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Abstract
In general-sum games, the interaction of self-
interested learning agents commonly leads to col-
lectively worst-case outcomes, such as defect-
defect in the iterated prisoner’s dilemma (IPD).
To overcome this, some methods, such as Learn-
ing with Opponent-Learning Awareness (LOLA),
shape their opponents’ learning process. How-
ever, these methods are myopic since only a small
number of steps can be anticipated, are asymmet-
ric since they treat other agents as naive learners,
and require the use of higher-order derivatives,
which are calculated through white-box access to
an opponent’s differentiable learning algorithm.
To address these issues, we propose Model-Free
Opponent Shaping (M-FOS). M-FOS learns in a
meta-game in which each meta-step is an episode
of the underlying (“inner”) game. The meta-state
consists of the inner policies, and the meta-policy
produces a new inner policy to be used in the next
episode. M-FOS then uses generic model-free
optimisation methods to learn meta-policies that
accomplish long-horizon opponent shaping. Em-
pirically, M-FOS near-optimally exploits naive
learners and other, more sophisticated algorithms
from the literature. For example, to the best of our
knowledge, it is the first method to learn the well-
known Zero-Determinant (ZD) extortion strategy
in the IPD. In the same settings, M-FOS leads to
socially optimal outcomes under meta-self-play.
Finally, we show that M-FOS can be scaled to
high-dimensional settings.

1. Introduction
While much past work in multi-agent reinforcement learn-
ing (MARL) has focused on fully-cooperative learning in
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domains such as Dec-POMDP’s (Oliehoek & Amato, 2016)
or zero-sum games like Starcraft and Go (Silver et al., 2017;
Vinyals et al., 2019), these settings only represent a fraction
of potential real-world multi-agent environments. General-
sum games, which can be neither fully-cooperative nor fully-
competitive, describe many domains such as agent-based
modeling, social dilemmas, and systems of interacting self-
interested agents like self-driving cars.

Even simple social dilemmas commonly present unique
challenges that are not present in single-agent learning (Fo-
erster et al., 2018a). For example, in the IPD (Axelrod &
Hamilton, 1981; Harper et al., 2017), learning agents that
treat their opponents as static parts of the environment typi-
cally converge on unconditional mutual defection, which is
the globally worst outcome.

To avoid such catastrophic outcomes, Foerster et al. (2018a)
introduce LOLA, which takes into account the opponents’
learning step in order to shape their policy. In the self-play
setting, LOLA was one of the first methods to discover the
reciprocating tit-for-tat (TFT) strategy in the IPD.

However, LOLA and related algorithms, such as SOS
(Letcher et al., 2019b) and Meta Multi-Agent Policy Gradi-
ent (Kim et al., 2021, Meta-MAPG), assume that the oppo-
nent is a naive learning (NL) agent, which is often incorrect,
e.g. in self-play. Furthermore, to shape their opponents,
these methods use second-order derivatives, which are typ-
ically high-variance, making learning unstable (Foerster
et al., 2018a). Lastly, they are also myopic – they only shape
the opponent’s next few learning steps, not their long-term
development.

To resolve all of these issues, we introduce Model-Free
Opponent Shaping (M-FOS). M-FOS is a general meta-
learning algorithm that learns over multiple opponent-
learning steps without requiring a model of its opponent’s
underlying learning algorithm.

The core of M-FOS is a meta-game in which each meta-
step is an episode of the underlying (“inner”) game. The
meta-state consists of the inner policies, and the meta-policy
produces a new inner policy to be used in the next episode.
M-FOS then uses generic model-free optimisation methods,
rather than approaches that require higher-order derivatives,
to learn meta-policies that accomplish long-horizon oppo-
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nent shaping. Furthermore, training M-FOS in meta-self-
play allows mutual opponent shaping without causing the
kind of infinite regress typically caused by ever higher-order
learning awareness (Foerster et al., 2018a).

However, since M-FOS is naively model-free, the meta-
self-play setting reduces to independent learning, which is
highly initialisation-dependent and unstable in general-sum
settings. To mitigate this, we introduce a training schedule
inspired by Cognitive Hierarchies (CH) (Camerer et al.,
2003). With this schedule, M-FOS learns to reciprocate
with itself in the meta-game, even achieving higher scores
than LOLA in self-play.

For low-dimensional games, M-FOS directly learns policy
updates by taking policies as input and outputting the next
policy as an action. However, directly inputting and out-
putting policies does not scale to higher-dimensional games.
We introduce a variant of M-FOS that takes past trajectories
as inputs to meta-learn across its opponent’s learning steps.
We then demonstrate that, even in social dilemmas with
temporally-extended transition dynamics, M-FOS still man-
ages to shape naive learners and find mutually beneficial
solutions in meta-self-play.

In the experiment section, we show that M-FOS can exploit
naive learners much better than a set of widely used general-
sum learning algorithms (Foerster et al., 2018a; Kim et al.,
2021). In the IPD, M-FOS discovers a famous strategy
known as ZD extortion (Press & Dyson, 2012) when playing
against NL agents. Notably, unlike other algorithms, it does
so without access to the opponent’s underlying learning
algorithm. M-FOS even learns to exploit other general-sum
algorithms, such as LOLA.

2. Related Work
Opponent Shaping: Several methods recognise that their
current actions influence the future policies of learning op-
ponents and take advantage of this to “shape” an opponent’s
policy to desirable values. Most of these works assume
white-box access to an opponent’s learning algorithm and
reward in order to take higher-order derivatives through an
opponent’s update (Foerster et al., 2018a; Letcher et al.,
2019a; Kim et al., 2021; Willi et al., 2022). Such updates
are also myopic since anticipating many steps is intractable.
In self-play, these methods inconsistently assume that their
opponent is a naive learner. M-FOS does not assume white-
box access to an opponent’s underlying learning algorithm
or reward, does not require higher-order derivatives (which
are often high-variance), can shape opponents across a large
number of updates, and is consistent in self-play.

Opponent Modeling: Much work in MARL has focused on
the idea of opponent modeling in which an agent attempts
to model some aspect of the policy of other agents in the en-

vironment. This includes explicitly modeling opponent poli-
cies (Mealing & Shapiro, 2017), modeling opponent inten-
tions (Raileanu et al., 2018), classifying opponent strategies
(Weber & Mateas, 2009; Synnaeve & Bessière, 2011), and
modeling an opponent’s nested beliefs (Wen et al., 2019).
LILI (Xie et al., 2020) models an opponent’s high-level la-
tent strategy from local observations with a latent dynamics
model rather than explicitly modeling the opponent’s policy.
Other work (Chakraborty & Stone, 2014) has also consid-
ered learning effective policies in the presence of opponents
that have memory. However, these methods are not capable
of actively shaping their opponents’ learning dynamics, thus
they do not address the issue that we address in this paper.

Multi-Agent Meta-Learning: M-FOS is a form of multi-
agent meta-learning where the meta-policy is parameterized
by a neural network. Existing multi-agent meta-learning
methods, such as Meta-Policy Gradient (Meta-PG) (Al-
Shedivat et al., 2018), Meta-MAPG (Kim et al., 2021), and
Learning to Exploit (L2E) (Wu et al., 2021) instead pa-
rameterize the meta-policy using a method similar to that
of Model-Agnostic Meta-Learning (MAML) (Finn et al.,
2017), in which they learn initial parameters and meta-learn
across their own gradient updates. While this type of meta-
learning can adapt to any task at test time in single-agent
settings (Xiong et al., 2021), in multi-agent settings, the
calculated gradient may not correspond to a direction of
improvement as the updates of other agents change the un-
derlying dynamics. Rather than being restricted to a gradient
update within the episode, M-FOS allows for arbitrary meta-
policies that can carry out long horizon opponent shaping.

3. Background
A partially observable stochastic game (Kuhn,
1953, POSG) consists of a tuple Mn =
⟨I,S,A,Ω,O,P,R, γ⟩, where I = {1, . . . , n} denotes
a set of n agents, S denotes the state space, A = ×i∈IAi

represents the joint action space, Ω = ×i∈IΩ
i the joint

observation space, P : S ×A 7→ S denotes the transition
probability function, O : S × A × Ω → [0, 1] is the
observation function, R = ×i∈IRi represents the set of
reward functions of all agents, and γ ∈ [0, 1) denotes the
discount factor. At each timestep t, every agent samples an
action from its stochastic policy, ait ∼ πi

(
· | oit, ϕi

)
, where

the joint actions at timestep t are at =
{
ait,a

−i
t

}
and −i

stands for all agents except i. The policy is parameterized
by ϕi. Given the joint actions and the current state, each
agent receives their respective reward rit = Ri (st,at).
Finally, a new state is sampled st+1 ∼ P (· | st,at).

Popular special cases of POSGs are fully observable stochas-
tic games where all agents observe the full state at each
time step; single-player, i.e. I = {1}, partially observable
Markov decision processes (POMDPs), and MDPs, where
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Algorithm 1 General M-FOS

1: Initialize M-FOS parameters θ.
2: while true do
3: Initialize agents’ parameters ϕi

0,ϕ
−i
0 .

4: for t = 0 to T do
5: Reset environment
6: Gather trajectories τϕ given ϕi

t,ϕ
−i
t

7: Update ϕ−i
t+1 according to respective learning al-

gorithms
8: Update ϕi

t+1 according to meta-policy πθ

9: end for
10: Update θ
11: end while

the single player observes the full state at each time step.

4. Model-Free Opponent Shaping
Typically opponent-shaping methods are based on MAML-
like approaches (Foerster et al., 2018a; Letcher et al., 2019b;
Kim et al., 2021) and use higher-order derivatives to di-
rectly shape the opponents’ parameter update, which re-
quires white-box access to their differentiable learning al-
gorithm. Furthermore, opponent shaping typically creates
a conceptual problem: To shape an opponent, an algorithm
needs to specify the learning behaviour of other agents in
the environment, e.g. by treating them as naive learners, as
is done in LOLA (Foerster et al., 2018a). This leads to a
fundamental inconsistency in self-play when two of these
agents are training together. Even though they are both
opponent shaping they treat each other as naive learners,
which can lead to undesired outcomes (Letcher et al., 2019a).
Lastly, most opponent-shaping methods only shape the next
learning steps instead of considering longer horizons.

Opponent shaping can be formulated as a meta-game, in
which the meta-state consists of the policies of all agents,
a meta-step is an inner episode, the reward is the inner
return, and the meta-action is choosing the next inner policy,
where “inner” refers to the underlying game. The key insight
underlying Model-Free Opponent Shaping (M-FOS) is that
we can resolve all of the issues above by directly training
meta-policies using model-free optimisation methods that
are appropriate for sequential settings, rather than relying
on MAML-like approaches.

We formally construct the meta-game as a POMDP
⟨S̄, Ā,Ω, Ō, P̄, R̄, γ̄⟩ over an underlying POSG Mn. The
meta-game is partially observable because we do not as-
sume full access to the opponents’ parameters. The M-FOS
meta-agent controls agent i ∈ I in the underlying POSG
Mn. The state space S̄ of the meta-game consists of the
policy parameters of the agents in the underlying POSG,
s̄t = (ϕi

t−1,ϕ
−i
t−1) ∈ S̄. The meta-agent’s action space

consists of agent i’s policy, for example outputting a condi-
tioning vector or setting agent i’s policy parameters directly,
āt = ϕi

t ∼ πθ(· | ōt). Here the meta-policy is parameter-
ized by θ. The meta-agent receives observation ot ∈ Ω with
probability Ō(ōt | s̄t, āt). After each meta-episode, the
scalar reward is r̄t =

∑K
k=0 r

i
k(ϕ

i
t,ϕ

−i
t ), where K is the

length of the inner episode (i.e. the reward in the meta-game
at each step is the inner return). Finally, a new meta-state
is sampled from a stochastic transition probability function,
s̄t+1 ∼ P̄ (· | s̄t, āt). P̄ (s̄t, āt) is stochastic since, in gen-
eral, the update function for any agent can be stochastic,
ϕj
t+1 ∼ h(· | ϕj

t ). For example, when agent j updates
their parameters with policy gradients. Consequently, the
trajectory is denoted as τ̄θ := (ō0, ā0, r̄0, . . . , r̄T ), where
T is the length of the meta-episode. We train the meta-
policy to maximise the expected return per meta-episode
J =

∑T
t=0 r̄

i
t(ϕ

i
t,ϕ

−i
t ). Crucially, rather than relying on

higher-order derivatives, M-FOS uses model-free optimisa-
tion methods to directly train a meta-policy. In the Section 6
we show that PPO (Schulman et al., 2017; Barhate, 2021)
and Genetic Algorithms (Such et al., 2017) work well in
this general meta-learning framework.

4.1. M-FOS Self-Play

By doing model-free optimisation in the meta-game, we no
longer require higher-order derivatives and also can learn
strategies that engage in long-horizon opponent shaping.
Next, we also address the issue of symmetry and consistency
by introducing meta-self-play.

When using MAML-like approaches for opponent shaping,
attempts of consistent self-play lead to infinite recursions,
since each agent differentiates through the learning step
of the other agent and so on. In contrast, since M-FOS is
entirely model-free, meta-self-play between two M-FOS
agents simply corresponds to learning in a general-sum
game, where model-free methods can be applied without
causing infinite regress.

One challenge is that independent learning in general-sum
settings is highly initialisation dependent and unstable,
which is undesirable for a principled method. Furthermore,
in general-sum games there are often multiple nash equi-
libria, which implies that a stricter way to select equilibria
would be desirable.

One such way to select ideal equilibria is called the tracing
procedure (Harsanyi et al., 1988). The tracing procedure is
based on the idea of each agent having a (common) initial
bayesian prior over how a rational agent would behave in
a general-sum game. The agents then repeatedly update
their policies against each other until convergence, initial-
ising from this prior. The exact procedure is impractical in
high-dimensional function approximation, but we use it as
inspiration to create a similar, but more tractable, self-play
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approach.

This is implemented via a parameter λ that corresponds
to the probability of an M-FOS agent being paired with a
naive learner rather than another M-FOS agent. By setting
λ = 1 at the beginning of training, we ground the training
to an approximate best-response to NL, while annealing it
to λ = 0 allows us to transition to self-play over the course
of training gradually. We anneal λ slowly enough, such that
the M-FOS agents are always playing near optimally for the
given distribution.

5. Experimental Setup
5.1. Environments

IPD: The prisoner’s dilemma is one of the most widely-
studied and important general-sum games, with applica-
tions in evolutionary biology, economics, politics, sociology,
and other fields (Rapoport et al., 1965). In the prisoner’s
dilemma, agents can choose to cooperate (C) or defect (D)
against each other, with the payouts of the result being pre-
sented in Table 1.

Table 1. Payoff Matrix for the Prisoner’s Dilemma
C D

C (-1, -1) (-3, 0)
D (0, -3) (-2, -2)

A common extension of the prisoner’s dilemma is the IPD,
in which the prisoner’s dilemma is played repeatedly, with
players able to observe their opponent’s past decisions. Ax-
elrod (Axelrod & Hamilton, 1981) famously held an IPD
tournament where a strategy known as TFT, in which a
player copies the other player’s last move, was popularized.

Despite decades of previous study of the IPD, Press &
Dyson (2012) made a surprising mathematical discovery
that dramatically changed our understanding of the game:
There exist fixed policies, called ZD extortion strategies,
that dominate any learning opponent. More specifically,
ZD extortion enforces a linear relationship between the two
agents’ rewards that disproportionately benefits the extor-
tioner (see Figure 4). However, it is still in a learning agent’s
best interest to cooperate against extortion despite the fact
that it benefits the extortioner more. In principle, an agent
could overcome the extortion by being “meta”-aware that
the opponent can change their policy and punish an extorting
opponent.

Iterated Matching Pennies: Iterated Matching Pennies
(IMP) is an iterated matrix game like the IPD but is zero-
sum. In IMP, agents can play “Heads” or “Tails” and get
payouts according to Table 2.

Chicken Game: The Chicken Game is a stochastic matrix

Table 2. Payoff Matrix for Matching Pennies
H T

H (+1, -1) (-1, +1)
T (-1, +1) (+1, -1)

game. Agents can either Swerve (C) or head Straight (D).
While agents can gain a small reward by heading straight
against a swerving opponent, they incur a large negative
cost if they both head straight. It is often used in political
science and economics to describe brinksmanship scenarios
in which there is a threat of mutually assured destruction
(Rapoport & Chammah, 1966).

Table 3. Payoff Matrix for the Chicken Game
C D

C (0, 0) (-1, +1)
D (+1, -1) (-100, -100)

Matrix Game Setup: In this paper, we directly calculate
the value function rather than repeatedly sampling actions.
We initialize all policies randomly (except for M-MAML)
by taking the sigmoid of samples from the standard normal
distribution. We then calculate the value functions for both
policies and update them for T = 100 steps.

Coin Game: The Coin Game is a multi-agent grid-world
environment that simulates social dilemmas like the IPD
but with high dimensional dynamic states. First proposed
by Lerer & Peysakhovich (2017), the game consists of two
players, labeled red and blue respectively, who are tasked
with picking up coins, also labeled red and blue respectively,
in a 3x3 grid. If a player picks up any coin by moving into
the same position as the coin, they receive a reward of +1.
However, if they pick up a coin of the other player’s color,
the other player receives a reward of −2. Thus, if both
agents play greedily and pick up every coin, the expected
reward for both agents is 0.

Figure 1. Illustration of Coin Game

5.2. Baseline Comparisons

Naive Learning (NL): Naive learners assume that other
agents are part of the environment and are static between
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episodes. Thus, between each episode, naive learners per-
form the following update with learning rate α:

ϕi
t+1 = ϕi

t + α∇ϕi
t
Ri(ϕi

t, ϕ
−i
t )

In reinforcement learning, this is often approximated with
a sample-based approach. In our experiments, in the Coin
Game, the NL uses PPO, (Schulman et al., 2017) which
modifies this by clipping the update. In matrix games, we
can directly perform gradient ascent without sampling be-
cause the exact value Ri is differentiable.

Learning with Opponent Learning Awareness (LOLA):
LOLA assumes that other agents are naive learners and
perform the gradient step performed above. LOLA takes a
gradient through the opponent’s update function to shape
the opponent.

ϕi
t+1 = ϕi

t + αi∇ϕi
t
Ri(ϕi

t, ϕ
−i
t +∆ϕ−i

t ) (1)

∆ϕ−i
t = α−i∇ϕi

t
R−i(ϕi

t, ϕ
−i
t )

Multiagent Model-Agnostic Meta-Learning: We intro-
duce a new baseline, Multiagent MAML (M-MAML),
which is inspired by Meta-Multiagent Policy Gradient (Kim
et al., 2021, Meta-MAPG). Meta-MAPG and M-MAML
operate in a similar setting to M-FOS in that they meta-learn
over multiple opponent learning updates. However, instead
of learning an update function, they learn initial parame-
ters. They then meta-learn over their own gradient updates
(much like MAML (Finn et al., 2017)) as well as the gradi-
ent updates of their opponents. Meta-MAPG and M-MAML
optimize the following:

max
ϕi
0

Ep(ϕ−i
0 )[

t=T∑
t=0

Ri(ϕi
t, ϕ

−i
t )], (2)

ϕi
t+1 = ϕi

t + αi∇ϕi
t
Ri(ϕi

t, ϕ
−i
t )

ϕ−i
t+1 = ϕ−i

t + α−i∇ϕ−i
t
R−i(ϕi

t, ϕ
−i
t )

I.e., the methods only optimize initial policy parameters,
assuming that all agents are naive learners.

Meta-MAPG expands the objective into multiple learning
terms to perform policy-gradient updates. However, we do
not directly compare to Meta-MAPG because it only scales
to T = 7 meta-steps in the IPD, not T = 100. Instead, we
use the exact value function and exact gradients allowing our
baseline (M-MAML) to scale to meta-episodes consisting
of 100 inner episodes.

5.3. M-FOS Implementation Details

Although M-FOS can be applied to any POSG, different
settings allow for very different architectures. Below we
describe the architectures we use for basic matrix games
and the higher-dimensional coin game.

Matrix Games: In the matrix game environments we allow
M-FOS to observe the full state, which is the concatenation
of the policies played last timestep ot = st = (ϕi

t−1, ϕ
−i
t−1).

Because all of our evaluated opponents (including M-FOS
itself) only make updates according to the current state, this
turns the induced POMDP into an MDP. Because the inner
policy can be fully expressed with very few parameters,
we can directly output the parameters, turning the MDP
into a basic continuous control problem. Because of this,
we model the M-FOS meta-agent as a simple feed-forward
neural network parameterized by θ that takes in the state
and outputs a distribution over the next policy.

max
θ

Ep(ϕ−i
0 ,ϕi

0)
[

t=T∑
t=0

Ri(ϕi
t, ϕ

−i
t )], (3)

ϕi
t+1 ∼ πθ(· | ϕi

t, ϕ
−i
t )

ϕ−i
t+1 = f(ϕi

t, ϕ
−i
t )

This can be seen as being related to hypernetwork meta-
learners since it directly outputs the weights of another
(very simple) model (Zhmoginov et al., 2022).

We optimize the meta-policy using both Genetic Algorithms
(Such et al., 2017), and PPO (Schulman et al., 2017; Barhate,
2021), and report the best of both. A detailed breakdown of
the performance of each can be found in the Appendix A.

M-FOS in Coin Game: Here, M-FOS does not directly
observe the opponent’s policy parameters but only the ef-
fects of their past actions. The opponent is parameterized
by a convolutional neural network and, as a naive learner, is
trained using PPO. M-FOS’s inner policy is parameterized
by a convolutional recurrent neural network that takes in an
observation as input along with a conditioning vector from
the meta-policy. We require the inner policy to be recurrent
to respond to and shape the opponent’s policy. The hidden
state of the recurrent neural network is reset each episode.
M-FOS’s meta-policy is parameterized by a convolutional
recurrent neural network that processes the batch of tra-
jectories from the last episode and outputs a conditioning
vector, used in the next episode. Using PPO, the inner policy
and the meta-policy parameters are trained end-to-end to
maximise the expected discounted meta-return.

6. Results
6.1. Iterated Prisoner’s Dilemma

In a round-robin tournament in which algorithms train
against each other in a head-to-head matchup, M-FOS vastly
outperforms all other learning methods in the IPD. Notably,
it is the only algorithm to achieve scores better than mutual
cooperation (−1), and it does so against all opponents, ex-
cluding itself. Similarly, it is the only algorithm for which
one of its opponents performs worse than mutual defection



Model-Free Opponent Shaping

Figure 2. Visualisations of a run of a meta-episode of each learner against M-FOS. Notice how the opponents’ policies are shaped into
cooperating, resulting in state visitations that are beneficial to the M-FOS agent.

(a) (b) (c) (d)

Figure 3. Visualisations of M-FOS shaping a naive learner. The area denoted by the black lines represents the episode’s possible rewards.
The blue points represent the possible payoffs of a naive learner against the M-FOS policy at that timestep. (a)-(b) M-FOS begins by
playing TFT until the opponent is sufficiently cooperative. (c)-(d) M-FOS then repeatedly switches between an extortion-like policy (c)
and a defecting policy (d), making the NL oscillate.

(−2), and it does so against both naive learners and LOLA.

Table 4. Head-to-head rewards of each learning algorithm in the
Iterated Prisoner’s Dilemma.

M-FOS NL LOLA M-MAML
M-FOS -1.01 -0.51 -0.73 -0.67
NL -2.14 -1.98 -1.52 -1.28
LOLA -2.09 -1.30 -1.09 -1.04
M-MAML -1.86 -1.25 -1.15 -1.17

M-FOS v. Naive Learner: Against an NL agent, M-FOS
gets an average score of −0.51, while the NL agent gets an
average score of −2.14. This is a far more advantageous
result than LOLA achieves (−1.30/−1.52), even though
LOLA has a perfect learning model of its opponent and
can take the derivative through its update step and the en-
vironment. We suspect that this happens because LOLA is

a myopic one-step learner, whereas M-FOS considers the
discounted returns far in the future. This can be observed in
Figure 2.

Also, note that the NL agent achieves a total score lower than
−2. This is a lower score than ZD extortion can theoretically
make its opponent achieve since blind defection at worst
achieves a score of −2. Figure 3 shows that M-FOS takes
advantage of the fact that the NL agent’s gradient updates
do not find the optimal response policy in a single step.

M-FOS v. Look-Ahead Best Response: To demonstrate the
above point, we train M-FOS against a variant of a naive
learner that can observe its opponent’s next policy and then
plays the best response to it (which is calculated by perform-
ing a thousand steps of gradient ascent). Despite the game
being symmetric, M-FOS extorts this Look-Ahead Best Re-
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sponse (LABR) agent, achieving an average score of −0.71.
Figure 4 shows that the policy M-FOS outputs approximates
ZD extortion. To the best of our knowledge, M-FOS is the
first learning algorithm to discover ZD extortion.

Figure 4. Visualisation of M-FOS v. Look-Ahead Best Response
in the IPD. Note that the payoff between the two agents is near-
linear and favors the M-FOS agent, indicating ZD extortion.

M-FOS v. LOLA: In (Foerster et al., 2018a), the authors
write that 2nd-order LOLA, which is an agent that takes the
derivative through the opponent’s LOLA update, does not
achieve any incremental gains against an opposing LOLA
agent. In other words, a LOLA agent achieves a better score
against another LOLA agent than a 2nd-order LOLA agent
would, implying that it is difficult to exploit LOLA.

However, M-FOS manages to find a dominating strategy
against LOLA (−0.73 / −2.09). To the best of our knowl-
edge, M-FOS is the first learning algorithm to exploit the
LOLA update.

M-FOS v. M-MAML: M-MAML seems to have generally
learned to initialize with values close to TFT (see Appendix
Section B). This initialisation allows it to achieve favor-
able results against all algorithms except M-FOS (−0.67 /
−1.86), which learns to exploit it in Figure 2.

M-FOS v. M-FOS: We arrive at a cooperative score when
M-FOS is trained against other M-FOS agents using the
meta-self-play training scheme from above. When viewing
the final policies played against each other, we observe
that M-FOS has largely arrived at TFT, as seen in Figure 5.
To the best of our knowledge, M-FOS is the first learning
algorithm to arrive at TFT in the IPD against itself without
using higher-order derivatives, access to the opponent’s
rewards, or specific hand-coding of TFT-like behaviour.

6.2. Other Matrix Games

IMP: In IMP, M-FOS once again outperforms other base-
line methods. In particular, by examining how M-FOS
exploits a naive learner compared to how LOLA does so,
we observe that LOLA is myopic compared to M-FOS. In
Figure 6, LOLA gradually approaches the nash equilibrium

Figure 5. Visualisation of 32 Final Episode Policies in M-FOS v.
M-FOS in the IPD
Table 5. Head-to-head results of each learning algorithm in Iterated
Matching Pennies.

M-FOS NL LOLA M-MAML
M-FOS 0.0 0.20 0.19 0.22
NL -0.20 0.0 -0.02 -0.01
LOLA -0.19 0.02 0.0 0.02
M-MAML -0.22 0.01 -0.02 0.0

against a naive learner in order to avoid being exploited by
its opponent. In contrast, M-FOS cyclically shapes the naive
learner’s policy to continuously exploit it while staying one
step ahead.

Table 6. Head-to-head results of each learning algorithm in the
Chicken Game. The results of an M-FOS meta-policy that learns
an initial policy is in parantheses.

M-FOS NL LOLA M-MAML
M-FOS -0.01 0.97 -0.94[0.5] 0.86
NL -1.03 -0.0 -0.97 -0.27
LOLA 0.87[-1.5] 0.94 -85.96 0.40
M-MAML -1.08 0.27 -0.42 -0.15

Chicken Game: M-FOS performs well against all baselines
in the head-to-head in the Chicken Game but achieves a
lower score against LOLA. Interestingly, LOLA tends to
behave in an extortionary manner in the Chicken Game.
After one update against most random policies, it attempts to
shape the opponent by heading straight (i.e. defecting) with
high probability. While this extortionate behavior works
against most learning opponents, it leads to catastrophic
results in self-play (−85.96). This suggests that LOLA will
continue to head straight, whether its opponent swerves or
heads straight.

Because M-MAML selects its initial policy, it can shape
LOLA from the first time step, preventing LOLA from
immediately heading straight after its first update. M-FOS,
in contrast, is by default forced to a random initialisation.
However, if we allow M-FOS also to learn an initial policy,
it achieves a much higher score against LOLA (0.5), far
outperforming M-MAML (−0.42).
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Figure 6. Visualisation of M-FOS’s long-term shaping LOLA’s and myopic strategy in the Iterated Matching Pennies environment. Note
how LOLA converges to the nash equilibrium, resulting in zero reward for both agents, while M-FOS continually drags the naive learner’s
policy to exploitable states.

6.3. Coin Game

Prior work (Yu et al., 2021) has shown that LOLA-DiCE
(Foerster et al., 2018b) and Meta-MAPG (Kim et al., 2021)
do not achieve significant results in a simplified version of
coin game with a fully cooperative reward. Because of this,
we do not compare to these baselines. We also observe that
M-FOS outperforms PPO in head-to-head training while
still achieving good performance in self-play. Meanwhile,
PPO agents, when trained together, pick up each other’s
coins indiscriminately, leading to 0 expected reward.

Table 7. Head-to-head results of M-FOS and PPO in the Coin
Game.

M-FOS PPO
M-FOS 20.56 44.26

PPO -24.62 4.25

7. Conclusion & Future Work
In this paper, we presented Model-Free Opponent Shap-
ing (M-FOS) as a simple model-free alternative to popular
MAML-like opponent shaping methods, such as LOLA
and MMAPG. Although M-FOS does not use higher-order
derivatives and does not have white-box access to its op-
ponent’s learning model, it vastly outperforms all tested
baselines across several matrix games.

More specifically, in the IPD, M-FOS achieves several no-
table results. First, to the best of our knowledge, it is the

Figure 7. Probability of the PPO agent picking up its own coin
across the inner episodes. Note that it is shaped into picking up
more of its own coins against the M-FOS agent.

first learning algorithm to discover ZD extortion, the first
learning algorithm that exploits LOLA, and the first learning
algorithm to achieve cooperation in self-play without using
higher-order derivatives or inconsistent models. Further-
more, it achieves a score higher than mutual cooperation
against all tested opponents, while none of the baselines
could do so against any single opponent. We also show
that M-FOS can scale to more complex, high-dimensional
games and achieve similar results.

In the future, we could generalize M-FOS beyond social
dilemmas. For example, M-FOS could shape financial in-
struments, trading models, recommendation systems, and
any system trained on real-world data.
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A. Detailed Results
Each experiment is run 10 times. The inner batch size of each experiment for the matrix games is 4096.

Table 8. Head-to-head results of each learning algorithm in IPD, results reported for M-FOS PPO.
M-FOS NL LOLA M-MAML

M-FOS -1.01 -0.51 -1.03 -0.84
NL -2.14 -1.98 -1.52 -1.28
LOLA -1.02 -1.30 -1.09 -1.04
M-MAML -1.52 -1.25 -1.15 -1.17

Table 9. Head-to-head results of each learning algorithm in IPD, results reported for M-FOS GA.
M-FOS NL LOLA M-MAML

M-FOS – -0.745 -0.73 -0.67
NL -1.69 -1.98 -1.52 -1.28
LOLA -2.09 -1.30 -1.09 -1.04
M-MAML -1.86 -1.25 -1.15 -1.17

Table 10. Head-to-head results of each learning algorithm in IMP, results reported for M-FOS PPO.
M-FOS NL LOLA M-MAML

M-FOS 0.0 0.20 0.19 0.22
NL -0.20 0.0 -0.02 -0.01
LOLA -0.19 0.02 0.0 0.02
M-MAML -0.22 0.01 -0.02 0.0

Table 11. Head-to-head results of each learning algorithm in IMP, results reported for M-FOS GA.
M-FOS NL LOLA M-MAML

M-FOS – 0.13 0.10 0.17
NL -0.13 0.0 -0.02 -0.01
LOLA -0.10 0.02 0.0 0.02
M-MAML -0.17 0.01 -0.02 0.0

Table 12. Head-to-head results of each learning algorithm in the Chicken Game. The results of an M-FOS meta-policy that learns an
initial policy is in parantheses. Results reported for M-FOS PPO.

M-FOS NL LOLA M-MAML
M-FOS -0.01 0.97 -0.94[0.5] 0.85
NL -1.03 -0.0 -0.97 -0.27
LOLA 0.87[-1.5] 0.94 -85.96 0.40
M-MAML -1.11 0.27 -0.42 -0.15

Table 13. Head-to-head results of each learning algorithm in the Chicken Game. The results of an M-FOS meta-policy that learns an
initial policy is in parantheses. Results reported for M-FOS GA.

M-FOS NL LOLA M-MAML
M-FOS – 0.97 -0.94[0.5] 0.86
NL -1.03 -0.0 -0.97 -0.27
LOLA 0.91[-1.5] 0.94 -85.96 0.40
M-MAML -1.08 0.27 -0.42 -0.15
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B. M-MAML Initialisations Plot

Figure 8. The distribution of probabilities in each state after training 10 different instances of M-MAML.

C. Hyperparameter Details
We report our hyperparameter values that we used for each of the methods in our experiments:

C.1. M-FOS

Hyperparameter Value
Number of Actor Hidden Layers 1
Size of Actor Hidden Layers [256]
Number of Critic Hidden Layers 1
Size of Critic Hidden Layers [256]
Length of Meta-Episode T 100
Batch Size B 4096
Adam Step Size 0.0002
Number of Epochs 4
Outer Discount Factor γ 0.99
PPO Clipping ϵ 0.2
Entropy Coefficient 0.01

Table 14. PPO for IPD, IMP, and Chicken Game

Hyperparameter Value
Number of Hidden Layers 1
Size of Hidden Layers [256]
Number of Species N 2048
Batch Size B 128
Length of Meta-Episode T 100
Noise Std Dev σ 2.0
Number of Elites E 1

Table 15. Genetic Algorithm for IPD, IMP, and Chicken Game
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Hyperparameter Value
Number of Conv Layers 2
Output Channels of Conv Layers [16, 16]
Kernel Sizes of Conv Layers [[3, 3], [3, 3]]
Strides of Conv Layers [1, 1]
Number of Linear Layers 1
Size of Linear Layer [16]
Number of GRUs 1
Size of GRUs [16]
Length of Meta-Episode T 16
Length of Inner Episode 16
Batch Size B 512
Adam Step Size 0.0002
Number of Epochs 16
Outer Discount Factor γ 0.99
PPO Clipping ϵ 0.2
Entropy Coefficient 0.01

Table 16. PPO For Coin Game. The Actor, Critic, and Meta-Policy have the same network architecture but do not share weights.

C.2. Environments

Hyperparameter Value
Inner Gamma γ 0.96
Learning Rate α 1
M-MAML Adam Learning Rate 0.05

Table 17. Hyperparameters for IPD Environment

Hyperparameter Value
Inner Gamma γ 0.96
Learning Rate α 0.1
M-MAML Adam Learning Rate 0.05

Table 18. Hyperparameters for IMP Environment

Hyperparameter Value
Learning Rate α 1
M-MAML Adam Learning Rate 0.05

Table 19. Hyperparameters for Chicken Environment
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Hyperparameter Value
Number of Conv Layers 2
Output Channels of Conv Layers [16, 16]
Kernel Sizes of Conv Layers [[3, 3], [3, 3]]
Strides of Conv Layers [1, 1]
Number of Linear Layers 1
Size of Linear Layer [16]
Adam Step Size 0.005
Number of Epochs 80
PPO Clipping ϵ 0.2
Entropy Coefficient 0.01
Discount Factor γ 0.96
Length of Inner Episode 16

Table 20. Hyperparameters for Coin Game Environment and Naive Learner. The Actor and Critic share the same architecture but do not
share weights.


