [f(sn,an)] [ Shaah)]
H
— 7o l = Z ¢( 21)’ S)) o7 ( (1) aﬁj)) E—1¢(Sh7ah)]
h'=1
H
—E |5 > wfo (siafl) o7 (s afl) 5B w(sh,ahn]
h'=1

XH: f (sh, ah, ) wp, (SS) aﬁﬁ))l

h/=1
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Since 5
Elg(s'|s,a)V°(s)s,a] = o (Qi(s,a) —ry(s,a))|  €F,
n=0

we have
0 =l SAe e ROge

n 1 1 1 1 9 1 1
-V0,n =E Zv *th splvap, JElg(s' | s, ,a,’ )V N ]
aoo| L, =B[22 e () Bl (+ ]

A
=FE|— E

H
1 1 n ( n (
—E H Z ]ES’NP( \s(l,),a(l)) [Z T Wh ( aé,)) gls | Sgbl)’agb/)) (Ve (5/) —E [Ve (S/) | SELI)? agb )})‘H
H oo
_gld hyy (1) (1) 0 (0 (1)
5 [ 3 5 (42 o 2) (v () 7 (o) 2.
H oo
1
B (o)L 50 St (s af) (v () ~E [V (s) 1o agy])] |
h'=1h=1
Taking gradient in both sides and we have

o (o] ) = ot [ 32 St (52) (v () 2 v (42) 142}

h'=1h=1
The implies that the influence function we want is

LSS s (sl (V2 (s) & [V (s2,) s,,v,a;;q)] .

h’lhl

)

s'p(-ls(y all) lZV wh( ) )g (s’ | s(%),aﬁj)) VO (s)
(
)

Insert the expression of wy, (s, a) and exploit EZJC Qe(sh , (k)) r,(Lk) y fA ) (a' | 5&31) Q° (55521, ) da’, we
can rewrite the influence function as

(1 (1) L~ (o o'

h—1 1 1 0 1 1 -1.0 .0

IZ(T) = -V hlz:lhz:lfy ) (sh, aj, ) »ied, 11/4 =—Vpy [H ];QS (5h ,ay, ) Y ep v 1

Therefore, since the cross terms vanish by taking conditional expectation, we have

D\ T o T - ) )
H2 Z <V6‘ <5h 1¢ (sh aaé )> E 1]/0>) VG <€z,1¢ (sg )7(12 )) E lye)] _ EA(,

For any vector ¢ € R™, when it comes to (t, 1,,) , by linearity we have

E[ZI(r)'Z(r)] =

0
8777 <tv "/}77>

= Elg(7) (¢, Z(7))].

n=0

Then the influence function of (¢, Vgug) is (¢, Z(7)) . The Cramer-Rao lower bound for (¢, Vguvg) is

E [<t,z(7)>2} =B [I(r) " Z(r)] t = %tTAet.

By continuous mapping theorem, a trivial corollary of Theorem D.6 is that for any ¢ € R™,

VHK (<t,v/£9 - V9v9>) &N (0,67 Agt) .

This implies that the variance of any unbiased estimator for (¢, Vyug) € R is lower bounded by \/}1?
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D.7. Missing Proofs
D.7.1. PROOF OF LEMMA D.18

Proof. Note that

V9Q0 nge th 1 Po) h=1770 _ith (ﬁg)hil e
h=1

h=1 h=1
= iﬁyh_l (739)}I ' (VGQQ ﬁeVOQO) i'Vh_l (Ae) " ([79 - Ug)
h=1 h=1

For the first term, we have
ivh_l (739> " (Vng -0 - 7739V0Q9>
:i,}/h—l (739)}171 d)-ri—l% i i 8 (52, a9)

H
VoQ? (sgf) ah,)) —’y/A ((V@ﬂ'e (a sh,+1)) Q° (ngi_l, ) + mp (

551,+1> VoQ? <5h'+1v a')) da’)

A 1 (5" Te 0
> —~\h—1 1 K H A o] Bl
h—1,T -1 (k) h=1,T -1 0
227 ¢ (Me) > Z Z ¢ (Sh’ ah’ ) Ve o+ 27 2 "0 (Me) X7 Vow".
h=1 KH = 0= KH —~

Using the definition of 7¢, we get

/SXAf(s)ﬂ'g(a|s) (}i h—1 (739)]171 (V@Qg —U? - 7ﬁ9V@Q9)> (s,a)dsda

K H
— () 5 ZZ (s, 0f) oeh o+ ez ()T £ Vgu’,
k}: h=1

For the second term, by Lemma D.17, we have
S -1 (5 \" (70 R 6 A6
S (B) (00-07) = 7(9) (VologTly) (@7 - Q°)
h=1

i’yh 9) (Vo logly) ZV e 1(7’0)h’ " (QQ—?—WSGQQ)
h=

1 h'=h

i 1

h=

(30)

>
|

(7739> 8 (Vo loglly) (Vﬁe)hihlil (Qe - = 773(9@9) :

’

—
>

1

Meanwhile, again by Lemma D.17, we have

(VologIly) (Q7 — Q) = (Ve logTly) i (W%) ( Q-7 - 7739629) )
h=1
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which implies

i (WAe) " (Ue - 5'9) + (Vg logly) (Q° - Q°)

oo h—l N h/ N h—h 1 R
=> ¥ 9) (Vg log1p) <7 0) g S
h=1 h/=0
| K A
k) (k k) (k k k
o 3 o (50l (Qe( 0, aft)) - ,7/ o (' [s8,) @7 (s0.0) da,)
k=1h'=1 A
co h—1 ’ ’
A A\ _Nh—h -1
+ ﬁ (77)9) (Vg log Hg) (’}/’Pg) ¢T271w0.
h=1 h/=0

For each j € [m], notice the relation

R'=1
:/ &(s)mp(als) (if (739)’1/ (Vo logIly) (Pa)hih/il ¢T> (s,a)dsda
SxA h—0

Therefore, we have

[ / €(s)mo(als) <i (7739)’1_1 (0°=0%) +(VologTly) (Q° - @")) (s, a)dsda}

h=1 j
¢S] T 1 K H
— i ~ S— k k k k k k
=S (V) S o Y o (el (@ (s a) <ol = [ o (i) @ (sna') 0
h=1 k=1h'=1
€29}
A= he o\ T o
+7KHZ’Y}I 1(V{9VZ) S hw?

S N TRt k) (k) A (i 0
_(Vgu) % KHZZ¢(sh ,ah)a k—i-KH(V ) Sl
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Combing the results of (30) and (31), we get for each j € [m)],

—

Vi = Vi = [ somtals) (VQ" - 7507 + (ViloeTy) (@ - @) (s, a)dsd
SxA

(e 1 sy ®) (K)) i 0 A (0 j ST e 1 s~y (k) (k)
_(y) s ﬁzzqﬁ(sh ,ah)VE k—i—ﬁ(u) STV’ +(V ) s ﬁzqu(sh ,ah)

k=1h= k=1 h=1

fun

T T 1 K H
+((ﬁe) $-1_ Ve) 271>ﬁzz¢(5$)7a2@) k>

Rewriting the above decomposition in a vector form, we get

K H
S oy T o1 L CIRCAW
Vovg — Vgvg —Vg((l/) by EZZQS(% ,a )Eh,k
k=1h=1
A T T 1 K (k) (k)
~0 $S-1,,0 ~0 -1 9 »n-1 k k
+7KH(V) Y w —|—((1/) by —(1/ )KH;;gb(sh 7%) 7k>,
which is the desired result.
D.7.2. PROOF OF LEMMA D.19
Proof. Note that,
| KA
_ k k
(Evt) <V0 <( )’ = 1MZZ¢(82’,a£))sik>,t>
k=1h=1
T I v (k) (k) Ty 1 S (k) (k)
_ 0 -1 k k)Y o 9 _ k k 0
_<(VQZ/) by M;};(b(Sh ,ah )Eh,k7t>+<(y Mz_:l};(b(Sh ,ah )V@€h7k,t>.

Letep r = <V9 ((1/ ) 1(1)( (k) (k)> sh k) t>, we have

1 ; T ; 1
len k| < \/Cldm||t\|m;r€1% \/(Véﬂ) -1Vl + 2G\/Cldm\|t|\m (VQ)T Y19 = B/Cydml|t]].

We have

ii"ar[eh,klfh,k] = EK:EH:E R o () 570 (s, af) i ,t>2‘fh,k} = HKtT Agt.

k=1 h=1 k=1h=1

We pick 02 = HKt " Ayt, the Bernstein’s inequality implies that for any € € R,

K H 2/9
P > <2 - .
22 en|Ze) <2em ( o+ mntnBs/s)
Therefore, if we pick ¢ = 04/210g(2/0) + 21og(2/6)/C1dm||t|| B/3, we get

k=1h=1
K
IP’( 2€>§5,

S e

k=1h=1
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i.e., we have with probability 1 — 2,

1 K H
TR 2 D onk

k=1h=1

< [2tT Agtlog(8/9) N 210g(8/8)/Crdml|t|| B
- HK 3HK

D.7.3. PROOF OF LEMMA D.20

Proof. For an arbitrarily given 6y, let Yo, = E™0 [¢(s,a)¢(s,a) " |s ~ &, a ~ g, (-|5)], we have

K H
(@) S =) =) g2 > 6 (0l

1 K H
_1 k k
P 2HKZZ¢(S§L)’U/§L ))gz,k

Taking derivatives on both sides, and let 6y = 6, we get

K H
, , . 1 A , ,
VyEy =V (((ﬁa)T 51— (VG)—r E_1> K Y > e (Sﬁk), aik)) 5Z,k> = Ej + Ejy + Ejg,
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Therefore, using the result of Lemma D.9, we get
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where A1 = £-1 — % and we use the fact HZQ%MgZ;%
define o = 6,/k1(4 + K2 + K3) w and pick
Cid 16dmH
2 1
K Z 36/11(4+I€2+/€3) (1_7)2 lo 5 s

i)

A < Crdogin(X) - log

we get a < 1_77 Using the results of Lemma D.14 and Lemma D.15, we get
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and

Meanwhile, the event £, implies

Combining the results of (32), (33), (34), (35), (36) and use a union bound, we have with probability 1 — 34,
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which finished the proof.
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X, ® H < G from Lemma D.10. Now,
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whenever a< ﬁ Summing up the above terms and using the
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D.7.4. PROOF OF LEMMA D.21

Proof. Similar to the decomposition in the proof of Lemma D.20, we have
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where « is defined in the same way as that in the proof of Lemma D.20. Similarly, we have o < 1_77 and we have
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which has finished the proof. O



