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Abstract
This paper presents a method to explain how the
information of each input variable is gradually
discarded during the forward propagation in a
deep neural network (DNN), which provides new
perspectives to explain DNNs. We define two
types of entropy-based metrics, i.e. (1) the dis-
carding of pixel-wise information used in the for-
ward propagation, and (2) the uncertainty of the
input reconstruction, to measure input informa-
tion contained by a specific layer from two per-
spectives. Unlike previous attribution metrics, the
proposed metrics ensure the fairness of compar-
isons between different layers of different DNNs.
We can use these metrics to analyze the efficiency
of information processing in DNNs, which ex-
hibits strong connections to the performance of
DNNs. We analyze information discarding in a
pixel-wise manner, which is different from the
information bottleneck theory measuring feature
information w.r.t. the sample distribution. Experi-
ments have shown the effectiveness of our metrics
in analyzing classic DNNs and explaining existing
deep-learning techniques. The code is available
at https://github.com/haotianSustc/deepinfo.

1. Introduction
The interpretability of DNNs has received increasing atten-
tion in recent years. To this end, many methods have been
proposed to measure the importance/saliency/attribution
score of each input variable (Selvaraju et al., 2017; Si-
monyan et al., 2013; Shrikumar et al., 2016; Shapley, 1953;
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Comparisons of different methods in terms of 
coherency. Our method provides coherent results 
across layers and networks.
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(b) Visualization of  Grad-CAM and CID on different layers(a2) Layer-wise changes of attribution maps

(a1) Comparability of different explanations
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(b) Visualization of  Grad-CAM and CID on different layers of 

the VGG-16 trained using the CUB200-2011 dataset

(a2) Layer-wise changes of attribution maps(a1) Comparability of different explanations
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Figure 1. Subfigure (a1, a2) shows that our metrics (CID and RU)
enable the fair comparison of the representation capacity of dif-
ferent layers. In comparison, the magnitude of explanations from
previous methods is not comparable through different layers (see
a2). More analysis and proof are presented in Section 3.4. Subfig-
ure (b) visualizes the CID of each input pixel and the Grad-CAM
at different layers. Appendix I has also shown importance maps
generated by CAM, Gradient, and Grad-CAM on different layers
of the DNN.

Springenberg et al., 2014; Lundberg & Lee, 2017; Shriku-
mar et al., 2016; Ribeiro et al., 2016; Fong & Vedaldi, 2017;
Selvaraju et al., 2017; Zhou et al., 2016). However, these
attribution maps lack the ability to reflect the representa-
tion capacity of intermediate-layer features. For example,
Figure 1(a2) shows that the magnitudes of these attribution
maps among different layers are quite unstable, and there-
fore cannot objectively reflect layer-wise changes of the
representation capacity of intermediate-layer features.

Therefore, instead of merely studying the attribution score,
in this paper, we aim to quantify the representation capacity
of intermediate features, which provides new insight into
the explanation of DNNs. To this end, the core challenge
of quantifying the representation capacity is to ensure the
fair comparability of the representation capacity over
different layers of the same DNN, or even over different
DNNs. We have shown that previous explanation methods
cannot ensure the fairness of comparisons in Section 3.4.
Therefore, in this study, we aim to explain how the infor-
mation of each input variable is gradually discarded by
intermediate-layer features during the forward propagation.
Unlike previous studies, information discarding provides

https://github.com/haotianSustc/deepinfo
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the following new perspectives to fairly compare features
through different layers in DNNs.
1. Quantification of the pixel-wise information discarding:
In general, information propagation through the cascaded
layers of a DNN can be considered as a process of infor-
mation selection. Figure 1(b) shows that as the number of
layers increases, the DNN discards more information.
2. Efficiency of information processing: Based on our met-
rics, we develop a new method to quantify the efficiency of
information processing of DNNs. Here, the efficiency refers
to the efficiency of feature extraction of DNNs. For example,
Figure 1(b) shows that from low layers to high layers, the
DNN gradually shifts the attention from low-level concepts
(edges) to middle-level concepts (parts), and to high-level
concepts (objects).
3. Analysis of classic DNNs and classic deep-learning meth-
ods: We use our metrics to evaluate the representation ca-
pacity of classic DNNs, and analyze the effectiveness of
network compression and knowledge distillation.

Metrics: To quantify the discarded information of input
variables, we design two new metrics as follows.

(1) The first metric aims to quantify how much informa-
tion of each input pixel is used to compute the feature,
namely pixel-wise computational information discarding
(pixel-wise CID). The information discarding refers to the
phenomenon that a DNN usually selectively discards re-
dundant information of input units (e.g. some pixels are
not related to the task) when computing the intermediate-
layer feature representation. Recently, Guan et al. (2019)
proposed a method to estimate the information discarding
of words in natural language processing. In this work, we
extend the information discarding to the CID metric to quan-
tify the discarded information of input pixels, and boost the
fairness of layer-wise comparisons.

More crucially, based on the pixel-wise CID, we further
develop a metric, namely concentration to measure the ef-
ficiency of the information processing of a DNN. The con-
centration measures the relative magnitude of information
discarding on the foreground w.r.t. that on the background.
We theoretically explain and experimentally verify the rela-
tionship between the concentration metric and the efficiency
of the information processing of the DNN (see Figure 3(a)).

(2) The second metric aims to quantify how much input
information can be recovered from the intermediate-layer
feature, which is termed pixel-wise reconstruction uncer-
tainty (pixel-wise RU). The RU handles the following case.
Some pixels may be discarded during the forward propa-
gation, but their information can still be well recovered by
other pixels due to information redundancy.

Analysis of DNNs and findings: Unlike previous pixel-
wise attribution metrics, the generality of the proposed met-

rics CID, RU, and concentration enables us to fairly compare
DNNs, i.e. fairly compare intermediate-layer features (1)
between different DNNs, and (2) between different layers of
the same DNN, as Figure1 shows. It is because our metrics
are all formulated in the form of entropy, which is a generic
metric in information theory, and enables fair comparisons
of the DNN’s representation capacity. Furthermore, based
on the metrics, we obtain the following finding.

Finding 1: The last paragraph of Section 3.1 proves a close
relationship between the concentration and the DNN’s per-
formance.

Finding 2: Network compression makes the DNN less pow-
erful to remove the information of redundant pixels, but it
still maintains the representation power of the DNN, i.e. the
feature can still well reconstruct the input. On the other
hand, the feature still concentrates on the foreground.

Finding 3: Knowledge distillation helps DNNs to preserve
more information.

Besides, Appendix F also shows the proof of the relationship
between the CID value and the adversarial noise.

Connection to the information bottleneck theory: The
information bottleneck theory (Wolchover, 2017; Schwartz-
Ziv & Tishby, 2017; Tishby & Zaslavsky, 2015) quantifies
the layer-wise feature information I(X;F ) and I(F ;Y )
at the sample level, where X represents input samples, Y
represents ground-truth labels, and F denotes intermediate-
layer features. In comparison, our method measures fine-
grained, pixel-wise information discarding through layer-
wise propagation. More interestingly, we prove that the
metric can represent the sample-wise efficiency of feature
extraction w.r.t I(X;F ), i.e., I(F ;Y )/I(X;F ).

Contributions of this study can be summarized as follows.
In this study, we propose metrics CID, concentration, and
RU, to measure the discarding of input information during
the forward propagation, in order to quantify the representa-
tion capacity between intermediate-layer features in a DNN.
Our metrics enable fair comparisons of the representation
capacity between different layers in different DNNs. Based
on the proposed metrics, we analyze classic DNNs and deep
learning techniques. Experiments have demonstrated the
effectiveness of our method.

2. Related work
Explaining DNNs visually or semantically: The visual-
ization of DNNs is the most direct way of explaining knowl-
edge hidden inside a DNN (Zeiler & Fergus, 2014; Mahen-
dran & Vedaldi, 2015; Dosovitskiy & Brox, 2016; Zhou
et al., 2015; Bau et al., 2017; Fong & Vedaldi, 2018). Be-
yond visualization, attribution methods (Simonyan et al.,
2013; Selvaraju et al., 2017; Fong & Vedaldi, 2017; Binder
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Table 1. Comparisons of objectives of different explanation meth-
ods. Unlike previous methods, our method aims to quantify the
representation capacity of DNNs.

Objective Methods
Feature importance CAM, Grad-CAM

Pixel attribution LRP, Shapley value, SHAP, LIME, Gradient, Guided-BP
Information discarding Our method

Concept

CID RU

Features corresponding 
to the concept of a 

specific object

Decoder

Network 
Output

Figure 2. Illustration of the computation of CID and RU. Given
a trained DNN, we compute the maximal entropy of the in-
put H(Xobj) and the maximal entropy of image reconstruction
H(X̂obj), when we constrain the intermediate-layer feature f
within a small range to represent a specific object instance.

et al., 2016; Ribeiro et al., 2016; Lundberg & Lee, 2017;
Springenberg et al., 2014; Zhou et al., 2016) estimated im-
age regions that directly contribute to the network output.
As Table 1 shows, our research has an essential difference
from previous attribution methods. We propose to use in-
formation discarding to analyze the representation capacity
of the DNN and explain classic deep learning techniques.
More crucially, we prove the close relationship between our
metric and the information processing of the DNN.

Mathematical evaluation of the representation capacity:
Formulating and evaluating the representation capacity of
DNNs is another emerging direction. The analysis of rep-
resentation similarity between DNNs based on canonical
correlation analysis is widely used to analyze DNN represen-
tations (Kornblith et al., 2019; Raghu et al., 2017; Morcos
et al., 2018). Novak et al. (2018) measured the sensitivity
of network outputs w.r.t. parameters of neural networks.
Zhang et al. (2017) discussed the relationship between the
parameter number and the generalization capacity of DNNs.
Network-attack methods (Koh & Liang, 2017) could also
be used to evaluate representation robustness by comput-
ing adversarial samples for a CNN. Schulz et al. (2020)
and Taghanaki et al. (2019) analyzed the feature processing
from the intermediate layer to the final output of the DNN,
and computing attention on intermediate layers. In compari-
son, this paper focuses on the processing from the input to
the intermediate layer.

In particular, the information-bottleneck theory (Tishby
et al., 1999) provides a generic metric to quantify the in-
formation contained in DNNs. The information-bottleneck
theory can be extended to evaluate the representation capac-
ity of DNNs (Goldfeld et al., 2019; Xu & Raginsky, 2017).
Achille & Soatto (2018) further used the information-
bottleneck theory to revise the dropout layer in a DNN. Our
study is also inspired by the information-bottleneck theory.

Unlike analyzing the final output of a DNN in (Cheng et al.,
2018), we pursue new model-agnostic and task-agnostic
metrics of input information to enable comparisons over
different layers of networks in a pixel-wise manner.

3. Analyze feature representations of DNNs
In order to conduct comparative studies to analyze DNNs
learned by various deep-learning techniques, in this section,
we introduce three generic metrics, CID, concentration, and
RU. Theoretically, these metrics can be applied to various
tasks, but to simplify the story, we limit our discussions to
the task of object classification.

The basic idea is that we represent metrics CID, concen-
tration, and RU as the entropy of the input information,
given the feature of a specific intermediate layer. In other
words, the entropy measures the uncertainty of the in-
put when the feature represents the same object instance,
i.e. how much input information can be discarded. Let
x ∈ Rn and f = h(x) ∈ Rm denote the object instance
and an intermediate-layer feature of the DNN, respectively.
We assume that the DNN represents a specific object in-
stance x using a very limited range of features with an
average feature f . Similarly, there exists a latent space
Xobj = {x′|‖h(x′)− f‖2 ≤ ε} for x that represents the same
specific object, which ensures h(x′) to localize in the man-
ifold of feature f , where x′ represents the perturbed input
around x. ε is a small constant. p(x′|X = x) denotes the
possibility of the perturbed input x′ given the input x. Let
f ′ = h(x′) ∈ Rm denote the feature in the limited range.
Our method can be regarded to add perturbations to the
input x to approximate the domain of f ′ (see Equation (2)),
subject to ‖f ′ − f‖2 ≤ ε.

Figure 2 illustrates the basic idea of the algorithm. We
compute the entropy of the input (i.e. the CID) when the
input represents the same object instance. We also use
features of the object instance to reconstruct the input x̂ =

g(f) and measure the entropy of the reconstructed input (i.e.
the RU). In this way, two types of information discarding
(CID and RU) of a specific layer can be represented using
the same prototype formulation, s.t. ‖f ′− f‖2≤ε, as follows,

H(Xobj) = −
∑

x′
p(x′|X = x) log p(x′|X = x) (1)

3.1. CID, concentration, and efficiency

The CID quantifies the discarding of input information dur-
ing the computation of intermediate-layer features, which
is derived from the entropy in Equation (1) from the per-
spective of feature extraction f = h(x). The core challenge
is that the explicit low-dimensional manifold of features
w.r.t. the input x is unknown. Therefore, we approximate
the manifold by adding noises to the original input x. Let
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x′ denote new inputs around x, i.e. x′ = x + ∆x, x′ ∈ Rn,
which satisfy ‖f ′ − f‖2 ≤ ε.

Although strictly speaking, pixels in an input image are not
independent, similar to (Chen et al., 2019), we assume that
∆x is a Gaussian noise for simplicity, thereby x′ = x+ ∆x

can be represented as x′ ∼ N (µ = x,Σ), µ ∈ Rn,Σ ∈ Rn×n.
This also relaxes the constraint to Prob(‖f ′ − f‖2 ≤ ε) ≥
1− τ , where τ � 1 is a tiny positive scalar. Considering the
local linearity within a small feature range of ε and f = h(x),
µ can be approximated as µ = x. Although different dimen-
sions of the input can be dependent on each other, different
dimensions of the added noise can be assumed to be indepen-
dent of each other. Thus, we further simplify the covariance
matrix as a diagonal matrix Σ = diag[σ2

1 , . . . , σ
2
n] to ease the

computation. In this way, the CID can be decomposed to
pixel-wise entropy.

H(Xobj) =
∑n

i=1
Hi(σi), s.t. Prob(‖f ′−f‖2 ≤ ε) = 1−τ (2)

whereHi(σi) = log σi+C, C = 1
2

log(2πe). The relationship
between Equations (1) and (2) is discussed in Appendix A.
The overall CID value H(Xobj) can be decomposed to the
pixel-wise entropy (pixel-wise CID) {Hi(σi)}. Figure 1(b)
shows such information discarding of each input pixel. A
larger value of CID indicates that the DNN discards more
input information during the forward propagation.

In real applications, the overall CID can be used to com-
pare DNNs learned on the same dataset when different
DNNs share the same input size n. Our method follows the
maximum-entropy principle, which maximizes H(Xobj)

subject to constraining features within the scope of a spe-
cific object instance ‖f ′ − f‖2 ≤ ε. I.e. we enumerate all
perturbation directions in x′ within a small variance of f ′,
in order to approximate the local manifold of f ′. We use the
Langrange multiplier to relax Equation (2) as follows.

Loss(σ) =
1

δ2
f

E
f ′

[
‖f ′ − f‖2

]
− λ

∑n

i=1
Hi(σ) (3)

where σ = [σ1, . . . , σn]> is the parameter that we
aim to learn. λ is a positive scalar, and δ2

f =

limξ→0+ Ex′∼N (x,ξ2I)[‖h(x′) − f‖2]/ξ2 is the inherent vari-
ance of intermediate-layer features, which is used for nor-
malization. Note that δ2

f is only used to normalize the
intermediate-layer feature, instead of normalizing the CID
value. We use x′ = x + σ ◦ δ, δ ∼ N (0, I) to simplify the
computation of the gradient w.r.t. σ, where ◦ denotes the
element-wise multiplication. Equation (3) is tractable, and
we can learn σ via gradient descent.

For fair layer-wise comparisons: In order to ensure fair
layer-wise comparisons, we need to control the value range
of the first term in Equation (3). Features of different layers
need to be perturbed at a comparable level. To this end, we

use δ2
f to normalize the first term in Equation (3). In this

way, the stop criterion of learning σ is given as

min
σ

Loss(σ) s.t. Eδ∼N (0,I)[‖f ′ − f‖2] ≈ βδ2f , β < α,

(4)
where α is a positive scalar, and 0 < β < α satisfies
Eδ∼N (0,I)[‖f ′ − f‖2] ≈ βδ2

f . The value of λ in Equation (3)
is slightly adjusted (manually or automatically) to make σ

satisfy Prob(‖f ′ − f‖2 ≤ αδ2
f ) > 1 − τ . Specifically, λ is

determined according to the value of β, and we will discuss
the value of β in Section 4. Please see Appendix B for more
details about the derivation of Equation (4).

Using the metric concentration to evaluate the efficiency
of information processing: Based on the CID, we design
the concentration metric to evaluate the efficiency of the
feature extraction of DNNs. Given an input image x con-
taining both the target object and some background area, let
Λ denote the ground-truth segment (or the bounding box) of
the target object in x. ∀i ∈ Λ, xi represents pixels within Λ.
Thus, the concentration is formulated as follows.

concentration =
1

n− |Λ|
∑
i 6∈Λ

[Hi(σi)]−
1

|Λ|
∑
i∈Λ

[Hi(σi)] (5)

Ideally, a DNN for object classification is supposed to dis-
card background information, rather than foreground in-
formation. Note that this assumption cannot be applied to
tasks depending on the background. Thus, the concentration
measures the relative background information discarding
w.r.t. foreground information discarding, which reflects the
efficiency of feature extraction.

Theoretical connection of the connection between the
concentration and the information bottleneck theory:
The information bottleneck theory (Wolchover, 2017;
Schwartz-Ziv & Tishby, 2017) formulates the relation-
ship between the mutual information I(X;F ) and I(F ;Y ),
where X denotes the input samples, and Y denotes ground-
truth labels. Let ρ = I(F ;Y )/I(X;F ) denote the effi-
ciency of the extraction of the feature F . We can prove that
a high concentration usually indicates a high value of effi-
ciency. Specifically, we can roughly consider the foreground
is related to the classification, while the background is not.
Based on this, we can obtain the following relationship be-
tween the concentration value and the efficiency ρ in the
form of ρ = C1 + C2concentration−C3

2[C4−CID] , where C1, C2, C3, C4

are four constants, and C2 > 0, C4 > CID. Please see
Appendix C for the proof and more discussions. In addition,
we find that the concentration has a close relationship with
the performance of DNNs. As Figure 3 (a) shows, DNNs
with better performance usually had a higher concentration.
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Figure 3. (a) The positive correlation between the concentration value and the classification accuracy of DNNs. Besides, the connection
between the concentration and the efficiency of signal processing is explained in Appendix C. Each point corresponds to a DNN. We
computed the concentration value of features in different layers of each DNN. As dashed lines show, a DNN with a high accuracy usually
had a high concentration value. (b) CID computed with different values of β. A high value of β in Equation (4) led to a high value of CID.
When we fixed a specific value of β, CID increased stably along with the number of blocks in the ResNet, which ensures convincing
comparisons through layers.

3.2. Reconstruction uncertainty

The metric of RU is also derived from the entropy in Equa-
tion (1). The CID focuses on the input information used to
compute a feature, while the RU describes the discarding
of input information that can be recovered from the feature.
Due to the redundancy of the input information, a pixel may
be well recovered from the feature, even when the pixel is
not used for feature extraction.

We use a decoder net g to reconstruct the input x̂′ = g(f ′).
We consider the reconstructed result x̂′ as the information
represented by f ′. Although the architecture of g affects
the measurement of RU, RU values are still comparable
through different layers and between DNNs when we fix
g’s architecture in all comparisons. Thus, the metric RU
can guarantee the fairness of layer-wise comparison (see
Figure 1(a2)). Given a target DNN, g is pre-trained using
the MSE loss Lossdec = ‖x′ − x̂′‖2. In this way, the RU is
formulated as the entropy of the reconstruction x̂′ = g(f ′).

H(X̂obj)=−
∑
x̂′

p(x̂′) log p(x̂′) s.t. Prob(‖f ′−f‖2 ≤ ε)=1−τ

(6)
where X̂obj denotes a set of images that are reconstructed us-
ing intermediate-layer features. The above entropy H(X̂obj)

is computed in the same manner as the quantification of
the CID. First, we synthesize the feature distribution Fobj

by assuming that inputs follow a Gaussian distribution
x′ ∼ N (µ = x,Σ), f ′ = h(x′). x̂′ = g(f ′) denotes the
reconstructed result using f ′. Second, we can also assume
x̂′ follows a Gaussian distribution with i.i.d. random vari-
ables N (µrec = x,Σrec). As a result, the entropy of RU
H(X̂obj) can be decomposed into each pixel.

H(X̂obj) =
∑n

i=1
Ĥi(σ), Ĥi(σ) = log σ̂i + C

=
1

2
log
(

E
x′∼N (µ=x,Σ=diag[σ1,σ2,...])

[
‖µrec

i − x̂′i‖2
] )

+C
(7)

Ĥi(σ) is referred to as the pixel-wise RU for the i-th pixel

(unit) in the input (see Figure 4). Just like the CID, H(X̂obj)

is also estimated via the maximum-entropy principle.

Loss(σ) =
1

δ2
f

E
f ′

[
‖f ′ − f‖2

]
− λ

n∑
i=1

Ĥi(σ)

We use the learned σ to compute Ĥi(σ) as the pixel-wise
RU. Like the computation of CID, λ is also adjusted to
ensure Ef ′ [‖f ′−f‖2] ≈ βδ2

f . The above equation is tractable
and can be solved by gradient descent.

3.3. Discussions

Relationship between CID and RU: CID and RU seem to
be similar metrics, but they may be significantly different in
some cases. Let us consider the following two cases. (1) In
the first case, redundant pixels ignored by the DNN increase
the CID value, but they may still be well recovered via input
reconstruction. A toy example is that given an image with a
white wall, and a white pixel in the wall has the same color
as its neighboring pixels. If a DNN assigns a zero weight
to this pixel, then we can consider this pixel is ignored by
the DNN. Thus, this pixel will have an infinite CID value.
However, because this pixel and its neighboring pixels have
the same color, this pixel can still be well reconstructed
based on its neighboring pixels. In this case, the RU value
of this pixel is still low. (2) In the second case, pixels used
for feature extraction may not be reconstructed. An example
is the following function f = h(x) =

∑
i xi, where all pixels

are used to compute the feature f . However, no pixel can
be well reconstructed from h(x).

Relationship between the CID and the metric in (Guan
et al., 2019): Guan et al. (Guan et al., 2019) also mea-
sured the entropy of the input information, but there was no
quantitative definition for the range of the target object. In
other words, for each intermediate layer, the entropy may
be measured within a different range of features, which sig-
nificantly hurts the fairness of layer-wise comparisons. In
comparison, we clearly define the feature range ε = βδ2f to
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Figure 4. Visualization of pixel-wise CID and RU of different lay-
ers. The visualized pixel-wise CID and pixel-wise RU have been
normalized to the value range of [0, 1] to clarify the difference be-
tween foreground and background. We find that low layers mainly
focus on local patterns, and high layers mainly focus on large-scale
patterns. We further visualize unnormalized CID and RU values to
fairly compare the information discarding between different layers.
Please see Appendix G and Appendix H for more results.

enable fair layer-wise comparisons.

About information discarding in invertible networks:
Strictly speaking, there is no strict way to quantify the dis-
carding of the input information during the computation of
an intermediate-layer feature. The RU metric is related to
image inversion based on invertible nets (Behrmann et al.,
2019; Jacobsen et al., 2018; Kingma & Dhariwal, 2018),
which also focuses on whether the feature can recover the in-
put (theoretically, the decoder g can be implemented as the
inversion operations in invertible nets). In comparison, the
CID metric is defined from another perspective, i.e. whether
the input information can contribute significant numerical
values to the intermediate-layer feature or the final output.
Please see Appendix D for details.

Relationship with perturbation-based methods: Our
method is related to (Du et al., 2018; Fong & Vedaldi,
2017). These studies extract input pixels responsible for the
intermediate-layer feature by deleting as many input pix-
els as possible while keeping the feature unchanged. They
remove inputs by replacing inputs with human-designed
values, which actually are not always meaningless. Du et
al. (Du et al., 2018), Fong and Vedaldi (Fong & Vedaldi,
2017) computed pixel-wise importance. However, these
methods did not enable fair comparison over layers or eval-
uate the representation capacity of DNNs. Please see Sec-
tion 3.4 for details. In comparison, our entropy-based met-
rics can provide fair comparisons without specific require-
ments for model parameters, model architectures, and tasks.

High CID→ robustness: We can regard the forward prop-
agation as a process of gradually discarding noisy informa-
tion in the input that is irrelevant to the task, in order to
extract features relevant to the task. In other words, a high
CID value usually indicates that the DNN has discarded a
large amount of noisy information, making the extracted
features robust to noises. Specifically, people usually un-

derstand the robustness of DNNs in two aspects. The first
aspect mainly considers whether the DNN’s output is largely
influenced by noises, and the second aspect is whether the
DNN can exhibit discrimination power on noisy samples.
Strictly speaking, we can conceptually disentangle the two
aspects of robustness. I.e., the first aspect cares about the
insensitivity to noises, and even a toy model ∀x, h(x) = 0

can be considered the most robust model, although it does
not have any discrimination power. Whereas, the second
aspect cares about the classification accuracy under noises,
no matter how large the output score is changed by the noise.
Appendix F.2 shows the experiment proving the relationship
between the CID and the first aspect of robustness.

Limitations of concentration and RU: The concentration
metric is based on the assumption that the information in
the foreground is related to the task. Therefore, concentra-
tion is not suitable for tasks depending on the background.
Besides, we admit that DNNs with different architectures
usually need different decoder architectures. However, theo-
retically, our algorithm can be adapted to different decoders.
Although we use the same decoder to fairly compare dif-
ferent DNNs, we still conduct experiments to test decoders
with different architectures. We find that RU values do not
change significantly over different decoders, which proves
the trustworthiness of RU (see Appendix J for results).

Computational cost of the CID and RU is comparable with
classical explanation methods, such as IG (Sundararajan
et al., 2017) and LIME (Ribeiro et al., 2016). Please see
Appendix E for details.

3.4. Fairness of layer-wise comparisons

In this section, we discuss the fairness of layer-wise com-
parisons of existing explanation metrics, as follows.
• SHAP (Lundberg & Lee, 2017) is an explanation metric
based on the Shapley value (Shapley, 1953). The Shap-
ley value directly measures the numerical contribution of
each input variable to the network output, instead of the
contribution to the intermediate-layer feature. Thus, the
Shapley value cannot be directly used to compare the atten-
tion distribution of different layers. Besides, according to
the efficiency axiom (Shapley, 1953), the sum of Shapley
values of all input variables is equal to the output score. In
other words, the Shapley value is sensitive to the magnitude
of the network output, which disables fair comparisons be-
tween different DNNs.
• LRP (Bach et al., 2015) computes the relevance score of
each variable by layer-wise relevance propagation. Com-
pared with our metrics, the LRP mainly estimates the atten-
tion distribution over input variables, rather than explaining
the information flow inside DNNs. Therefore, the LRP
cannot examine the DNN’s capacity of memorizing input
information.
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Figure 5. Layer-wise CID, RU, and concentration. Subfigure (a), (b) show that a deep DNN has high CID and RU values. Subfigure (c)
shows that high layers can be more concentrated on the foreground than low layers.

• Most gradient-based methods do not generate explana-
tions that ensures the fairness of layer-wise comparisons,
such as CAM (Zhou et al., 2016), Grad-CAM (Selvaraju
et al., 2017), and gradient explanations (Simonyan et al.,
2013). It is because the gradient map ∂Loss

∂f cannot ensure
the fairness of comparison between different layers. The-
oretically, we can easily construct two DNNs representing
exactly the same knowledge but with different magnitudes
of gradients, as follows. A VGG-16 was learned to clas-
sify birds based on the CUB200-2011 dataset (Wah et al.,
2011). Given a pre-trained DNN, we slightly revised the
magnitude of parameters in every pair of neighboring con-
volutional layers y = x ⊗ w + b to examine our metrics.
For the L-th and (L + 1)-th layers, parameters were re-
vised as w(L) ← w(L)/4, w(L+1) ← 4w(L+1), b(L) ← b(L)/4,
b(L+1) ← 4b(L+1). Such revisions did not change knowledge
representations or the network output, but changed the gra-
dient magnitude. As Figure 1 (a2) shows, magnitudes of
explanation results of baseline methods are sensitive to the
magnitude of parameters. In comparison, our metrics are
not affected by the magnitude of parameters, and produce
reliable results. Therefore, our metrics enable layer-wise
comparisons.

4. Comparative studies
We designed various experiments, in order to demonstrate
the utility of the proposed metrics in comparing feature rep-
resentations of various DNNs, analyzing inner mechanisms
of knowledge distillation, and network compression. In
order to learn the parameter σ, we used the learning rate
1× 10−4, and learned σ for 100 epochs.

In all experiments for image classification, we used object
images cropped by object bounding boxes for both training
and testing, except for experiments of computing concen-
tration in Figure 5 where images were cropped by the box
of 1.5width × 1.5height of the object, which was similar
to (Zhang et al., 2018). For the computation of RU, all ex-
periments used a decoder with six residual blocks. We have
tested decoders with different architectures, e.g. ResNet
with different numbers of blocks. The decoder with six
residual blocks had enough sophisticated architecture for
feature inversion, and was relatively easy to learn. Thus, we
used this decoder in experiments. To invert low-resolution
features back to high-resolution images, we added two trans-

posed conv-layers to two parallel tracks in the residual block
to enlarge the feature map. Considering the size of the input
feature of the decoder, we added transposed conv-layers
to the first 2–4 residual blocks. The effects of α and τ is
controlled by β, and Figure 3 (b) shows that a low value of
β led to a low value of CID. For a specific β, the CID stably
increased along with the number of blocks. Therefore, the
selection of β did not affect the conclusion when we used
CID to analyze DNNs. In the following experiments, we
set β = 1.5× 10−4. Figure 5 visualizes the pixel-wise CID
and RU for VGG-16 on the CUB200-2011 datasets. We
also applied the CID to the U-Net (Ronneberger et al., 2015)
trained for segmenting neuronal structures in medical im-
ages as a real-world application. The U-Net is trained using
images in the ISBI cell tracking challenge (WWW, 2012),
and we visualized the pixel-wised CID in Appendix G. Ap-
pendix G also shows pixel-wise CID and RU for DNNs
learned on the ImageNet dataset (Russakovsky et al., 2015).

Comparisons between different DNNs for various tasks:
We compared layer-wise measures of CID and RU of dif-
ferent DNNs. We trained various DNNs for image classifi-
cation using different datasets, and trained auto-encoders1

(AEs) for image reconstruction (by revising architectures of
ResNets-20/32/44 (He et al., 2016)). Figure 5 (a), (b) com-
pares input information discarding of intermediate layers of
both DNNs for classification and DNNs for reconstruction.
We found that the CID curve of image classification and the
curve of image reconstruction were similar. A deep DNN
usually had higher CID and RU values than a shallow DNN.
Thus, a deep DNN usually discards more input information
than a shallow DNN.

Figure 5 (c) illustrates the layer-wise concentration of var-
ious DNNs, which were learned to classify birds in the
CUB200-2011 (Wah et al., 2011) dataset. Compared to
the AlexNet (Krizhevsky et al., 2012), we found that VGG
nets (Simonyan & Zisserman, 2015) distracted attention to
the background to learn diverse features in low layers, but
more concentrated on the foreground object in high layers.
Besides, curves became sharp at the last few layers, which
indicated that fully-connected layers made the DNN quickly
discard information that is irrelevant to the task.

1To construct the auto-encoder, the encoder was set as all layers
of the residual network before the FC layer. The decoder was the
same as that for the computation of RU.
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Figure 6. Accuracy of the DNN
when we gradually removed
pixels with the lowest impor-
tance value. A slower de-
crease of the accuracy indicates
a higher descriptive accuracy.

Model ResNet-50 VGG-16
CAM 0.367 -
Grad-CAM 0.355 0.507
LRP - 0.489
CID 0.493 0.578

Table 2. Accuracy of the weakly-
supervised localization task. A
higher value indicates a better object-
localization performance.

Evaluation using the descriptive accuracy (Warnecke
et al., 2020): In order to verify the effectiveness of the
proposed metric, we evaluated the CID using the descriptive
accuracy (Warnecke et al., 2020). Specifically, we grad-
ually removed pixels with the lowest importance values,
and measured the accuracy of the DNN using images after
the removal. In this case, a slower decrease of the accu-
racy indicated a higher descriptive accuracy. We conducted
this experiment with the AlexNet trained on the CUB200-
2011 dataset. We compared CID with various explana-
tion methods, including Gradient (Simonyan et al., 2013),
Gradient×Input (Shrikumar et al., 2016), Guided-BP (Sprin-
genberg et al., 2014), and LRP (Binder et al., 2016). As
Figure 6 shows, the CID outperformed other methods.

Weakly-supervised localization: We further evaluated the
CID via the weakly-supervised localization task (Zhou et al.,
2016). We trained the VGG-16 and ResNet-50 using un-
cropped images from the CUB200-2011 dataset, and used
ground-truth object bounding boxes for evaluation. We
compared CID with several previous methods, including
the CAM (Zhou et al., 2016), Grad-CAM (Selvaraju et al.,
2017), LRP (Binder et al., 2016). We followed (Schulz
et al., 2020) to evaluate localization results by measuring
the recall rate of pixels in the bounding box, i.e. the number
of pixels in the bounding box with high importance values.
Table 4 shows the result of the evaluation. CID had a better
performance than CAM, Grad-CAM, and LRP. Note that
CID was not proposed to localize objects in the image. In-
stead, CID aimed to measure the information discarding
during the forward propagation.

Analysis of network compression: We used our metrics
to analyze the compressed DNN. We trained another VGG-
16 using the CUB200-2011 dataset (Wah et al., 2011) for
fine-grained classification. Then, the VGG-16 was com-
pressed using the method of (Han et al., 2016) with differ-
ent pruning thresholds. Figure 7 (a) compares layerwise
information discarding of the original VGG-16 and the com-
pressed VGG-16 nets with different numbers of parame-
ters. Specifically, let CIDcompressed net and CIDoriginal net denote
the CID value of the compressed VGG-16 and the orig-
inal VGG-16, respectively. We computed the change of
CID during the compression as ∆CID = CIDcompressed net −
CIDoriginal net. On the other hand, we also compared the re-

construction capacity and the concentration of the com-
pressed VGG-16 and the original VGG-16. Similar to
∆CID, the change of RU and concentration is computed
as ∆RU = RUcompressed net − RUoriginal net and ∆concentration =

concentrationcompressed net − concentrationoriginal net, respectively.

Based on Figure 7 (a), we found that network compres-
sion decreased the CID of features, which indicated
that compressed DNNs were more sensitive to adver-
sarial noises. It was because the CID value could indi-
cate the robustness to the adversarial noise (please see Ap-
pendix F.2 for more details and results ). Besides, Figure 7
shows that network compression did not significantly af-
fect the reconstruction capacity and the concentration
of intermediate-layer features. It meant that the network
compression made the DNN less powerful to remove the
information of redundant pixels, but it still maintained
the representation power of the DNN, i.e. the feature
could still well reconstruct the input. On the other hand,
the feature still concentrated on the foreground.

Analysis of knowledge distillation: We used our metrics
to analyze the inner mechanism of knowledge distillation.
We trained the VGG-16, ResNet-18, and ResNet-34 us-
ing the CUB200-2011 dataset (Wah et al., 2011) as three
teacher nets for fine-grained classification. Each teacher
net was used to guide the learning of an AlexNet. Fig-
ure 7 (b) compares layerwise information discarding be-
tween AlexNets learned with and without knowledge dis-
tillation. We found that AlexNets learned using knowledge
distillation had lower information discarding than the ordi-
narily learned AlexNet. Therefore, we can conclude that
knowledge distillation helped AlexNets to preserve more
information. Meanwhile, knowledge distillation may make
intermediate-layer features more sensitive to noises, because
AlexNets were mainly learned from distillation and used
less noisy information from real training data during the
distillation process.

Further experiments: In Appendix F, we used the pro-
posed metrics to analyze flaws of the network architecture,
and explored the relationship between the CID value and the
adversarial noises. Furthermore, we found that the adver-
sarial trained DNNs discarded more information than the
normally trained DNNs. Besides, the adversarial trained
DNNs more focused on the foreground than the normally
trained DNNs.

5. Conclusion
In this paper, we have defined three metrics to quantify in-
formation discarding during the forward propagation. A
model-agnostic method is developed to measure the pro-
posed metrics for each specific layer of a DNN. Comparing
existing methods of visualizing network features and ex-
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Figure 7. Analysis of network compression (a) and knowledge distillation (b). Subfigure (a) shows the change of CID, RU, and
concentration after compression. We found that network compression decreased the CID, but there was no clear conclusion about the
influence on the value of RU and concentration. Subfigure (b) compares layerwise information discarding between DNNs learned with
and without distillations. AlexNet distilled from other DNNs discarded less information.

tracting important pixels, our metrics provide consistent
and faithful results across different layers. Therefore, our
metrics enable a fair analysis of the efficiency of signal
processing of DNNs. The concentration value is highly cor-
related with the performance of the DNN. In experiments,
we have used our metrics to analyze and understand the
inner mechanisms of existing deep-learning techniques.
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A. Relationship between Equation (1) and Equation (2)
We introduce the computation of the entropy of the input in Equation (1) of the paper, and the computation of the CID value
in Equation (2) of the paper. In this section, we introduce how to approximate Equation (1) using Equation (2). For the
convenience of readers, we rewrite these equations as follows.

H(Xobj)=−
∑

x′
p(x′) log p(x′) s.t. ‖f ′ − f‖2 ≤ ε

H(Xobj) =
∑n

i=1
Hi(σi), s.t. Prob(‖f ′ − f‖2 ≤ ε) = 1−τ

x′ ∈ Xobj is a perturbed input around the original input x, i.e. x′ = x + ∆x. We assume that x′ follows the Gaussian
distribution N (µ,Σ). However, this assumption cannot ensure ‖f ′ − f‖2 ≤ ε, because there is a small probability that x′ is
significantly different from x. Therefore, we relax the constraint as Prob(‖f ′ − f‖2) ≥ 1− τ , where τ is a small positive
number. We simplify the covariance matrix as Σ = diag[σ2

1 , ..., σ
2
n], and we can approximate H(Xobj) as

∑n
i=1Hi(σi). In

this way, we can approximate Equation (1) using Equation (2).

B. The derivation of Equation (4) in the paper
In the paper, we introduce the computation of the metric CID in the “For fair layer-wise comparisons” paragraph of
Section 3.1. We learn the σ to compute the CID value using Equation (3). In this section, we introduce how to get Equation
(4) to ensure the fairness of the layer-wise comparison. For the convenience of readers, we rewrite Equation (3) as follows.

Loss(σ) =
1

δ2f
E
f ′

[
‖f ′ − f‖2

]
− λ

∑n

i=1
Hi(σ),

where σ = [σ1, . . . , σn]> is the parameter that we aim to learn. λ is a positive scalar, and δ2
f = limξ→0+ Ex′∼N (x,ξ2I)[‖h(x′)−

f‖2]/ξ2 is the inherent variance of intermediate-layer features, which is used for normalization.

In order to ensure fair layer-wise comparisons, we need to control the value range of the first term in Equation (3). Features
of different layers need to be perturbed at a comparable level. Therefore, for each layer, we measure and compare Hi(σi)
when ‖f ′ − f‖2 ≤ ε = αδ2

f , where α is a positive scalar. In this way, the value of λ need to be adjusted (manually or
automatically) to make σ satisfy Prob(‖f ′ − f‖2 ≤ αδ2

f ) > 1− τ .

To simplify the implementation, we make the approximation Eδ∼N (0,I)[‖f ′ − f‖2] ≈ βσ2
f , where β < α, as a replacement of

Prob(‖f ′ − f‖2 ≤ αδ2
f ) > 1− τ . In this way, λ is determined based on the value of β, and we do not need to specify values

of τ and α. I.e. we only need to consider the value of β to learn σ. Thus, the stop criterion of learning σ can be given as
Equation (4) in the paper, i.e.

min
σ

Loss(σ) s.t. Eδ∼N (0,I)[‖f ′ − f‖2] ≈ βσ2
f , β < α.

C. Proof of the relationship between the concentration and the information bottleneck theory
We introduce the relationship between the concentration and the information bottleneck theory in the last paragraph of
Section 3.1. In this section, we prove the above relationship, i.e. a high concentration usually indicates a high efficiency
ρ. According to the information bottleneck theory (Wolchover, 2017; Schwartz-Ziv & Tishby, 2017), the efficiency ρ of a
DNN can be computed as ρ = I(F ;Y )/I(X;F ), where X , F , Y denote input samples, intermediate-layer features and
gound-truth labels, respectively. The efficiency can be formulated as follows.

ρ =
I(F ;Y )

I(X;F )

=
I(X;F ;Y ) + I(F ;Y |X)

H(X)−H(X|F )

=
I(X;Y )− I(X;Y |F ) + I(F ;Y |X)

H(X)−H(X|F )

=
H(X)−H(X|Y )− I(X;Y |F ) + I(F ;Y |X)

H(X)−H(X|F )

=
H(X)−H(X|Y )− I(X;Y |F ) + I(F ;Y |X)

H(X)− CID

(8)
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Note that the intermediate-layer feature F is determined by X , thereby I(F ;Y |X) = 0. In this way, the above equation can
be rewritten as

ρ =
H(X)−H(X|Y )− I(X;Y |F )

H(X)− CID
(9)

Since H(X) and H(X|Y ) are only related to the dataset, we can consider them as constants. Given F , we assume that
the foreground of the input is conditionally independent with the background. Thus, I(X;Y |F ) can be disentangled as
I(X;Y |F ) = I(Xfg;Y |F ) + I(Xbg;Y |F ), where Xfg and Xbg denote the foreground and background part of the input,
respectively. Specifically, we have

I(Xfg;Y |F ) = H(Xfg|F )−H(Xfg|F, Y ) = γfgH(Xfg|F )

I(Xbg;Y |F ) = H(Xbg|F )−H(Xbg|F, Y ) = γbgH(Xbg|F )
(10)

We assume that there exists a scalar γfg to represent the ratio of the foreground information, which is related to the ground-
truth label Y , i.e. I(Xfg;Y |F ) = γfgH(Xfg|F ). Similarly, we assume that there exists a scalar γbg to represent the ratio
of the background information, which is related to the ground-truth label Y , i.e. I(Xbg;Y |F ) = γbgH(Xbg|F ). Since
H(Xfg|F ) > H(Xfg|F, Y ) and H(Xbg|F ) > H(Xbg|F, Y ), we have 0 < γfg < 1, 0 < γbg < 1. Since the task is mainly
related to the foreground, the information discarded in the foreground is usually less than the information discarded in the
background. In this way, we have γfg � γbg, γfg − γbg > 0. Thus, the efficiency ρ can be written as follows.

ρ=
H(X)−H(X|Y )− γfgH(Xfg|F )− γbgH(Xbg|F )

H(X)− CID
(11)

=
γfgconcentration− (γfg + γbg)H(Xbg|F ) +H(X)−H(X|Y )

H(X)− CID
(12)

=−
γbgconcentration + (γfg + γbg)H(Xfg|F )−H(X) +H(X|Y )

H(X)− CID
(13)

By combining above two equations, we have

ρ =
(γfg − γbg)concentration− (γfg + γbg)CID + 2(H(X)−H(X|Y ))

2[H(X)− CID]

=
γfg + γbg

2
+

(γfg − γbg)concentration− (γfg + γbg − 2)H(X)− 2H(X|Y )

2[H(X)− CID]

(14)

Note that γfg, γbg, H(X) andH(X|Y ) can be considered as constants. For simplicity, let C1 =
γfg+γbg

2 , C2 = γfg−γbg > 0,
C3 = (γfg + γbg − 2)H(X) + 2H(X|Y ), C4 = H(X) > CID. Therefore, we have

ρ = C1 +
C2concentration− C3

2[C4 − CID]
(15)

Thus, for DNNs learned for the same task with the similar value of CID, a high value of concentration usually indicates a
high value of efficiency ρ, which reflects the connection between our metrics and the information bottleneck theory.

D. About how to understand the limitation of CID from the perspective of invertible nets
In this section, we discuss the limitation of CID in invertible nets, which is briefly introduced in the third paragraph of
Section 3.3.

Strictly speaking, there is no strict way to quantify the discarding of the input information during the computation of an
intermediate-layer feature. Our method is based on the assumption that the concept of a specific object instance is within
the range of Prob(‖f ′ − f‖2 ≤ ε) ≥ 1− τ , which makes the algorithm sensitive to the activation magnitude of each feature
dimension. For example, a typical failure case for this assumption is invertible neural networks (Behrmann et al., 2019;
Chang et al., 2018; Gomez et al., 2019; Jacobsen et al., 2018; Kingma & Dhariwal, 2018; Dinh et al., 2015). Theoretically,
invertible neural networks do not discard any input information; otherwise, the input cannot be inverted from intermediate-
layer features. Instead, invertible neural networks usually significantly decrease the magnitude of neural activations caused
by unimportant pixels w.r.t. the task, and boost the magnitude of neural activations triggered by important pixels w.r.t. the
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task. Similarly, given a pre-trained DNN, if we revise a DNN by selectively halving magnitudes of parameters of 50% filters
w ← 0.5w, theoretically, this revision does not discard any input information.

However, information discarding in this paper is defined from another perspective, i.e. whether the input information can
significantly contribute to the final output of the neural network. For both invertible neural networks and the above revision
of halving magnitudes of parameters, these techniques all decrease activation magnitudes caused by certain pixels, thereby
letting these pixels contribute less numerical values to the network output.

Therefore, our definition of information discarding does not conflict with the information processing in invertible neural
networks. Based on our definition of information discarding, a high information discarding of a pixel indicates that this
pixel will contribute a low numerical score to the intermediate-layer feature or the network output.

E. About the computational cost of CID and RU
In the last paragraph of Section 3.3, we have briefly clarified that the computational cost of the CID and RU is comparable
with previous explanation methods. In this section, we will provide more discussions about this issue. In this paper, the
pixel-wise CID and RU were usually generated by letting the DNN recursively conduct 100 inferences. In comparison,
IG (Sundararajan et al., 2017) took 300 inferences to compute the attribution map. LIME (Ribeiro et al., 2016) needed 5000
inferences to learn the explanation result. The computational cost of the Shapley value (Shapley, 1953) was NP-hard. All of
these explanation methods had a higher computational cost than the proposed metrics. Therefore, the

F. Further experiments
This section introduces several additional experiments, which are briefly introduced in the last paragraph of the ”Comparative
studies” section in the paper.

F.1. Diagnosis of architectural revision (damage)

In this experiment, we aimed to analyze whether the proposed metrics reflected architectural revisions of DNNs. To this
end, we revised the architecture of the VGG-16/VGG-19 network by changing a specific convolutional layer to contain four
7×7×512 filters with padding=3, which hurts the representation capacity of the DNN. We trained both the original VGG-
16/VGG-19 and the revised VGG-16/VGG-19 for binary classification between bird images cropped from the CUB200-2011
dataset (Wah et al., 2011) and random images in the ImageNet (Deng et al., 2009). Figure 8 compares the original and
revised DNNs. We found that compared to the original DNN, the architectural revision significantly boosted the information
discarding at the revised layer. Meanwhile, the architectural revision (damage) also slightly increased the concentration of
DNNs. The increase of the concentration seemed to conflict with the architectural damage, but this can be explained as
follows.

1. Compared to the increase of the information discarding of the revised net, the increase of concentration was significantly
lower. Thus, in general, the architectural revision hurt the representation capacity of the DNN.

2. The DNN with the reduced feature dimension could only encode much fewer concepts of object parts. Thus, the revised
DNN usually encoded fewer, simpler, but more discriminative features than original DNNs.

3. Original DNNs usually ignored background information and extracted discriminative foreground features at high FC
layers (see Figure 8, whereas the dimension reduction at the revised layer made the DNN ignored background information
at much lower layers.

Table 3. Relationship between the ∆CID and the adversarial robustness. A higher CID value usually indicates a higher adversarial
robustness.

DNN ∆CID adversarial robustness ‖ε‖2
Original DNN (with 100% parameters) 0 0.00276
DNN with 38.0% parameters -0.003 0.00281
DNN with 12.8% parameters -0.005 0.00254
DNN with 8.0% parameters -0.033 0.00109
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Figure 8. Diagnosis of architectural revision. Values were normalized by the pixel number per image and averaged over images. The
architectural revision increased the value of CID and concentration.
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Figure 9. Effects of learning epochs. CID values were normalized by the pixel number per image and averaged over images. Each curve
shows the information discarding of the output feature of a specific block during the learning process.

F.2. Relationship to adversarial noises

We conducted an experiment to reveal the relationship between the CID value and the adversarial noise of the DNN. We
trained a VGG-16 using the CUB200-2011 dataset (Wah et al., 2011) for fine-grained classification. Then, the VGG-16 was
compressed using the method of (Han et al., 2016) with different pruning thresholds. Table 3 compares the CID value of the
last FC layer and the adversarial robustness of the DNN, when the DNN was compressed at different ratios. For each input
image, we computed adversarial samples towards top-20 incorrect fine-grained categories with the highest probabilities.
For fair comparisons, we added the adversarial noise until the adversarial attack just succeeded, i.e. when the adversarial
perturbation just pushed the sample to the decision boundary. For each adversarial noise, we measured its L-2 norm values.
The adversarial robustness was reported as the average L-2 norm over all images. We only measured the CID value of the
last FC layer, because the CID value of the last layer most fit the logic of the final prediction. Table 3 shows that a higher
CID value usually indicates a higher adversarial robustness. This indicated a close relationship between the CID value and
the adversarial noise.

F.3. Analysis of information discarding after different epochs during the learning process

We trained the ResNet-32 network using the CIFAR-10 dataset (Krizhevsky, 2009). Figure 9 shows the change of information
discarding w.r.t. output features of different blocks during the learning process. Information discarding in high layers
satisfied the information-bottleneck theory.

F.4. Analysis of information discarding in the adversarial attack

In this experiment, we compared an adversarially trained AlexNet and a normally trained AlexNet on the CUB-200 2011
dataset. During the adversarial training, we used the PGD to generate adversarial samples. Specifically, we used the L-∞
attack, where the number of steps of the attack is 10, and the step size of the attack is 0.001. Figure 10 shows that the
adversarial trained AlexNet discarded more information than the normally trained AlexNet, which was consistent with
results in Appendix F.2. Besides, the adversarial trained AlexNet more focused on the foreground than the normally trained
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AlexNet, since the adversarially trained AlexNet had higher concentration values.
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Figure 10. Comparison of the CID, RU, and concentration value between the adversarially trained AlexNet and the normally trained
AlexNet. The adversarial trained AlexNet discarded more information than the normally trained AlexNet, and more focused on the
foreground that the normally trained AlexNet.

G. Visualization of pixel-wise CID
G.1. For the U-Net learning using images in the ISBI cell tracking challenge

In the second paragraph of Section 4, we have claimed that we applied the metric CID to the U-Net trained for segmenting
neuronal structures in medical images as a real-world application. In this subsection, we will provide visualization results of
the pixel-wise CID computed on different layers of the U-Net.
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Visualization of CID for U-Net learned on images in the ICBI cell tracking challenge

G.2. For the AlexNet learned using the ImageNet dataset

This subsection provides visualization results of CID on the AlexNet learned using the ImageNet dataset. The visualized
results can be used to fairly compare the relative importance of the foreground w.r.t. the background over different layers.

Conv 2 Conv 3 Conv 4 Conv 5 Conv 2 Conv 3 Conv 4 Conv 5

Visualization of CID for AlexNet learned on the ImageNet dataset
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G.3. For the AlexNet/VGG-16/VGG-19 learned using the CUB200-2011 dataset

This subsection provides visualization results of CID on the AlexNet/VGG-16/VGG-19 learned using the CUB200-2011
dataset. The visualized results can be used to fairly compare the relative importance of the foreground w.r.t. the background
over different layers.
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G.4. For the ResNet-20/32/44 learned using the CIFAR-10 dataset

This subsection provides visualization results of CID on the ResNet-20/32/44 learned using the CIFAR-10 dataset. The
visualized results can be used to fairly compare the relative importance of the foreground w.r.t. the background over different
layers.
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H. Visualization of pixel-wise RU
H.1. For the VGG-16 learned using the CUB200-2011 dataset

This subsection provides visualization results of RU on the VGG-16 learned using the CUB200-2011 dataset. The visualized
results can be used to fairly compare the relative importance of the foreground w.r.t. the background over different layers.
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H.2. For the ResNet-20/32/44 learned using the CIFAR-10 dataset

This subsection provides visualization results of RU on the ResNet-20/32/44 learned using the CIFAR-10 dataset. The
visualized results can be used to fairly compare the relative importance of the foreground w.r.t. the background over different
layers.
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I. Importance maps generated by CAM, Grad-CAM, and Gradient on different layers
The visualization results of importance maps generated by CAM, Grad-CAM, and Gradient on different layers of the
VGG-16. The visualized results have been normalized to the unit mean value. According to Table 1 of the paper, CAM,
Grad-CAM, and Gradient cannot generate explanation results that enable fair layer-wise comparisons.
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J. Comparisons of pixel-wise RU generated by different decoders
In this section, we trained two different decoders for the computation of the metric RU, i.e. decoders with six or eight
residual blocks, respectively. We visualized RU results in the following figure, which shows that the number of residual
blocks in the decoder did not affect the results of pixel-wise RU significantly.

Conv 1 Conv3 Conv5

6 8 6 8 6 8

Layer

# of Blocks

Visualization of RU when RU was computed using different decoders

K. Comparisons of pixel-wise CID between the original DNN and the compressed DNN
When we removed 93.3% parameters from the VGG-16 network, the network compression did not significantly change the
pixel-wise CID of intermediate-layer features.
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L. Comparisons of pixel-wise CID between the original DNN (the teacher) and the DNN learned
via knowledge distillation (the student)

We visualized the pixel-wise CID of VGG-16 networks that were learned using the CUB200-2011 dataset (Wah et al., 2011).
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M. Comparisons of pixel-wise CID between the original and the revised DNNs
We visualized the pixel-wise CID of the original and damaged networks that were learned using the CUB200-2011
dataset (Wah et al., 2011). We focused on the VGG-16 and VGG-19 networks. For each neural network, we revised either
the last convolutional layer or the second last convolutional layer to generate the revised networks.
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