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Abstract

Gaussian Process (GP) models are a class of flex-
ible non-parametric models that have rich rep-
resentational power. By using a Gaussian pro-
cess with additive structure, complex responses
can be modelled whilst retaining interpretabil-
ity. Previous work showed that additive Gaussian
process models require high-dimensional interac-
tion terms. We propose the orthogonal additive
kernel (OAK), which imposes an orthogonality
constraint on the additive functions, enabling an
identifiable, low-dimensional representation of
the functional relationship. We connect the OAK
kernel to functional ANOVA decomposition, and
show improved convergence rates for sparse com-
putation methods. With only a small number of
additive low-dimensional terms, we demonstrate
the OAK model achieves similar or better predic-
tive performance compared to black-box models,
while retaining interpretability.

1. Introduction
Gaussian Processes (GPs) can be used to construct addi-
tive models by using the property that a sum of two GPs
results in a new GP with a kernel function defined as the
sum of the original ones. Using an additive structure in a
Gaussian process model is enticing from an explainability
standpoint, since one can use the linear properties of the GP
to perform inference over the added components, which can
yield insights into the data. For datasets with more than one
input dimension, it is straight-forward to build GP models
as a sum of one-dimensional functions, or known pairs (or
triplets, etc.) of interacting inputs. In the statistics literature,
Generalized Additive Models (GAMs) (Hastie & Tibshirani,
2017; Wood, 2017), are often built using sums of splines
over either each input independently or over carefully se-
lected sets of inputs.
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From the standpoint of explainable and interpretable ma-
chine learning, additive Gaussian processes such as those
considered within Kaufman & Sain (2010); Duvenaud et al.
(2011); Timonen et al. (2021) offer the promise of auto-
matically discovering relevant features and combinations of
features, through learning of a kernel with parameterized
additive structure. In particular, Duvenaud et al. (2011)
proposed a kernel which allows additive interactions of all
orders, ranging from first order terms to the interactions be-
tween all the features. An efficient computation scheme was
proposed for avoiding the exponentially large sum required
over combinations.

In this work, we build on and challenge the findings of
Duvenaud et al. (2011), where the experimental results sug-
gest that high order terms are required to model some of
the regression and classification datasets. We show that
the dimensionality of the models constructed is consider-
ably higher than necessary: for example, their model of the
8-dimensional pumadyn dataset requires an 8-dimensional
interaction whereas our proposed model requires only 2-
dimensional interactions (see Figure 1). A full comparison
on all the datasets used in Duvenaud et al. (2011) is provided
in Section 5.1: in all cases, we find that a small number of
low-dimensional terms are needed to achieve similar or bet-
ter performance. We posit that the high dimensional nature
of their models are due to two issues: an identifiability issue
with the summed components; and the way that the contri-
bution of a component to the overall model is measured.

We solve the identifiability issue by borrowing an idea from
Durrande et al. (2012), where the components of the additive
model are orthogonalized. We call the resulting kernel or-
thogonal additive kernel (OAK), which can produce highly
parsimonious models of the datasets studied in Duvenaud
et al. (2011), as well as more recent larger datasets. Plumlee
& Joseph (2018) tackles a slightly different identifibality
issue by proposing a GP whose stochastic part is orthog-
onal to the mean part. We measure the contribution of
any component to the overall model using a Sobol index
(Sobol, 1993; Owen, 2014) which is shown to be analytic
for the OAK model. We see in Section 5.1 that the pumadyn
dataset can be modelled using a sum of only three compo-
nents – one two-dimensional interaction function and two
one-dimensional functions. These parsimonious models are
highly explainable since each effect of a component can be
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Figure 1: Visualization of the decomposed functions with highest Sobol indices for the pumadyn dataset. On the horizontal
axis we plot different feature xi, on the vertical aixs is its corresponding function fi. For two-way interaction terms, a
contour plot is used. Grey bars represent histograms of input features, black solid lines represent posterior mean GP,
blue shaded area represents ± 2 standard deviations confidence interval from the GP model. R̃ in the brackets represent
(normalized) Sobol indices. We can observe that over 99% of the variance can be explained with only these three terms: two
first order terms and one interaction term between them. We reach optimal model performance with only these three terms
(Figure 5).

examined in a simple plot, yet the model remains powerful:
the predictive performance is on par with or better than ei-
ther the original additive model or a full squared exponential
GP model. In a case study on the SUSY physics dataset
(Section 5.2), our method produces a low dimensional model
with only ten one-dimensional and two-dimensional terms
that outperforms the dropout-based neural network baseline.
On another case study of a contemporary dataset of customer
churn (Section 5.3), our method outperforms the XGBoost
baseline whilst providing low-dimensional components that
offer insights into business problems.

Finally, since the OAK method is using a new kernel within
a standard GP formulation, we are able to scale the method
using sparse GP methods. We show in Section 3.5 that
the scalability of a sparse GP with the OAK kernel is fa-
vorable to that of a squared exponential kernel, since the
eigenspectrum of our low dimensional model is more easily
represented by an inducing point formulation. We build on
recent work (Burt et al., 2019) to show increased conver-
gence rates for sparse GPs with our proposed kernel.

Our main contribution is to combine the orthogonality con-
straint in Durrande et al. (2012) with the additive model
in Duvenaud et al. (2011) that utilizes the Newton-Girard
trick, where computationally complexity scales polynomi-
ally rather than exponentially with the number of features.
We draw the link to functional ANOVA (FANOVA) decom-
position (Owen, 2014; Chastaing & Le Gratiet, 2015; Gins-
bourger et al., 2016) and quantify the contribution of each
component with analytic Sobol indices. We have conducted
extensive sets of regression and classification experiments
to show its practical value. The resulting model is parsimo-
nious and interpretable, requiring minimal model tuning.

The remainder of this manuscript is organized as follows.

In Section 2 we recap the additive model used in Duvenaud
et al. (2011) and propose OAK in Section 3. We introduce
Sobol index in Section 4 and discuss its relationship with
functional ANOVA decomposition and OAK. Experimental
results are given in Section 5 and we conclude in Section 6.
Our code is available at https://github.com/amzn/
orthogonal-additive-gaussian-processes.

2. Background and Related Work
We are interested in modeling output y as a function of D-
dimensional input features x := (x1, · · ·xD) with a hidden
function f(x). Duvenaud et al. (2011) considers building a
GP model with the additive structure:

f(x) = f1(x1) + f2(x2) + · · ·+ f12(x1, x2)

+ · · ·+ f12...D(x1, x2, · · ·xD). (1)

In a GP model, the additive structure of the function de-
composition is enforced through the structure of the kernel,
whose decomposition can be constructed as follows: first
assign each dimension i ∈ {1...D} a one-dimensional base
kernel ki(xi, x′i); then define the first order, second order
and dth order additive kernel as:

kadd1(x, x′) = σ2
1

D∑
i=1

ki(xi, x
′
i) ,

kadd2(x, x′) = σ2
2

D∑
i=1

D∑
j=i+1

ki(xi, x
′
i)kj(xj , x

′
j), (2)

kaddd(x, x′) = σ2
d

∑
1≤i1≤i2≤···≤id≤D

[
d∏
l=1

kil(xil , x
′
il

)

]
,

with the kernel then constructed by summing over all of the
orders up to the dimensionality of the data. The parameters

https://github.com/amzn/orthogonal-additive-gaussian-processes
https://github.com/amzn/orthogonal-additive-gaussian-processes
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σ2
d control the relative importance of high-dimensional and

low-dimensional functions in the sum: we shall see later
in this work that the high-order terms can be set to zero
for all the datasets we consider using our proposed method,
effectively truncating the sum. Although there can be a very
large number of terms in the kernel, Duvenaud et al. (2011)
proposed an algorithm based on the Newton-Girard identity
to efficiently compute the kernel in polynomial time, see
detailed algorithm in Appendix A.

When it comes to measuring the importance of each inter-
action, Duvenaud et al. (2011) proposed considering the
estimated parameters σ2

d. In Section 3 we show through a
simple example that these parameters are unidentifiable. We
follow a different approach using Sobol indices (e.g. Sobol,
1993; Muehlenstaedt et al., 2012; Owen, 2014) to weigh the
importance of different components of the construction.

Imposing an orthogonal constraint on additive kernel compo-
nents was proposed by Durrande et al. (2012) and extended
in Durrande et al. (2013) and Märtens (2019). Denoting
the constrained kernel by k̃, the kernel was constructed in
the form k(x,x′) =

∏D
d=1(1 + k̃d(xd, x

′
d)), which does

not allow for control of the importance of different orders,
cf. (2), and they did not apply the kernel in the context of
GP regression, so were not able to learn kernel parameters.
Märtens et al. (2019) also extended Durrande et al. (2012),
building low-dimensional latent variable models where the
latent and observed features are orthogonal. In the current
paper, we focus on the interpretability and parsimony of the
orthogonal models for regression and classification tasks in
a practical setting. In particular, we extend to large numbers
of features through the efficient Newton-Girard procedure
of Duvenaud et al. (2011).

3. Orthogonality
With the decomposition in (1), we may learn different mod-
els that give the same predictions: this is due to the non-
identifiability of the summed functions (Ginsbourger et al.,
2008; Märtens, 2019). Assume a two-dimensional problem:

f(x1, x2) = f1(x1) + f2(x2) , (3)

with the true functional decomposition f1 and f2, then

f(x1, x2) = (f1(x1) + ∆) + (f2(x2)−∆) (4)

is a valid decomposition for any value of ∆. In other words,
there are infinitely many possible decompositions of f . This
is not desirable because it makes interpretability difficult:
which of the decompositions should one choose? Moreover,
higher order terms can absorb effects from lower order terms
and one may learn a model that is more complicated than
needed, as we will now illustrate.

Take a two-dimensional example with true decomposition:

f(x1, x2) = x21 − 2x2 + cos(3x1) sin(5x2) . (5)

We sample x1 and x2 uniformly on (−1, 1) and generate
y ∼ f(x1, x2) + ε with f in (5) and ε ∼ N (0, 0.01). We
then fit an additive GP model (Duvenaud et al., 2011) with
squared exponential base kernels. We learn the kernel pa-
rameters and likelihood (noise) variance using maximum
likelihood. The experiment is repeated with 9 random seeds
and three unique local optima (i.e., 3 sets of hyperparame-
ters) are discovered. We show posterior functions for one of
the local optima in Figure 2 (top) (details in Appendix I).

In Figure 2 (top) we observe that the functions f1 and
f2 have large (marginal) variance, meaning the model is
less certain in isolating individual effects from other terms.
In Figure 2d, we plot the interaction term with respect
to x1 by taking the average of f12(x1, x2) over x2, i.e.,
EX2

[f12(x1, x2)]. Figure 2e is a similar plot of x2 by
marginalizing out x1. The quadratic shape in Figure 2d
and the linear trend in Figure 2e show that the interaction
term is capturing the individual effect of f1 and f2. In other
words, higher order terms absorb the effect of lower order
terms. The reverse can also be true, see Appendix I.

3.1. GP with Orthogonal Additive Kernel

To mitigate the identifiability problem, we incorporate an
idea from Durrande et al. (2012), where a constraint is used
on each base kernel such that the integral of each function
{fi}Di=1 with respect to the input measure is zero. For f with
non-zero mean, the offset can be modelled using a constant
kernel, resulting in a unique decomposition. Our model
takes the same form as (1), except adding an additional GP
f0 with constant kernel. Define [D] := {1, · · · , D}, we
constrain each fi to satisfy the orthogonality constraint:∫

Xi

fi(xi)pi(xi)dxi = 0, (6)

for i ∈ [D], where Xi and pi are the sample space and the
density for input feature xi respectively.

We now describe how we can construct the kernel for each
fi. For each feature i with base kernel ki, it can be shown
that conditioning on Si :=

∫
fi(xi)pi(xi)dxi = 0, the

process f is another GP with a modified kernel k̃i:

fi(·)
∣∣∣∣ ∫ fi(xi)pi(xi)dxi = 0 ∼ GP(0, k̃i), (7)

where

k̃i(xi, x
′
i) =ki(xi, x

′
i)− E[Sifi(xi)]E[S2

i ]−1E[Sifi(x
′
i)] ,

E[Sifi(·)] =

∫
pi(xi)ki(xi, ·)dxi ,

E[S2
i ] =

∫ ∫
pi(xi)pi(x

′
i)ki(xi, x

′
i)dxidx

′
i . (8)
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Figure 2: Illustration of the non-identifiability of the additive GP model in Duvenaud et al. (2011) on the two-dimensional
problem. Top row: additive GP model; bottom row: OAK model. Red and blue lines represent the true and learned posterior
mean functions respectively, blue shaded area represent ±2 standard deviation. From left to right: posterior of f1 and f2;
posterior mean of f12; marginal plot for f1 in the interaction term (EX2 [f12(x1, x2)]); marginal plot for f2 in the interaction
term (EX1

[f12(x1, x2)]). Note how the quadratic shape in Figure 2a and the linear trend in Figure 2b are captured in the
higher order terms (Figure 2d and 2e). OAK correctly identifies the true additive components with smaller uncertainties.
Note that the constant gap between the truth and OAK in Figure 2f is expected and is captured with the constant kernel.

We call k̃i the constrained kernel. For higher order interac-
tion terms, we desire the constraint

∫
Xi
fu(xu)pi(xi)dxi =

0 ∀i ∈ u where xu := {xi}i∈u. This is achieved by simply
taking the product of one-dimensional constrained kernels:
for any u ⊆ [D],

k̃u(x, x′) =
∏
i∈u

k̃i(xi, x
′
i). (9)

A function fu drawn from a GP with the constrained kernel
k̃u satisfies the orthogonality condition assuming indepen-
dent input features, see proof in Appendix B.

Since the orthogonal construction can be achieved by using
sums and products of kernels, we can construct our model
by plugging in the constrained kernel (8) to the sum struc-
ture (2). We call this the Orthogonal Additive Kernel (OAK).
Note that under the orthogonality constraint, the decomposi-
tion in (2) is identifiable since it is precisely the FANOVA
decomposition, see details in Section 4.

3.2. Base Kernel

We choose to use a squared exponential kernel for continu-
ous features as the base kernel due to its analytic solution
with orthogonality constraints. Other kernel choices such as
the Matérn kernel also leads to analytic expressions for the
constrained kernel.

Specifically, for squared exponential base kernel ki with unit

variance and lengthscale li: ki(xi, x′i) = exp
(
− (xi−x′i)

2

2l2i

)
,

k̃i is analytic and has a closed form solution when the input
density pi is Gaussian, mixture of Gaussian, uniform, cate-
gorical, or approximated with the empirical distribution. We
hereby give results in the case of Gaussian measure: with-
out loss of generality, assuming one-dimensional x with
p(x) = N (µ, δ2) where we drop subscript i for simplicity,
the constrained squared exponential k̃ is:

k̃(x, x′) := exp

(
− (x− x′)2

2l2

)
− l
√
l2 + 2δ2

l2 + δ2
×

exp

(
− ((x− µ)2 + (x′ − µ)2)

2(l2 + δ2)

)
. (10)

For other forms of input densities, please refer to Appendix
D. For categorical features, we can use the categorical kernel
and an empirical input density p (see Appendix C and E).

3.3. Normalizing Flow

To satisfy the Gaussian input density assumption, we use a
normalizing flow (Rezende & Mohamed, 2015) to transform
continuous input features to have an approximate Gaussian
density. This is achieved by applying a sequence of bijec-
tive transformations on each feature, whose parameters are
learnt by minimizing the KL divergence between a standard
Gaussian distribution and the transformed input data. The
parameters are then fixed before fitting the OAK model on
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the transformed data with approximate Gaussian densities.
For details and ablation studies, see Appendix F and J.5.

3.4. Illustration

We use the example from (5) to illustrate the constrained
model described above with results given in Figure 2 (bot-
tom). We have found that the GP model with the constrained
squared exponential kernel is more stable as all 9 runs using
different initial configurations converge to the same hyper-
parameters as opposed to the unconstrained model where we
have found 3 local optima. We are able to capture the correct
form of first order terms and the interaction component, re-
sulting in a better fit and better calibrated uncertainty. Note
that the constant gap (vertical shift) in Figure 2f is expected
since we constrained each function to have zero mean with
respect to the input density, and a separate constant kernel
is used to capture the gap due to the non-zero mean of f .

3.5. Sparse GP with Inducing Points

When the number of data points N is big, GP inference
costs O(N3) in computation which is expensive. Varia-
tional inference with sparse GP can be used to reduce the
computational costs to O(NM2) where M is the number
of inducing variables (Titsias, 2009).

Burt et al. (2019) showed that the number of inducing points
M needed for sparse GP regression with normally dis-
tributed inputs in D-dimensional space with the squared
exponential kernel is M = O(logDN).

In practice, one can limit the maximum order of interactions
to be D̃ ≤ D. For our additive model, the number of
kernels to be added is therefore

∑D̃
k=1

(
D
k

)
and the number

of inducing points needed is

D̃∑
k=1

(
D

k

)
O(logkN) = O

((
D

D̃

)
logD̃N

)
.

The number of inducing points needed for OAK is smaller
than that for the non-orthogonal case. We also verify this
empirically on the pumadyn dataset with a 4:1 training-
test split. We compare our model with its non-orthogonal
counterpart as in (1) and a sparse GP model with squared
exponential kernel. Results are displayed in Figure 3, where
OAK converges much faster and needs a smaller number of
inducing points to reach same/better test RMSE (additional
experiments can be found in Appendix J.7).

4. ANOVA Decomposition and Sobol Indices
Practitioners are often interested in the importance of fea-
tures in predicting the output. For example, f may be ex-
plained using only a small number of features or interac-
tions despite there being a large number of features. Global

101 102 103

3.5

4

4.5

Number of Inducing Points

R
M

SE

OAK
Additive
SE

Figure 3: Test RMSE versus number of inducing points for
the pumadyn dataset. Results are averaged over 5 repetitions,
shaded area represents ±1 standard deviation.

sensitivity analysis (Saltelli et al., 2008) is a measure of im-
portance of input features, based on an analysis of variance
(ANOVA) decomposition. Sobol indices (Sobol’, 1990) are
one such measure for attributing value of an output to indi-
vidual features. We will see later that the Sobol indices are
analytic for the OAK model.

Functional ANOVA (FANOVA) (Hoeffding & Robbins,
1948; Stone, 1994; Huang, 1998) decomposes a function
f(x) into the form f(x) =

∑
u⊆[D] fu(xu), where fu only

depends on xj for j ∈ u and is defined recursively by

fu(x) =

∫
X−u

(
f(x)−

∑
v⊂u

fv(xv)

)
dP (x−u), (11)

where f∅(x) = E[f(x)], x−u denotes x excluding xu and
P (x) denotes the distribution of x. Applying the FANOVA
decomposition to our OAK construction in (1) and (8) re-
veals that the functions considered in OAK are precisely
the components of the FANOVA decomposition, see proof
in Appendix G.3. The FANOVA decomposition associates
each component with a variance. This variance is due to
disturbances on the input to the function: we denote it by
Vx[fu]. The orthogonality of OAK leads to the ANOVA
identity (Owen, 2014):

R := Vx[f(x)] =
∑
u⊆[D]

Ru, (12)

where Ru := Vx[fu(x)] is defined as the Sobol index for
feature set u. In other words, each Ru measures how much
variance is explained by feature set u, measuring the im-
portance of the features. We normalize the Sobol indices
such that they sum up to 1 and denote the normalized Sobol
indices with R̃ in later sections. Similarly to Durrande
et al. (2012), to assess the relative importance of a com-
ponent of our model, we consider the Sobol index of the
posterior mean function associated with that component:
R̃u = Vx[mu(x)]

Vx[m(x)] , where mu and m denote the posterior
mean function of fu and f respectively. In particular,

mu(x) = σ2
|u|

(
�i∈uk̃i(xi,Xi)

)
K(X,X)−1y (13)
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whereK(X,X) denotes the training input covariance across
all inputs, Xi and y denote the i-th column of X and the
vector of output observations, σ2

|u| is the associated variance
parameter for the |u|-th order interaction and � denotes
element-wise multiplication. A similar formula for sparse
GP can also be obtained. The Sobol index associated with
the input set u is therefore

Vx[mu(x)] = σ4
|u|y
>K(X,X)−1�i∈u (14)(∫

k̃i(xi,Xi)k̃i(xi,Xi)
>dpi(xi)

)
K(X,X)−1y,

since Ex[mu(x)] = 0 due to the orthogonality constraint.
In case of 1) constrained squared exponential kernel and a
Gaussian measure or 2) binary/categorical kernel with dis-
crete measure, the integral is tractable and can be computed
analytically. More details can be found in Appendix G. Note
that the Sobol index is not affected by our normalizing-flow
transformation of the input, see details in Appendix G.4.

5. Experiments
Our experiment procedure runs as follows: we plug the
OAK kernel in the gpflow1 package, we then perform in-
ference on regression problems with gpflow.GPR (or
gpflow.SGPR for larger datasets); for classification tasks,
we use gpflow.SVGP for inference We place a Gamma
prior on the variance hyperparameters of the kernel, which
are estimated using Maximum a Posterior (MAP). After
learning the hyperparameters, we compute the Sobol index
for each term including all orders of interactions up to the
truncated order. Then we rank the importance of each term
according to their Sobol indices and investigate how many
terms are needed to give competitive model performance.
Details on the procedure can be found in Appendix H.

We apply normalizing flows on all continuous features in
our experiments before fitting the GP model, except for
the Concrete dataset where the normalizing flow was not
sufficient to transform the data and we have reverted to an
empirical measure in this case. Empirically we have found
that the model performance is similar with or without the
normalizing flow, but the resulting model tends to be less
parsimonious without the flow. More details and an ablation
experimental study can be found in Appendix J.5.

We validate our model on a range of experiments, including
a set of regression and classification problems from datasets
used in Duvenaud et al. (2011) and additional UCI datasets,
a large scale SUSY experiment and a Churn modelling
problem. In our experiments we found OAK contains lower
order terms without loss in predictive accuracy in contrast
to Duvenaud et al. (2011) which finds higher order effects
across a range of regression and classification problems.

1https://github.com/GPflow/GPflow

With OAK, only a small number of terms are needed in the
model despite the large number of features available.

5.1. Baseline Experiments

We first duplicate the experiments in Duvenaud et al. (2011)
where the number of instances and dimensionality of each
dataset can be found in Appendix J.1. We use five-fold cross-
validation splits and compute test RMSE for regression
and area-under-the-curve (AuC) errors for classification
datasets. We use a GP with a squared exponential kernel
as a baseline model to compare the performance of OAK
and the unconstrained additive GP model used in Duvenaud
et al. (2011). For regression datasets, we set D̃ = D; for
classification problems, we set D̃ = 4 except the Sonar
dataset with D̃ = 2 for computational considerations. We
found no significant differences in performance between
different models, see more details in Appendix J.

Often one is interested in understanding how much each
feature or interaction of features contribute in predicting
the output. For example, one may ask how much does the
3rd order interaction term affect the response, or whether
some feature is more important than others in explaining
the response. We first plot the cumulative Sobol index for
each order of interactions in Figure 4, which is defined as
the sum of Sobol indices for all terms in the same order.
The results indicate that most datasets only need low order
(< 3) interaction terms.

Importantly, despite there being a large number of terms
including all orders of interactions terms, we found that only
a few terms are needed in the model to reach competitive
performance. In Figure 5 we plot model performance and
cumulative Sobol as a function of the number of terms added,
where the terms to add are ranked by their Sobol indices
from highest to lowest. We report test RMSE and AuC for
regression and classification problems respectively3 .

For each dataset with dimension D and truncated maxi-
mum order of interaction D̃, the total number of terms is∑D̃
d=1

(
D
d

)
(127 for autoMPG and 41448 for ionosphere

datasets to give a sense of the scale, details in Appendix J.2).
We can observe the strong correlation between cumulative
Sobol index and model performance. Only a few number
of terms are needed before the model converges, indicating
further terms add little value and OAK is able to find simple
representations without loss of model performance. We fur-
ther verify its parsimony by comparing the interaction order
variance hyperparameter σ2

d, see Appendix J.4.

In particular, unlike in Duvenaud et al. (2011) where an 8-

2For all the classification datasets, the cumulative (normalized)
Sobol indices for first order terms are found to be close to 1.

3We used empirical measure for Concrete dataset as its input
feature distributions suggest.

https://github.com/GPflow/GPflow
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Figure 4: Sum of normalized Sobol indices for each interaction order for UCI regression problems, where bars represent
one standard deviation across 5 cross-validation splits. All of the datasets require ≤ 3 order of interactions to explain the
variance of the response, indicating the OAK model is able to find low dimensional representation2.
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Figure 5: Model performance and cumulative Sobol index versus number of terms added ranked by the Sobol index. For
regression problems (top), we use test RMSE as the evaluation metric; for classification problems (bottom), we use test
area-under-the-curve (AuC) metric. Red solid lines represent test RMSE (top) and test AuC (bottom), green dashed lines
represent cumulative (normalized) Sobol index.

dimensional interaction is required, we are able to reach the
same model performance with only two first order terms and
one second order term, which explain > 99% variance in f .
Due to the advantages of low-dimensional representation,
we can visualise the decomposed functions with highest
Sobol indices easily (Figure 1). For completeness, we have
also conducted experiments with the kernel

∏
d(1+k̃d) used

in Duvenaud et al. (2011), but using the constrained k̃d. We
found this kernel is harder to optimize and numerically less
stable; the model performance is similar but the resulting
model is less parsimonious (see Appendix J.6).

We conduct further experiments on an extensive range of
benchmark datasets (Salimbeni, 2018) with results displayed
in Table 1. We show summary statistics including the av-
erage, median and rank across the datasets. For regression
tasks we report test RMSE and log likelihood whereas for
classification tasks we report test accuracy and log like-
lihood. We found the performance of OAK is on par or
better compared with other methods. Detailed performance
metrics on each dataset can be found in Appendix K.

5.2. SUSY Classification

In the next experiment we tackle a large-scale binary clas-
sification problem. The super-symmetric (SUSY4) dataset
contains 5 million instances with 8 low level kinematic prop-
erties, where the task is to predict whether a signal process
produces super-symmetric particles or not. We truncate
D̃ = 2 for computational consideration.

We use the same training-test split as in Dutordoir et al.
(2020). We fit a sparse variational GP (SVGP) model with
OAK and optimize the variational parameters and hyper-
parameters with natural gradients and Adam respectively.
Number of inducing points and mini batch size are set to be
800 and 1024 respectively.

Model performance are reported in Table 2 where the OAK
model achieves similar or better performance compared with
other deep learning models. Top 10 important functional
components are displayed in Figure 7, which contain five
first order terms and five second order terms. In particular,

4archive.ics.uci.edu/ml/datasets/SUSY

https://archive.ics.uci.edu/ml/datasets/SUSY
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Regression RMSE

Aggregation OAK Linear SVGP SVM KNN GBM AdaBoost MLP

avg 0.475 6.157 0.478 0.484 0.518 0.455 0.581 0.445
median 0.376 0.736 0.397 0.419 0.454 0.343 0.580 0.361
avg rank 3.583 6.625 4.083 4.208 4.958 3.208 5.750 3.583

Regression Log Likelihood
avg -0.229 -0.946 -0.295 -0.585 -0.638 -0.652 -0.730 -0.891
median -0.409 -1.096 -0.512 -0.609 -0.738 -0.671 -0.875 -0.471
avg rank 5.583 3.625 5.042 4.833 3.917 4.292 3.583 5.125

Classification Accuracy
avg 0.872 0.835 0.859 0.857 0.836 0.870 0.859 0.863
median 0.898 0.832 0.864 0.850 0.863 0.900 0.892 0.873
avg rank 5.569 4.224 4.741 4.500 2.983 5.224 4.207 4.552

Classification Log Likelihood
avg -0.267 -0.338 -0.291 -0.306 -0.899 -0.283 -0.459 -0.306
median -0.280 -0.389 -0.307 -0.352 -1.088 -0.256 -0.584 -0.362
avg rank 5.862 4.276 5.931 4.690 2.138 5.379 2.897 4.828

Table 1: Experimental results on additional benchmark datasets. Average results over 24 regression datasets shown in
terms of test RMSE and log likelihood (top two blocks). Average results over 29 classification datasets shown in terms of
accuracy and log likelihood (bottom two blocks). Higher is better except for RMSE. SVGP=Stochastic Variational GP, using
GPflow (Hensman et al., 2015); SVM=Support Vector Machine, KNN=K-nearest-neighbours, GBM=Gradient Boosting
Machine, MLP=Multi-layer Perceptron (all using Scikit-learn defaults). Results compiled using the Bayesian Benchmarks
repo (Salimbeni, 2018). Full results are shown in Appendix K.
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Figure 6: AuC as a function of number of terms added
ranked by their Sobol indices for the SUSY (left) and Churn
modelling (right) experiments. Red solid lines and green
dashed lines represent test AuC and cumulative (normalized)
Sobol respectively.

a signal process is more likely to produce super-symmetric
particles if there is higher missing energy magnitude; higher
lepton 1 pT or lower lepton 2 pT. For lepton 1 eta or lepton 2
eta, the probability first increases and then decreases with in-
creasing values of eta. In Figure 6a we can observe that with
these 10 terms, we are able to reach the optimal AuC and
capture 96% of the variance in f . This further shows that
the OAK model is able to reach competitive performance
while having a simple, interpretable representation.

5.3. Churn Modelling

Next we look at Churn Modelling problem available from
Kaggle5. This data set contains details of a bank’s customers
where the goal is to predict whether the customer leaves the

5www.kaggle.com/shrutimechlearn/churn-modelling

SUSY Churn
Method AuC Method AuC
BDT* 0.850 ± 0.003 XGBoost 0.853 ± 0.008
NN* 0.867 ± 0.002 MLP* 0.846 ± 0.013

NNdropout* 0.856 ± 0.001 Sparse MLP* 0.828 ± 0.007
SVGP(SE)* 0.852 ± 0.002 TabTransformer* 0.856 ± 0.005

VISH* 0.859 ± 0.001 TabNet* 0.785 ± 0.024
OAK 0.865 ± 0.0004 OAK 0.856 ± 0.009

Table 2: Performance comparison for SUSY (left) and
Churn modelling (right). The mean AuC is reported with
one standard deviation, with 5 repetitions (SUSY) and 5
cross-validation splits (Churn) respectively. Larger is better.
Results with * are quoted from Dutordoir et al. (2020) and
Huang et al. (2020).

bank or continues to be a customer. There are 10 features
including a mix of continuous and categorical variables such
as age, gender, credit score, etc.. We truncate the maximum
order of interactions to be 2 for computational considera-
tion. We compare model performance with XGBoost, MLP,
TabNet and TabTransformer with the same training-test split
(4:1) as in Huang et al. (2020). Test AuC are reported in Ta-
ble 2. We outperform or are as accurate as all of the baseline
models with increased interpretability.

In Figure 6b we observe that only ≈ 5 terms are needed
for the model to achieve optimal performance. We plot the
top 5 important features/interactions in Figure 8 based on
Sobol indices, which contain four first order terms and one
interaction term between Age and IsActiveMember with
the following insights: Age is the most important feature in
predicting whether a customer leaves the bank, and generally
the older a person is, more likely they will leave the bank;
more active members are less likely to leave; German people
are more likely to leave compared with French and Spanish;

https://www.kaggle.com/shrutimechlearn/churn-modelling
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Figure 7: Decomposition of top 10 important functions for SUSY dataset, ranked by their Sobol indices. Blue shaded area
represents uncertainties with two standard deviation. Grey shaded area represent histograms of input features. R̃ in the
brackets denote (normalized) Sobol index. Missing energy magnitude and lepton 1 pT are the two most important features
which explain ≈ 70% of the variance in the model f , and they both have a positive impact where a signal process is more
likely to produces semi-symmetric particles when missing energy magnitude and lepton 1 pT are high.
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Figure 8: Decomposition of top 5 important functions for Churn dataset, ranked by their Sobol indices. Blue shaded area
represents uncertainties with two standard deviation. R̃ in the brackets denote (normalized) Sobol index. Age is the most
important feature in predicting whether a customer leaves the bank or not, typically as one gets older (but younger than 55),
he/she is more likely to leave the bank. Non-active members, female customers and German customers are more likely to
leave the bank compared to their counterparts. The interaction between age and whether a customer is active also contributes
to the probability: older non-active customers and younger active customers are more likely to churn.

women are more likely to leave compared with men. The
interaction between Age and IsActiveMember says that for
less active customers, older people are more likely to leave
the bank whereas for active members, older customers are
more likely to stay.

6. Conclusion
In this work, we have proposed a Gaussian process model
with orthogonal additive kernel (OAK) that enables infer-
ence of low-dimensional representations that are identifiable
and interpretable. The resulting model has an analytic form
for the Sobol indices which can be used to rank importance
of features and interactions. We have shown that the OAK
model allows inference of low-dimensional representations
whilst achieving state-of-the-art predictive performance on
a range of both regression and classification tasks. We are
surprised to find out all the datasets we have experimented
with can be modelled using low dimensional functions.

One limitation of our work is that we implicitly assumed

independence between input features and independent, iden-
tically distributed Gaussian noise. Future work can extend
our approach to non-independent input features and exam-
ine the effect of heteroscedastic noise using latent variable
models. Another interesting direction of work is to extend
OAK to Bayesian optimization and experimental design
leveraging the inferred low-order representation.
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A. Newton-Girard Method for Computing the Interacting Kernel

Algorithm 1 Newton-Girard method for computing the interacting kernel
Input: input dimension D
Input: maximum interaction order D̃
Input: base kernels kd(·, ·), d = 1 . . . D
Input: order variances σl, l = 0 . . . D̃
Data: input data X
Output: kernel matrix K
for d = 1 . . . D do
Kd[i, j] = kd(xi,d, xj,d)

end for
for ` = 0 . . . D̃ do

S` =
∑D
d=1 K

`
d

end for
E0 = 1[N,N ]

for `=1. . . D̃ do
E` = 1

`

∑`
k=1(−1)k−1E`−k � Sk

end for
K =

∑D̃
`=0 σ` ×E`

B. Orthogonality in Higher Dimension
For higher order terms, recall OAK uses the product of constrained kernels (equation (9)):

k̃u(x, x′) =
∏
i∈u

k̃i(xi, x
′
i). (15)

We show the product of constrained kernel satisfies the orthogonality constraint in higher dimensions, i.e.,∀i ∈ u,∫
Xi

fu(xu)pi(xi)dxi = 0 (16)

where each functional component fu has kernel ku.

Proof. By construction, for each function i with constrained kernel k̃i, fi satisfies the orthogonality constraint Si :=∫
Xi
fi(xi)pi(xi)dxi = 0 (equation (6)), which implies that:

Efi [Si] = 0, Vfi [Si] =

∫
Xi

k̃i(xi,xi)pi(xi)dxi = 0. (17)

To prove
∫
Xi
fu(xu)pi(xi)dxi = 0, it is sufficient to prove the mean and variance of

∫
Xi
fu(xu)pi(xi)dxi with respect to

fu is zero. Since we assume fu has zero mean, the mean Efu
[∫
Xi
fu(xu)pi(xi)dxi

]
= 0. The variance



Additive GPs Revisited

Vfu
[∫
Xi

fu(xu)pi(xi)dxi

]
=

∫
Xi

Efu [fu(xu)2]pi(xi)dxi

=

∫
Xi

ku(xu,xu)pi(xi)dxi (18)

=
∏
j 6=i

kj(xj , xj)

∫
Xi

ki(xi,xi)pi(xi)dxi = 0.

C. Constrained Categorical Kernel
For categorical input features, we can model f with the categorical kernel as in Hensman (2016), which is constructed by a
positive definite matrix A such that the categorical kernel k(i, j) = Aij where

A = WW> + Diag(κ). (19)

The orthogonality constraint we put on f is
∫
f(x)p(x)dx = 0. Let w be the vector of probability measure of the input

feature, i.e., P(x = i) = wi for i = 1, · · · ,M . Define

B := A− Aw(Aw)>

w>Aw
, (20)

we claim the kernel with k̃(i, j) = Bij is the constrained categorical kernel. To see this, it is enough to show Ep(i,j)[k(i, j)] =
0 as shown in (18):

Ep(i,j)[k̃(i, j)] =

M∑
i=0

M∑
j=0

k̃(i, j)wiwj = w>Aw −w>
(
Aww>A

w>Aw

)
w = 0. (21)

D. Constrained Squared Exponential Kernel
D.1. Gaussian Measure

We prove the constrained squared exponential kernel takes the form in (10) when the input feature has Gaussian density.
Assume squared exponential kernel with lengthscale l and variance σ2, and Gaussian measure p(x) ∼ N (µ, δ2). Denote
S :=

∫
f(x)p(x)dx, by (8) we need to calculate:

Ef [Sf(a)] =

∫
σ2p(x) exp

(
− (x− a)2

2l2

)
dx (22)

=

∫
σ2

√
2πδ2

exp

(
− (x− a)2

2l2

)
exp

(
− (x− µ)2

2δ2

)
dx (23)

=

∫
σ2
√

2πl2N (x; a, l2)N (x;µ, δ2)dx (24)

= σ2

√
l2

l2 + δ2
exp

(
− (a− µ)2

2(l2 + δ2)

)
, (25)

and

Ef [S2] =

∫ ∫
p(x)p(x′)k(x, x′)dxdx′ (26)

=

∫
σ2

√
l2

l2 + δ2
exp

(
− (x− µ)2

2(l2 + δ2)

)
p(x)dx (27)

= σ2

√
l2

l2 + 2δ2
(28)

where the last equality follows from completing the square.
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D.2. Mixture of Gaussian Measure

We can extend the Gaussian density assumption to other input distributions such as mixture of Gaussians. Suppose a fixed
number of clusters K:

p(x) =

K∑
k=1

wkN(µk, δk) (29)

where µk, δk are the mean and variance of each cluster.

From (8), two expectations need to be calculated to compute the constrained kernel, the variance Ef [S2] and the covariance
Ef [Sf(x)] can be computed as

Ef [S2] =

K∑
i=1

K∑
j=1

wiwj lN(µi|µj , l2 + δi + δj)(2π)1/2, (30)

Ef [Sf(x)] =

K∑
k=1

lwkN(x|µk, δk + l2)(2π)1/2 (31)

where l is the kernel lengthscale parameter and we have assumed unit kernel variance parameter for simplicity.

E. Constrained Kernel under Empirical Measure
When input densities are far from (mixture of) Gaussian distributions, or categorical kernel is not appropriate, or one wants
to use other kernels, we can use the empirical measure p(x) =

∑M
i=1 wi1x=xi , where {xi}Mi=1 are the locations of the

feature and {wi}Mi=1 are the associated weights. We can approximate (8) with

Ef [Sf(·)] ≈
M∑
i=1

wik(x, xi), Ef [S2] ≈
M∑
i=1

M∑
j=1

wiwjk(xi, xj). (32)

F. Normalizing Flow
Specifically, let {xi}Ni=1 be the data for feature x with unknown underlying density px(x). We apply a sequence of K
bijective functions to obtain the transformed features z:

z = fK ◦ fK−1 ◦ f1(x) := g(x). (33)

The density of z can be calculated as:

pz(z) =
1

g′(x)
px(x) ≈ 1

N

N∑
i=1

1

g′(xi)
1x=xi , (34)

where g′ denotes the derivative. We would like z to be as close to standard Gaussian distributed as possible, denote p(z) to
be N (0, 1), we minimize the KL-divergence:

KL(pz(z)||p(z)) = Epz(z)
[
log

pz(z)

p(z)

]
(35)

≈ 1

N

N∑
i=1

[
log

pz(z
i)

p(zi)

]
(36)

=
1

N

N∑
i=1

(
(zi)2 − log g′(xi)

)
+ C (37)

where C is some constant and we approximated pz with its empirical distribution. The parameters of g are then learnt by
minimizing this KL divergence.
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G. Sobol Indices
Recall the normalized Sobol index for the posterior mean of fu for u ∈ [D] is:

R̃u =
Vx[mu(x)]

Vx[m(x)]
. (38)

The posterior mean GP with component u is:

mu(x) = σ2
|u| (�i∈uki(xi,Xi))K(X,X)−1y (39)

where K(X,X) denotes the training input covariance across all inputs, y denotes the n× 1 vector of output observations,
σ2
|u| is the associated variance parameter for |u|-th order interaction and � denotes element-wise multiplication. A similar

formula for sparse GP can also be obtained. The posterior variance with respect to the input is therefore

Vx[mu(x)] = Vx
[
σ2
|u| (�i∈uki(xi,Xi))K(X,X)−1y

]
= σ4

|u|y
>K(X,X)−1cov [�i∈uki(xi,Xi)]K(X,X)−1y

= σ4
|u|y
>K(X,X)−1 �i∈u

(∫
ki(xi,Xi)ki(xi,Xi)

>dpi(xi)

)
K(X,X)−1y. (40)

In case of 1) constrained squared exponential kernel and a Gaussian measure or 2) binary/categorical kernel with discrete
measure, the integral is tractable and can be computed analytically.

G.1. Sobol Index for Constrained Squared Exponential Kernel

To compute the Sobol index, we need to compute the integral in (40). Dropping subscript i for simplicity, as-
sume one-dimensional feature X , squared exponential base kernel with lengthscale l and variance σ2: k(x, x′) =
σ2 exp

(
− 1

2l2 (x− x′)2
)

and Gaussian input density p(x) = N (µ, δ2), recall the constrained squared exponential ker-
nel k̃ is :

k̃(x, x′) := k(x, x′)− σ2l
√
l2 + 2δ2

l2 + δ2
exp

(
− 1

2(l2 + δ2)
((x− µ)2 + (x′ − µ)2)

)
(41)

:= k(x, x′)− k̂(x, x′) (42)

where

k̂(x, x′) :=
σ2l
√
l2 + 2δ2

l2 + δ2
exp

(
− 1

2(l2 + δ2)
((x− µ)2 + (x′ − µ)2)

)
. (43)

Denote a = Xp, b = Xq respectively, The (p, q)-entry is of
∫
k̃(x,X)k̃(x,X)>dp(x) in (40) is therefore∫

p(x)k̃(x, a)k̃(x, b)dx =

∫
p(x)k(x, a)k(x, b)dx (44)

−
∫
p(x)k(x, a)k̂(x, b)dx (45)

−
∫
p(x)k̂(x, a)k(x, b)dx (46)

+

∫
p(x)k̂(x, a)k̂(x, b)dx. (47)

We compute each of the term in following subsections.
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G.1.1. EQUATION (44)

∫
p(x)k(x, a)k(x, b)dx =

∫
p(x)σ4 exp

(
− 1

2l2
(
(x− a)2 + (x− b)2

))
dx

= σ4

∫
p(x) exp

(
− 1

2l2
(2x2 − 2(a+ b)z + a2 + b2)

)
dx

= σ4 exp

(
− 1

2l2
(x2 + y2)

)∫
p(x) exp

(
− 1

l2
(x2 − (a+ b)z)

)
dx

= σ4 exp

(
− 1

2l2
(a2 + b2)

)
exp

(
− 1

l2

(
a+ b

2

)2
)∫

p(x) exp

(
− 1

l2

(
x− a+ b

2

)2
)
dx.

Note ∫
p(x) exp

(
− 1

l2

(
x− a+ b

2

)2
)
dx =

√
πl2
∫
N (z;µ, δ2)N

(
x;
a+ b

2
,
l2

2

)
dx

=
l√

2δ2 + l2
exp

(
− 1

2δ2 + l2

(
µ− a+ b

2

)2
)
.

Hence ∫
p(x)k(x, a)k(x, b)dx =

σ4l√
2δ2 + l2

exp

(
− 1

4l2
(a− b)2

)
exp

(
− 1

2δ2 + l2

(
µ− a+ b

2

)2
)
.

G.1.2. EQUATION (45)

∫
p(x)k(x, a)k̂(x, b)dx =

σ4l
√
l2 + 2δ2

l2 + δ2
exp

(
− 1

2(l2 + δ2)
(b− µ)2

)∫
p(x) exp

(
− (x− a)2

2l2
− (x− µ)2

2(l2 + δ2)

)
dx.

Note ∫
p(x) exp

(
− (x− a)2

2l2
− (x− µ)2

2(l2 + δ2)

)
dx =

∫
p(x) exp

(
− 1

2M−1
(x− c)2 + C

)
dx

=
√

2πM−1 exp

(
−C

2

)∫
N (x;µ, δ2)N (x; c,M−1)dx

=
1√

δ2M + 1
exp

(
−C

2

)
exp

(
− 1

2(δ2 +M−1)
(c− µ)2

)
,

where

M :=
1

l2
+

1

l2 + δ2
, c := M−1

(
µ

l2 + δ2
+
a

l2

)
C :=

a2

l2
+

µ2

l2 + δ2
− c2M.

Hence,∫
p(x)k(x, a)k̂(x, b)dx =

σ4l
√
l2 + 2δ2 exp(−C/2)

(l2 + δ2)
√
δ2M + 1

exp

(
− 1

2(l2 + δ2)
(b− µ)2

)
exp

(
− 1

2(δ2 +M−1)
(c− µ)2

)
.

G.1.3. EQUATION (46)

By symmetry, this is straight-forward by interchanging a and b in (45).
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G.1.4. EQUATION (47)

∫
p(x)k̂(x, a)k̂(x, b)dx =

σ2l2(l2 + 2δ2)

(l2 + δ2)2
exp

(
− (a− µ)2 + (b− µ)2

2(l2 + δ2)

)∫
p(x) exp

(
− (x− µ)2

(l2 + δ2)

)
dx.

Note ∫
p(x) exp

(
− 1

(l2 + δ2)
(x− µ)2

)
dx =

√
π(l2 + δ2)

∫
N (x;µ, δ2)N

(
x;µ,

l2 + δ2

2

)
dx =

√
l2 + δ2

l2 + 3δ2
.

Hence ∫
p(x)k̂(x, a)k̂(x, b)dx =

σ4l2(l2 + 2δ2)
√
l2 + δ2

(l2 + δ2)2
√
l2 + 3δ2

exp

(
− 1

2(l2 + δ2)
((a− µ)2 + (b− µ)2)

)
.

G.2. Sobol for Empirical Measure

Assume one-dimensional feature x with empirical measure p(x) =
∑M
i=1 wi1x=xi

where M is the number of distinct
empirical locations, wi are the (normalized) empirical weights, xi are the empirical locations for i = 1, · · · ,M . We can
approximate the integral in (40) with∫

k(X, x)k(X, x)>dp(x) ≈
M∑
i=1

wik(X, xi)k(X, xi)>. (48)

G.3. Proof of FANOVA for OAK

We show in this section that under the asumption that input features are independent, OAK results in the FANOVA
decomposition, i.e., for each u ⊆ [D], fu with k̃u satisfies that

fu(x) =

∫
X−u

(
f(x)−

∑
v⊂u

fv(xv)

)
dP (x−u). (49)

Proof. The right hand side writes

∫
X−u

(
f(x)−

∑
v⊂u

fv(xv)

)
dP (x−u) =

∫
X−u

fu(x) +
∑
v*u

fv(xv)

 dP (x−u)

= fu(xu) +
∑
v*u

∫
X−u

fv(xv)dP (x−u). (50)

For each v * u, if j ∈ [D] \ u, then j ∈ v. It follows from Appendix B that∫
Xj

fv(xv)dP (xj) =

∫
Xj

fv(xv)pj(xj)dxj = 0.

Under the assumption that input features are independent, P (x−u) factorizes and the integral in equation (50) is 0.

G.4. Invariance of Sobol under Bijective Transformation

Let Z ∼ N (0, 1), and suppose X is a transformation of Z such that z = g(x) where g is an invertible function. First note
the density of X is

p(x) = N (g(x)|0, 1)

∣∣∣∣dg(x)

dx

∣∣∣∣ . (51)
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One can rewrite a function of x as a function of z, suppose f(x) = h(z) = h(g(x)), the Sobol index for x can be calculated
as

R =

∫
f2(x)p(x)dx (52)

=

∫ ∞
−∞

h2(g(x))p(x)dx (53)

=

∫ ∞
−∞

h2(g(x))p(x)

∣∣∣∣dg(x)

dx

∣∣∣∣−1 dz (54)

=

∫ ∞
−∞

h2(g(x))N (g(x)|0, 1)dz (55)

=

∫ ∞
−∞

h2(z)N (z|0, 1)dz, (56)

which is the Sobol index for Z.

H. OAK Method Summary
Choose a truncation order for the model, D̃.

1. For each input dimension, a kernel is assigned:

(a) Continuous features are assigned constrained squared exponential kernels, and transformed through a normalizing
flow to ensure Gaussian input density.

(b) Discrete features are assigned a constrained binary or categorical kernel (see Appendix C).

2. Fit a Gaussian process model with OAK defined in Section 3 and the Newton Girard Trick in Algorithm 1.

(a) For small (N < 1000) regression datasets, we use Exact Gaussian Process regression.
(b) For larger regression datasets, we use Sparse GP regression (gpflow.SGPR, (Titsias, 2009)).
(c) For classification datasets, we use Variational Inference (Hensman et al., 2015). For datasets with (N > 200),

choose the number of inducing points M = 200, for SUSY and Churn modelling datasets, we choose M = 800.

We place a Gamma prior on the variance hyperparameters of the kernel, which are estimated using MAP. The
lengthscales hyperparameters are estimated by maximum likelihood, or by maximising the ELBO, appropriately.

3. Construct the Sobol index for each component and each order according to equation (14), and construct a ranking.
Truncate components when the (normalized) Sobol idex is below some threshold (default 0.01).

4. Compute the posterior over the additive components identified in the above ranking, using equation (13).

5. Predict for test points by summing over the identified components.

I. Two-dimensional Toy Example
Additional experimental results for the two-dimensional example with (unconstrained) squared exponential kernel.



Additive GPs Revisited

−1.5−1−0.5 0 0.5 1 1.5
−1

0

1

2 Truth
Additive

(a) f1

−1.5−1−0.5 0 0.5 1 1.5

−2

0

2

Truth
Additive

(b) f2

−1.5−1−0.5 0 0.5 1 1.5

−1

0

1

(c) Interaction

−1.5−1−0.5 0 0.5 1 1.5

−0.5

0

0.5
Truth
Additive

(d) EX2 [f12(x1, x2)]

−1.5−1−0.5 0 0.5 1 1.5

−0.5

0

0.5

Truth
Additive

(e) EX1 [f12(x1, x2)]

−1.5−1−0.5 0 0.5 1 1.5
−1

0

1

2 Truth
Additive

(f) f1

−1.5−1−0.5 0 0.5 1 1.5

−2

0

2

Truth
Additive

(g) f2

−1.5−1−0.5 0 0.5 1 1.5

−1

0

1

(h) Interaction

−1.5−1−0.5 0 0.5 1 1.5

−0.5

0

0.5
Truth
Additive

(i) EX2 [f12(x1, x2)]

−1.5−1−0.5 0 0.5 1 1.5

−0.5

0

0.5

Truth
Additive

(j) EX1 [f12(x1, x2)]

Figure 9: Two dimensional experimental results for the additive GP model in Duvenaud et al. (2011) with squared exponential
kernel for the remaining two local optima. The red lines represent the true function, blue shaded area represent ±2 standard
deviation. From left to right: posterior of f1; posterior of f2; posterior for the interaction term; marginal plot for f1 in the
interaction term (EX2

[f12(x1, x2)]); marginal plot for f2 in the interaction term (EX1
[f12(x1, x2)]). Note how the quadratic

shape in Figure 9a and the linear trend in Figure 9b are captured in the higher order terms Figure 9d and Figure 9e. Vice
Versa, first order terms may also absorb effect from the interaction, as Figure 9f and Figure 9g show.

J. Baseline Experimental Results
J.1. Baseline Dataset Details

Data AutoMP Housing Concrete Pumadyn Breast Pima Sonar Ionosphere Liver Heart
n 392 506 1030 8192 449 768 208 351 345 297
D 7 13 8 8 9 8 60 32 6 13

Table 3: Number of data and dimensionality of baseline datasets.

J.2. Total Number of Terms for Baseline Datasets

Data AutoMP Housing Concrete Pumadyn Breast Pima Sonar Ionosphere Liver Heart
number of terms 127 8191 255 255 255 162 1830 41448 56 1092

Table 4: Total number of additive terms in baseline datasets.

J.3. Model Performance

Model performance for baseline dataset experiments are displayed in Figure 10, where we compare percentage improvement
relative to the baseline model (full GP with squared exponential kernel) for our constrained kernel and the non-constrained
counterparts in Duvenaud et al. (2011). Positive values indicate superior performance compared with the baseline. Detailed
performance on each of the train-split fold can be found in Figure 11, 12, 13 and 14.

J.4. Order Variance Hyperparameter Comparison

We compare the normalized variance hyperparameter σ2
d∑D

d=1 σ
2
d

of each order d of interaction between OAK and Duvenaud
et al. (2011), as shown in Figure 15 and 16. The results further verify that OAK model is more parsimonious and requires
lower order interactions for all datasets.
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Figure 10: Test RMSE relative improvement compared with GP with squared-exponential kernel for regression (left); and
test classification percentage error for classification (right). Red and blue boxes represent mean and ±1 standard deviation
over 5 train-test folds for the additive model and OAK model respectively. Horizontal axis represents different datasets;
vertical axis represents model percentage improvement relative to the baseline model. Higher values are better.
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Figure 11: Test RMSE on regression datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK model without
normalizing flow.

J.5. Normalizing Flow Ablation Study

Normalizing flow plays a role similar to data centering: we transform each continuous feature to be closer to Gaussian. The
bijective function in the flow is a composition of shifting, scaling and sinharcsinh transformation. The parameters of the
bijective functions are learned and fixed before fitting the GP model, using only the input data, not in conjunction with the
hyperparametrs. For non-continuous input features we do not apply any transformation, but use the orthogonal discrete
kernel described in Appendix C. We have performed an ablation study and ran experiments on all the baseline datasets
where we standardize the inputs instead of using the flow. The model performance is similar (see Figure 11, 12, 13 and 14)
but the resulting model tends to be less parsimonious, especially for the Housing dataset, see Figure 17 for details.
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Figure 12: Test percenrage error on classification datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK
model without normalizing flow.
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Figure 13: Negative log likelihood on regression datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK
model without normalizing flow.

J.6. Comparison with Kernel in Duvenaud et al. (2011)

The kernel
∏
d(1 + k̃d) restricts the lengthscales and variances of the kernels to be the same for lower and higher order

terms, e.g., if two features are important in their main effect, the interaction between them will also be important, which may
result in a less parsimonious model as higher order terms cannot be downweighted during inference. We have conducted
experiments using this kernel for comparison, with results shown in Figure 18. We found the kernel is harder to optimize
and numerically unstable, the model performance is similar but the resulting model is less parsimonious: e.g., Concrete
dataset needs 3rd order terms (with normalized Sobol indices = 0.71, 0.16, 0.13 for 1st, 2nd and 3rd order respectively, as
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Figure 14: Negative log likelihood on classification datasets over 5 folds, lower is better. OAK w.o. NF stands for the OAK
model without normalizing flow.
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Figure 15: Normalized order variance hyperparameter on the UCI regression datasets. Top: kernel used in Duvenaud et al.
(2011); bottom: OAK model. OAK requires lower dimensional orders of interactions with similar performance. Results are
averaged over 5 folds.

opposed to 0.971, 0.026, 0.003 with OAK in Figure 4.
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Figure 16: Normalized order variance hyperparameter on the UCI classification datasets. Top: kernel used in Duvenaud
et al. (2011); bottom: OAK model. OAK requires lower dimensional orders of interactions with similar performance. We
have truncated the maximum order of interaction to 4 for Sonar and Ionosphere datasets. Results are averaged over 5 folds.
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Figure 17: Model performance and cumulative Sobol index versus number of terms added ranked by the Sobol index, without
normalizing flow. For regression problems (top), we use test RMSE as the evaluation metric. Note that we did not include
result for the Concrete dataset because the NF was not sufficient to transform the data and we used the empirical measure
for it in Figure 5: in this case the predictive performance was not affected, but the parsimony of the result (i.e. the number of
terms needed to reach the same performance) was. For classification problems (bottom), we use test area-under-the-curve
(AuC) metric. Red solid lines represent test RMSE (top) and test AuC (bottom), green dashed lines represent cumulative
(normalized) Sobol index.

J.7. Number of Inducing Points Needed

When kernels are combined through a product, the eigenspectrum is the outer-product of the spectra of the components
(Corollary 3 in Burt et al. (2019)). This is what leads to the exponential scaling of the number of inducing points with the
dimension of the problem, M = O(logDN). When we add kernels together, the eigenspectrum is simply the concatenation
of the spectrum of each component, so the resulting scaling is linear.

Additional experiments on number of inducing points needed for the pumadyn and Churn datasets can be found in Figure 19.
The number of inducing points needed for OAK is smaller than that for the non-orthogonal model and the full GP model.
Note that although the ELBO values are not directly comparable due to the normalizing flow used for some of the models,
we can observe that the OAK model converges much faster than its counterparts.
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Figure 18: Cumulative Sobol Indices with kernel of the form
∏
d(1 + k̃d) in Duvenaud et al. (2011) using constrained

kernel. The model performance is similar to OAK but the resulting model tends to be less parsimonious: e.g., Concrete
dataset needs 3rd order terms with normalized Sobol indices = 0.71, 0.16, 0.13 for 1st, 2nd and 3rd order respectively as
opposed to 0.971, 0.026, 0.003 with OAK in Figure 4.
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Figure 19: Model performance versus varying number of inducing points on the test set. Results are averaged over 5
repetitions for the Pumadyn dataset and 10 repetitions for the Churn dataset. Shaded area represents ±1 standard deviation.
Note that test ELBO is not always monotone on the Churn data, we attribute this to the difficulty of finding local optima.

K. Additional Benchmark Experiments
The evaluation results for the entire set of datasets6 summarized in Table 1 can be found in Tables 5-8. Values outside
[−1000, 1000] are denoted as NaN. Results are averaged over 10 train-test splits, values in brackets represent one standard
deviation.

6Data and code for other methods are taken from https://github.com/hughsalimbeni/bayesian_benchmarks.

https://github.com/hughsalimbeni/bayesian_benchmarks.


Additive GPs Revisited

dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

boston 506 13 0.290(0.036) 0.444(0.044) 0.312(0.030) 0.267(0.037) 0.380(0.059) 0.282(0.020) 0.349(0.026) 0.299(0.030)
energy 768 8 0.036(0.010) 0.300(0.034) 0.048(0.005) 0.227(0.027) 0.218(0.029) 0.047(0.005) 0.191(0.006) 0.193(0.020)
naval 11934 14 0.164(0.313) 0.394(0.007) 0.004(0.001) 0.215(0.006) 0.104(0.006) 0.263(0.007) 0.885(0.017) 0.051(0.007)
power 9568 4 0.234(0.009) 0.267(0.008) 0.237(0.009) 0.234(0.009) 0.219(0.008) 0.226(0.008) 0.327(0.012) 0.236(0.009)
winered 1599 11 0.775(0.044) 0.808(0.046) 0.926(0.145) 0.768(0.055) 0.825(0.063) 0.762(0.046) 0.774(0.054) 0.773(0.055)
winewhite 4898 11 0.827(0.079) 0.847(0.033) 0.837(0.084) 0.768(0.021) 0.788(0.020) 0.768(0.020) 0.826(0.022) 0.763(0.023)
protein 45730 9 0.987(0.032) 0.850(0.004) 0.782(0.007) 0.764(0.008) 0.623(0.007) 0.768(0.007) 0.933(0.012) 0.707(0.022)
yacht 308 6 0.032(0.012) 0.608(0.048) 0.048(0.016) 0.419(0.092) 0.668(0.144) 0.044(0.014) 0.103(0.023) 0.244(0.051)
airfoil 1503 5 0.837(0.174) 0.721(0.047) 0.456(0.033) 0.486(0.038) 0.429(0.035) 0.387(0.043) 0.573(0.029) 0.412(0.041)
forest 517 12 1.030(0.100) 1.018(0.106) 0.995(0.025) 1.100(0.139) 1.117(0.142) 1.069(0.131) 1.092(0.093) 1.077(0.115)
parkinsons 195 23 0.373(0.140) 0.871(0.021) 0.635(0.021) 0.544(0.022) 0.384(0.024) 0.245(0.008) 0.587(0.020) 0.283(0.017)
stock 536 11 0.305(0.049) 0.286(0.025) 0.286(0.027) 0.465(0.136) 0.579(0.094) 0.348(0.058) 0.363(0.071) 0.308(0.025)
fertility 100 10 0.799(0.192) 0.900(0.229) 0.975(0.295) 0.975(0.250) 1.055(0.287) 1.032(0.225) 0.904(0.209) 1.020(0.233)
machine 209 7 0.281(0.044) 0.435(0.053) 0.398(0.048) 0.419(0.054) 0.417(0.076) 0.338(0.043) 0.368(0.037) 0.393(0.044)
pendulum 630 9 0.443(0.099) 0.862(0.164) 0.653(0.136) 0.654(0.188) 0.626(0.132) 0.772(0.110) 0.810(0.134) 0.659(0.140)
servo 167 4 0.312(0.069) 0.607(0.068) 0.299(0.074) 0.343(0.060) 0.454(0.070) 0.270(0.070) 0.383(0.062) 0.364(0.060)
wine 178 14 0.449(0.033) 0.564(0.029) 0.469(0.034) 0.440(0.041) 0.562(0.045) 0.461(0.031) 0.620(0.041) 0.436(0.038)
tamielectr 45781 3 1.001(0.005) 1.001(0.005) 1.001(0.005) 1.002(0.005) 1.099(0.007) 1.002(0.005) 1.002(0.005) 1.002(0.005)
kin40k 40000 8 0.581(0.019) 1.000(0.013) 0.682(0.016) 0.205(0.004) 0.392(0.005) 0.842(0.010) 0.939(0.013) 0.187(0.007)
gas 2565 128 0.254(0.078) 112.965(333.613) 0.182(0.041) 0.227(0.101) 0.119(0.037) 0.117(0.029) 0.313(0.025) 0.496(0.595)
keggdirect 48827 20 0.129(0.065) nan 0.109(0.005) 0.102(0.002) 0.097(0.004) 0.094(0.003) 0.201(0.003) 0.199(0.318)
bike 17379 17 0.023(0.008) 0.517(0.008) 0.353(0.006) 0.262(0.008) 0.454(0.011) 0.020(0.001) 0.124(0.004) 0.065(0.008)
pol 15000 26 0.848(0.131) 0.736(0.011) 0.396(0.010) 0.335(0.006) 0.215(0.013) 0.256(0.008) 0.492(0.017) 0.151(0.007)
elevators 16599 18 0.379(0.007) 14.600(21.603) 0.394(0.007) 0.392(0.007) 0.602(0.016) 0.502(0.014) 0.776(0.014) 0.359(0.013)
avg 0.475 6.157 0.478 0.484 0.518 0.455 0.581 0.445
median 0.376 0.736 0.397 0.419 0.454 0.343 0.580 0.361
avg rank 3.583 6.625 4.083 4.208 4.958 3.208 5.750 3.583

Table 5: Test RMSE for regression tasks on additional benchmark datasets, lower is better.

dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

boston 506 13 -0.122(0.157) -0.644(0.066) -0.281(0.058) -0.157(0.083) -0.467(0.134) -0.637(0.250) -0.388(0.095) -0.248(0.140)
energy 768 8 1.923(0.308) -0.220(0.114) 1.609(0.081) 0.038(0.159) -0.021(0.254) 1.603(0.154) 0.235(0.035) 0.194(0.117)
naval 11934 14 1.932(1.525) -0.489(0.017) 3.957(0.133) 0.120(0.028) 0.740(0.109) -0.088(0.030) -1.297(0.019) 1.561(0.144)
power 9568 4 0.030(0.037) -0.098(0.031) 0.018(0.036) 0.034(0.038) 0.046(0.056) 0.066(0.042) -0.304(0.037) 0.025(0.037)
winered 1599 11 -1.166(0.059) -1.208(0.060) -1.507(0.517) -1.174(0.095) -1.280(0.121) -1.206(0.099) -1.170(0.081) -1.204(0.109)
winewhite 4898 11 -1.224(0.091) -1.254(0.039) -1.236(0.095) -1.161(0.031) -1.230(0.040) -1.161(0.031) -1.229(0.028) -1.160(0.038)
protein 45730 9 -1.407(0.030) -1.257(0.005) -1.172(0.008) -1.150(0.011) -1.013(0.018) -1.156(0.009) -1.350(0.013) -1.073(0.031)
yacht 308 6 1.320(1.503) -0.929(0.083) 1.715(0.237) -0.614(0.287) -1.152(0.329) -0.597(2.242) 0.799(0.351) -0.090(0.318)
airfoil 1503 5 -1.395(0.600) -1.096(0.070) -0.650(0.072) -0.711(0.093) -0.693(0.149) -0.496(0.139) -0.865(0.054) -0.548(0.119)
forest 517 12 -1.473(0.119) -1.447(0.121) -1.893(0.503) -1.582(0.206) -1.600(0.204) -1.753(0.321) -1.557(0.129) -1.594(0.196)
parkinsons 195 23 -0.415(0.419) -1.282(0.025) -0.976(0.026) -0.813(0.045) -0.555(0.111) -0.012(0.035) -0.886(0.034) -0.243(0.107)
stock 536 11 -0.199(0.111) -0.175(0.079) -0.173(0.078) -1.090(0.975) -0.975(0.287) -1.100(0.687) -0.486(0.331) -0.344(0.164)
fertility 100 10 -1.244(0.239) -1.376(0.362) -1.461(0.425) -1.676(0.735) -1.631(0.538) -3.890(1.808) -1.608(0.608) -2.800(1.437)
machine 209 7 -0.162(0.153) -0.598(0.134) -0.519(0.132) -0.603(0.190) -0.629(0.279) -1.566(0.731) -0.507(0.174) -0.510(0.145)
pendulum 630 9 0.309(0.978) -1.299(0.209) -0.912(0.184) -1.129(0.462) -1.020(0.308) -2.375(0.766) -1.329(0.317) -1.354(0.585)
servo 167 4 -0.402(0.522) -0.929(0.098) -0.265(0.211) -0.400(0.245) -0.783(0.304) -0.418(0.660) -0.513(0.225) -0.432(0.207)
wine 178 14 -0.613(0.068) -0.849(0.054) -0.660(0.070) -0.624(0.127) -0.900(0.129) -0.706(0.109) -0.947(0.075) -0.651(0.143)
tamielectr 45781 3 -1.461(0.117) -1.420(0.005) -1.420(0.005) -1.421(0.005) -1.561(0.010) -1.422(0.005) -1.420(0.005) -1.421(0.005)
kin40k 40000 8 -0.874(0.030) -1.419(0.013) -1.034(0.022) 0.164(0.022) -0.529(0.019) -1.247(0.012) -1.357(0.015) 0.253(0.037)
gas 2565 128 -0.166(0.260) nan 0.292(0.103) -0.051(0.379) 0.646(0.357) -0.101(0.894) -0.275(0.098) -3.604(9.953)
keggdirect 48827 20 0.591(0.526) nan 0.853(0.027) 0.853(0.030) 0.897(0.060) 0.945(0.033) 0.184(0.015) -7.418(25.044)
bike 17379 17 2.416(0.383) -0.759(0.015) -0.379(0.017) -0.085(0.033) -0.688(0.040) 2.468(0.050) 0.666(0.037) 1.315(0.129)
pol 15000 26 -1.246(0.158) -1.112(0.015) -0.506(0.024) -0.327(0.018) 0.052(0.095) -0.058(0.033) -0.710(0.033) 0.348(0.073)
elevators 16599 18 -0.450(0.023) nan -0.488(0.015) -0.489(0.022) -0.975(0.044) -0.733(0.030) -1.196(0.021) -0.397(0.039)
avg -0.229 -0.946 -0.295 -0.585 -0.638 -0.652 -0.730 -0.891
median -0.409 -1.096 -0.512 -0.609 -0.738 -0.671 -0.875 -0.471
avg rank 5.583 3.625 5.042 4.833 3.917 4.292 3.583 5.125

Table 6: Test log likelihood for regression tasks on additional benchmark datasets, higher is better.
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dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

acute-infl 120 7 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.958(0.072) 1.000(0.000)
acute-neph 120 7 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.992(0.025) 1.000(0.000)
bank 4521 17 0.898(0.016) 0.891(0.018) 0.890(0.017) 0.891(0.013) 0.890(0.014) 0.900(0.011) 0.892(0.015) 0.893(0.012)
blood 748 5 0.740(0.007) 0.780(0.055) 0.787(0.051) 0.781(0.050) 0.767(0.041) 0.768(0.041) 0.776(0.046) 0.793(0.043)
chess-krvk 3196 37 0.960(0.021) 0.980(0.005) 0.980(0.006) 0.993(0.004) 0.959(0.007) 0.999(0.001) 0.999(0.001) 0.997(0.003)
congressio 435 17 0.616(0.050) 0.616(0.042) 0.605(0.050) 0.630(0.061) 0.568(0.067) 0.584(0.070) 0.582(0.056) 0.566(0.059)
conn-bench 208 61 0.990(0.019) 0.986(0.030) 0.976(0.038) 0.971(0.032) 0.900(0.054) 1.000(0.000) 1.000(0.000) 0.929(0.053)
credit-app 690 16 0.888(0.067) 0.849(0.051) 0.851(0.045) 0.833(0.036) 0.830(0.044) 0.967(0.025) 0.971(0.016) 0.858(0.037)
cylinder-b 512 36 0.752(0.060) 0.727(0.042) 0.735(0.034) 0.779(0.031) 0.785(0.053) 0.810(0.045) 0.738(0.030) 0.767(0.029)
echocardio 131 11 0.879(0.091) 0.850(0.126) 0.864(0.117) 0.850(0.098) 0.814(0.136) 0.843(0.070) 0.843(0.083) 0.843(0.114)
fertility 100 10 0.900(0.050) 0.900(0.063) 0.920(0.060) 0.920(0.060) 0.910(0.054) 0.860(0.092) 0.870(0.078) 0.890(0.070)
haberman-s 306 4 0.758(0.089) 0.755(0.087) 0.765(0.089) 0.745(0.065) 0.694(0.070) 0.713(0.101) 0.745(0.087) 0.745(0.070)
heart-hung 294 13 1.000(0.000) 0.997(0.010) 0.997(0.010) 0.970(0.023) 0.863(0.055) 1.000(0.000) 1.000(0.000) 0.990(0.015)
hepatitis 155 20 0.819(0.071) 0.794(0.097) 0.856(0.056) 0.844(0.075) 0.819(0.076) 0.812(0.079) 0.787(0.098) 0.844(0.075)
hill-valle 1212 101 0.483(0.048) 0.556(0.043) 0.484(0.043) 0.493(0.040) 0.507(0.031) 0.520(0.036) 0.517(0.038) 0.526(0.061)
horse-coli 368 26 0.824(0.039) 0.832(0.055) 0.824(0.057) 0.830(0.053) 0.781(0.052) 0.830(0.051) 0.792(0.042) 0.814(0.057)
ilpd-india 583 10 0.697(0.045) 0.702(0.050) 0.685(0.056) 0.681(0.072) 0.666(0.050) 0.649(0.039) 0.669(0.045) 0.649(0.042)
mammograph 961 6 0.830(0.024) 0.831(0.022) 0.836(0.023) 0.833(0.031) 0.802(0.038) 0.837(0.028) 0.827(0.028) 0.823(0.035)
molec-biol 106 58 0.964(0.060) 0.900(0.086) 0.900(0.103) 0.918(0.086) 0.927(0.089) 1.000(0.000) 1.000(0.000) 0.873(0.109)
monks-1 556 7 0.988(0.016) 0.629(0.046) 0.825(0.051) 0.845(0.042) 0.893(0.040) 0.995(0.008) 0.986(0.013) 0.973(0.022)
monks-2 601 7 0.685(0.062) 0.646(0.066) 0.652(0.055) 0.662(0.082) 0.754(0.070) 0.611(0.074) 0.567(0.038) 0.733(0.060)
monks-3 554 7 0.977(0.014) 0.714(0.067) 0.963(0.028) 0.955(0.018) 0.889(0.047) 0.988(0.011) 0.954(0.033) 0.968(0.024)
mushroom 8124 22 0.998(0.003) 0.953(0.006) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
musk-1 476 167 1.000(0.000) 0.992(0.014) 0.988(0.019) 0.973(0.013) 0.904(0.038) 0.996(0.012) 0.996(0.012) 0.990(0.014)
musk-2 6598 167 0.998(0.004) 1.000(0.000) 1.000(0.000) 0.998(0.002) 0.977(0.006) 1.000(0.000) 1.000(0.000) 1.000(0.000)
oocytes me 1022 42 0.846(0.024) 0.784(0.022) 0.838(0.020) 0.779(0.022) 0.722(0.035) 0.780(0.025) 0.755(0.040) 0.841(0.023)
oocytes tr 912 26 0.837(0.015) 0.774(0.035) 0.822(0.039) 0.823(0.034) 0.728(0.062) 0.817(0.035) 0.778(0.036) 0.830(0.027)
ozone 2536 73 0.973(0.011) 0.972(0.007) 0.972(0.009) 0.972(0.010) 0.971(0.011) 0.970(0.009) 0.973(0.008) 0.970(0.008)
parkinsons 195 23 0.985(0.023) 0.795(0.085) 0.895(0.099) 0.890(0.062) 0.935(0.045) 0.970(0.046) 0.930(0.046) 0.930(0.051)
avg 0.872 0.835 0.859 0.857 0.836 0.870 0.859 0.863
median 0.898 0.832 0.864 0.850 0.863 0.900 0.892 0.873
avg rank 5.569 4.224 4.741 4.500 2.983 5.224 4.207 4.552

Table 7: Test accuracy for classification tasks on additional benchmark datasets, higher is better.

dataset N D OAK Linear SVGP SVM KNN GBM AdaBoost MLP

acute-infl 120 7 -0.003(0.000) -0.057(0.007) -0.001(0.000) -0.018(0.001) -0.000(0.000) -0.000(0.000) -0.057(0.091) -0.032(0.008)
acute-neph 120 7 -0.003(0.003) -0.032(0.009) -0.001(0.000) -0.019(0.001) -0.000(0.000) -0.000(0.000) -0.085(0.256) -0.017(0.004)
bank 4521 17 -0.248(0.024) -0.271(0.029) -0.262(0.027) -0.286(0.029) -1.143(0.224) -0.235(0.020) -0.646(0.002) -0.282(0.035)
blood 748 5 -0.491(0.023) -0.469(0.071) -0.469(0.070) -0.505(0.070) -1.861(0.769) -0.524(0.090) -0.677(0.005) -0.473(0.073)
chess-krvk 3196 37 -0.078(0.041) -0.056(0.009) -0.051(0.011) -0.020(0.008) -0.232(0.088) -0.010(0.015) -0.010(0.007) -0.020(0.018)
congressio 435 17 -0.655(0.040) -0.697(0.100) -0.650(0.041) -0.666(0.026) -2.172(1.056) -0.699(0.064) -0.687(0.003) -0.803(0.175)
conn-bench 208 61 -0.040(0.026) -0.090(0.070) -0.084(0.092) -0.077(0.040) -0.208(0.073) -0.000(0.000) -0.000(0.000) -0.189(0.117)
credit-app 690 16 -0.280(0.126) -0.365(0.083) -0.369(0.085) -0.377(0.070) -1.182(0.552) -0.111(0.074) -0.583(0.008) -0.363(0.080)
cylinder-b 512 36 -0.475(0.055) -0.533(0.059) -0.532(0.033) -0.463(0.045) -0.888(0.375) -0.392(0.049) -0.654(0.007) -0.530(0.149)
echocardio 131 11 -0.358(0.170) -0.394(0.185) -0.376(0.157) -0.423(0.167) -1.107(1.274) -0.444(0.273) -0.584(0.024) -0.385(0.202)
fertility 100 10 -0.380(0.134) -0.341(0.213) -0.296(0.115) -0.298(0.123) -1.546(1.799) -0.561(0.484) -0.633(0.039) -0.362(0.239)
haberman-s 306 4 -0.532(0.099) -0.531(0.093) -0.530(0.106) -0.540(0.094) -1.468(1.395) -0.570(0.157) -0.679(0.009) -0.540(0.114)
heart-hung 294 13 -0.007(0.002) -0.044(0.016) -0.008(0.016) -0.063(0.035) -1.088(0.817) -0.000(0.000) -0.000(0.000) -0.046(0.023)
hepatitis 155 20 -0.414(0.105) -0.389(0.100) -0.346(0.065) -0.352(0.077) -1.306(0.798) -0.531(0.159) -0.570(0.046) -0.362(0.130)
hill-valle 1212 101 -0.694(0.001) -0.650(0.013) -0.693(0.000) -0.694(0.001) -1.498(0.294) -0.708(0.027) -0.693(0.004) -0.675(0.013)
horse-coli 368 26 -0.406(0.077) -0.455(0.101) -0.433(0.085) -0.422(0.074) -1.609(0.776) -0.388(0.104) -0.666(0.007) -0.517(0.154)
ilpd-india 583 10 -0.555(0.028) -0.548(0.040) -0.548(0.036) -0.605(0.053) -1.695(0.679) -0.633(0.078) -0.636(0.011) -0.582(0.056)
mammograph 961 6 -0.386(0.048) -0.419(0.041) -0.406(0.043) -0.403(0.046) -1.278(0.543) -0.386(0.056) -0.665(0.005) -0.409(0.063)
molec-biol 106 58 -0.149(0.172) -0.211(0.138) -0.203(0.136) -0.196(0.171) -0.283(0.100) -0.000(0.000) -0.000(0.000) -0.363(0.186)
monks-1 556 7 -0.027(0.017) -0.618(0.044) -0.307(0.066) -0.389(0.083) -0.546(0.235) -0.040(0.012) -0.569(0.013) -0.159(0.038)
monks-2 601 7 -0.549(0.063) -0.648(0.044) -0.638(0.048) -0.589(0.056) -0.676(0.398) -0.653(0.085) -0.679(0.007) -0.505(0.056)
monks-3 554 7 -0.067(0.037) -0.453(0.089) -0.091(0.054) -0.149(0.059) -0.543(0.255) -0.048(0.022) -0.638(0.008) -0.095(0.033)
mushroom 8124 22 -0.009(0.021) -0.135(0.009) -0.002(0.001) -0.000(0.000) -0.000(0.000) -0.003(0.000) -0.483(0.006) -0.001(0.000)
musk-1 476 167 -0.015(0.011) -0.058(0.039) -0.056(0.054) -0.079(0.035) -0.340(0.206) -0.045(0.136) -0.115(0.345) -0.079(0.073)
musk-2 6598 167 -0.008(0.015) -0.004(0.001) -0.001(0.000) -0.006(0.006) -0.127(0.059) -0.002(0.005) -0.004(0.013) -0.002(0.000)
oocytes me 1022 42 -0.368(0.078) -0.454(0.024) -0.391(0.049) -0.467(0.032) -1.541(0.433) -0.459(0.028) -0.675(0.007) -0.397(0.066)
oocytes tr 912 26 -0.382(0.034) -0.488(0.052) -0.416(0.054) -0.408(0.051) -1.224(0.552) -0.417(0.052) -0.674(0.003) -0.370(0.044)
ozone 2536 73 -0.107(0.035) -0.087(0.025) -0.082(0.023) -0.098(0.028) -0.372(0.150) -0.093(0.025) -0.523(0.043) -0.128(0.056)
parkinsons 195 23 -0.065(0.050) -0.320(0.094) -0.207(0.102) -0.253(0.090) -0.150(0.043) -0.256(0.399) -0.439(0.047) -0.196(0.041)
avg -0.267 -0.338 -0.291 -0.306 -0.899 -0.283 -0.459 -0.306
median -0.280 -0.389 -0.307 -0.352 -1.088 -0.256 -0.584 -0.362
avg rank 5.862 4.276 5.931 4.690 2.138 5.379 2.897 4.828

Table 8: Test log likelihood for classification tasks on additional benchmark datasets, higher is better.


