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Abstract
Score-based generative models have excellent per-
formance in terms of generation quality and likeli-
hood. They model the data distribution by match-
ing a parameterized score network with first-order
data score functions. The score network can be
used to define an ODE (“score-based diffusion
ODE”) for exact likelihood evaluation. However,
the relationship between the likelihood of the
ODE and the score matching objective is unclear.
In this work, we prove that matching the first-
order score is not sufficient to maximize the like-
lihood of the ODE, by showing a gap between the
maximum likelihood and score matching objec-
tives. To fill up this gap, we show that the negative
likelihood of the ODE can be bounded by control-
ling the first, second, and third-order score match-
ing errors; and we further present a novel high-
order denoising score matching method to enable
maximum likelihood training of score-based dif-
fusion ODEs. Our algorithm guarantees that the
higher-order matching error is bounded by the
training error and the lower-order errors. We em-
pirically observe that by high-order score match-
ing, score-based diffusion ODEs achieve better
likelihood on both synthetic data and CIFAR-10,
while retaining the high generation quality.

1. Introduction
Score-based generative models (SGMs) have shown promis-
ing performance in both sample quality and likelihood evalu-
ation (Song et al., 2020; Vahdat et al., 2021; Dockhorn et al.,
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(a) Data
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(b) ScoreODE
(first-order SM)
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(c) ScoreODE
(third-order SM)

Figure 1. An 1-D mixture-of-Gaussians data distribution (a) and
ScoreODE’s density (b,c). (b): ScoreODE trained by minimiz-
ing the first-order score matching (SM) objective in (Song et al.,
2021), which fails to estimate the density around x = −0.25. (c):
ScoreODE trained by minimizing our proposed third-order SM
objective, which approximates the data density well.

2021; Kingma et al., 2021), with applications on many tasks,
such as image generation (Dhariwal & Nichol, 2021; Meng
et al., 2021b), speech synthesis (Chen et al., 2020; Kong
et al., 2020), shape generation (Luo & Hu, 2021; Zhou
et al., 2021) and lossless compression (Kingma et al., 2021).
SGMs define a forward diffusion process by a stochastic
differential equation (SDE) that gradually perturbs the data
distribution to a simple noise distribution. The forward dif-
fusion process has an equivalent reverse-time process with
analytical form (Anderson, 1982), which depends on the
score function (the gradient of the log probability density)
of the forward process at each time step. SGMs learn a
parameterized neural network (called “score model”) (Song
& Ermon, 2019; 2020; Song et al., 2020) to estimate the
score functions, and further define probabilistic models by
the score model.

Two types of probabilistic models are proposed with the
learned score model. One is the score-based diffusion SDE
(Song et al. (2020), “ScoreSDE” for short), which is defined
by approximately reversing the diffusion process from the
noise distribution by the score model and it can generate
high-quality samples. The other is the score-based diffu-
sion ordinary differential equation (Song et al. (2020; 2021),
“ScoreODE” for short), which is defined by approximating
the probability flow ODE (Song et al., 2020) of the forward
process whose marginal distribution is the same as the for-
ward process at each time. ScoreODEs can be viewed as
continuous normalizing flows (Chen et al., 2018). Thus,
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unlikely SDEs, they can compute exact likelihood by ODE
solvers (Grathwohl et al., 2018).

In practice, the score models are trained by minimizing an
objective of a time-weighted combination of score matching
losses (Hyvärinen & Dayan, 2005; Vincent, 2011). It is
proven that for a specific weighting function, minimizing
the score matching objective is equivalent to maximizing the
likelihood of the ScoreSDE (Song et al., 2021). However,
minimizing the score matching objective does not neces-
sarily maximize the likelihood of the ScoreODE. This is
problematic since ScoreODEs are used for likelihood esti-
mation. In fact, ScoreODEs trained with the score matching
objective may even fail to estimate the likelihood of very
simple data distributions, as shown in Fig. 1.

In this paper, we systematically analyze the relationship be-
tween the score matching objective and the maximum likeli-
hood objective of ScoreODEs, and present a new algorithm
to learn ScoreODEs via maximizing likelihood. Theoreti-
cally, we derive an equivalent form of the KL divergence1

between the data distribution and the ScoreODE distribu-
tion, which explicitly reveals the gap between the KL diver-
gence and the original first-order score matching objective.
Computationally, as directly optimizing the equivalent form
requires an ODE solver, which is time-consuming (Chen
et al., 2018), we derive an upper bound of the KL divergence
by controlling the approximation errors of the first, second,
and third-order score matching. The optimal solution for
this score model by minimizing the upper bound is still the
data score function, so the learned score model can still be
used for the sample methods in SGMs (such as PC samplers
in (Song et al., 2020)) to generate high-quality samples.

Based on the analyses, we propose a novel high-order de-
noising score matching algorithm to train the score models,
which theoretically guarantees bounded approximation er-
rors of high-order score matching. We further propose some
scale-up techniques for practice. Our experimental results
empirically show that the proposed training method can im-
prove the likelihood of ScoreODEs on both synthetic data
and CIFAR-10, while retaining the high generation quality.

2. Score-Based Generative Models
We first review the dynamics and probability distributions
defined by SGMs. The relationship between these dynamics
is illustrated in Fig. 2(a).

2.1. ScoreSDEs and Maximum Likelihood Training

Let q0(x0) denote an unknown d-dimensional data distri-
bution. SGMs define an SDE from time 0 to T (called

1Maximum likelihood estimation is equivalent to minimizing a
KL divergence.

“forward process”) with x0 ∼ q0(x0) and

dxt = f(xt, t)dt+ g(t)dwt, (1)

where xt is the solution at time t, f(·, t) : Rd → Rd
and g(t) ∈ R are fixed functions such that the marginal
distribution of xT is approximately N (xT |0, σ2

T I) with
σT > 0, and wt ∈ Rd is the standard Wiener process. Let
qt(xt) denote the marginal distribution of xt. Under some
regularity conditions, the forward process in Eqn. (1) has an
equivalent reverse process (Anderson, 1982) from time T to
0 with xT ∼ qT (xT ):

dxt = [f(xt, t)− g(t)2∇x log qt(xt)]dt+ g(t)dw̄t, (2)

where w̄t is a standard Wiener process in the reverse-time.
The marginal distribution of xt in the reverse process in
Eqn. (2) is also qt(xt). The only unknown term in Eqn. (2)
is the time-dependent score function ∇x log qt(xt). SGMs
use a neural network sθ(xt, t) parameterized by θ to es-
timate the score function for all xt ∈ Rd and t ∈ [0, T ].
The neural network is trained by matching sθ(xt, t) and
∇x log qt(xt) with the score matching objective:

JSM(θ;λ(·))

:=
1

2

∫ T

0

λ(t)Eqt(xt)
[
‖sθ(xt, t)−∇x log qt(xt)‖22

]
dt,

where λ(·) > 0 is a weighting function. By approximating
the score function with sθ(xt, t), SGMs define a parameter-
ized reverse SDE from time T to time 0 with probability at
each time t denoted as pSDE

t (xt) (omitting the subscript θ).
In particular, suppose xT ∼ pSDE

T (xT ) = N (xT |0, σ2
T I),

the parameterized reverse SDE is defined by

dxt = [f(xt, t)− g(t)2sθ(xt, t)]dt+ g(t)dw̄t, (3)

where the marginal distribution of xt is pSDE
t (xt). By solv-

ing the parameterized reverse SDE, SGMs achieve excellent
sample quality in many tasks (Song et al., 2020; Dhariwal
& Nichol, 2021). Moreover, the KL divergence between
q0(x0) and pSDE

0 (x0) can be bounded by the score matching
error with the weight g(·)2 (Song et al., 2021):

DKL(q0 ‖ pSDE
0 ) ≤ DKL(qT ‖ pSDE

T )+JSM(θ; g(·)2). (4)

Therefore, minimizing JSM(θ; g(·)2) is equivalent to max-
imum likelihood training of pSDE

0 . In the rest of this work,
we mainly consider the maximum likelihood perspective,
namely λ(·) = g(·)2, and denote JSM(θ) := JSM(θ; g(·)2).

2.2. ScoreODEs and Exact Likelihood Evaluation

The parameterized ScoreSDE cannot be used for exact like-
lihood evaluation, because we cannot evaluate pSDE

0 (x0)
exactly for a given point x0 ∈ Rd. However, every SDE
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has an associated probability flow ODE (Song et al., 2020)
whose marginal distribution at each time t is the same as
that of the SDE. Unlike SDEs, the log-density of the ODE
can be exactly computed by the “Instantaneous Change of
Variables” (Chen et al., 2018). Particularly, the probability
flow ODE of the forward process in Eqn. (1) is

dxt
dt

= hq(xt, t) := f(xt, t)−
1

2
g(t)2∇x log qt(xt). (5)

If we start from x0 ∼ q0(x0), the distribution of each
xt during the ODE trajectory is also qt(xt). Note that
the only unknown term in Eqn. (5) is also the score func-
tion ∇x log qt(xt). By approximating the score function
with sθ(xt, t), SGMs define a parameterized ODE called
“score-based diffusion ODE” (ScoreODE) with probabil-
ity pODE

t (xt) (omitting the subscript θ) at each time t.
In particular, suppose xT ∼ pODE

T (xT ) = pSDE
T (xT ) =

N (xT |0, σ2
T I), the ScoreODE is defined by

dxt
dt

= hp(xt, t) := f(xt, t)−
1

2
g(t)2sθ(xt, t), (6)

where the marginal distribution of xt is pODE
t (xt). By the

“Instantaneous Change of Variables” (Chen et al., 2018),
log pODE

t (xt) of xt can be computed by integrating:

d log pODE
t (xt)

dt
= − tr(∇xhp(xt, t)). (7)

If sθ(xt, t) ≡ ∇x log qt(xt, t) for all xt ∈ Rd and t ∈
[0, T ], we have hp(xt, t) = hq(xt, t). In this case, for all
x0 ∈ Rd, log pODE

0 (x0) − log q0(x0) = log pODE
T (xT ) −

log qT (xT ) ≈ 0 (because qT ≈ pODE
T ), where xT is the

point at time T given by Eqn. (5) starting with x0 at time
0. Inspired by this, SGMs use the ScoreODE with the score
model for exact likelihood evaluations.

However, if sθ(xt, t) 6= ∇x log qt(xt, t), there is no theo-
retical guarantee for bounding DKL(q0 ‖ pODE

0 ) of Score-
ODEs by the score matching objective JSM(θ). As a result,
after minimizing JSM(θ), Song et al. (2021) find that the
ScoreSDE of the “Variance Exploding” type (Song et al.,
2020) achieves state-of-the-art sample quality, but the log-
likelihood of the corresponding ScoreODE is much worse
(e.g., ≈ 3.45 bits/dim on CIFAR-10 dataset) than that of
other comparable models (e.g.,≈ 3.13 bits/dim of the ”Vari-
ance Preserving” type (Song et al., 2020)). Such observa-
tions pose a serious concern on the behavior of the likelihood
of pODE

0 , which is not well understood. We aim to provide a
systematical analysis in this work.

3. Relationship between Score Matching and
KL Divergence of ScoreODEs

The likelihood evaluation needs the distribution pODE
0 of

ScoreODEs, which is usually different from the distribu-

tion pSDE
0 of ScoreSDEs (see Appendix B for detailed dis-

cussions). Although the score matching objective JSM(θ)
can upper bound the KL divergence of ScoreSDEs (up to
constants) according to Eqn. (4), it is not enough to upper
bound the KL divergence of ScoreODEs. To the best of
our knowledge, there is no theoretical analysis of the rela-
tionship between the score matching objectives and the KL
divergence of ScoreODEs.

In this section, we reveal the relationship between the first-
order score matching objective JSM(θ) and the KL diver-
gence DKL(q0 ‖ pODE

0 ) of ScoreODEs, and upper bound
DKL(q0 ‖ pODE

0 ) by involving high-order score matching.
Fig. 2 demonstrates our theoretical analysis and the connec-
tion with previous works.

3.1. KL Divergence of ScoreODEs

In the following theorem, we propose a formulation of
the KL divergence DKL(q0 ‖ pODE

0 ) by integration, which
shows that there is a non-zero gap between the KL diver-
gence and the score matching objective JSM(θ).

Theorem 3.1 (Proof in Appendix E.1). Let q0 be the data
distribution and qt be the marginal distribution at time t
through the forward diffusion process defined in Eqn. (1),
and pODE

t be the marginal distribution at time t through
the ScoreODE defined in Eqn. (6). Under some regularity
conditions in Appendix A, we have

DKL(q0 ‖ pODE
0 )=DKL(qT ‖ pODE

T ) + JODE(θ)

= DKL(qT ‖ pODE
T ) + JSM(θ)︸ ︷︷ ︸

upper bound ofDKL(q0 ‖ pSDE
0 ) in Eqn. (4)

+ JDiff(θ),

where

JODE(θ) :=
1

2

∫ T

0

g(t)2Eqt(xt)
[
(sθ(xt, t)−∇x log qt(xt))>

(∇x log pODE
t (xt)−∇x log qt(xt))

]
dt, (8)

JDiff(θ) :=
1

2

∫ T

0

g(t)2Eqt(xt)
[
(sθ(xt, t)−∇x log qt(xt))>

(∇x log pODE
t (xt)−sθ(xt, t))

]
dt. (9)

As pODE
T is fixed, minimizing DKL(q0 ‖ pODE

0 ) is equiva-
lent to minimizing JODE(θ), which includes JSM(θ) and
JDiff(θ). While minimizing JSM(θ) reduces the difference
between sθ(·, t) and the data score∇x log qt, it cannot con-
trol the error of JDiff(θ), which includes the difference be-
tween sθ(·, t) and the model score ∇x log pODE

t . As we
show in Fig. 1, only minimizing JSM(θ) may cause prob-
lematic model density of the ScoreODE.
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qt(xt)

Forward SDE (Eqn.(1))

Reverse SDE (Eqn.(2))

Probability flow ODE (Eqn.(5))

pSDE
t (xt)

pODE
t (xt)

approximate∇x log qt by sθ

Eqn. (3)

Eqn. (6)

6= (Appendix. B)

(a) Relationship between qt, pSDE
t and pODE

t .

DKL(q0 ‖ pSDE
0 ) DKL(q0 ‖ pODE

0 )

JSM(θ)
√
JSM(θ) ·

√
JFisher(θ)

first-order SM first-order SM second, third-order SM

(Theorem 4.1, 4.2, 4.3)

(Song et al., 2021) (Theorem 3.1 & Eqn. (11))←minimizing upper bound→

(Theorem 3.2)

(b) Relationship between SM objectives and KL divergence.

Figure 2. An illustration of the theoretical analysis of score-based generative models and score matching (SM) objectives.

3.2. Bounding the KL Divergence of ScoreODEs by
High-Order Score Matching Errors

The KL divergence in Theorem 3.1 includes the model
score function ∇x log pODE

t (xt), which needs ODE solvers
to compute (see Appendix. D for details) and thus is
hard to scale up. Below we derive an upper bound of
DKL(q0 ‖ pODE

0 ) by involving high-order score match-
ing, which can avoid the computation of∇x log pODE

t (xt).
Specifically, we show that by bounding the first, second
and third-order score matching errors for sθ,∇xsθ and
∇x tr(∇xsθ) with the corresponding order score functions2

of qt, we can further upper bound DKL(q0 ‖ pODE
0 ).

Let DF(q ‖ p) := Eq(x)‖∇x log p(x) − ∇x log q(x)‖22
denote the Fisher divergence between two distributions q
and p. Define

JFisher(θ) :=
1

2

∫ T

0

g(t)2DF(qt ‖ pODE
t )dt. (10)

By straightforwardly using Cauchy-Schwarz inequality for
Eqn. (8), we have

JODE(θ) ≤
√
JSM(θ) ·

√
JFisher(θ). (11)

The upper bound shows that we can minimize the KL di-
vergence DKL(q0 ‖ pODE

0 ) of ScoreODE by minimizing
JSM(θ) and JFisher(θ) simultaneously. When sθ(xt, t) ≡
∇x log qt(xt) for all xt ∈ Rd and t ∈ [0, T ], the equality
holds and JODE(θ) = JSM(θ) = 0.

We can regard JFisher(θ) as a weighted Fisher divergence
between qt and pODE

t during t ∈ [0, T ]. Directly comput-
ing the Fisher divergence also needs ODE solvers (see Ap-
pendix.D for details) and is hard to scale up. To address this
problem, we present the following theorem for bounding
DF(qt ‖ pODE

t ), which introduces high-order score match-
ing and avoids the computation costs of ODE solvers.

Theorem 3.2 (Proof in Appendix E.2). Assume that there
exists C > 0, such that for all t ∈ [0, T ] and xt ∈ Rd,

2In this work, we refer to ∇2
x log qt(xt) as the second-order

score function of qt, and∇x tr
(
∇2
x log qt(xt)

)
as the third-order

score function of qt.

‖∇2
x log pODE

t (xt)‖2 ≤ C (where ∇2 denotes the second-
order derivative (Hessian), and ‖ · ‖2 is the spectral norm of
a matrix). And assume that there exist δ1, δ2, δ3 > 0, such
that for all xt ∈ Rd, t ∈ [0, T ], sθ(xt, t) satisfies

‖sθ(xt, t)−∇x log qt(xt)‖2 ≤ δ1,
‖∇xsθ(xt, t)−∇2

x log qt(xt)‖F ≤ δ2,
‖∇x tr(∇xsθ(xt, t))−∇x tr

(
∇2
x log qt(xt)

)
‖2 ≤ δ3,

where ‖ · ‖F is the Frobenius norm of matrices. Then
there exists U(t; δ1, δ2, δ3, C, q) ≥ 0 which depends on
the forward process q while is independent of θ, such that
DF(qt ‖ pODE

t ) ≤ U(t; δ1, δ2, δ3, C, q). Moreover, for all
t ∈ [0, T ], if g(t) 6= 0, then U(t; δ1, δ2, δ3, C, q) is a strictly
increasing function of δ1, δ2 and δ3, respectively.

Theorem 3.2 shows that by bounding the errors between
sθ, ∇xsθ and ∇x tr(∇xsθ) with the first, second and
third-order score functions of qt, we can upper bound
DF(qt ‖ pODE

t ) and then upper bound JFisher(θ). As JSM(θ)
can also be upper bounded by the first-order score matching
error of sθ, we can further upper bound DKL(q0 ‖ pODE

0 )
by the first, second and third-order score matching errors.

Note that the high-order score matching for sθ is compatible
for the traditional SGMs, because the optimal solution for
sθ(xt, t) in the non-parametric limit is still ∇x log qt(xt).
So after minimizing DKL(q0 ‖ pODE

0 ) by high-order score
matching, we can still use sθ for the sample methods in
SGMs, while directly minimizing DKL(q0 ‖ pODE

0 ) by
exact likelihood ODE solvers cannot ensure that (see Ap-
pendix. E.3 for detailed reasons).

4. Error-Bounded High-Order Denoising
Score Matching (DSM)

The analysis in Sec. 3.2 shows that we can upper bound
the KL divergence DKL(q0 ‖ pODE

0 ) of the ScoreODE by
controlling the first, second and third-order score matching
errors of the score model sθ (and its corresponding deriva-
tives) at each time t ∈ [0, T ]. Inspired by this, we generalize
the traditional denoising score matching (DSM) (Vincent,
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2011) to second and third orders to minimize the high-order
score matching errors. In this section, we propose a novel
high-order DSM method, such that the higher-order score
matching error can be exactly bounded by the training error
and the lower-order score matching error. All the proofs in
this section are in Appendix. F.

Without loss of generality, in this section, we focus on
a fixed time t ∈ (0, T ], and propose the error-bounded
high-order DSM method for matching the forward pro-
cess distribution qt at the fixed time t. The whole train-
ing objective for the entire process by t ∈ [0, T ] is de-
tailed in Sec. 5. Moreover, for SGMs, there commonly
exist αt ∈ R and σt ∈ R>0, such that the forward pro-
cess satisfies q(xt|x0) = N (xt|αtx0, σ

2
t I) for x0,xt ∼

qt0(xt,x0) (Song et al., 2020). Therefore, we always as-
sume q(xt|x0) = N (xt|αtx0, σ

2
t I) in the rest of this work.

4.1. First-Order Denoising Score Matching

We present some preliminaries on first-order denoising score
matching (Vincent, 2011; Song et al., 2020) in this section.

The first-order score matching objective JSM(θ) needs the
data score functions∇x log qt(xt) for all t ∈ [0, T ], which
are unknown in practice. To address this issue, SGMs lever-
age the denoising score matching method (Vincent, 2011)
to train the score models. For a fixed time t, one can learn a
first-order score model s1(·, t; θ) : Rd → Rd parameterized
by θ which minimizes

Eqt(xt)
[∥∥s1(xt, t; θ)−∇x log qt(xt)

∥∥2
2

]
,

by optimizing the (first-order) DSM objective:

θ∗ = argmin
θ

Ex0,ε

[
1

σ2
t

∥∥σts1(xt, t; θ) + ε
∥∥2
2

]
, (12)

where ε ∼ N (0, I) and xt = αtx0 + σtε.

4.2. High-Order Denoising Score Matching

In this section, we generalize the first-order DSM to second
and third orders for matching the second-order and third-
order score functions defined in Theorem 3.2. We firstly
present the second-order method below.
Theorem 4.1. (Error-Bounded Second-Order DSM) Sup-
pose that ŝ1(xt, t) is an estimation for the first-order data
score function ∇x log qt(xt), then we can learn a second-
order score model s2(·, t; θ) : Rd → Rd×d parameterized
by θ which minimizes

Eqt(xt)
[∥∥s2(xt, t; θ)−∇2

x log qt(xt)
∥∥2
F

]
,

by optimizing

θ∗ = argmin
θ

Ex0,ε

[
1

σ4
t

∥∥σ2
t s2(xt, t; θ) + I − `1`

>
1

∥∥2
F

]
, (13)

where
`1(ε,x0, t) := σtŝ1(xt, t) + ε,

xt = αtx0 + σtε, ε ∼ N (0, I).
(14)

Moreover, denote the first-order score matching error as
δ1(xt, t) := ‖ŝ1(xt, t)−∇x log qt(xt)‖2, then ∀xt, θ, the
score matching error for s2(xt, t; θ) can be bounded by∥∥s2(xt, t; θ)−∇2

x log qt(xt)
∥∥
F

≤ ‖s2(xt, t, θ)− s2(xt, t; θ
∗)‖F + δ21(xt, t).

Theorem 4.1 shows that the DSM objective in problem (13)
is a valid surrogate for second-order score matching, be-
cause the difference between the model score s2(xt, t; θ)
and the true second-order score ∇2

x log qt(xt) can be
bounded by the training error ‖s2(xt, t; θ)−s2(xt, t; θ

∗)‖F
and the first-order score matching error δ1(xt, t). Note that
previous second-order DSM method proposed in Meng et al.
(2021a) does not have such error-bounded property, and we
refer to Sec. 6 and Appendix F.4 for the detailed comparison.

The DSM objective in problem (13) requires learning a
matrix-valued function ∇2

x log qt(xt), but sometimes we
only need the trace tr

(
∇2
x log qt(xt)

)
of the second-order

score function. Below we present a corollary for only match-
ing the trace of the second-order score function.
Corollary 4.2. (Error-Bounded Trace of Second-Order
DSM) We can learn a second-order trace score model
strace
2 (·, t; θ) : Rd → R which minimizes

Eqt(xt)
[∣∣strace

2 (xt, t; θ)− tr
(
∇2
x log qt(xt)

)∣∣2] ,
by optimizing

θ∗= argmin
θ

Ex0,ε

[
1

σ4
t

∣∣∣σ2
t s

trace
2 (xt, t; θ)+d−‖`1‖22

∣∣∣2] . (15)

The estimation error for strace
2 (xt, t; θ) can be bounded by:∣∣strace

2 (xt, t; θ)− tr
(
∇2
x log qt(xt)

)∣∣
≤ |strace

2 (xt, t; θ)− strace
2 (xt, t; θ

∗)|+ δ21(xt, t).

Finally, we present the third-order DSM method. The score
matching error can also be bounded by the training error
and the first, second-order score matching errors.
Theorem 4.3. (Error-Bounded Third-Order DSM) Sup-
pose that ŝ1(xt, t) is an estimation for ∇x log qt(xt) and
ŝ2(xt, t) is an estimation for ∇2

x log qt(xt), then we can
learn a third-order score model s3(·, t; θ) : Rd → Rd which
minimizes

Eqt(xt)
[∥∥s3(xt, t; θ)−∇x tr

(
∇2
x log qt(xt)

)∥∥2
2

]
,

by optimizing

θ∗ = argmin
θ

Ex0,ε

[
1

σ6
t

∥∥σ3
t s3(xt, t; θ) + `3

∥∥2
2

]
(16)
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where

`1(ε,x0, t) := σtŝ1(xt, t) + ε,

`2(ε,x0, t) := σ2
t ŝ2(xt, t) + I,

`3(ε,x0, t) :=
(
‖`1‖22I − tr(`2)I − 2`2

)
`1,

xt = αtx0 + σtε, ε ∼ N (0, I).

(17)

Denote the first-order score matching error as δ1(xt, t) :=
‖ŝ1(xt, t) − ∇x log qt(xt)‖2 and the second-order
score matching errors as δ2(xt, t) := ‖ŝ2(xt, t) −
∇2
x log qt(xt)‖F and δ2,tr(xt, t) := | tr(ŝ2(xt, t)) −

tr
(
∇2
x log qt(xt)

)
|. Then ∀xt, θ, the score matching error

for s3(xt, t; θ) can be bounded by:∥∥s3(xt, t; θ)−∇x tr
(
∇2
x log qt(xt)

)∥∥
2

≤ ‖s3(xt, t; θ)− s3(xt, t; θ
∗)‖2 +

(
δ21 + δ2,tr + 2δ2

)
δ21

Theorem 4.3 shows that the third-order score matching
needs first-order score matching, second-order score match-
ing and trace of second-order score matching. The third-
order score matching error can also be bounded by the train-
ing error and the lower-order score matching errors. We be-
lieve that our construction for the error-bounded high-order
DSM can be extended to even higher orders by carefully
designing the training objectives. In this paper, we only
focus on the second and third-order methods, and leave this
extension for future work.

5. Training Score Models by High-Order DSM
Building upon the high-order DSM for a specific time t (see
Sec. 4), we present our algorithm to train ScoreODEs in
the perspective of maximum likelihood by considering all
timesteps t ∈ [0, T ]. Practically, we further leverage the
“noise-prediction” trick (Kingma et al., 2021; Ho et al., 2020)
for variance reduction and the Skilling-Hutchinson trace
estimator (Skilling, 1989; Hutchinson, 1989) to compute
the involved high-order derivatives efficiently. The whole
training algorithm is presented detailedly in Appendix. H.

5.1. Variance Reduction by Time-Reweighting

Theoretically, to train score models for all t ∈
[0, T ], we need to integrate the DSM objectives in
Eqn. (12)(13)(15)(16) from t = 0 to t = T , which needs
ODE solvers and is time-consuming. Instead, in practice,
we follow the method in (Song et al., 2020; Ho et al., 2020)
which uses Monte-Carlo method to unbiasedly estimate the
objectives by sample t ∈ [0, T ] from a proposal distribu-
tion p(t), avoiding ODE solvers. The main problem for
the Monte-Carlo method is that sometimes the sample vari-
ance of the objectives may be large due to the different
value of 1

σt
. To reduce the variance, we take the time-

reweighted objectives by multiplying σ2
t ,σ4

t ,σ6
t with the cor-

responding first, second, third-order score matching objec-
tives at each time t, which is known as the “noise-prediction”
trick (Kingma et al., 2021; Ho et al., 2020) for the first-order
DSM objective. Specifically, assume that x0 ∼ q0(x0), the
time proposal distribution p(t) = U [0, T ] is the uniform dis-
tribution in [0, T ], the random noise ε ∼ N (0, I) follows
the standard Gaussian distribution, and let xt = αtx0 +σtε.
The training objective for the first-order DSM in Eqn. (12)
through all t ∈ [0, T ] is

J (1)
DSM(θ) := Et,x0,ε

[∥∥σtsθ(xt, t) + ε
∥∥2
2

]
, (18)

which empirically has low sample variance (Song et al.,
2020; Ho et al., 2020).

As for the second and third-order DSM objectives, we take
ŝ1(xt, t) := sθ(xt, t) for the first-order score function esti-
mation, and ŝ2(xt, t) := ∇xsθ(xt, t) for the second-order
score function estimation, and both disable the gradient
computations for θ (which can be easily implemented by
stop gradient or detach). The reason for disabling
gradients is because the high-order DSM only needs the es-
timation values of the lower-order score functions, as shown
in Theorem. 4.1 and 4.3. The training objectives through
all t ∈ [0, T ] for the second-order DSM in Eqn. (13), for
the trace of second-order DSM in Eqn. (15) and for the
third-order DSM in Eqn. (16) are

J (2)
DSM(θ) :=Et,x0,ε

[∥∥σ2
t∇xsθ(xt, t) + I − `1`>1

∥∥2
F

]
,

J (2,tr)
DSM (θ) :=Et,x0,ε

[∣∣σ2
t tr(∇xsθ(xt, t))+d−‖`1‖22

∣∣2],
J (3)

DSM(θ) :=Et,x0,ε

[∥∥σ3
t∇xtr(∇xsθ(xt, t))+ `3

∥∥2
2

]
,

respectively, where `1, `3 are the same as that in Eqn. (17).
Combining with the first-order objective in Eqn. (18), our
final training objective is

min
θ
J (1)

DSM(θ)+λ1

(
J (2)

DSM(θ) + J (2,tr)
DSM (θ)

)
+λ2J (3)

DSM(θ),

(19)
where λ1, λ2 ≥ 0 are hyperparameters, and we discuss in
Appendix. I.1 for details.

Remark. Although as shown in Eqn. (7), we can exactly
compute log pODE

0 (x0) for a given data point x0 via solving
the ODE (Chen et al., 2018; Grathwohl et al., 2018), this
method is hard to scale up for the large neural networks
used in SGMs. For example, it takes 2 ∼ 3 minutes for
evaluating log pODE

0 for a single batch of the ScoreODE
used in (Song et al., 2020). Instead, our proposed method
leverages Monte-Carlo methods to avoid the ODE solvers.

5.2. Scalability and Numerical Stability

As the second and third-order DSM objectives need to com-
pute the high-order derivatives of a neural network and are
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expensive for high-dimensional data, we use the Skilling-
Hutchinson trace estimator (Skilling, 1989; Hutchinson,
1989) to unbiasedly estimate the trace of the Jacobian (Grath-
wohl et al., 2018) and the Frobenius norm of the Jaco-
bian (Finlay et al., 2020). The detailed objectives for high-
dimensional data can be found in Appendix. G.

In practice, we often face numerical instability problems
for t near to 0. We follow Song et al. (2021) to choose a
small starting time ε > 0, and both of the training and the
evaluation are performed for t ∈ [ε, T ] instead of [0, T ].
Note that the likelihood evaluation is still exact, because we
use pODE

ε (x0) to compute the log-likelihood of x0, which is
still a well-defined density model (Song et al., 2021).

6. Related Work
ScoreODEs are special formulations of Neural ODEs
(NODEs) (Chen et al., 2018), and our proposed method can
be viewed as maximum likelihood training of NODEs by
high-order score matching. Traditional maximum likelihood
training for NODEs aims to match the NODE distribution
at t = 0 with the data distribution, and it cannot control the
distribution between 0 and T . Finlay et al. (2020) show that
training NODEs by simply maximizing likelihood could
result in unnecessary complex dynamics, which is hard to
solve. Instead, our high-order score matching objective
is to match the distributions between the forward process
distribution and the NODE distribution at each time t, and
empirically the dynamics is kind of smooth. Moreover, our
proposed algorithm uses the Monto-Carlo method to un-
biasedly estimate the objectives, which does not need any
black-box ODE solvers. Therefore, our algorithm is suitable
for maximum likelihood training for large-scale NODEs.

Recently, Meng et al. (2021a) propose a high-order DSM
method for estimating the second-order data score func-
tions. However, the training objective of our proposed error-
bounded high-order DSM is different from that of Meng
et al. (2021a). Our proposed algorithm can guarantee a
bounded error of the high-order score matching exactly
by the lower-order estimation errors and the training error,
while the score matching error raised by minimizing the
objective in Meng et al. (2021a) may be unbounded, even
when the lower-order score matching error is small and
the training error of the high-order DSM is zero (see Ap-
pendix F.4 for detailed analysis). Moreover, our method can
also be used to train a separate high-order score model in
other applications, such as uncertainty quantification and
Ozaki sampling presented in Meng et al. (2021a).

7. Experiments
In this section, we demonstrate that our proposed high-
order DSM algorithm can improve the likelihood of Score-

0.0 0.2 0.4 0.6 0.8 1.0
t

10 3
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Fisher, First
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Figure 3. `Fisher(t) and `SM(t) of ScoreODEs (VE type) on 1-D
mixture of Gaussians, trained by minimizing the first, second,
third-order score matching objectives.

ODEs, while retaining the high sample quality of the cor-
responding ScoreSDEs. Particularly, we use the Variance
Exploding (VE) (Song et al., 2020) type diffusion mod-
els, which empirically have shown high sample quality by
the ScoreSDE but poor likelihood by the ScoreODE (Song
et al., 2021) when trained by minimizing the first-order
score matching objective JSM(θ). We implement our exper-
iments by JAX (Bradbury et al., 2018), which is efficient
for computing the derivatives of the score models. In all
experiments, we choose the start time ε = 10−5, which
follows the default settings in Song et al. (2020). In this
section, we refer to “first-order score matching” as mini-
mizing the objective in Eqn. (19) with λ1 = λ2 = 0, and
“second-order score matching” as minimizing the one with
λ2 = 0. Please see Appendix. I.1 for detailed settings about
λ1 and λ2. The released code can be found at https:
//github.com/LuChengTHU/mle_score_ode.

Remark. Song et al. (2021) use a proposal distribution
t ∼ p(t) to adjust the weighting for different time t to
minimize JSM(θ). In our experiments, we mainly focus on
the VE type, whose proposal distribution p(t) = U [0, T ] is
the same as that of our final objective in Eqn. (19).

7.1. Example: 1-D Mixture of Gaussians
We take an example to demonstrate how the high-order score
matching training impacts the weighted Fisher divergence
JFisher(θ) and the model density of ScoreODEs. Let q0
be a 1-D Gaussian mixture distribution as shown in Fig. 1
(a). We train a score model of VE type by minimizing the
first-order score matching objective JSM(θ), and use the
corresponding ScoreODE to evaluate the model density, as
shown in Fig. 1 (b). The model density achieved by only
first-order score matching is quite different from the data
distribution at some data points. However, by third-order
score matching, the model density in Fig. 1 (c) is quite
similar to the data distribution, showing the effectiveness of
our proposed algorithm.

We further analyze the difference of JFisher(θ) between the

https://github.com/LuChengTHU/mle_score_ode
https://github.com/LuChengTHU/mle_score_ode


Maximum Likelihood Training for Score-Based Diffusion ODEs

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(a) First-order score matching
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(b) Second-order score matching

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(c) Third-order score matching

Figure 4. Model density of ScoreODEs (VE type) on 2-D checkerboard data.

first, second, third-order score matching training. As q0 is a
Gaussian mixture distribution, we can prove that each qt is
also a Gaussian mixture distribution, and ∇x log qt can be
analytically computed. Denote

`Fisher(t) :=
1

2
g(t)2DF(qt ‖ pODE

t ),

`SM(t) :=
1

2
g(t)2Eqt(xt)‖sθ(xt, t)−∇xlog qt(xt)‖22,

which are the integrands of each time t for JSM(θ) and
JFisher(θ). We use the method in Appendix. D to compute
DF(qt ‖ pODE

t ), and evaluate `Fisher(t) and `SM(t) from
t = ε to t = T with 100 points of the ScoreODEs trained
by first, second, third-order denoising score matching ob-
jectives. As shown in Fig. 3, although `SM(t) is small when
minimizing first-order score matching objective, `Fisher(t) is
rather large for most t, which means JFisher(θ) is also large.
However, the second and third score matching gradually
reduce `Fisher(t), which shows that high-order score match-
ing training can reduce `Fisher(t) and then reduce JFisher(θ).
Such results empirically validate that controlling the high-
order score matching error can control the Fisher divergence,
as proposed in Theorem 3.2.

7.2. Density Modeling on 2-D Checkerboard Data
We then train ScoreODEs (VE type) by the first, second,
third-order score matchings on the checkerboard data whose
density is multi-modal, as shown in Fig. 4. We use a simple
MLP neural network with Swish activations (Ramachandran
et al., 2017), and the detailed settings are in Appendix. I.3.

For the second and third-order score matchings, we do not
use any pre-trained lower-order score models. Instead, we
train the score model and its first, second-order derivatives
from scratch, using the objective in Eqn. (19). The model
density by the first-order score matching is rather poor, be-
cause it cannot control the value of ∇x log pODE

t in JDiff(θ)
in Eqn. (9). The second-order score matching can control
part of∇x log pODE

t and improve the model density, while
the third-order score matching can reduce the Fisher diver-
gence DF(qt ‖ pODE

t ) and achieve excellent model density.
Such results show the effectiveness of our error-bounded
high-order denoising score matching methods, and accord

Table 1. Negative log-likelihood (NLL) in bits/dim (bpd) and sam-
ple quality (FID scores) on CIFAR-10 and ImageNet 32x32.

Model CIFAR-10 ImageNet
32x32

NLL ↓ FID ↓ NLL ↓
VE (Song et al., 2020) 3.66 2.42 4.21
VE (second) (ours) 3.44 2.37 4.06
VE (third) (ours) 3.38 2.95 4.04
VE (deep) (Song et al., 2020) 3.45 2.19 4.21
VE (deep, second) (ours) 3.35 2.43 4.05
VE (deep, third) (ours) 3.27 2.61 4.03

with our theoretical analysis in Theorem 3.1 and 3.2.

7.3. Density Modeling on Image Datasets
We also train ScoreODEs (VE type) on both the CIFAR-
10 dataset (Krizhevsky, 2009) and the ImageNet 32x32
dataset (Deng et al., 2009), which are two of the most pop-
ular datasets for generative modeling and likelihood eval-
uation. We use the estimated training objectives by trace
estimators, which are detailed in Appendix. G. We use the
same neural networks and hyperparameters as the NCSN++
cont. model in (Song et al., 2020) (denoted as VE) and the
NCSN++ cont. deep model in (Song et al., 2020) (denoted
as VE (deep)), respectively (see detailed settings in Ap-
pendix. I.4 and Appendix. I.5). We evaluate the likelihood
by the ScoreODE pODE

ε , and sample from the ScoreSDE by
the PC sampler (Song et al., 2020). As shown in Table 1, our
proposed high-order score matching can improve the likeli-
hood performance of ScoreODEs, while retraining the high
sample quality of the corresponding ScoreSDEs (see Ap-
pendix. J for samples). Moreover, the computation costs of
the high-order DSM objectives are acceptable because of the
trace estimators and the efficient “Jacobian-vector-product”
computation in JAX. We list the detailed computation costs
in Appendix. I.4.

We also compare the VE, VP and subVP types of Score-
ODEs trained by the first-order DSM and the third-order
DSM, and the detailed results are listed in Appendix. J.
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8. Conclusion
We propose maximum likelihood training for ScoreODEs
by novel high-order denoising score matching methods. We
analyze the relationship between the score matching objec-
tives and the KL divergence from the data distribution to the
ScoreODE distribution. Based on it, we provide an upper
bound of the KL divergence, which can be controlled by
minimizing the first, second, and third-order score matching
errors of score models. To minimize the high-order score
matching errors, we further propose a high-order DSM algo-
rithm, such that the higher-order score matching error can
be bounded by exactly the training error and the lower-order
score matching errors. The optimal solution for the score
model is still the same as the original training objective of
SGMs. Empirically, our method can greatly improve the
model density of ScoreODEs of the Variance Exploding
type on several density modeling benchmarks. Finally, we
believe that our training method is also suitable for other
SGMs, including the Variance Preserving (VP) type (Song
et al., 2020), the latent space type (Vahdat et al., 2021) and
the critically-damped Langevin diffusion type (Dockhorn
et al., 2021). Such extensions are left for future work.

Acknowledgements
This work was supported by National Key Research and
Development Project of China (No. 2021ZD0110502);
NSF of China Projects (Nos. 62061136001, 61620106010,
62076145, U19B2034, U1811461, U19A2081, 6197222,
62106120); Beijing NSF Project (No. JQ19016);
Beijing Outstanding Young Scientist Program NO.
BJJWZYJH012019100020098; a grant from Tsinghua In-
stitute for Guo Qiang; the NVIDIA NVAIL Program with
GPU/DGX Acceleration; the High Performance Computing
Center, Tsinghua University; and Major Innovation & Plan-
ning Interdisciplinary Platform for the “Double-First Class”
Initiative, Renmin University of China.

References
Anderson, B. D. Reverse-time diffusion equation models.

Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: Composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. arXiv preprint arXiv:2009.00713, 2020.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. Neural ordinary differential equations. arXiv preprint
arXiv:1806.07366, 2018.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L.
ImageNet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255. IEEE, 2009.

Dhariwal, P. and Nichol, A. Diffusion models beat GANs
on image synthesis. arXiv preprint arXiv:2105.05233,
2021.

Dockhorn, T., Vahdat, A., and Kreis, K. Score-based gener-
ative modeling with critically-damped langevin diffusion.
arXiv preprint arXiv:2112.07068, 2021.

Finlay, C., Jacobsen, J.-H., Nurbekyan, L., and Oberman,
A. How to train your Neural ODE: the world of Jacobian
and kinetic regularization. In International Conference
on Machine Learning, pp. 3154–3164. PMLR, 2020.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I.,
and Duvenaud, D. FFJORD: Free-form continuous dy-
namics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. arXiv preprint arXiv:2006.11239, 2020.

Huang, C.-W., Lim, J. H., and Courville, A. A variational
perspective on diffusion-based generative models and
score matching. arXiv preprint arXiv:2106.02808, 2021.

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

Hyvärinen, A. and Dayan, P. Estimation of non-normalized
statistical models by score matching. Journal of Machine
Learning Research, 6(4), 2005.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P., Salimans, T., Poole, B., and Ho, J. Varia-
tional diffusion models. arXiv preprint arXiv:2107.00630,
2021.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.
arXiv preprint arXiv:2009.09761, 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Luo, S. and Hu, W. Diffusion probabilistic models for 3D
point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 2837–2845, 2021.

http://github.com/google/jax


Maximum Likelihood Training for Score-Based Diffusion ODEs

Meng, C., Song, Y., Li, W., and Ermon, S. Estimating
high order gradients of the data distribution by denoising.
Advances in Neural Information Processing Systems, 34,
2021a.

Meng, C., Song, Y., Song, J., Wu, J., Zhu, J.-Y., and Ermon,
S. SDEdit: Image synthesis and editing with stochastic
differential equations. arXiv preprint arXiv:2108.01073,
2021b.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Skilling, J. The eigenvalues of mega-dimensional matrices.
In Maximum Entropy and Bayesian Methods, pp. 455–
466. Springer, 1989.

Song, Y. and Ermon, S. Generative modeling by estimat-
ing gradients of the data distribution. arXiv preprint
arXiv:1907.05600, 2019.

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. arXiv preprint
arXiv:2006.09011, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Song, Y., Durkan, C., Murray, I., and Ermon, S. Maximum
likelihood training of score-based diffusion models. arXiv
e-prints, pp. arXiv–2101, 2021.

Vahdat, A., Kreis, K., and Kautz, J. Score-based
generative modeling in latent space. arXiv preprint
arXiv:2106.05931, 2021.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural computation, 23(7):1661–
1674, 2011.

Zhou, L., Du, Y., and Wu, J. 3D shape generation and
completion through point-voxel diffusion. arXiv preprint
arXiv:2104.03670, 2021.



Maximum Likelihood Training for Score-Based Diffusion ODEs

Table 2. Three distributions: qt(xt), pSDE
t (xt) and pODE

t (xt) and their corresponding equivalent SDEs / ODEs.

Distribution Dynamics type Formulation

qt(xt)
Forward SDE dxt = f(xt, t)dt+ g(t)dwt
Reverse SDE dxt = [f(xt, t)− g(t)2∇x log qt(xt)]dt+ g(t)dw̄t

Probability flow ODE dxt
dt = f(xt, t)− 1

2g(t)2∇x log qt(xt)

pSDE
t (xt)

Forward SDE dxt = [f(xt, t) + g(t)2(∇ log pSDE
t (xt)− sθ(xt, t))]dt+ g(t)dwt

Reverse SDE dxt = [f(xt, t)− g(t)2sθ(xt, t)]dt+ g(t)dw̄t
Probability flow ODE dxt

dt = f(xt, t)− g(t)2sθ(xt, t) + 1
2g(t)2∇x log pSDE

t (xt)

pODE
t (xt)

Forward SDE \
Reverse SDE \

Probability flow ODE dxt
dt = f(xt, t)− 1

2g(t)2sθ(xt, t)

A. Assumptions
We follow the regularity assumptions in (Song et al., 2021) to ensure the existence of reverse-time SDEs and probability
flow ODEs and the correctness of the “integration by parts” tricks for the computation of KL divergence. And to ensure the
existence of the third score function, we change the assumptions of differentiability. For completeness, we list all these
assumptions in this section.

For simplicity, in the Appendix sections, we use∇(·) to denote∇x(·) and omit the subscript x. And we denote∇ ·h(x) :=
tr(∇h(x)) as the divergence of a function h(x) : Rd → Rd.

Assumption A.1. We make the following assumptions, most of which are presented in (Song et al., 2021):

1. q0(x) ∈ C3 and Eq0(x)[‖x‖22] <∞.

2. ∀t ∈ [0, T ] : f(·, t) ∈ C2. And ∃C > 0, ∀x ∈ Rd, t ∈ [0, T ] : ‖f(x, t)‖2 ≤ C(1 + ‖x‖2).

3. ∃C > 0,∀x,y ∈ Rd : ‖f(x, t)− f(y, t)‖2 ≤ C‖x− y‖2.

4. g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.

5. For any open bounded set O,
∫ T
0

∫
O ‖qt(x)‖22 + d · g(t)2‖∇qt(x)‖22dxdt <∞.

6. ∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ‖∇qt(x)‖22 ≤ C(1 + ‖x‖2).

7. ∃C > 0,∀x,y ∈ Rd : ‖∇ log qt(x)−∇ log qt(y)‖2 ≤ C‖x− y‖2.

8. ∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ‖sθ(x, t)‖2 ≤ C(1 + ‖x‖2).

9. ∃C > 0,∀x,y ∈ Rd : ‖sθ(x, t)− sθ(y, t)‖2 ≤ C‖x− y‖2.

10. Novikov’s condition: E
[
exp

(
1
2

∫ T
0
‖∇ log qt(x)− sθ(x, t)‖22dt

)]
<∞.

11. ∀t ∈ [0, T ],∃k > 0 : qt(x) = O(e−‖x‖
k
2 ), pSDE

t (x) = O(e−‖x‖
k
2 ), pODE

t (x) = O(e−‖x‖
k
2 ) as ‖x‖2 →∞.

B. Distribution gap between score-based diffusion SDEs and ODEs
We list the corresponding equivalent SDEs and ODEs of qt(xt), pSDE

t (xt) and pODE
t (xt) in Table 2. In most cases, qt(xt),

pSDE
t (xt) and pODE

t (xt) are different distributions, which we will prove in this section.

According to the reverse SDE and probability flow ODE listed in the table, it is obvious that when sθ(xt, t) 6= ∇ log qt(xt),
qt(xt) and pSDE

t are different, and qt(xt), pODE
t are different. Below we show that in most cases, pSDE

t and pODE
t are also

different.
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Firstly, we should notice that the probability flow ODE of the ScoreSDE in Eqn. (3) is

dxt
dt

= f(xt, t)− g(t)2sθ(xt, t) +
1

2
g(t)2∇x log pSDE

t (xt), (20)

where the distribution of xt during the trajectory is also pSDE
t (xt). Below we show that for the commonly-used SGMs, in

most cases, the probability flow ODE in Eqn. (20) of the ScoreSDE is different from the ScoreODE in Eqn. (6).

Proposition B.1. Assume f(xt, t) = α(t)xt is a linear function of xt for all xt ∈ Rd and t ∈ [0, T ], where α(t) ∈ R. If
for all xt ∈ Rd and t ∈ [0, T ], sθ(xt, t) ≡ ∇x log pSDE

t (xt), then pSDE
t is a Gaussian distribution for all t ∈ [0, T ].

Proof. If sθ(·, t) ≡ pSDE
t , then for any x ∈ Rd, by Fokker-Planck equation, we have

∂pSDE
t (x)

∂t
= ∇x ·

((
f(x, t)− 1

2
g(t)2∇x log pSDE

t (x)

)
pSDE
t (x)

)
. (21)

On the other hand, if we start the forward process in Eqn. (1) with x0 ∼ pSDE
0 , and the distribution of xt at time t during its

trajectory follows the same equation as Eqn. (21). Therefore, the distribution of xt is also pSDE
t .

As f(xt, t) = α(t)xt is linear to xt and g(t) is independent of xt, there exists a function µ(t) : R → R and a function
σ̃(t) : R → R>0, such that pSDE(xt|x0) = N (xt|µ(t)x0, σ̃(t)2I). Therefore, for any xT ∼ pSDE

T (xT ), there exists a
random variable εT which is independent of x0, such that ε ∼ N (0, I) and xT = µ(t)x0 + σ(t)εT . As xT ∼ N (0, σ2

T I),
by Cramér’s decomposition theorem, because the random xT is normally distributed and admits a decomposition as a
sum of two independent random variables, we can conclude that µ(t)x0 also follows a Gaussian distribution. As µ(t) is
a scalar function independent of xt, we can further conclude that x0 follows a Gaussian distribution. As pSDE(xt|x0) =
N (xt|µ(t)x0, σ̃(t)2I) is a Gaussian distribution whose mean is linear to x0 and covariance is independent of x0, we have
pSDE
t (xt) is a Gaussian distribution for all t.

The assumption for f(xt, t) is true for the common SGMs, because for VPSDE, VESDE and subVPSDE, f(xt, t) are
all linear to xt, which enables fast sampling for denoising score matching (Song et al., 2020). In most cases, pSDE

0 is
not a Gaussian distribution because we want to minimize DKL(q0 ‖ pSDE

0 ). Therefore, there exists t ∈ [0, T ] such that
sθ(·, t) 6= ∇x log pSDE

t , and then the probability flow ODE in Eqn. (20) is different from the ScoreODE in Eqn. (6). In
conclusion, in most cases, pSDE

0 6= pODE
0 , and minimizing JSM(θ) is minimizing DKL(q0 ‖ pSDE

0 ), but is not necessarily
minimizing DKL(q0 ‖ pODE

0 ).

Remark. The ”variational gap” of ScoreSDEs in (Huang et al., 2021) is the gap between the “joint distribution” KL
divergence of pSDE

0:T and “marginal distribution” KL divergence of pSDE
0 , which does not include pODE

t . We refer to Appendix C
for further discussions.

Remark. When JSM(θ) = 0, we have sθ(·, t) ≡ ∇x log qt. In this case, the ScoreSDE in Eqn. (3) becomes the reverse
diffusion SDE in Eqn. (2), and the ScoreODE in Eqn. (6) becomes the probability flow ODE in Eqn. (5). However, if
f(xt, t) is linear to xt and q0(x0) is not Gaussian, we have qT is not Gaussian, so qT 6= pSDE

T and qT 6= pODE
T . Therefore,

in this case, we still have sθ(·, T ) = ∇x log qT 6= ∇x log pSDE
T , so the probability flow in Eqn. (20) of the ScoreSDE is

still different from the ScoreODE in Eqn. (6), leading to the fact that pSDE
0 6= pODE

0 . (But the difference is extremely small,
because they are both very similar to q0).

C. KL divergence and variational gap of ScoreSDEs
(Song et al., 2021) give an upper bound of marginal KL divergence DKL(q0 ‖ pSDE

0 ) of ScoreSDE by calculating the joint
KL divergence DKL(q0:T ‖ pSDE

0:T ) (path measure) using Girsanov Theorem and Itô integrals. The upper bound is:

DKL(q0 ‖ pSDE
0 ) ≤ DKL(q0:T ‖ pSDE

0:T ) = DKL(qT ‖ pSDE
T ) +

1

2

∫ T

0

g(t)2Eqt(xt)
[
‖sθ(xt, t)−∇x log qt(xt)‖22

]
dt (22)

In this section, we derive the KL divergence DKL(q0 ‖ pSDE
0 ) and the variational gap of the ScoreSDE. We first propose the

KL divergence DKL(q0 ‖ pSDE
0 ) in the following proposition.
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Proposition C.1. The KL divergence DKL(q0 ‖ pSDE
0 ) of the ScoreSDE is

DKL(q0 ‖ pSDE
0 ) = DKL(qT ‖ pSDE

T ) +
1

2

∫ T

0

g(t)2Eqt(xt)
[
‖sθ(xt, t)−∇x log qt(xt)‖22 − ‖sθ(xt, t)−∇x log pSDE

t (xt)‖22
]
dt

(23)

Proof. By Eqn. (20), we denote the probability flow ODE of ScoreSDE as

dxt
dt

= hpSDE(xt, t) := f(xt, t)− g(t)2sθ(xt, t) +
1

2
g(t)2∇x log pSDE

t (xt), (24)

First we rewrite the KL divergence from q0 to pSDE
0 in an integral form

DKL(q0 ‖ pSDE
0 ) = DKL(qT ‖ pSDE

T )−DKL(qT ‖ pSDE
T ) +DKL(q0 ‖ pSDE

0 )

= DKL(qT ‖ pSDE
T )−

∫ T

0

∂DKL(qt ‖ pSDE
t )

∂t
dt (25)

Given a fixed x, by the special case of Fokker-Planck equation with zero diffusion term, we can derive the time-evolution of
ODE’s associated probability density function by:

∂qt(x)

∂t
= −∇x · (hq(x, t)qt(x)),

∂pSDE
t (x)

∂t
= −∇x · (hpSDE(x, t)pSDE

t (x)) (26)

Then we can expand the time-derivative of DKL(qt ‖ pSDE
t ) as

∂DKL(qt ‖ pSDE
t )

∂t
=

∂

∂t

∫
qt(x) log

qt(x)

pSDE
t (x)

dx

=

∫
∂qt(x)

∂t
log

qt(x)

pSDE
t (x)

dx+

∫
∂qt(x)

∂t
dx︸ ︷︷ ︸

=0

−
∫

qt(x)

pSDE
t (x)

∂pSDE
t (x)

∂t
dx

= −
∫
∇x · (hq(x, t)qt(x)) log

qt(x)

pSDE
t (x)

dx+

∫
qt(x)

pSDE
t (x)

∇x · (hpSDE(x, t)pSDE
t (x))dx

=

∫
(hq(x, t)qt(x))>∇x log

qt(x)

pSDE
t (x)

dx−
∫

(hpSDE(x, t)pSDE
t (x))>∇x

qt(x)

pSDE
t (x)

dx (27)

=

∫
qt(x)

[
h>q (x, t)− h>pSDE(x, t)

] [
∇x log qt(x)−∇x log pSDE

t (x)
]

dx

= −1

2
g(t)2Eqt(x)

[(
∇x log qt(x) +∇x log pSDE

t (x)− 2sθ(x, t)
)>(∇x log qt(x)−∇x log pSDE

t (x)
)]

= −1

2
g(t)2Eqt(x)

[
‖sθ(x, t)−∇x log qt(x)‖22 − ‖sθ(x, t)−∇x log pSDE

t (x)‖22
]

where Eqn. (27) is due to integration by parts under the Assumption. A.1(11), which shows that limx→∞ hq(x, t)qt(x) = 0
and limx→∞ hpSDE(x, t)pSDE

t (x) = 0 for all t ∈ [0, T ]. Combining with Eqn. (25), we can finish the proof.

Thus by Eqn. (22) and Proposition C.1, the expectation of the variational gap for pSDE
0 under data distribution q0 is

Gap(q0, p
SDE
0 ) := DKL(q0:T ‖ pSDE

0:T )−DKL(q0 ‖ pSDE
0 )

=
1

2

∫ T

0

g(t)2Eqt(xt)
[
‖sθ(xt, t)−∇x log pSDE

t (xt)‖22
]

dt (28)

Note that this is equivalent to the expectation of the variational gap in (Huang et al., 2021). This expression tells us that

Gap(q0, p
SDE
0 ) = 0⇔ ∀xt ∈ Rd, t ∈ [0, T ], sθ(xt, t) ≡ ∇x log pSDE

t (xt). (29)

Therefore, in practice, we always have Gap(q0, p
SDE
0 ) > 0 since according to Proposition B.1, Gap(q0, p

SDE
0 ) = 0 means

that pSDE
t is a Gaussian distribution for all t ∈ [0, T ], which doesn’t match real data.

Besides, we should notice that the variational gap Gap(q0, p
SDE
0 ) is not necessarily related to the KL divergence of ScoreODE,

because in practice pSDE
0 6= pODE

0 .
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D. Instantaneous change of score function of ODEs
Theorem D.1. (Instantaneous Change of Score Function). Let z(t) ∈ Rd be a finite continuous random variable with
probability p(z(t), t) describing by an ordinary differential equation dz(t)

dt = f(z(t), t). Assume that f ∈ C3(Rd+1), then
for each time t, the score function∇z log p(z(t), t) follows a differential equation:

d∇z log p(z(t), t)

dt
=−∇z (tr(∇zf(z(t), t)))

− (∇zf(z(t), t))
>∇z log p(z(t), t)

(30)

Proof. Given a fixed x, by the special case of Fokker-Planck equation with zero diffusion term, we have

∂p(z, t)

∂t
= −∇z · (f(z, t)p(z, t)) (31)

So

∂ log p(z, t)

∂t
=

1

p(z, t)

∂p(z, t)

∂t
(32)

= −∇z · f(z, t)− f(z, t)>∇z log p(z, t) (33)

and

∂∇z log p(z, t)

∂t
= ∇z

∂ log p(z, t)

∂t
(34)

= −∇z (∇z · f(z, t))−∇z
(
f(z, t)>∇z log p(z, t)

)
(35)

Then assume z(t) follows the trajectory of ODE dz(t)
dt = f(z(t), t), the total derivative of score function ∇z log p(z(t), t)

w.r.t. t is

d∇z log p(z(t), t)

dt
=
∂∇z log p(z(t), t)

∂z

dz(t)

dt
+
∂∇z log p(z(t), t)

∂t
(36)

= ∇2
z log p(z(t), t)f(z(t), t)−∇z (∇z · f(z(t), t))−∇z

(
f(z(t), t)>∇z log p(z(t), t)

)
(37)

= −∇z (∇z · f(z(t), t))− (∇zf(z(t), t))
>∇z log p(z(t), t) (38)

By Theorem D.1, we can compute∇x log pODE
0 (x0) by firstly solving the forward ODE dxt

dt = hp(xt, t) from 0 to T to get
xT , then solving a reverse ODE of (xt,∇x log pODE

t (xt)) with the initial value (xT ,∇x log pODE
T (xT )) from T to 0.

E. KL divergence of ScoreODEs
In this section, we propose the proofs for Sec. 3.

E.1. Proof of Theorem 3.1

Proof. First we rewrite the KL divergence from q0 to pODE
0 in an integral form

DKL(q0 ‖ pODE
0 ) = DKL(qT ‖ pODE

T )−DKL(qT ‖ pODE
T ) +DKL(q0 ‖ pODE

0 ) (39)

= DKL(qT ‖ pODE
T )−

∫ T

0

∂DKL(qt ‖ pODE
t )

∂t
dt. (40)

Given a fixed x, by the special case of Fokker-Planck equation with zero diffusion term, we can derive the time-evolution of
ODE’s associated probability density function by:

∂qt(x)

∂t
= −∇x · (hq(x, t)qt(x)),

∂pODE
t (x)

∂t
= −∇x · (hp(x, t)pODE

t (x)). (41)
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Then we can expand the time-derivative of DKL(qt ‖ pODE
t ) as

∂DKL(qt ‖ pODE
t )

∂t
=

∂

∂t

∫
qt(x) log

qt(x)

pODE
t (x)

dx (42)

=

∫
∂qt(x)

∂t
log

qt(x)

pODE
t (x)

dx+

∫
∂qt(x)

∂t
dx︸ ︷︷ ︸

=0

−
∫

qt(x)

pODE
t (x)

∂pODE
t (x)

∂t
dx (43)

= −
∫
∇x · (hq(x, t)qt(x)) log

qt(x)

pODE
t (x)

dx+

∫
qt(x)

pODE
t (x)

∇x · (hp(x, t)pODE
t (x))dx (44)

=

∫
(hq(x, t)qt(x))>∇x log

qt(x)

pODE
t (x)

dx−
∫

(hp(x, t)p
ODE
t (x))>∇x

qt(x)

pODE
t (x)

dx (45)

=

∫
qt(x)

[
h>q (x, t)− h>p (x, t)

] [
∇x log qt(x)−∇x log pODE

t (x)
]

dx (46)

= −1

2
g(t)2Eqt(x)

[
(sθ(x, t)−∇x log qt(x))

> (∇x log pODE
t (x)−∇x log qt(x)

)]
, (47)

where Eqn. (45) is due to integration by parts under the Assumption. A.1(11), which shows that limx→∞ hq(x, t)qt(x) = 0
and limx→∞ hp(x, t)p

ODE
t (x) = 0 for all t ∈ [0, T ]. Combining with Eqn. (40), we can conclude that

DKL(q0 ‖ pODE
0 )

= DKL(qT ‖ pODE
T ) +

1

2

∫ T

0

g(t)2Eqt(xt)
[
(sθ(xt, t)−∇ log qt(xt))

> (∇ log pODE
t (xt)−∇ log qt(xt)

)]
dt

= DKL(qT ‖ pODE
T ) + JODE(θ)

= DKL(qT ‖ pODE
T ) + JSM(θ) + JDiff(θ).

(48)

E.2. Proof of Theorem 3.2

Firstly, we propose a Lemma for computing∇ log pODE
t (xt)−∇ log qt(xt) with the trajectory of dxt

dt = hq(xt, t).

Lemma E.1. Assume dxt
dt = hq(xt, t), pODE

t and qt are defined as the same in Sec. 2. We have

d(∇ log pODE
t −∇ log qt)

dt
= − (∇ tr(∇hp(xt, t))−∇ tr(∇hq(xt, t)))

−
(
∇hp(xt, t)>∇ log pODE

t (xt)−∇hq(xt, t)>∇ log qt(xt)
)

−∇2 log pODE
t (xt)

(
hp(xt, t)− hq(xt, t)

) (49)

Proof. (Proof of Lemma E.1)

Given a fixed x, by the special case of Fokker-Planck equation with zero diffusion term, we have

∂pODE
t (x)

∂t
= −∇ · (hp(xt, t)pODE

t (x)) (50)

So

∂ log pODE
t (x)

∂t
=

1

pODE
t (x)

∂pODE
t (x)

∂t
(51)

= −∇ · hp(xt, t)− hp(xt, t)>∇ log pODE
t (x) (52)

and

∂∇ log pODE
t (x)

∂t
= ∇∂ log pODE

t (x)

∂t
(53)

= −∇ (∇ · hp(xt, t))−∇
(
hp(xt, t)

>∇ log pODE
t (x)

)
(54)
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As xt follows the trajectory of dxt
dt = hq(xt, t), the total derivative of score function∇ log pODE

t (xt) w.r.t. t is

d∇ log pODE
t (xt)

dt
=
∂∇ log pODE

t (xt)

∂xt

dxt
dt

+
∂∇ log pODE

t (xt)

∂t
(55)

= ∇2 log pODE
t (xt)hq(xt, t)−∇ (∇ · hp(xt, t))−∇

(
hp(xt, t)

>∇ log pODE
t (x)

)
(56)

= −∇ (∇ · hp(xt, t))−∇hp(xt, t)>∇ log pODE
t (xt)−∇2 log pODE

t (xt) (hp(xt, t)− hq(xt, t))
(57)

Similarly, for∇ log qt(xt) we have

d∇ log qt(xt)

dt
= −∇ (∇ · hq(xt, t))−∇hq(xt, t)>∇ log qt(xt) (58)

Therefore, by combining d∇ log pODE
t (xt)

dt and d∇ log qt(xt)
dt , we can derive the conclusion.

Then we prove Theorem 3.2 below.

Proof. (Proof of Theorem 3.2.)

Firstly, we have

hp(xt, t)− hq(xt, t) = −1

2
g(t)2

(
sθ(xt, t)−∇ log qt(xt)

)
(59)

So we have

‖hp(xt, t)− hq(xt, t)‖2 ≤
1

2
g(t)2δ1, (60)

‖∇hp(xt, t)−∇hq(xt, t)‖2 ≤ ‖∇hp(xt, t)−∇hq(xt, t)‖F ≤
1

2
g(t)2δ2, (61)

‖∇ tr(∇hp(xt, t))−∇ tr(∇hq(xt, t))‖2 ≤
1

2
g(t)2δ3, (62)

where ‖ · ‖2 is the L2-norm for vectors and the induced 2-norm for matrices.

Assume that dxt
dt = hq(xt, t), by Lemma E.1, we have

∇ log pODE
t (xt)−∇ log qt(xt) = ∇ log pODE

T (xT )−∇ log qT (xT ) (63)

+

∫ T

t

(
∇ tr(∇hp(xs, s))−∇ tr(∇hq(xs, s))

)
ds (64)

+

∫ T

t

(
∇hp(xs, s)>∇ log pODE

s (xs)−∇hq(xs, s)>∇ log qs(xs)
)

ds (65)

+

∫ T

t

∇2 log pODE
s (xs)

(
hp(xs, s)− hq(xs, s)

)
ds (66)

For simplicity, we denote hp(s) := hp(xs, s), hq(s) := hq(xs, s), ps := pODE
s (xs) and qs := qs(xs). We use ‖ · ‖ to

denote the 2-norm for vectors and matrices. As

∇hp(s)>∇ log ps−∇hq(s)>∇ log qs =
(
∇hp(s)−∇hq(s)

)>(∇ log ps −∇ log qs
)

(67)

+∇hq(s)>
(
∇ log ps −∇ log qs

)
+
(
∇hp(s)−∇hq(s)

)>∇ log qs (68)
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We have

‖∇ log pt−∇ log qt‖ ≤ ‖∇ log pT −∇ log qT ‖+

∫ T

t

∥∥∇ tr(∇hp(s))−∇ tr(∇hq(s))
∥∥ds (69)

+

∫ T

t

(∥∥∇hp(s)−∇hq(s)∥∥+
∥∥∇hq(s)∥∥) · ∥∥∇ log ps −∇ log qs

∥∥ds (70)

+

∫ T

t

∥∥∇hp(s)−∇hq(s)∥∥ · ∥∥∇ log qs
∥∥ds+

∫ T

t

‖∇2 log ps‖ · ‖hp(s)− hq(s)‖ ds (71)

≤ ‖∇ log pT −∇ log qT ‖+
1

2

∫ T

t

g(s)2
(
δ3 + δ2‖∇ log qs‖+ δ1C

)
ds (72)

+

∫ T

t

(
δ2
2
g(s)2 + ‖∇hq(s)‖

)
‖∇ log ps −∇ log qs‖ds (73)

Denote

u(t) := ‖∇ log pt −∇ log qt‖ (74)

α(t) := ‖∇ log pT −∇ log qT ‖+
1

2

∫ T

t

g(s)2
(
δ3 + δ2‖∇ log qs‖+ δ1C

)
ds (75)

β(t) :=
δ2
2
g(t)2 + ‖∇hq(t)‖ (76)

Then α(t) ≥ 0, β(t) ≥ 0 are independent of θ, and we have

u(t) ≤ α(t) +

∫ T

t

β(s)u(s)ds. (77)

By Grönwall’s inequality, we have

u(t) ≤ α(t) +

∫ T

t

α(s)β(s) exp

(∫ s

t

β(r)dr

)
ds, (78)

and therefore,

DF(qt ‖ pt) = Eqt [u(t)2] ≤ Eqt

(α(t) +

∫ T

t

α(s)β(s) exp

(∫ s

t

β(r)dr

)
ds

)2
 , (79)

where the r.h.s. is only dependent on δ1, δ2, δ3 and C, with some constants that are only dependent on the forward process
q. Furthermore, as r.h.s. is an increasing function of α(t) ≥ 0 and β(t) ≥ 0, and α(t), β(t) are increasing functions of
δ1, δ2, δ3, C, so we can minimize δ1, δ2, δ3 to minimize an upper bound of DF(qt ‖ pt).

E.3. Maximum likelihood training of ScoreODE by ODE solvers

By Eqn. (7), we have

log pODE
0 (x0) = log pODE

T (xT ) +

∫ T

0

tr(∇xhp(xt, t))dt, (80)

where dxt
dt = hp(xt, t). So minimizing DKL(q0 ‖ pODE

0 ) is equivalent to maximizing

Eq0(x0)

[
log pODE

0 (x0)
]

= Eq0(x0)

[
log pODE

T (xT ) +

∫ T

0

tr(∇xhp(xt, t))dt

]
. (81)

We can directly call ODE solvers to compute log pODE
0 (x0) for a given data point x0, and thus do maximum likelihood

training (Chen et al., 2018; Grathwohl et al., 2018). However, this needs to be done at every optimization step, which is
hard to scale up for the large neural networks used in SGMs. For example, it takes 2 ∼ 3 minutes for evaluating log pODE

0
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for a single batch of the ScoreODE used in (Song et al., 2020). Besides, directly maximum likelihood training for pODE
0

cannot make sure that the optimal solution for sθ(xt, t) is the data score function∇x log qt(xt), because the directly MLE
for pODE

0 cannot ensure that the model distribution pODE
t is also similar to the data distribution qt at each time t ∈ (0, T ),

thus cannot ensure the model ODE function hp(xt, t) is similar to the data ODE function hq(xt, t). In fact, ScoreODE is
a special formulation of Neural ODEs (Chen et al., 2018). Empirically, Finlay et al. (2020) find that directly maximum
likelihood training of Neural ODEs may cause rather complex dynamics (hp(xt, t) here), which indicates that directly
maximum likelihood training by ODE solvers cannot ensure hp(xt, t) be similar to hq(xt, t), and thus cannot ensure the
score model sθ(xt, t) be similar to the data score function∇x log qt(xt).

F. Error-bounded High-Order Denoising Score Matching
In this section, we present all the lemmas and proofs for our proposed error-bounded high-order DSM algorithm.

Below we propose an expectation formulation of the first-order score function.
Lemma F.1. Assume (xt,x0) ∼ q(xt,x0), we have

∇xt log qt(xt) = Eqt0(x0|xt) [∇xt log q0t(xt|x0)] (82)

Proof. (Proof of Lemma F.1)

We use∇(·) to denote the derivative of xt, namely∇xt(·).

∇ log qt(xt) =
∇qt(xt)
qt(xt)

(83)

=
∇
∫
q0t(xt|x0)q0(x0)dx0

qt(xt)
(84)

=

∫
q0(x0)q0t(xt|x0)

qt(xt)

∇q0t(xt|x0)

q0t(xt|x0)
dx0 (85)

=

∫
qt0(x0|xt)∇ log q0t(xt|x0)dx0 (86)

= Eqt0(x0|xt) [∇ log q0t(xt|x0)] (87)

And below we propose an expectation formulation for the second-order score function.
Lemma F.2. Assume (xt,x0) ∼ q(xt,x0), we have

∇2
xt log qt(xt)

= Eqt0(x0|xt)

[
∇2
xt log q0t(xt|x0) +

(
∇xt log q0t(xt|x0)−∇xt log qt(xt)

)(
∇xt log q0t(xt|x0)−∇xt log qt(xt)

)>]
(88)

and

tr
(
∇2
xt log qt(xt)

)
= Eqt0(x0|xt)

[
tr
(
∇2
xt log q0t(xt|x0)

)
+
∥∥∇xt log q0t(xt|x0)−∇xt log qt(xt)

∥∥2
2

]
(89)

Proof. (Proof of Lemma F.2)

We use∇(·) to denote the derivative of xt, namely∇xt(·). Firstly, the gradient of qt0 w.r.t. xt can be calculated as

∇qt0(x0|xt) = ∇q0(x0)q0t(xt|x0)

qt(xt)
(90)

= q0(x0)
qt(xt)∇q0t(xt|x0)− q0t(xt|x0)∇qt(xt)

qt(xt)2
(91)

=
q0(x0)q0t(xt|x0)

qt(xt)
(∇ log q0t(xt|x0)−∇ log qt(xt)) (92)

= qt0(x0|xt) (∇ log q0t(xt|x0)−∇ log qt(xt)) (93)
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Then using Lemma F.1 and the product rule, we have

∇2 log qt(xt) = ∇Eqt0(x0|xt) [∇ log q0t(xt|x0)] (94)

=

∫
qt0(x0|xt)∇2 log q0t(xt|x0) +∇qt0(x0|xt)∇ log q0t(xt|x0)>dx0 (95)

= Eqt0(x0|xt)
[
∇2 log q0t(xt|x0) + (∇ log q0t(xt|x0)−∇ log qt(xt))∇ log q0t(xt|x0)>

]
(96)

From Lemma F.1, we also have Eqt0 [∇ log q0t −∇ log qt] = ∇ log qt −∇ log qt = 0, so

Eqt0
[
(∇ log q0t −∇ log qt)∇ log q>t

]
= Eqt0 [∇ log q0t −∇ log qt]∇ log q>t (97)
= 0 (98)

Thus Eqn. (96) can be further transformed by subtracting 0 as

∇2 log qt(xt) (99)

= Eqt0(x0|xt)
[
∇2 log q0t(xt|x0) + (∇ log q0t(xt|x0)−∇ log qt(xt))∇ log q0t(xt|x0)>

]
(100)

− Eqt0(x0|xt)
[
(∇ log q0t(xt|x0)−∇ log qt(xt))∇ log qt(xt)

>] (101)

= Eqt0(x0|xt)

[
∇2 log q0t(xt|x0) + (∇ log q0t(xt|x0)−∇ log qt(xt)) (∇ log q0t(xt|x0)−∇ log qt(xt))

>
]

(102)

which completes the proof of second-order score matrix and its trace.

Below we propose a corollary of an expectation formulation of the sum of the first-order and the second-order score
functions, which can be used to design the third-order denoising score matching method.

Corollary F.3. Assume (xt,x0) ∼ q(xt,x0), we have

Eqt0(x0|xt)

[
∇xt log q0t(xt|x0)∇xt log q0t(xt|x0)> +∇2

xt log q0t(xt|x0)
]

= ∇xt log qt(xt)∇xt log qt(xt)
> +∇2

xt log qt(xt)
(103)

and

Eqt0(x0|xt)

[∥∥∇xt log q0t(xt|x0)
∥∥2
2

+ tr
(
∇2
xt log q0t(xt|x0)

)]
=
∥∥∇xt log qt(xt)

∥∥2
2

+ tr
(
∇2
xt log qt(xt)

)
(104)

Proof. (Proof of Corollary F.3)

This is the direct corollary of Eqn. (96) by adding ∇xt log qt(xt)∇xt log qt(xt)
> to both sides and using Lemma F.1.

And below we propose an expectation formulation for the third-order score function.

Lemma F.4. Assume (xt,x0) ∼ q(xt,x0) and∇3
xt log q0t(xt|x0) = 0, we have

∇xt tr
(
∇2
xt log qt(xt)

)
= Eqt0(x0|xt)

[∥∥∇xt log q0t(xt|x0)−∇xt log qt(xt)
∥∥2
2

(
∇xt log q0t(xt|x0)−∇xt log qt(xt)

)]
(105)

Proof. (Proof of Lemma F.4)

We use ∇(·) to denote the derivative of xt, namely ∇xt(·). Firstly, according to the second-order score trace given by
Lemma F.2, we have

∇ tr
(
∇2 log qt(xt)

)
= ∇

∫
qt0(x0|xt) tr

(
∇2 log q0t(xt|x0)

)
dx0︸ ︷︷ ︸

(1)

+∇
∫
qt0(x0|xt)‖∇ log q0t(xt|x0)−∇ log qt(xt)‖22dx0︸ ︷︷ ︸

(2)

(106)
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Before simplifying them, we should notice two simple tricks. Firstly, due to the assumption ∇3 log q0t(xt|x0) = 0, we
know that ∇2 log q0t and tr

(
∇2 log q0t

)
are constants, so they can be drag out of the integral w.r.t x0 and the derivative

w.r.t. xt. Secondly, using Lemma F.1, we have Eqt0 [∇ log q0t −∇ log qt] = 0. Also,∇qt0(x0|xt) can be represented by
Eqn. (93). Thus

(1) = tr
(
∇2 log q0t(xt|x0)

)
∇
∫
qt0(x0|xt)dx0 (107)

= tr
(
∇2 log q0t(xt|x0)

)
∇1 (108)

= 0 (109)

(2) =

∫
∇qt0(x0|xt)‖∇ log q0t(xt|x0)−∇ log qt(xt)‖22dx0︸ ︷︷ ︸

(3)

+

∫
qt0(x0|xt)∇‖∇ log q0t(xt|x0)−∇ log qt(xt)‖22dx0︸ ︷︷ ︸

(4)

(110)

where

(4) = 2

∫
qt0(x0|xt)

(
∇2 log q0t(xt|x0)−∇2 log qt(xt)

)
(∇ log q0t(xt|x0)−∇ log qt(xt)) dx0 (111)

= 2
(
∇2 log q0t(xt|x0)−∇2 log qt(xt)

) ∫
qt0(x0|xt) (∇ log q0t(xt|x0)−∇ log qt(xt)) dx0 (112)

= 0 (113)

Combining equations above, we have

∇ tr
(
∇2 log qt(xt)

)
= (3) (114)

=

∫
qt0(x0|xt)‖∇ log q0t(xt|x0)−∇ log qt(xt)‖22 (∇ log q0t(xt|x0)−∇ log qt(xt)) dx0 (115)

= Eqt0(x0|xt)
[
‖∇ log q0t(xt|x0)−∇ log qt(xt)‖22 (∇ log q0t(xt|x0)−∇ log qt(xt))

]
(116)

Lemma F.5. Assume (xt,x0) ∼ q(xt,x0) and∇3
xt log q0t(xt|x0) = 0, we have

∇xt
(
v>∇2

xt log qt(xt)v
)

= Eqt0(x0|xt)

[ ((
∇xt log q0t(xt|x0)−∇xt log qt(xt)

)>
v
)2 (
∇xt log q0t(xt|x0)−∇xt log qt(xt)

)] (117)

Proof. (Proof of Lemma F.5)

We use∇(·) to denote the derivative of xt, namely∇xt(·). Firstly, according to the second-order score given by Lemma F.2,
we have

∇
(
v>∇2 log qt(xt)v

)
= ∇

∫
qt0(x0|xt)

(
v>∇2 log q0t(xt|x0)v

)
dx0︸ ︷︷ ︸

(1)

(118)

+∇
∫
qt0(x0|xt)

(
(∇ log q0t(xt|x0)−∇ log qt(xt))

>
v
)2

dx0︸ ︷︷ ︸
(2)

(119)

Similar to the proof of Lemma F.4, we have

(1) =
(
v>∇2 log q0t(xt|x0)v

)
∇1 = 0, (120)
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and

(2) =

∫
∇qt0(x0|xt)

(
(∇ log q0t(xt|x0)−∇ log qt(xt))

>
v
)2

dx0︸ ︷︷ ︸
(3)

(121)

+

∫
qt0(x0|xt)∇

(
(∇ log q0t(xt|x0)−∇ log qt(xt))

>
v
)2

dx0︸ ︷︷ ︸
(4)

(122)

Also similar to the proof of Lemma F.4, we have

(4) = 2

∫
qt0(x0|xt)

((
(∇2 log q0t(xt|x0)−∇2 log qt(xt)

)>
v
)(

(∇ log q0t(xt|x0)−∇ log qt(xt))
>
v
)

dx0 (123)

= 2
((

(∇2 log q0t(xt|x0)−∇2 log qt(xt)
)>
v
)∫

qt0(x0|xt)
(

(∇ log q0t(xt|x0)−∇ log qt(xt))
>
v
)

dx0 (124)

= 0, (125)

so

∇
(
v>∇2 log qt(xt)v

)
(126)

= (3) (127)

=

∫
qt0(x0|xt)

(
(∇ log q0t(xt|x0)−∇ log qt(xt))

>
v
)2

(∇ log q0t(xt|x0)−∇ log qt(xt)) dx0 (128)

= Eqt0(x0|xt)

[ ((
∇ log q0t(xt|x0)−∇ log qt(xt)

)>
v
)2 (
∇ log q0t(xt|x0)−∇ log qt(xt)

)]
(129)

F.1. Proof of Theorem 4.1

Proof. For simplicity, we denote q0t := q0t(xt|x0), qt0 := qt0(x0|xt), qt := qt(xt), q0 := q0(x0), ŝ1 := ŝ1(xt, t),
s2(θ) := s2(xt, t; θ).

As∇ log q0t = − ε
σt

and ∇2 log q0t = − 1
σ2
t
I , by rewriting the objective in Eqn. (13), the optimization is equivalent to

θ∗ = argmin
θ

EqtEqt0
[∥∥s2(θ)−∇2 log q0t − (∇ log q0t − ŝ1)(∇ log q0t − ŝ1)>

∥∥2
F

]
(130)

For fixed t and xt, minimizing the inner expectation is a minimum mean square error problem for s2(θ), so the optimal θ∗

satisfies

s2(θ∗) = Eqt0
[
∇2 log q0t + (∇ log q0t − ŝ1)(∇ log q0t − ŝ1)>

]
(131)

By Lemma F.1 and Lemma F.2, we have

s2(θ∗)−∇2 log qt (132)

= Eqt0
[
ŝ1ŝ
>
1 − ŝ1∇ log q>0t −∇ log q0tŝ

>
1 −∇ log qt∇ log q>t +∇ log q0t∇ log q>t +∇ log qt∇ log q>0t

]
(133)

= (ŝ1 −∇ log qt)(ŝ1 −∇ log qt)
> (134)

Therefore, we have

‖s2(θ)−∇2 log qt‖F ≤ ‖s2(θ)− s2(θ∗)‖F + ‖s2(θ∗)−∇2 log qt‖F (135)

= ‖s2(θ)− s2(θ∗)‖F + ‖ŝ1 −∇ log qt‖22 (136)

Moreover, by leveraging the property of minimum mean square error, we should notice that the training objective can be
rewritten to

θ∗ = argmin
θ

Eqt(xt)‖s2(xt, t; θ)− s2(xt, t; θ
∗)‖2F , (137)

which shows that ‖s2(xt, t; θ)− s2(xt, t; θ
∗)‖F can be viewed as the training error.
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F.2. Proof of Corollary 4.2

Proof. For simplicity, we denote q0t := q0t(xt|x0), qt0 := qt0(x0|xt), qt := qt(xt), q0 := q0(x0), ŝ1 := ŝ1(xt, t),
strace
2 (θ) := strace

2 (xt, t; θ).

As∇ log q0t = − ε
σt

and ∇2 log q0t = − 1
σ2
t
I , by rewriting the objective in Eqn. (15), the optimization is equivalent to

θ∗ = argmin
θ

EqtEqt0
[∣∣strace

2 (θ)− tr
(
∇2 log q0t

)
− ‖∇ log q0t − ŝ1‖22

∣∣2] (138)

For fixed t and xt, minimizing the inner expectation is a minimum mean square error problem for strace
2 (θ), so the optimal

θ∗ satisfies

strace
2 (θ∗) = Eqt0

[
tr
(
∇2 log q0t

)
+ ‖∇ log q0t − ŝ1‖22

]
(139)

By Lemma F.1 and Lemma F.2, similarly we have

strace
2 (θ∗)− tr

(
∇2 log qt

)
= ‖ŝ1 −∇ log qt‖22 (140)

Therefore, we have

|strace
2 (θ)− tr

(
∇2 log qt

)
| ≤ |strace

2 (θ)− strace
2 (θ∗)|+ |strace

2 (θ∗)− tr
(
∇2 log qt

)
| (141)

= |strace
2 (θ)− strace

2 (θ∗)|+ ‖ŝ1 −∇ log qt‖22 (142)

Moreover, by leveraging the property of minimum mean square error, we should notice that the training objective can be
rewritten to

θ∗ = argmin
θ

Eqt(xt)|s
trace
2 (xt, t; θ)− strace

2 (xt, t; θ
∗)|2, (143)

which shows that |strace
2 (xt, t; θ)− strace

2 (xt, t; θ
∗)| can be viewed as the training error.

F.3. Proof of Theorem 4.3

Proof. For simplicity, we denote q0t := q0t(xt|x0), qt0 := qt0(x0|xt), qt := qt(xt), q0 := q0(x0), ŝ1 := ŝ1(xt, t),
ŝ2 := ŝ2(xt, t), s3(θ) := s3(xt, t; θ).

As∇ log q0t = − ε
σt

and ∇2 log q0t = − 1
σ2
t
I , by rewriting the objective in Eqn. (16), the optimization is equivalent to

θ∗ = argmin
θ

Eqt(xt)Eqt0(x0|xt)

[∥∥∥∥∥s3(θ)− ‖∇ log q0t − ŝ1‖22 (∇ log q0t − ŝ1)

+
( (

tr(ŝ2)− tr
(
∇2 log q0t

))
I + 2

(
ŝ2 −∇2 log q0t

) )(
∇ log q0t − ŝ1

)∥∥∥∥∥
2

2

 (144)

For fixed t and xt, minimizing the inner expectation is a minimum mean square error problem for s3(θ), so the optimal θ∗

satisfies

s3(θ∗) = Eqt0
[∥∥∇ log q0t − ŝ1

∥∥2
2

(
∇ log q0t − ŝ1

)]
(145)

− Eqt0
[((

tr(ŝ2)− tr
(
∇2 log q0t

))
I + 2

(
ŝ2 −∇2 log q0t

))(
∇ log q0t − ŝ1

)]
(146)

As∇2 log q0t = − 1
σ2
t
I is constant w.r.t. x0, by Lemma F.1, we have

s3(θ∗) = Eqt0
[∥∥∇ log q0t − ŝ1

∥∥2
2

(
∇ log q0t − ŝ1

)]
(147)

−
((

tr(ŝ2)− tr
(
∇2 log q0t

))
I + 2

(
ŝ2 −∇2 log q0t

))(
∇ log qt − ŝ1

)
(148)
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By Lemma F.4, we have

s3(θ∗)−∇ tr
(
∇2 log qt

)
(149)

= Eqt0
[(

2∇ log q0t∇ log q>0t + 2∇2 log q0t − 2ŝ2

)(
∇ log qt − ŝ1

)]
(150)

+ Eqt0
[(
‖∇ log q0t‖22 + tr

(
∇2 log q0t

)
− tr(ŝ2)

)(
∇ log qt − ŝ1

)]
(151)

+ (‖ŝ1‖22 − ‖∇ log qt‖22)Eqt0 [∇ log q0t] (152)

+ 2Eqt0
[
(∇ log q>0tŝ1)ŝ1 − (∇ log q>0t∇ log qt)∇ log qt

]
(153)

+ ‖∇ log qt‖22∇ log qt − ‖ŝ1‖22ŝ1 (154)

By Lemma F.1 and Corollary F.3, we have

s3(θ∗)−∇ tr
(
∇2 log qt

)
= 2
(
∇ log qt∇ log q>t +∇2 log qt − ŝ2

)(
∇ log qt − ŝ1

)
+
(
‖∇ log qt‖22 + tr

(
∇2 log qt

)
− tr(ŝ2)

)(
∇ log qt − ŝ1

)
+ (‖ŝ1‖22 − ‖∇ log qt‖22)∇ log qt

+ 2
(
(∇ log q>t ŝ1)ŝ1 − ‖∇ log qt‖22∇ log qt

)
+ ‖∇ log qt‖22∇ log qt − ‖ŝ1‖22ŝ1

=
(

2
(
∇2 log qt − ŝ2

)
+
(

tr
(
∇2 log qt

)
− tr(ŝ2)

))
(∇ log qt − ŝ1)

+ ‖∇ log qt − ŝ1‖22(∇ log qt − ŝ1) (155)

Therefore, we have

‖s3(θ)−∇ tr
(
∇2 log qt

)
‖2 ≤ ‖s3(θ)− s3(θ∗)‖2 + ‖s3(θ∗)−∇ tr

(
∇2 log qt

)
‖2 (156)

≤ ‖s3(θ)− s3(θ∗)‖2 + ‖∇ log qt − ŝ1‖32 (157)

+
(

2
∥∥∇2 log qt − ŝ2

∥∥
F

+
∣∣ tr(∇2 log qt

)
− tr(ŝ2)

∣∣)‖∇ log qt − ŝ1‖2 (158)

Moreover, by leveraging the property of minimum mean square error, we should notice that the training objective can be
rewritten to

θ∗ = argmin
θ

Eqt(xt)‖s3(xt, t; θ)− s3(xt, t; θ
∗)‖22, (159)

which shows that ‖s3(xt, t; θ)− s3(xt, t; θ
∗)‖2 can be viewed as the training error.

F.4. Difference between error-bounded high-order denoising score matching and previous high-order score matching
in Meng et al. (2021a)

In this section, we analyze the DSM objective in Meng et al. (2021a), and show that the objective in Meng et al. (2021a) has
the unbounded-error property, which means even if the training error is zero and the first-order score matching error is any
small, the second-order score matching error may be arbitrarily large.

(Meng et al., 2021a) proposed an objective for estimating second-order score

θ∗ = argmin
θ

EqtEqt0
[∥∥s2(θ)−∇2 log q0t −∇ log q0t∇ log q>0t + ŝ1ŝ

>
1

∥∥2
F

]
(160)

For fixed t and xt, minimizing the inner expectation is a minimum mean square error problem for s2(θ), so the optimal θ∗

satisfies

s2(θ∗) = Eqt0
[
∇2 log q0t +∇ log q0t∇ log q>0t − ŝ1ŝ>1

]
(161)
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By Lemma F.1 and Lemma F.2, we have

s2(θ∗)−∇2 log qt = Eqt0
[
−ŝ1ŝ>1 −∇ log qt∇ log q>t +∇ log q0t∇ log q>t +∇ log qt∇ log q>0t

]
(162)

= ∇ log qt∇ log q>t − ŝ1ŝ>1 (163)

However, below we show that even if θ achieves its optimal solution θ∗ and the first-order score matching error ‖ŝ1 −
∇ log qt‖ is small, the second-order score matching error s2(θ∗)−∇2 log qt may still be rather large.

We construct an example to demonstrate this point. Suppose the first-order score matching error ŝ1 −∇ log qt = δ1 · 1,
where δ1 > 0 is small, then the first-order score matching error ‖ŝ1 −∇ log qt‖2 = δ1

√
d, where d is the dimension of xt.

We have

s2(θ∗)−∇2 log qt = ∇ log qt∇ log q>t − (∇ log qt + δ1 · 1)(∇ log qt + δ1 · 1)> (164)

= −δ1∇ log qt1
> − δ11∇ log q>t − δ2111> (165)

We consider the unbounded score case (Song et al., 2020), if the first-order score function∇ log qt is unbounded, i.e. for any
δ1 > 0 and any C > 0, there exists xt ∈ Rd such that ‖∇ log qt‖2 > C+δ21d

2δ1
, then we have

‖s2(θ∗)−∇ log qt‖F ≥ δ1‖∇ log qt1
> + 1∇ log q>t ‖F − δ21‖11>‖F (166)

≥ δ1‖diag(∇ log qt1
> + 1∇ log q>t )‖2 − δ21‖11>‖F (167)

= δ1‖2∇ log qt‖2 − δ21d (168)
> C, (169)

where the second inequality is because ‖A‖F ≥ ‖diag(A)‖2, where diag(A) means the diagonal vector of the matrix A.
Therefore, for any small δ1, the second-order score estimation error may be arbitrarily large.

In practice, Meng et al. (2021a) do not stop gradients for ŝ1, which makes the optimization of the second-order score model
s2(θ) affecting the first-order score model s1(θ), and thus cannot theoretically guarantee the convergence. Empirically, we
implement the second-order DSM objective in Meng et al. (2021a), and we find that if we stop gradients for ŝ1, the model
quickly diverges and cannot work. We argue that this is because of the unbounded error of their method, as shown above.

Instead, our proposed high-order DSM method has the error-bounded property, which shows that ‖s2(θ∗)−∇ log qt‖F =
‖ŝ1 −∇ log qt‖22. So our method does not have the problem mentioned above.

G. Estimated objectives of high-order DSM for high-dimensional data
In this section, we propose the estimated high-order DSM objectives for high-dimensional data.

The second-order DSM objective in Eqn. (13) requires computing the Frobenius norm of the full Jacobian of the score model,
i.e. ∇xsθ(x, t), which typically has O(d2) time complexity and is unacceptable for high dimensional real data. Moreover,
the high-order DSM objectives in Eqn. (15) and Eqn. (16) include computing the divergence of score network∇x · sθ(x, t)
i.e. the trace of Jacobian tr(∇xsθ(x, t)), and it also has O(d2) time complexity. Similar to Grathwohl et al. (2018) and
Finlay et al. (2020), the cost can be reduced toO(d) using Hutchinson’s trace estimator and automatic diffentiation provided
by general deep learning frameworks, which needs one-time backpropagation only.

For a d-by-d matrix A, its trace can be unbiasedly estimated by (Hutchinson, 1989):

tr(A) = Ep(v)
[
v>Av

]
(170)

where p(v) is a d-dimensional distribution such that E [v] = 0 and Cov [v] = I . Typical choices of p(v) are a standard
Gaussian or Rademacher distribution. Moreover, the Frobenius norm can also be unbiasedly estimated, since

‖A‖2F = tr
(
A>A

)
= Ep(v)

[
v>A>Av

]
= Ep(v)

[
‖Av‖22

]
(171)

Let A = ∇xsθ(x, t), The Jacobian-vector-product∇xsθ(x, t)v can be efficiently computed by using once forward-mode
automatic differentiation in JAX, making the evaluating of trace and Frobenius norm approximately the same cost as
evaluating sθ(x, t). And we show the time costs for the high-order DSM training in Appendix. I.4.
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By leveraging the unbiased estimator, our final objectives for second-order and third-order DSM are:

J (2)
DSM,estimation(θ) = Et,x0,εEp(v)

[∥∥σ2
t sjvp + v − (σtŝ1 · v + ε · v)(σtŝ1 + ε)

∥∥2
2

]
, (172)

J (2,tr)
DSM,estimation(θ) = Et,x0,εEp(v)

[∣∣∣σ2
t v
>sjvp + ‖v‖22 − |σtŝ1 · v + ε · v|2

∣∣∣2], (173)

J (3)
DSM,estimation(θ) = Et,x0,εEp(v)

[∥∥∥σ3
t v
>∇xsjvp + |σtŝ1 · v + ε · v|2(σtŝ1 + ε)− (σ2

t v
>ŝjvp + ‖v‖22)(σtŝ1 + ε)

− 2(σtŝ1 · v + ε · v)(σ2
t ŝjvp + v)

∥∥∥2
2

]
, (174)

where sjvp = ∇xsθ(x, t)v is the Jacobian-vector-product as mentioned above, ŝ1 = stop gradient(sθ), ŝjvp =
stop gradient(sjvp), and a · b denotes the vector-inner-product for vectors a and b. We compute v>∇xsjvp by using
the auto-gradient functions in JAX (which can compute the ”vector-Jacobian-product” by one-time backpropagation”).

G.1. Relationship between the estimated objectives and the original objectives for high-order DSM

In this section, we show that the proposed estimated objectives are actually equivalent to or can upper bound the original
objectives in Sec. 5.1 for high-order DSM. Specifically, we have

J (2)
DSM(θ) = J (2)

DSM,estimation(θ), (175)

J (2,tr)
DSM (θ) ≤ J (2,tr)

DSM,estimation(θ), (176)

J (3)
DSM(θ) ≤ J (3)

DSM,estimation(θ). (177)

Firstly, the estimated second-order DSM objective in Eqn. (172) is equivalent to the original objective in Sec. 5.1, because

J (2)
DSM(θ) = Et,x0,ε

[∥∥σ2
t∇xsθ(xt, t) + I − (σtŝ1 + ε)(σtŝ1 + ε)>

∥∥2
F

]
(178)

= Et,x0,εEp(v)
[∥∥(σ2

t∇xsθ(xt, t) + I − (σtŝ1 + ε)(σtŝ1 + ε)>
)
v
∥∥2
2

]
(179)

= Et,x0,εEp(v)
[∥∥σ2

t∇xsθ(xt, t)v + v − (σtŝ1 · v + ε · v)(σtŝ1 + ε)
∥∥2
2

]
(180)

= J (2)
DSM,estimation(θ). (181)

And the estimated trace of second-order DSM objective in Eqn. (173) can upper bound the original objective in Sec. 5.1,
because

J (2,tr)
DSM (θ) = Et,x0,ε

[∣∣σ2
t tr(∇xsθ(xt, t)) + d− ‖σtŝ1 + ε‖22

∣∣2] (182)

= Et,x0,ε

[∣∣tr (σ2
t∇xsθ(xt, t) + I − (σtŝ1 + ε)(σtŝ1 + ε)>

)∣∣2] (183)

= Et,x0,ε

[∣∣Ep(v) [v> (σ2
t∇xsθ(xt, t) + I − (σtŝ1 + ε)(σtŝ1 + ε)>

)
v
]∣∣2] (184)

≤ Et,x0,εEp(v)
[∣∣v> (σ2

t∇xsθ(xt, t) + I − (σtŝ1 + ε)(σtŝ1 + ε)>
)
v
∣∣2] (185)

= Et,x0,εEp(v)
[∣∣σ2

t v
>∇xsθ(xt, t)v + ‖v‖22 − |σtŝ1 · v + ε · v|2

∣∣2] (186)

= J (2,tr)
DSM,estimation(θ). (187)

And the estimated third-order DSM objective in Eqn. (174) can also upper bound the original objective in Sec. 5.1. To
prove that, we firstly propose the following theorem, which presents an equivalent form of the third-order DSM objective in
Eqn. (16) for score models and the corresponding derivatives.

Theorem G.1. (Error-Bounded Third-Order DSM by score models with trace estimators) Suppose that ŝ1(xt, t) is an
estimation for ∇x log qt(xt), and its derivative ŝ2(xt, t) := ∇xŝ1(xt, t) is an estimation for ∇2

x log qt(xt). Denote the



Maximum Likelihood Training for Score-Based Diffusion ODEs

Jacobian-vector-product of ŝ1 as ŝjvp(xt, t,v) := ∇xŝ1(xt, t)v. Assume we have a neural network sθ(·, t) : Rd → Rd
parameterized by θ, then we can learn a third-order score model∇x tr(∇xsθ(xt, t)) : Rd → Rd which minimizes

Eqt(xt)
[∥∥∇x tr(∇xsθ(xt, t))−∇x tr

(
∇2
x log qt(xt)

)∥∥2
2

]
,

by optimizing

θ∗ = argmin
θ

Ex0,ε

[
1

σ6
t

∥∥σ3
t∇x tr(∇xsθ(xt, t)) + Ep(v) [`3(xt, t, ε,v)]

∥∥2
2

]
(188)

where

`3(xt, t, ε,v) := |σtŝ1 · v + ε · v|2(σtŝ1 + ε)− (σ2
t v
>ŝjvp + ‖v‖22)(σtŝ1 + ε)− 2(σtŝ1 · v + ε · v)(σ2

t ŝjvp + v)

xt = αtx0 + σtε, ε ∼ N (0, I),

v ∼ p(v), Ep(v)[v] = 0, Covp(v)[v] = I.

(189)

Denote the first-order score matching error as δ1(xt, t) := ‖ŝ1(xt, t) − ∇x log qt(xt)‖2 and the second-order score
matching errors as δ2(xt, t) := ‖∇xŝ1(xt, t)−∇2

x log qt(xt)‖F and δ2,tr(xt, t) := | tr(∇xŝ1(xt, t))−tr
(
∇2
x log qt(xt)

)
|.

Then ∀xt, θ, the score matching error for∇x tr(∇xsθ(xt, t)) can be bounded by:∥∥∇x tr(∇xsθ(xt, t))−∇x tr
(
∇2
x log qt(xt)

)∥∥
2

≤ ‖∇x tr(∇xsθ(xt, t))−∇x tr(∇xsθ∗(xt, t))‖2 +
(
δ21 + δ2,tr + 2δ2

)
δ21

Proof. For simplicity, we denote q0t := q0t(xt|x0), qt0 := qt0(x0|xt), qt := qt(xt), q0 := q0(x0), ŝ1 := ŝ1(xt, t),
ŝjvp := ŝjvp(xt, t),∇ tr(∇s(θ)) := ∇x tr(∇xsθ(xt, t)).

As∇ log q0t = − ε
σt

and ∇2 log q0t = − 1
σ2
t
I , by rewriting the objective in Eqn. (188), the optimization is equivalent to:

θ∗ = argmin
θ

EqtEqt0

[∥∥∥∥∥∇ tr(∇s(θ))− Ep(v)
[ ∣∣(∇ log q0t − ŝ1)>v

∣∣2 (∇ log q0t − ŝ1)

−
(
v>(∇ŝ1 −∇2 log q0t)v

)
(∇ log q0t − ŝ1)− 2

(
(∇ log q0t − ŝ1)>v

)
(∇ŝ1 −∇2 log q0t)v

]∥∥∥∥∥
2

2

 (190)

For fixed t and xt, minimizing the inner expectation is a minimum mean square error problem for ∇ tr(∇s(θ)), so the
optimal θ∗ satisfies

∇ tr(∇s(θ∗)) = Eqt0Ep(v)
[ ∣∣(∇ log q0t − ŝ1)>v

∣∣2 (∇ log q0t − ŝ1) (191)

−
(
v>(ŝ2 −∇2 log q0t)v

)
(∇ log q0t − ŝ1)− 2

(
(∇ log q0t − ŝ1)>v

)
(ŝ2 −∇2 log q0t)v

]
. (192)

Denote

s3(v, θ∗) := Eqt0
[ ∣∣(∇ log q0t − ŝ1)>v

∣∣2 (∇ log q0t − ŝ1) (193)

−
(
v>(ŝ2 −∇2 log q0t)v

)
(∇ log q0t − ŝ1)− 2

(
(∇ log q0t − ŝ1)>v

)
(ŝ2 −∇2 log q0t)v

]
, (194)

then we have Ep(v)[s3(v, θ∗)] = ∇ tr(∇s(θ∗)). Similar to the proof in Appendix. F.3, combining with Lemma F.5, we
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have

s3(v, θ∗)−∇(v>∇2 log qtv) = s3(v, θ∗)− Eqt0
[
|(∇ log q0t −∇ log qt)

>v|2(∇ log q0t −∇ log qt)
]

= 2
(
(∇ log qt − ŝ1)>v

)
(∇ log qt∇ log q>t +∇2 log qt − ŝ2)v

+ v>(∇ log qt∇ log q>t +∇2 log qt − ŝ2)v(∇ log qt − ŝ1)

+ v>(ŝ1ŝ
>
1 −∇ log qt∇ log q>t )v∇ log qt

+ 2
(
(ŝ>1 v)(∇ log q>t v)ŝ1 − (∇ log q>t v)2∇ log qt

)
+ (∇ log q>t v)2∇ log qt − (ŝ>1 v)2ŝ1

=
(
2(∇2 log qt − ŝ2)vv> + v>(∇2 log qt − ŝ2)v

)
(∇ log qt − ŝ1)

+
∣∣(∇ log qt − ŝ1)>v

∣∣2 (∇ log qt − ŝ1)

(195)

As Ep(v)
[
v>Av

]
= tr(A) and Ep(v)

[
vv>

]
= E [v]E [v]

>
+ Cov [v] = I , we have

∇ tr(∇s(θ∗))−∇ tr
(
∇2 log qt

)
= Ep(v)

[
s3(v, θ∗)−∇(v>∇2 log qtv)

]
(196)

=
(
2
(
∇2 log qt − ŝ2

)
+
(
tr
(
∇2 log qt

)
− tr(ŝ2)

))
(∇ log qt − ŝ1)

+ ‖∇ log qt − ŝ1‖22(∇ log qt − ŝ1) (197)

Therefore, we have

‖∇ tr(∇s(θ))−∇ tr
(
∇2 log qt

)
‖2 ≤ ‖∇ tr(∇s(θ))−∇ tr(∇s(θ∗))‖2 + ‖∇ tr(∇s(θ∗))−∇ tr

(
∇2 log qt

)
‖2 (198)

≤ ‖∇ tr(∇s(θ))−∇ tr(∇s(θ∗))‖2 + ‖∇ log qt − ŝ1‖32 (199)

+
(

2
∥∥∇2 log qt − ŝ2

∥∥
F

+
∣∣ tr(∇2 log qt

)
− tr(ŝ2)

∣∣)‖∇ log qt − ŝ1‖2, (200)

which completes the proof.

Below we show that the objective in Eqn. (16) in Theorem 4.3 is equivalent to the objective in Eqn. (188) in Theorem G.1.
Corollary G.2. Suppose that ŝ1(xt, t) is an estimation for ∇x log qt(xt), and its derivative ŝ2(xt, t) := ∇xŝ1(xt, t) is
an estimation for ∇2

x log qt(xt). Denote the Jacobian-vector-product of ŝ1 as ŝjvp(xt, t,v) := ∇xŝ1(xt, t)v. Assume we
have a neural network sθ(·, t) : Rd → Rd parameterized by θ, and we learn a third-order score model∇x tr(∇xsθ(xt, t)) :
Rd → Rd by the third-order DSM objectives. Then the objective in Eqn. (188) is equivalent to the objective in Eqn. (16)
w.r.t. the optimization for θ.

Proof. For simplicity, we denote q0t := q0t(xt|x0), qt0 := qt0(x0|xt), qt := qt(xt), q0 := q0(x0), ŝ1 := ŝ1(xt, t),
ŝjvp := ŝjvp(xt, t),∇ tr(∇s(θ)) := ∇x tr(∇xsθ(xt, t)).

On the one hand, by Eqn. (197), the optimal solution of the objective in Eqn. (188) is:

∇ tr(∇s(θ∗)) = ∇ tr
(
∇2 log qt

)
+
(
2
(
∇2 log qt − ŝ2

)
+
(
tr
(
∇2 log qt

)
− tr(ŝ2)

))
(∇ log qt − ŝ1)

+ ‖∇ log qt − ŝ1‖22(∇ log qt − ŝ1), (201)

so by the property of least mean square error, the objective in Eqn. (188) w.r.t. the optimization of θ is equivalent to

min
θ

Ex0,ε

[∥∥∇x tr(∇xsθ(xt, t))−∇x tr(∇xsθ∗(xt, t))
∥∥2
2

]
. (202)

On the other hand, by Eqn. (155), the optimal solution of the objective in Eqn. (16) is also:

∇ tr(∇s(θ∗)) = ∇ tr
(
∇2 log qt

)
+
(
2
(
∇2 log qt − ŝ2

)
+
(
tr
(
∇2 log qt

)
− tr(ŝ2)

))
(∇ log qt − ŝ1)

+ ‖∇ log qt − ŝ1‖22(∇ log qt − ŝ1), (203)

so by the property of least mean square error, the objective in Eqn. (16) w.r.t. the optimization of θ is also equivalent to

min
θ

Ex0,ε

[∥∥∇x tr(∇xsθ(xt, t))−∇x tr(∇xsθ∗(xt, t))
∥∥2
2

]
. (204)

Therefore, the two objectives in Eqn. (16) and Eqn. (188) are equivalent w.r.t. θ.
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Therefore, by Corollary G.2, we can derive an equivalent formulation of J (3)
DSM(θ) by Theorem. G.1:

J (3)
DSM(θ) = Et,x0,ε

[∥∥σ3
t∇xtr(∇xsθ(xt, t)) + Ep(v) [`3(xt, t, ε,v)]

∥∥2
2

]
, (205)

where `3(xt, t, ε,v) is defined in Eqn. (189). Thus, we have

J (3)
DSM(θ) = Et,x0,ε

[∥∥σ3
tEp(v)

[
∇x
(
v>∇xsθ(xt, t)v

)]
+ Ep(v) [`3(xt, t, ε,v)]

∥∥2
2

]
≤ Et,x0,εEp(v)

[∥∥σ3
t∇x

(
v>∇xsθ(xt, t)v

)
+ `3(xt, t, ε,v)

∥∥2
2

]
= J (3)

DSM,estimation(θ)

(206)

H. Training algorithm
In this section, we propose our training algorithm for high-dimensional data, based on the high-order DSM objectives in
Appendix. G.

Let ‘JVP’ and ‘VJP’ denote forward-mode Jacobian-vector-product and reverse-mode vector-Jacobian-product with auxiliary
data. More specifically, suppose f is a function Rd → Rd, and fn(x) = (f(x), aux), where aux is auxiliary data, then
JVP(fn, x0, v) = (f(x0), ∇f |x=x0v, aux) and VJP(fn, x0, v) = (f(x0), v>∇f |x=x0 , aux).

Algorithm 1 Training of high-order denoising score matching
Require: score network sθ, hyperparameters λ1, λ2, smallest time ε, forward SDE, proposal distribution p(t)
Input: sample x0 from data distribution
Output: denoising score matching loss JDSM

Sample ε from N (0, I)
Sample v from standard Gaussian or Rademacher distribution
Sample t from proposal distribution p(t) (U(ε, 1) for VE SDEs)
Get mean αt and std σt at time t from the forward SDE.
xt ← αtx0 + σtε
def grad div fn(xt, t, v):

def score jvp fn(xt):
sθ ← lambda x: sθ(x, t)
sθ(xt, t), sjvp ← JVP(sθ, xt, v)
return sjvp, sθ(xt, t)

sjvp, v>∇sjvp, sθ(xt, t)← VJP(score jvp fn, xt, v)
return sjvp, v>∇sjvp, sθ(xt, t)

sjvp, v>∇sjvp, sθ(xt, t)← grad div fn(xt, t, v)
ŝ1 ← stop gradient(sθ(xt, t))
ŝjvp ← stop gradient(sjvp)
Calculate J (1)

DSM(θ),J (2)
DSM(θ),J (2,tr)

DSM (θ),J (3)
DSM(θ) from Eqn. (18) (172) (173) (174)

return J (1)
DSM(θ) + λ1

(
J (2)

DSM(θ) + J (2,tr)
DSM (θ)

)
+ λ2J (3)

DSM(θ)

I. Experiment details
I.1. Choosing of λ1, λ2

As we use Monto-Carlo method to unbiasedly estimate the expectations, we empirically find that we need to ensure the
mean values of J (1)

DSM(θ), λ1

(
J (2)

DSM(θ) + J (2,tr)
DSM (θ)

)
and λ2J (3)

DSM(θ) are in the same order of magnitude. Therefore, for
synthesis data experiments, we choose λ1 = 0.5 and λ2 = 0.1 for our final objectives. And for CIFAR-10 experiments, we
simply choose λ1 = λ2 = 1 with no further tuning.

Specifically, for synthesis data, we choose λ1 = 0.5, λ2 = 0 as the second-order score matching objective, and λ1 = 0.5,
λ2 = 0.1 as the third-order score matching objective. For CIFAR-10, we simply choose λ1 = 1, λ2 = 0 as the second-order
score matching objective, and λ1 = λ2 = 1 as the third-order score matching objective.
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In practice, the implementation of the first-order DSM objective in (Song et al., 2020; 2021) divides the loss function by the
data dimension (i.e. use ‖·‖

2
2

d instead of ‖ · ‖22). We also divide the second-order DSM and the third-order DSM objectives by
the data dimension for the image data to balance the magnitudes of the first, second and third-order objectives. Please refer
to the implementation in our released code for details.

I.2. 1-D mixture of Gaussians

We exactly compute the high-order score matching objectives in Sec. 5.1, and choose the starting time ε = 10−5.

The density function of the data distribution is

q0(x0) = 0.4 ∗ N (x0| −
2

9
,

1

92
) + 0.4 ∗ N (x0| −

2

3
,

1

92
) + 0.2 ∗ N (x0|

4

9
,

2

92
) (207)

We use the “noise-prediction” type model (Kingma et al., 2021), i.e. we use a neural network εθ(xt, t) to model σtsθ(xt, t).
We use the time-embedding in Song et al. (2020). For the score model, we use a two-layer MLP to encode t, and a two-layer
MLP to encode the input xt, then concatenate them together to another two-layer MLP network to output the predicted
noise εθ(xt, t).

We use Adam (Kingma & Ba, 2014) optimizer with the default settings in JAX. The batch size is 5000. We train the model
for 50k iterations by one NVIDIA GeForece RTX 2080 Ti GPU card.

As our proposed high-order DSM algorithm has the property of bounded errors, we directly train our model from the default
initialized neural network, without any pre-training for the lower-order models.

I.3. 2-D checkerboard data

We exactly compute the high-order score matching objectives in Sec. 5.1, and choose the starting time ε = 10−5.

We use the same neural network and hyperparameters in Appendix. I.2, and we train for 100k iterations for all experiments
by one NVIDIA GeForece RTX 2080 Ti GPU card.

Similar to Appendix. I.2, we directly train our model from the default initialized neural network, without any pre-training
for the lower-order models.

I.4. CIFAR-10 experiments

Our code of CIFAR-10 experiments are based on the released code of Song et al. (2020) and Song et al. (2021). We choose
the start time ε = 10−5 for both training and evaluation.

We train the score model by the proposed high-order DSM objectives both from 0 iteration and from the pre-trained
checkpoints in Song et al. (2020) to a fixed ending iteration, and we empirically find that the model performance by these two
training procedure are nearly the same. Therefore, to save time, we simply use the pre-trained checkpoints to further train
the second-order and third-order models by a few iteration steps and report the results of the fine-tuning models. Moreover,
we find that further train the pre-trained checkpoints by first-order DSM cannot improve the likelihood of ScoreODE, so we
simply use the pre-trained checkpoints to evaluate the first-order models.

Model architectures The model architectures are the same as (Song et al., 2020). For VE, we use NCSN++ cont. which
has 4 residual blocks per resolution. For VE (deep), we use NCSN++ cont. deep which has 8 residual blocks per resolution.
Also, our network is the “noise-prediction” type, same as the implementation in Song et al. (2020).

Training We follow the same training procedure and default settings for score-based models as (Song et al., 2020), and
set the exponential moving average (EMA) rate to 0.999 as advised. Also as in (Song et al., 2020), the input images are
pre-processed to be normalized to [0, 1] for VESDEs. For all experiments, we set the “n jitted steps=1” in JAX code.

For the experiments of the VE model, we use 8 GPU cards of NVIDIA GeForece RTX 2080 Ti. We use the pre-trained
checkpoints of 1200k iterations of Song et al. (2020), and further train 100k iterations (for about half a day) and the model
quickly converges. We use a batchsize of 128 of the second-order training, and a batchsize of 48 of the third-order training.

For the experiments of the VE(deep) model, we use 8 GPU cards of Tesla P100-SXM2-16GB. We use the pre-trained
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Table 3. Benchmark of computation time, iteration numbers and memory consumption on CIFAR-10.

Model Time per iteration (s) Memory in total (GiB) Training iterations

VE (Song et al., 2020) 0.28 25.84 1200k
VE (second) (ours) 0.33 28.93 1200k(checkpoints) + 100k
VE (third) (ours) 0.44 49.12 1200k(checkpoints) + 100k

checkpoints of 600k iterations of Song et al. (2020), and further train 100k iterations (for about half a day) and the model
quickly converges. We use a batchsize of 128 of the second-order training, and a batchsize of 48 of the third-order training.

Likelihood and sample quality We use the uniform dequantization for likelihood evaluation. For likelihood, we report
the bpd on the test dataset with 5 times repeating (to reduce the variance of the trace estimator). For sampling, we find the
ode sampler often produce low quality images and instead use the PC sampler (Song et al., 2020) discretized at 1000 time
steps to generate 50k samples and report the FIDs on them. We use the released pre-trained checkpoints of the VESDE in
Song et al. (2020) to evaluate the likelihood and sample quality of the first-order score matching models.

Computation time, iteration numbers and memory consumption We list the computation time and memory consump-
tion of the VE model (shallow model) on 8 NVIDIA GeForce RTX 2080 Ti GPU cards with batch size 48 in Table 3. The
n jitted steps is set to 1. When training by second-order DSM, we only use score jvp fn in the training algorithm
and remove grad div fn. The computation time is averaged over 10k iterations. We use jax.profiler to trace the
GPU memory usage during training, and report the peak total memory on 8 GPUs.

We find that the costs of the second-order DSM training are close to the first-order DSM training, and the third-order DSM
training costs less than twice of the first-order training. Nevertheless, our method can scale up to high-dimensional data and
improve the likelihood of ScoreODEs.

I.5. ImageNet 32x32 experiments

We adopt the same start time and model architecture for both VE and VE (deep) as CIFAR-10 experiments. Note that the
released code of Song et al. (2020) and Song et al. (2021) provides no pretrained checkpoint of VE type for ImageNet 32x32
dataset, so we use their training of VP type as a reference, and train the first-order VE models from scratch. Specifically, we
train the VE baseline for 1200k iterations, and the VE (deep) baseline for 950k iterations.

For the high-order experiments of both VE and VE (deep), we further train 100k iterations, using a batchsize of 128 for the
second-order training and a batchsize of 48 for the third-order training. We use 8 GPU cards of NVIDIA GeForece RTX
2080 Ti for VE, and 8 GPU cards of NVIDIA A40 for VE (deep). We report the average bpd on the test dataset with 5 times
repeating.

J. Additional results for VE, VP and subVP types
We also train VP and subVP types of ScoreODEs by the proposed high-order DSM method, with the maximum likelihood
weighting function for ScoreSDE in (Song et al., 2021) (the weighting functions are detailed in (Song et al., 2021, Table 1)).
Note that for the VE type, the likelihood weighting is exactly the DSM weighting used in our experiments.

We firstly show that for the ScoreODE of VP type, even on the simple 1-D mixture-of-Gaussians, the model density trained
by the first-order DSM is not good enough and can be improved by the third-order DSM, as shown in Fig. 5.

We then train ScoreODE of VP and subVP types on the CIFAR-10 dataset. We use the pretrained checkpoint by first-order
DSM in (Song et al., 2021) (the checkpoint of “Baseline+LW+IS”), and further train 100k iterations. We use the same
experiment settings as the VE experiments. We vary the start evaluation time ε and evaluate the model likelihood at each
ε, as shown in Fig. 6. For the ScoreODE trained by the first-order DSM, the model likelihood is poor when ε is slightly
large. Note that Song et al. (2020; 2021) uses ε = 10−3 for sampling of VP type, and the corresponding likelihood is poor.
Moreover, our proposed method can improve the likelihood for ε larger than a certain value (e.g. our method can improve
the likelihood for the VP type with ε = 10−3). However, for very small ε, our method cannot improve the likelihood for VP
and subVP. We suspect that it is because of the “unbounded score” problem (Dockhorn et al., 2021). The first-order score



Maximum Likelihood Training for Score-Based Diffusion ODEs

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

p(
x)

(e) First-order DSM, VP

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

p(
x)

(f) Third-order DSM, VP

Figure 5. Model density of ScoreODEs (VP type) on 1-D mixture-of-Gaussians data.
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Figure 6. Model NLL (negative-log-likelihood) in bits/dim (bpd) of ScoreODEs for both VP type and subVP type trained by first-order
DSM and our proposed third-order DSM on CIFAR-10 with the likelihood weighting functions and the importance sampling in Song et al.
(2021), varying the start evaluation time ε.

function suffers numerical issues for t near 0 and the first-order SM error is so large that it cannot provide useful information
for the higher-order SM.

As the data score function∇x log qt(xt) is unknown for CIFAR-10 experiments, we cannot evaluate JFisher(θ). To show the
effectiveness of our method, we evaluate the difference between sθ(xt, t) and ∇x log pODE

t (xt) in the JDiff(θ). Denote

`Diff(t) := g(t)2Eqt(xt)‖sθ(xt, t)−∇x log pODE
t (xt)‖22, (208)

we take 100 time steps between ε = 10−5 and T = 1 to evaluate `Diff(t), where the ODE score function ∇x log pODE
t (xt)

is computed by the method in Appendix. D, and the expectation w.r.t. qt(xt) are computed by the Monte-Carlo method,
namely we use the test dataset for q0(x0) and then sample xt from q(xt|x0). We evaluate the `Diff(t) for the first-order
DSM training (baseline) and the third-order DSM training for both the VP and VE types, as shown in Fig. 7. We can
find that our proposed high-order DSM method can reduce `Diff(t) for ScoreODEs for most t ∈ [ε, T ]. As sθ(xt, t) is an
estimation of the true data score function∇x log qt(xt), the results indicates that our proposed method can reduce `Fisher(t)
of ScoreODEs and then further reduce JFisher(θ). Also, we can find that the “unbounded score” problem of VE is much
milder than that of VP, which can explain why our method can greatly improve the likelihood of VE type even for very
small ε.
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Figure 7. `Diff(t) of VP type and VE type on CIFAR-10, trained by first-order DSM with the likelihood weighting functions and importance
sampling in Song et al. (2021) and our proposed third-order DSM.
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Figure 8. Random samples of SGMs (VE type) by PC sampler, trained by different orders of DSM.

Moreover, we randomly select a batch of generated samples by the PC sampler (Song et al., 2020) of the same random seed
by the VE model of first-order, second-order and third-order DSM training, as shown in Fig. 8. The samples are very close
for human eyes, which shows that after our proposed training method, the score model can still be used for the sample
methods of SGMs to generate high-quality samples.


