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Abstract
Nesterov’s Accelerated Gradient (NAG) for opti-
mization has better performance than its continu-
ous time limit (noiseless kinetic Langevin) when
a finite step-size is employed (Shi et al., 2021).
This work explores the sampling counterpart of
this phenonemon and proposes a diffusion pro-
cess, whose discretizations can yield accelerated
gradient-based MCMC methods. More precisely,
we reformulate the optimizer of NAG for strongly
convex functions (NAG-SC) as a Hessian-Free
High-Resolution ODE, change its high-resolution
coefficient to a hyperparameter, inject appropri-
ate noise, and discretize the resulting diffusion
process. The acceleration effect of the new hyper-
parameter is quantified and it is not an artificial
one created by time-rescaling. Instead, acceler-
ation beyond underdamped Langevin in W2 dis-
tance is quantitatively established for log-strongly-
concave-and-smooth targets, at both the contin-
uous dynamics level and the discrete algorithm
level. Empirical experiments in both log-strongly-
concave and multi-modal cases also numerically
demonstrate this acceleration.

1. Introduction
Optimization is a major machinery that drives the theory
and practice of machine learning in recent years. Since the
seminal work of Nesterov (1983), acceleration has played a
key role in gradient-based optimization methods. A notable
example is Nesterov’s Accelerated Gradient (NAG), which
is an instance of a more general family of “momentum meth-
ods”. NAG consists of multiple methods, including NAG-C
and NAG-SC, respectively for convex and strongly convex
functions. Both provably converge faster than vanilla gradi-
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ent descent (GD) in their corresponding setups (Nesterov,
1983; 2013). Newer perspectives of acceleration continue
to be revealed, e.g., (Su et al., 2014; Wibisono et al., 2016;
Wilson et al., 2021; Hu & Lessard, 2017; Attouch et al.,
2018; Shi et al., 2021), many based on the interplay be-
tween continuous and discrete times. This work aims at
turning NAG-SC into a sampler based on this interplay.

In fact, approaches for sampling statistical distribu-
tions, such as gradient-based Markov Chain Monte Carlo
(MCMC) methods, are also of great importance in machine
learning, for example due to their links to statistical in-
ference and abilities to represent uncertainties lacking in
optimization-based methods. Although not entirely the same
thing, optimization and sampling are closely related: besides
seeing a large class of sampling dynamics as optimization
dynamics with additional noise, viewing sampling as opti-
mization in probability space also led to important discover-
ies (e.g., Jordan et al., 1998; Liu & Wang, 2016; Dalalyan,
2017a; Wibisono, 2018; Zhang et al., 2018; Frogner & Pog-
gio, 2020; Chizat & Bach, 2018; Chen et al., 2018a; Ma
et al., 2021; Erdogdu & Hosseinzadeh, 2021). In fact, an
unadjusted Euler-Maruyama discretization of overdamped
Langevin dynamics (abbreviated as OLD here) is commonly
considered as the analog of GD in sampling (although many
other discretizations are also possible), and often referred to
as Unadjusted Langevin Algorithm (ULA) (Roberts et al.,
1996) and/or Langevin Monte Carlo (LMC). The conver-
gence properties of the continuous dynamics of OLD, as
well as asymptotic and non-asymptotic analyses of its dis-
cretizations have been extensively studied (e.g., Roberts
et al., 1996; Villani, 2008; Pavliotis, 2014; Dalalyan, 2017b;
Durmus & Moulines, 2016; Dalalyan, 2017a; Durmus et al.,
2019; Durmus & Moulines, 2019; Vempala & Wibisono,
2019; Cheng & Bartlett, 2018; Dwivedi et al., 2019; Ma
et al., 2019; Chewi et al., 2021; Erdogdu & Hosseinzadeh,
2021).

Meanwhile, the notion of acceleration is less quantified in
sampling compared to that in optimization, although atten-
tion has been rapidly building up. Along this direction, one
line is based on diffusion processes such as underdamped
Langevin dynamics (ULD). For example, the convergence
and nonasymptotics of discretized ULD have been studied
by Cheng et al. (2018); Dalalyan & Riou-Durand (2020);
Ma et al. (2021), and were demonstrated provably faster than
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discretized OLD in suitable setups. These are not only great
progresses but also forming perspectives complementary
to the extensive studies of the convergence of continuous
ULD in the mathematical community (e.g, Mattingly et al.,
2002; Cao et al., 2019; Dolbeault et al., 2009; 2015; Vil-
lani, 2009; Eckmann & Hairer, 2003; Baudoin, 2017; Eberle
et al., 2019). Another important line of research is related
to accelerating particle-based approaches for optimization
in probability spaces (Liu et al., 2019; Taghvaei & Mehta,
2019; Wang & Li, 2019), although we note there is no clear
boundary between these two lines (e.g., Leimkuhler et al.,
2018). Additional interesting ideas also include (Chen et al.,
2018b; Deng et al., 2020; Ding et al., 2021; Li et al., 2022a;
Liang & Chen, 2022). In general, it has been known that
adding an irreversible part to the reversible dynamics of
OLD1 accelerates its convergence (e.g., Hwang et al., 2005;
Lelievre et al., 2013; Ohzeki & Ichiki, 2015; Rey-Bellet
& Spiliopoulos, 2015; Duncan et al., 2016), and this work
can be viewed to be under this umbrella. Note, though, the
discretization of an accelerated continuous process is also
important, and it will also be discussed.

Specifically, we propose a class of accelerated gradient-
based MCMC algorithms termed HFHR. It is motivated
by a simple question: how to appropriately inject noise to
NAG algorithm in discrete time, so that it is turned into an
algorithm for momentum-accelerated sampling? Note we
don’t add noise to the learning-rate→ 0 limit of NAG (this
has been studied in Ma et al., 2021), because a finite-step-
size discretization of this limiting ODE may not converge
as fast as NAG with the same learning rate. However, we
will still use continuous dynamics as intermediate steps.

More precisely, our first step is to combine existing tools
to prepare a non-asymptotic formulation for the later steps.
The goal is to better account for NAG’s behavior when a
finite (not infinitesimal) learning rate is used. As pointed
out in Shi et al. (2021), a low-resolution limiting ODE (Su
et al., 2014), albeit being a milestone leading to important
research (e.g, Wibisono et al., 2016), does not fully capture
the acceleration enabled by NAG — for example, it can’t
distinguish between NAG and another momentum method
of heavy ball (Polyak, 1964). A reason is, the low-resolution
ODE describes the h → 0 limit of NAG, but in practice
NAG uses a finite (nonzero) h. High-resolution ODE was
thus proposed to include additional O(h) terms to account
for the finite h effect (Shi et al., 2021). The original form
of high-resolution ODE involves Hessian of the objective
function, which is computationally expensive to evaluate
and store for high-dimensional problems, but this is a small
obstacle that can be overcome (see e.g., Alvarez et al., 2002;
Attouch et al., 2020), and we’ll be able to derive a High-

1For irreversible-acceleration not from OLD, see e.g.,
(Bierkens et al., 2019; Bouchard-Côté et al., 2018).

Resolution and Hessian-Free limiting ODE for NAG.

Then we replace the high-resolution term’s coefficient in
the HFHR ODE by a hyperparameter α ≥ 0, and then add
noise to the resulting ODE in a specific way, which turns it
into an SDE suitable for the sampling purpose. This SDE
will be termed as HFHR dynamics.

To obtain an actual algorithm, the HFHR SDE is then dis-
cretized. We will see, both theoretically and empirically,
that nonzero α can lead to accelerated convergence of the
sampling algorithm; this acceleration is not an artificial
consequence of time-rescaling, which would not give ac-
celeration after discretization with an appropriate step size.
For demonstrating this, we will be primarily working with
just a 1st-order discretization, which uses 1 (full-)gradient
evaluation per iteration and thus suits particularly well low-
to-medium-accuracy downstream applications; comparisons
will be mainly against other methods that use 1 gradient per
step as well. However, since high-order discretizations can
improve statistical accuracy and even the speed of conver-
gence (see e.g., Chen et al., 2015; Li et al., 2019; Shen &
Lee, 2019), we will also provide a high-order discretization
in Appendix F, which again exhibits acceleration and suits
high-accuracy applications.

Our presentation is as follows: After detailing the construc-
tion of HFHR, we will analyze its convergence, at both
the continuous level (HFHR dynamics) and the discrete
level (HFHR algorithm). For precise theoretical results, we
will consider the setup of log-strongly-concave target distri-
butions, which are commonly considered in the literature
(Kim et al., 2016; Bubeck et al., 2018; Dalalyan, 2017b;
Dalalyan & Riou-Durand, 2020; Dwivedi et al., 2019; Shen
& Lee, 2019). The additional acceleration of HFHR when
compared to ULD in continuous time will be demonstrated
explicitly in Thm.5.1. For our discretized HFHR algorithm,
a non-asymptotic error bound will be obtained (Thm.5.2),
which confirms that the additional acceleration in contin-
uous time carries through to the discrete territory. Finally,
numerical experiments are provided, verifying the valid-
ity and tightness of our theoretical results, and empirically
showing HFHR remains advantageous for the nonconvex
and high-dim. problems, e.g., Bayesian Neural Networks.

The main contribution of this article is the idea of turning
NAG-SC optimizer into a sampler, and the introduction of a
new dynamics that is neither overdamped or underdamped
Langevin. Theoretical analyses (e.g., Thm.5.2, Cor.5.4 &
Rmk.5.5) and numerical experiments (Sec.6) are provided
for quantifying the effectiveness of this idea.

2. Background: Langevin Dynamics
Consider sampling from Gibbs measure µ whose density
is dµ = 1∫

e−f(y)dy
e−f(x)dx, where f : Rd 7→ R will
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be called the potential function. Two diffusion processes
popular for sampling (and modeling important physical
processes too) are named after Langevin. One is over-
damped Langevin dynamics (OLD), and the other is kinetic
Langevin dynamics (abbreviated as ULD to comply with a
convention of calling it underdamped Langevin). They are
respectively given by

(OLD) dqt = −∇f(qt)dt+
√
2dW t

(ULD)

{
dqt = ptdt

dpt = −γptdt−∇f(qt)dt+
√
2γdBt

where qt,pt ∈ Rd, W t,Bt are i.i.d. Wiener processes in
Rd, and γ > 0 is a friction coefficient. Under mild condi-
tions (e.g., Pavliotis, 2014), OLD converges to µ and ULD
converges to dπ(q,p) = dµ(q)ν(p)dp, where ν(p) =

(2π)−
d
2 e−∥p∥2/2 , so its q marginal follows µ.

OLD and ULD are closely related. In fact, OLD is the
γ →∞ overdamping limit of ULD after time dilation (e.g.,
Pavliotis, 2014). However, OLD is a reversible Markov
process but ULD is irreversible, and thus both their equilib-
rium and non-equilibrium statistical mechanics are different,
although closely related too. We will only focus on the con-
vergence to statistical equilibrium (see e.g., Souza & Tao,
2019 for non-equilibrium aspects).

Many celebrated approaches exist for establishing the expo-
nential convergence (a.k.a. geometric ergodicity) of OLD,
including the seminal work of (Roberts et al., 1996), the
ones using spectral gap (e.g., Dalalyan, 2017b, Lemma 1),
synchronous coupling (Villani, 2008, p33-35; Durmus &
Moulines, 2019, Proposition 1), functional inequalities such
as Poincaré’s inequality (Pavliotis, 2014, Theorem 4.4) and
log Sobolev inequality (Vempala & Wibisono, 2019, Theo-
rem 1). There are also fruitful results for ULD, including
the ones leveraging Lyapunov function (Mattingly et al.,
2002, Theorem 3.2), hypocoercivity (Villani, 2009; Dol-
beault et al., 2009; 2015; Roussel & Stoltz, 2018), coupling
(Cheng et al., 2018, Theorem 5; Dalalyan & Riou-Durand,
2020, Theorem 1; Eberle et al., 2019, Theorem 2.3), LSI
(Ma et al., 2021, Section 3.1), modified Poincaré’s inequal-
ity (Cao et al., 2019, Theorem 1), and spectral analysis
(Kozlov, 1989; Eckmann & Hairer, 2003).

The study of asymptotic convergence of discretized OLD
dates back to at least the 1990s (Meyn et al., 1994; Roberts
et al., 1996). The non-asymptotic analysis of LMC dis-
cretization of OLD can be found in (Dalalyan, 2017b) and
it shows the discretization achieves ϵ error, in TV distance,
in Õ(d/ϵ2) steps. Subsequent results include Õ(d/ϵ2) in
W2 (Durmus & Moulines, 2016), Õ(d/ϵ) in KL (Cheng &
Bartlett, 2018), Õ(d/ϵ) in W2 under additional 3rd-order
regularity (Durmus & Moulines, 2019), and Õ(

√
d/ϵ) in W2

under additional 3rd-order regularity (Li et al., 2022b). For

discretized ULD, one has Õ(
√
d/ϵ) iteration complexity in

W2 (Cheng et al., 2018; Dalalyan & Riou-Durand, 2020)
and Õ(

√
d/

√
ϵ) in KL (Ma et al., 2021). ULD is still gener-

ally conceived to be advantageous over OLD and sometimes
understood as its momentum-accelerated version.

3. Notations and Conditions
We will use 2-Wasserstein distance to quan-
tify convergence, i.e. W2(µ1, µ2) =(
infπ∈Π(µ1,µ2) E(X,Y )∼π∥X − Y ∥

2
) 1

2

where Π(µ1, µ2)

is the set of all couplings of µ1 and µ2.

Assume WLOG that 0 ∈ argminx∈Rd f(x). The following
condition will also be frequently used.
Assumption 3.1. (Standard Strong-Convexity and
Smoothness Condition) A function f ∈ C1(Rd,R) is
m-stronly-convex and L-smooth, if there exist constants
m,L > 0 such that ∀x,y ∈ Rd, we have

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥ and

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ m

2
∥y − x∥2

For f ∈ C2, this is equivalent to mI ⪯ ∇2f ⪯ LI .

The condition number of f is defined as κ := L/m.

4. The Construction of HFHR dynamics
HFHR is obtained by formulating NAG-SC as a Hessian free
high-resolution ODE, lifting the high-resolution term’s co-
efficient as a free parameter, and adding appropriate noises.

More precisely, let’s start with NAG-SC algorithm:

xk+1 = yk − s∇f(yk) (1)
yk+1 = xk+1 + c(xk+1 − xk) (2)

where s is the learning rate (also known as step size), and
c = 1−

√
ms

1+
√
ms

is a constant based on s and the strong con-
vexity coefficient m of f ; the method also works for non-
strongly-convex f though.

A high-resolution ODE description of Eq.(1) & (2) is ob-
tained in Shi et al. (2021, Section 2)

ÿ +
√
s

(
2(1− c)
s(1 + c)

+∇2f(y)

)
ẏ +

2

1 + c
∇f(y) = 0,

(3)
which can better account for the effect of non-infinitesimal s
than the s→ 0 limit (note c depends on s). However, in this
original form, Hessian of f is involved, which is expensive
to compute and store for high-dimensional problems.

To obtain a Hessian-free high-resolution ODE description
of Eq.(1) & (2), we first turn the iteration into a ‘mechanical’
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version by introducing position qk = yk and momentum
pk = (yk−xk)/h. Replacing xk+1 in (1) and the first xk+1

in (2) by qk+1 and pk+1, the second xk+1 in (2) by qk −
s∇f(qk), and the xk in (2) by qk and pk, we obtain{

pk+1 = cpk − c sh∇f(qk)
qk+1 = qk + hpk+1 − s∇f(qk)

Now, choose γ, α and h as h =
√
cs, γ = 1−c

h , α = s
h . We

see that γ > 0, α > 0, and NAG-SC exactly rewrites as{
pk+1 = pk − hγpk − h∇f(qk)
qk+1 = qk + hpk+1 − hα∇f(qk)

. (4)

Note the technique for bypassing the Hessian without in-
troducing any approximation is already well studied in the
literature (e.g., Alvarez et al., 2002; Attouch et al., 2020).

So far, both h and α are actually determined by the hyper-
parameter s of NAG-SC. However, if we now consider α as
an independent variable (i.e., ‘lift’ it) and let h→ 0, we see
(4) is a 1st-order discretization (with step size h) of{

q̇ = p− α∇f(q)
ṗ = −γp−∇f(q)

. (5)

Note α, if inherited from NAG-SC, should be α =
√
s/c =

O(h), which, in a low-resolution ODE, will be discarded,
and this eventually leads to ULD rather than HFHR. How-
ever, we now allow it to be a free parameter and will see
that α ̸= O(h) can be advantageous.

Before quantifying these advantages, we finish the construc-
tion by appropriately injecting Gaussian noises to (5). This
is just like how OLD can be obtained by adding noise to
gradient flow. The right amount and structure of noise turn
the ODE into a Markov process that can serve the purpose
of sampling, and the detailed form of our noise is given by:{

dqt = (pt − α∇f(qt))dt+
√
2αdW t

dpt = (−γpt −∇f(qt))dt+
√
2γdBt

. (6)

Here α ≥ 0, γ > 0 are constant parameters, and W t,Bt

are independent standard Brownian motions in Rd. This
irreversible process will be named as Hessian-Free High-
Resolution(HFHR) dynamics. We write it as HFHR(α, γ)
to emphasize the dependence on α and γ when needed.

Substitution into Fokker-Planck PDE shows HFHR dynam-
ics is unbiased (proof in Appendix B.1):

Theorem 4.1. π is the invariant distribution of HFHR de-
scribed in Eq.(6), just like ULD.

Remark 4.2. Although the right hand side of (6) can be
formally viewed as the sum of OLD and ULD’s right hand
sides, HFHR dynamics can be very different from both

OLD and ULD. In fact, it is generally true that a differential
equation, whose right hand side is the sum of the right hand
sides of two other differential equations, can behave very
differently from either of the two; this is studied under the
subject of ‘operator splitting’ (e.g., Trotter, 1959).

5. Theoretical Analysis of the HFHR
Dynamics and Algorithm

5.1. HFHR Dynamics in Continuous Time

We now quantify the exponential convergence of HFHR dy-
namics and its additional acceleration over ULD, when the
target measure has a strongly-convex and smooth potential.
Theorem 5.1. Assume Conditions A3.1 holds and further
assume γ2 > L+m and α ≤ γ2−L−m

mγ . Denote the law of
qt by µt. Then there exists κ′ > 0 depending only on α and
γ, such that

W2(µt, µ) ≤ κ′e−(m
γ +mα)tW2(µ0, µ).

Detailed expression of κ′ can be found in Appendix A.

Thm. 5.1 state that HFHR dynamics converges to the target
distribution exponentially fast in log-strongly-concave-and-
smooth setups. There is an additional acceleration created
by α (the HFHR correction) in the exponent.

As a sanity check, note for ULD (i.e. HFHR(α = 0,γ)),
Dalalyan & Riou-Durand (2020, Theorem 1) obtained
exponential convergence result in 2-Wasserstein distance
with rate

√
m√

κ+
√
κ−1

using a simple and elegant coupling ap-
proach, and showed this rate is optimal as it is achieved by
the bivariate function f(x, y) = m

2 x
2 + L

2 y
2. In this case,

Thm 5.1 gives an (asymptotically) equivalent rate
√
m

2
√
κ

, and
thus our result passes the check. Also in this sense, we’re not
making a shaky claim of advantage by comparing bounds
(as they may not be tight); instead, bounds that are being
compared here can actually be attained (see Rmk.5.6 for an
analogue after discretization).

Now, given that both γ and α are hyperparameters that
affect the convergence rate and they are dependent due to the
constraints, we illustrate the acceleration enabled by α more
precisely by considering a low bound of it: set γ = 2

√
L

and push α to the upper bound specified in Thm. 5.1; then
we obtain an O(

√
L) rate in the log-strongly-concave setup.

Compared with the rate in (Dalalyan & Riou-Durand, 2020),
this is a speed-up of order κ.

5.2. HFHR Algorithm in Discrete Time

To obtain an implementable method, we now discretize the
time of HFHR dynamics. As our main goal is to show the
acceleration enabled by α won’t disappear after discretiza-
tion (unlike a fake acceleration due to time rescaling), we’ll
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just analyze a 1st-order discretization (but a high-accuracy
discretization adapted from RMA (Shen & Lee, 2019) will
also be provided and compared with RMA, in Appendix F).

For simplicity, we work with constant step size h. Inspired
by Strang splitting for differential equations (Strang, 1968;
McLachlan & Quispel, 2002), consider a symmetric com-
position for update: xk+1 := ϕ

h
2 ◦ ψh ◦ ϕh

2 (xk) where

xk =

[
qkh
pkh

]
, ϕ and ψ correspond to solution flows of split

SDEs, respectively given by

ϕ :

{
dq = pdt

dp = −γpdt+
√
2γdB

,

ψ :

{
dq = −α∇f(q)dt+

√
2αdW

dp = −∇f(q)dt
,

and ϕt(x0) and ψt(x0) mean x’s value after evolving ϕ and
ψ for t time with initial condition x0.

Note that ϕ flow can be solved explicitly since the second
equation is an Ornstein-Unlenbeck process and integrating
the second equation followed by integrating the first one
gives us an explicit solution{
qt = q0 +

1−e−γt

γ p0 +
√
2γ
∫ t

0
1−e−γ(t−s)

γ dB(s),

pt = e−γtp0 +
√
2γ
∫ t

0
e−γ(t−s)dB(s).

(7)
For an implementation of the stochastic integral part in
Equation 7, denoting X =

√
2γ
∫ t

0
1−e−γ(t−s)

γ dB(s)

and Y =
√
2γ
∫ t

0
e−γ(t−s)dB(s), and the co-

variance matrix of (X,Y ) is Cov(X,Y ) = γh+4e
−γ h

2 −e−γh−3
γ2 Id

(1−e
−γ h

2 )2

γ
Id

(1−e
−γ h

2 )2

γ
Id (1− e−γh)Id

. As mean and

covariance fully determine a Gaussian distribution,[
X
Y

]
= Mξ where M is the Cholesky decomposition of

Cov(X,Y ), ξ is a 2d standard Gaussian random vector,
i.i.d. at each step, and ϕt can thus be exactly simulated.

However, ψ flow is generally not explicitly solv-
able unless f is a quadratic function in q. We
simply choose to approximate ψh(x0) with one-
step Euler-Maruyama integration ψh(x0) ≈

ψ̃h(x0) given by

{
qh = q0 − α∇f(q0)h+

√
2αhη

ph = p0 −∇f(q0)h
where η is a standard d-dimensional Gaussian random
vector, again i.i.d. each time ψ̃ is called.

Altogether, one step of an implementable Strang’s splitting
of HFHR is hence ϕ

h
2 ◦ ψ̃h ◦ ϕh

2 and we call this numerical
scheme the HFHR algorithm, summarized in Alg.1.

As ψ in Strang splitting is replaced by a 1st-order approx-
imation ψ̃, the method is of order 1, however with good

Algorithm 1 A 1st-order HFHR Algorithm

1: Input: potential function f and its gradient ∇f , damp-
ing coefficients α and γ, step size h, initial condition
(q0,p0)

2: procedure 1ST-ORDER HFHR(f,∇f, α, γ, h, q0,p0)

3: k = 0 and initialize
[
q0
p0

]
4: while not converge do
5: Generate independent standard Gaussian random

vectors ηk+1 ∈ Rd, ξ1k+1, ξ
2
k+1 ∈ R2d

6: Run ϕ
h
2 :

[
q1
p1

]
=

qkh + 1−e−γ h
2

γ pkh
e−γ h

2 pkh

 +

Mξ1k+1

7: Run ψ̃h :
[
q2
p2

]
=[

q1 − α∇f(q1)h+
√
2αhηk+1

p1 −∇f(q1)h

]

8: Run ϕ
h
2 :
[
q3
p3

]
=

q2 + 1−e−γ h
2

γ p2
e−γ h

2 p2

+Mξ2k+1

9:

[
q(k+1)h

p(k+1)h

]
←
[
q3
p3

]
10: k ← k + 1
11: end while
12: end procedure

constant. This is rigorously established by the following the-
orem (interested readers are referred to Appendix D.5-D.7
and (Li et al., 2022b) for more technical details):

Theorem 5.2. Under Assumption 3.1, we further assume
γ − L+m

γ ≥ mα and ∇∆f satisfies a third-order growth

condition, i.e.,
∥∥∇∆f(q)∥∥ ≤ G

√
1 +∥q∥2,∀q ∈ Rd for

some G > 0. If (q0,p0) ∼ π0, then there exists h0, C > 0
such that when 0 < h < h0, we have

W2(µk, µ) ≤ κ′e−(m
γ +mα)khW2(π0, π) + Ch (8)

where κ′ is a constant depending only on L,m, γ, α (details
in Appendix A), µk is the law of the q marginal of the k-th
iterate in Alg.1, and µ is the q marginal of the invariant
distribution π. In particular, C = O(

√
d) and there exists

b > 0, independent of α and is of order O(
√
d), s.t.

C ≤ b

m
(α2 − α

γ
+

1

γ2
). (9)

Remark 5.3. The linear growth (at infinity) condition on
∇∆f is actually not as restrictive as it appears. For ex-
ample, for monomial potentials, i.e., f(x) = xp, p ∈ Z+,
our linear growth condition is met when p ≤ 4, whereas a
standard condition (Pavliotis, 2014, Theorem 3.1) for the
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existence of SDE solutions holds only when p ≤ 2. In
addition, our condition is related to the Hessian Lipschitz
condition commonly used in the literature (e.g., Durmus
& Moulines, 2019; Ma et al., 2021). Smoothness and Hes-
sian Lipschitzness imply the growth condition. Meanwhile,
examples that satisfy linear growth condition but are not
Hessian Lipschitz exist, e.g., f(x) = x4, and thus linear
growth condition is not necessarily stronger than Hessian
Lipschitzness.

Inspecting the role of α in Equation (8), we see it clearly
increases the rate of exponential decay, but at the same
time it can also increase the discretization error (see (9);
assuming h is fixed). However, as the following Cor.5.4
and its remark will show, the net effect of having a positive
α > 0, at least for some α⋆, is reduced iteration complexity.

Corollary 5.4. Consider the same assumption as in Thm.
5.2. If (q0,p0) ∼ π0, then there exists h0, C > 0 (same
as that in Theorem 5.2; recall C = O(

√
d)) such that for

any target error tolerance ϵ > 0, if we choose h = h⋆ ≜
min{h0, ϵ

2C }, then for ϵ < 2Ch0, after

k⋆ = 2
C

m
γ +mα

1

ϵ
log

2κ′W2(π0, π)

ϵ
= Õ

(√
d

ϵ

)
.

(10)
steps, we have W2(µk, µ) ≤ ϵ.
Remark 5.5. Recall from Thm.5.2 that C ≤ b

m (α2 − α
γ +

1
γ2 ), so if we consider the minimizer α⋆ of an upper bound

of C
m
γ +mα , α⋆ = argminα≥0

b
m2

α2−α
γ + 1

γ2

1
γ +α

=
√
3−1
γ . This

suggests that by choosing an optimal α > 0, one could
effectively reduce iteration complexity. Note, however, that
this α⋆ may not be the true optimal one as bounds may not
be tight. If they were, k⋆α⋆ = (2

√
3− 3)k⋆α=0 ≈ 0.46k⋆α=0;

i.e., steps needed by ULD (discretized by Alg.1 with α = 0)
can be halved by HFHR (discretized by Alg.1).

Rmk.5.5 shows HFHR algorithm can lead to a similar bound
on iteration complexity as ULD algorithm but with an im-
proved constant, and thus having α ̸= 0 is advantageous. It
also shows that the acceleration of HFHR carries through
from continuous to discrete time. The same conclusion has
been consistently observed in numerical experiments too.
Remark 5.6. Readers interested in more explicit condition
number dependence are referred to Appendix E, where we
show, for 2D Gaussian target with condition number κ≫ 1,
the convergences of Euler discretizations of ULD under
optimal parameters and HFHR under suboptimal parameters
are, respectively, (1 − 1/κ + o(1/κ))n and (1 − 2/κ +
o(1/κ))n, where n is the number of iterations. The latter
(HFHR) is faster despite of suboptimal parameters. Also,
like discussed in Sec.5.1, this result is also based on not
comparing bounds but exact estimates, and thus trustworthy.

6. Numerical Experiments
We now empirically validate the acceleration enabled by
α ̸= 0 by comparing HFHR algorithm and the popular
KLMC discretization of ULD (Dalalyan & Riou-Durand,
2020). For fairness, discretizations of the same order and
number of gradient evaluations are compared. Appendix F
has an additional comparison based on RMA.

6.1. A First Impression via Simple Target Distributions

Table 1: Test potentials. We use the shorthand notation
Gd

m,κ(x) = m
2 (κx

2
d +

∑d−1
i=1 x

2
i ). ‘S’, ‘C’ and ‘N’ mean

strongly convex, convex, and non-convex, respectively.

S S S S
f1 = x2/2 f2 = G2

0.1,10 f3 = G2
10,10 f4 = G100

1,100

C N (perturbed)
f5 = x4/4 f6 = (5x2 + sin(10x))/10

N (bimodal) N (Rosenbrock)
f7 = 5(x4 − 2x2) f8 = ((x− 1)2 + 10(y − x2)2)/2
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Figure 1: (a) f1 (h = 2). (b) f2 (h = 2). (c) f3 (h = 2.5).
(d)f4 (h = 0.2). (e) f5 (h = 0.5). (f) f6 (h = 0.001). (g)
f7 (h = 0.1). (h) f8 (h = 0.005). y-axes are in log scale.
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We first test 8 target distributions with simple, yet represen-
tative potential functions, summarized in Table 1. For Gaus-
sian targets, smoothness coefficient L is available, hence we
take γ = 2

√
L as suggested in Dalalyan & Riou-Durand

(2020). To be consistent with Thm.5.2, closeness is mea-
sured in W2 which has closed-form expression between
Gaussians. For non-Gaussians, we empirically set γ = 2
and measure sample quality by χ2 divergence with densities
empiricially approximated by histograms. For the special
case of f8(x, y), note approximating its density using a
uniform-mesh-based histogram is either inaccurate or re-
quiring the mesh to be very fine due to high nonconvexity,
and we thus report the error in the x component |Ex − µ|
instead, where µ is the true mean of x-component. Each al-
gorithm uses 10,000 independent realizations for empirical
estimations.

Results are in Fig.1. The improvement by HFHR correction
can be clearly seen, although note that we did not optimize
over α, γ values but simply chose the same γ across ULD
and HFHR and an arbitrary α additionally for HFHR. Step
size h however is tuned so that it is near the stability limit
of ULD algorithm, and then HFHR uses the same h. In the
next section we’ll optimize over all possible parameters so
that ULD at its best performance can be compared with.

6.2. A Nonlinear Case Study: Consistency with Theory

This section numerically verifies, more systematically, that
α ̸= 0 (i.e. HFHR correction) accelerates the convergence,
and optimal α exists (see Rmk.5.5), for which the accelera-
tion is rather significant. In addition, how HFHR algorithm
scales with the dimension is also of importance in a machine
learning context, and thus the O(

√
d) dependence given by

Thm.5.2 (in C, which is also inherited by Cor.5.4 in the
iteration complexity) will also be confirmed.

For the purpose of checking dimension dependence, we
will not use Gaussian targets, because otherwise HFHR
will decouple across different (orthogonal) dimensions, in
which case an O(

√
d) dependence is trivially true as a

consequence of using W2 for quantifying statistical accu-
racy. Instead, we consider the potential in Li et al. (2022b)
which is not additive across dimensions, namely f(x) =

log (ex1 + · · ·+ exd) + 1
2∥x∥

2
. This is still a strongly con-

vex function satisfying the assumption in Thm.5.2. The
corresponding target is not Gaussian, we no longer have a
closed form expression for W2 distance, and it is computa-
tionally expensive to approximate this distance by samples.
Therefore, we follow Li et al. (2022b) and use the error
of mean instead as a surrogate because

∥∥Eµk
q − Eµq

∥∥ ≤
W2(µk, µ) and hence the bound in Eq.(8) also applies to the
error in mean, and so does the iteration complexity bound
in Eq.(10).

Fig.2 compares HFHR (Alg.1) with ULD (KLMC) in terms

of iteration complexity. To show that the acceleration of
HFHR is not an artifact of time rescaling (which would
disappear after discretization as the stability limit changes
accordingly), we optimize over h (by pushing both ULD
and HFHR to their respective largest h values that still allow
monotonic convergence at a large scale), as well as γ values,
and compare the resulting best mixing times.
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Figure 2: Improvement of Algorithm 1 over ULD algorithm
in iteration complexity. (vertical bar = 1 standard deviation)

More specifically, we choose the initial measure to be Dirac
at (100 × 1d,0d), where 1d,0d are d-dim. vectors filled
with 1 and 0 respectively. d = 10. We pick threshold
ϵ = 0.1, and for each α ∈ {0, 0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}, we try
all combinations of (γ, h) ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10,
20, 50, 100} ×

{
0.1× [50]

}
for Algorithm 1 (we also run

ULD algorithm when α = 0), and empirically find the
best combination that requires the fewest iterations to meet∥∥Eµk

q − Eµq
∥∥ ≤ ϵ. We find that h = 5 already surpasses

the stability limit of ULD algorithm, hence the range of step
size covers the largest step size that are practically usable
for ULD algorithm. 100,000 independent realizations are
used (evenly spread to 100 different randomization seeds).

When α > 0, HFHR algorithm consistently outperforms
ULD algorithm under optimized parameters (note it also
does so when α = 0 because Alg.1 uses a efficiency-wise
comparable but more accurate discretization than ULD al-
gorithm). In particular, when α = 0.5 and 1, which are
empirically best values found for this experiment, HFHR
achieves the specified ϵ-closeness nearly 6× times faster
than ULD, and its decreased mixing time (compared to
α = 0 for the same algorithm) is consistent with the ≈ 0.46
factor in Rmk.5.5). These corroborate that the α ̸= 0 HFHR
correction effect is genuine, and the resulting acceleration
can be significant.

Regarding dimension dependence, Thm.5.2 states the HFHR
sampling error is upper bounded by its discretization er-
ror, which is linear in

√
d. This is consistent with em-

pirical observation in Fig.3, where we experiment with
d ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. For each d,
we fix γ = 2, α = 1, h = 0.1, choose a large enough
T = 10, run 1,000 independent realizations of HFHR algo-
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Figure 3:
√
d dependence of sampling error of Alg.1

rithm, and estimate the sampling error using the surrogate.

6.3. Bayesian Neural Network

To test the efficacy of HFHR on practical non-convex prob-
lems, we consider Bayesian neural network (BNN) which
is a compelling learning model (Wilson, 2020); however,
the focus won’t be on its learning capability, and instead we
just consider its training, which amounts to a real-life, high-
dimensional, multi-modal example of sampling tasks. It no
longer satisfies the conditions of our analysis, and our goal
is to show HFHR still accelerates. We use fully-connected
network with [22, 10, 2] neurons, ReLU, standard Gaussian
prior for all parameters, and compare ULD and HFHR on
UCI data set Parkinson (Dua & Graff, 2017).

Choices of hyper-parameter for Algorithm 1 and ULD
algorithm are systematically investigated. For each pair
(γ, α) ∈ {0.1, 0.5, 1, 5, 10, 50, 100}2, we empirically tune
the step size to the stability limit of ULD algorithm, simu-
late 1,000 independent realizations, and use the ensemble
to conduct Bayesian posterior prediction. HFHR will then
use the same step size. For each γ, we plot the negative log
likelihood of HFHR algorithm (with different α choices)
and ULD algorithm on training and test data in Figure 4.

Fig.4 indicates that HFHR converges significantly faster
than ULD in a wide range of setups. Obviously, the log-
strongly-concave assumption required in Thm.5.2 does not
hold for multimodal target distributions. However, this
numerical result shows that HFHR still accelerates ULD for
highly complex models such as BNN, even when there is no
obvious theoretical guarantee. It showcases the applicability
and effectiveness of HFHR as a general sampling algorithm.

7. Conclusion and Discussion
This paper proposes HFHR dynamics, a NAG-optimizer-
based diffusion process. Its discretizations give a family
of accelerated sampling algorithms. To demonstrate the
acceleration enabled by HFHR, the geometric ergodicity
of HFHR (both the continuous and discretized versions)
is quantified, and its convergence is provably faster than
Underdamped Langevin Dynamics, which by itself is often
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(b) γ = 0.1 (h = 0.01)
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(c) γ = 1 (h = 0.01)
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(d) γ = 1 (h = 0.02)
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(e) γ = 10 (h = 0.05)
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(f) γ = 10 (h = 0.1)
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(g) γ = 100 (h = 0.1)
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Figure 4: Training Negative Log-Likelihood (NLL) for var-
ious γ. Left column uses step sizes that are close to the
stability limit of ULD algorithm, as further increased step
size in right column no longer gives stability/monotonicity.
Unstable cases where α is too large are not drawn (recall
α, γ, h constrain each other; see e.g., Rmk.5.5 for intuitions
in convex setups).

already considered as an accelerated version of Overdamped
Langevin Dynamics. Since HFHR adopts a new perspec-
tive, which is to turn the finite learning rate advantage of
NAG-SC optimizer into a sampling counterpart, there are a
number of directions in which this work can be extended:
(i) HFHR dynamics can be discretized in different ways
resulting in different algorithms. Two popular discretiza-
tions are considered here and one theoretically analyzed, but
other discretizations could also be used and possibly lead to
favorable performances. (ii) To scale HFHR up to large data
sets, full gradient may be replaced by stochastic gradient
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(SG) — how to quantify, and hence optimize the perfor-
mance of SG-HFHR? (iii) Can the generalization ability of
HFHR-trained learning models (e.g., BNN) be quantified,
and how does it compare with that by LMC, KLMC, or
other dynamics-based samplers? These will be future work.
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A. Additional Notations
We introduce a few notations that are used in the main text as well as some proof. When∇f is L-Lipschitz, the drift term[
p− α∇f(q)
−γp−∇f(q)

]
in HFHR dynamics is also L′-Lipschitz, as proved in Lemma D.3, where

L′ =
√
2max

{√
1 + α2 max

{
1√
2
, L

}
,
√
1 + γ2

}
.

We show in Lemma D.5 that a linear-transformed HFHR dynamics satisfies the nice contraction property, the linear
transformation P we use is defined as

P =

[
γI I
0
√
1 + αγI

]
∈ R2d×2d.

Denote the largest and the smallest singular value of P by

σmax =

√
αγ

2
+
γ2

2
+

√
α2γ2 − 2αγ3 + 4αγ + γ4 + 4

2
+ 1,

σmin =s

√
αγ

2
+
γ2

2
−
√
α2γ2 − 2αγ3 + 4αγ + γ4 + 4

2
+ 1

and its condition number by

κ′ =
σmax

σmin
=

√√√√√ αγ
2 + γ2

2 +

√
α2γ2−2αγ3+4αγ+γ4+4

2 + 1

αγ
2 + γ2

2 −
√

α2γ2−2αγ3+4αγ+γ4+4

2 + 1
.

The rate λ′ of exponential convergence of transformed HFHR dynamics is characterized in Lemma D.5 and is defined as

λ′ = min

{
m

γ
+ αm,

γ2 − L
γ

}

given that γ2 > L.

B. Proofs for the Continuous Dynamics
Notations and definitions can be found in Sec.3.

B.1. Proof of Theorem 4.1

Proof. The Fokker-Plank equation of HFHR is given by

∂tρt = −∇x ·

([
p

−∇f(q)

]
ρt

)
+ α

(
∇q · (∇f(q)ρt) + ∆qρt

)
+ γ

(
∇p · (pρt) + ∆pρt

)
where∇x = (∇q,∇p). For π ∝ e−f(q)− 1

2∥p∥
2

, we have

∇x ·

([
p

−∇f(q)

]
π

)
= ⟨
[

p
−∇f(q)

]
,∇xπ⟩ = 0,

∆qπ = −∇q · (π∇f(q))
∆pπ = −∇p · (πp)

Therefore ∂tπ = 0 and hence π is the invariant distribution of HFHR.
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B.2. Proof of Theorem 5.1

Proof. Consider two copies of HFHR that are driven by the same Brownian motion{
dqt = (pt − α∇f(qt))dt+

√
2αdB1

t

dpt = (−γpt −∇f(qt))dt+
√
2γdB2

t

,

{
dq̃t = (p̃t − α∇f(q̃t))dt+

√
2αdB1

t

dp̃t = (−γp̃t −∇f(q̃t))dt+
√
2γdB2

t

,

where we set (q̃0, p̃0) ∼ π, p0 = p̃0 and q0 such that

W 2
2 (µ0, µ) = E

[
∥q0 − q̃0∥22

]
, q0 ∼ µ0

Denote
[
ϕt

ψt

]
= P

[
qt − q̃t
pt − p̃t

]
where P is defined in Appendix A. By Lemma D.5 and the assumption on α, γ, we have

∥∥∥∥∥
[
ϕt

ψt

]∥∥∥∥∥
2

≤ e−2(m
γ +mα)t

∥∥∥∥∥
[
ϕ0

ψ0

]∥∥∥∥∥
2

.

Therefore we obtain

W 2
2 (µt, µ) = inf

(qt,q̃t)∼Π(µt,µ)
E∥qt − q̃t∥

2

≤ inf
(qt,q̃t)∼Π(µt,µ),(pt,p̃t)∼Π(νt,ν)

E

∥∥∥∥∥
[
qt − q̃t
pt − p̃t

]∥∥∥∥∥
2

≤E∥P−1∥22

∥∥∥∥∥
[
ϕt

ψt

]∥∥∥∥∥
2

≤E∥P−1∥22e
−2(m

γ +mα)t

∥∥∥∥∥
[
ϕ0

ψ0

]∥∥∥∥∥
2

≤(κ′)2e−2(m
γ +mα)t

∥∥∥∥∥
[
q0 − q̃0
p0 − p̃0

]∥∥∥∥∥
2

=(κ′)2e−2(m
γ +mα)tW 2

2 (µ0, µ)

Taking square root yields the desired result.

C. Arbitrary Long Time Discretization Error of Algorithm 1
Theorem C.1. Under Conditions A3.1 and further assume the function ∇∆f grows at most linearly, i.e.,

∥∥∇∆f(q)∥∥ ≤
G

√
1 +∥q∥2,∀q ∈ Rd. Also suppose γ in HFHR dynamics satisfy γ2 > L. Then there exist C, h0 > 0, such that for

0 < h ≤ h0, we have (
E∥xk − x̄k∥2

) 1
2 ≤ Ch

where x̄k is the k-th iterate of Algorithm 1 with step size h starting from x0, xk is the solution of HFHR dynamics at time
kh, starting from x0. This result holds uniformly for all k ≥ 0 and k can go to ∞. In particular, C = O(

√
d) and if

γ − L+m
γ ≥ mα, then there exists b > 0, independent of α and is of order O(

√
d), such that

C ≤ b

m
(α2 − α

γ
+

1

γ2
). (11)

Proof. Denote tk = kh, the solution of the HFHR dynamics at time t by x0,x0(t), the k-th iterates of the Strang’s splitting
method of HFHR dynamics by x̄0,x0(kh). Both x0,x0(t) and x̄0,x0(kh) start from the same initial value x0. The linear
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transformation P defined in Appendix A, transforms the solution of HFHR dynamics into y0,Px0
(t) = Px0,x0

(t) and the
Strang’s splitting discretization of HFHR into ȳ0,Px0

(t) = P x̄0,x0(t).

For the ease of notation, we write y0,y0
(tk) as yk and ȳ0,y0

(tk) as ȳk. We have the following identity

E
∥∥yk+1 − ȳk+1

∥∥2 =E
∥∥∥ytk,yk

(h)− ȳtk,ȳk
(h)
∥∥∥2

=E
∥∥∥ytk,yk

(h)− ytk,ȳk
(h) + ytk,ȳk

(h)− ȳtk,ȳk
(h)
∥∥∥2

=E
∥∥∥ytk,yk

(h)− ytk,ȳk
(h)
∥∥∥2︸ ︷︷ ︸

1

+E
∥∥∥ytk,ȳk

(h)− ȳtk,ȳk
(h)
∥∥∥2︸ ︷︷ ︸

2

+2E
〈
ytk,yk

(h)− ytk,ȳk
(h),ytk,ȳk

(h)− ȳtk,ȳk
(h)
〉

︸ ︷︷ ︸
3

By Lemma D.5, when 0 < h < 1
2λ′ , term 1 can be upper bounded as

E
∥∥∥ytk,yk

(h)− ytk,ȳk
(h)
∥∥∥2 ≤e−2λ′hE∥yk − ȳk∥

2

≤
(
1− 2λ′h+ 2(λ′)2h2

)
E∥yk − ȳk∥

2

≤
(
1− λ′h

)
E∥yk − ȳk∥

2

where the second inequality is due to e−x ≤ 1− x+ x2

2 ,∀x > 0.

For term 2 , we have by Lemma D.8 that

E
∥∥∥ytk,ȳk

(h)− ȳtk,ȳk
(h)
∥∥∥2 ≤ σ2

max E
∥∥xtk,x̄k

(h)− x̄tk,x̄k
(h)
∥∥2 ≤ σ2

max C
2
2h

3

where σmax is the largest singular value of matrix P .

For term 3 , we have by Lemma D.1 that

2E
〈
ytk,yk

(h)− ytk,ȳk
(h),ytk,ȳk

(h)− ȳtk,ȳk
(h)
〉

=2E
〈
yk − ȳk + z,ytk,ȳk

(h)− ȳtk,ȳk
(h)
〉

=2E
〈
yk − ȳk,ytk,ȳk

(h)− ȳtk,ȳk
(h)
〉

︸ ︷︷ ︸
3a

+2E
〈
z,ytk,ȳk

(h)− ȳtk,ȳk
(h)
〉

︸ ︷︷ ︸
3b
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For term 3a , by the tower property of conditional expectation, we have

2E
〈
yk − ȳk,ytk,ȳk

(h)− ȳtk,ȳk
(h)
〉
=2E

E[〈yk − ȳk,ytk,ȳk
(h)− ȳtk,ȳk

(h)
〉 ∣∣∣∣Fk

]
=2E

〈
yk − ȳk,E

[
ytk,ȳk

(h)− ȳtk,ȳk
(h)

∣∣∣∣Fk

]〉

≤2
√
E∥yk − ȳk∥

2

√√√√√E

∥∥∥∥∥∥E
[
ytk,ȳk

(h)− ȳtk,ȳk
(h)

∣∣∣∣Fk

]∥∥∥∥∥∥
2

≤2
√
E∥yk − ȳk∥

2

√√√√√σ2
maxE

∥∥∥∥∥∥E
[
xtk,x̄k

(h)− x̄tk,x̄k
(h)

∣∣∣∣Fk

]∥∥∥∥∥∥
2

≤2
√
E∥yk − ȳk∥

2
√
σ2

maxC
2
1h

4

≤2σmaxC1

√
E∥yk − ȳk∥

2
h2.

For term 3b , when 0 < h < 1
4L′′ we have by Lemma D.1 and Lemma D.8

2E
〈
z,ytk,ȳk

(h)− ȳtk,ȳk
(h)
〉
≤2
√
E∥z∥2

√
E
∥∥∥ytk,ȳk

(h)− ȳtk,ȳk
(h)
∥∥∥2

=2

√
E∥z∥2

√√√√√E

E[∥∥∥ytk,ȳk
(h)− ȳtk,ȳk

(h)
∥∥∥2 ∣∣∣∣Fk

]

=2

√
E∥z∥2

√√√√√σ2
maxE

E[∥∥xtk,x̄k
(h)− x̄tk,x̄k

(h)
∥∥2 ∣∣∣∣Fk

]
≤2σmax

√
C̃E∥yk − ȳk∥

2
h2
√
C2

2h
3

≤2σmaxC2

√
C̃

√
E∥yk − ȳk∥

2
h

5
2

where C̃ = 2
(
L′′)2 = 2(κ′)2

(
L′)2 is from Lemma D.1 and Lemma D.3.

Recall both C1 and C2 depend on∥xk∥ and we would like to upper bound this term. To this end, consider x̃(t), a solution
of HFHR dynamics with initial value x̃0 that follows the invariant distribution x̃0 ∼ π and realizes W2(π0, π), i.e.,
E∥x̃0 − x0∥2 =W 2

2 (π0, π).
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Denote x̃k = x̃(kh) and ek =
(
E∥yk − ȳk∥

2
) 1

2

, we then have

E∥x̄k∥2 =E∥xk + x̄k − xk∥2

≤2E∥xk∥2 + 2E∥x̄k − xk∥2

≤4E∥x̃k∥2 + 4E∥x̃k − xk∥2 + 2E∥x̄k − xk∥2

=4E∥x̃k∥2 + 4E
∥∥∥P−1P (x̃k − xk)

∥∥∥2 + 2E
∥∥∥P−1P (x̄k − xk)

∥∥∥2
≤4
(∫

Rd

∥q∥2 dµ+ d

)
+

4

σ2
min

E
∥∥P (x̃k − xk)

∥∥2 + 2

σ2
min

E∥ȳk − yk∥
2

(i)

≤4
(∫

Rd

∥q∥2 dµ+ d

)
+

4

σ2
min
e−2λ′khE

∥∥P (x̃0 − x0)
∥∥2 + 2

σ2
min
e2k

≤4
(∫

Rd

∥q∥2 dµ+ d

)
+ 4κ2W 2

2 (π0, π) +
2

σ2
min
e2k

≜Fe2k +G

where (i) is due to Lemma D.5. Recall from Lemma D.8, we have

C1 ≤ A1

√
E∥x̄k∥2 +B1 ≤ A1

√
Fek + (A1

√
G+B1) ≜ U1ek + V1

C2 ≤ A2

√
E∥x̄k∥2 +B2 ≤ A2

√
Fek + (A2

√
G+B2) ≜ U2ek + V2

where

A1 =(L+G)max{α+ 1.25, γ + 1}(1.74 + 0.71α)

B1 =(L+G)max{α+ 1.25, γ + 1}
[
0.5α+ (1.26

√
α+ 1.14α

√
α+ 2.32

√
γ)
√
hd
]

A2 =Lmax{α+ 1.25, γ + 1}(1.92 + 2.30αL)
√
h

B2 =Lmax{α+ 1.25, γ + 1}(2.60
√
α+ 3.34

√
γh)
√
d
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Combine the above and bounds for terms 1 , 2 , 3a and 3b , we then obtain

e2k+1 ≤(1− λ′h)e2k + σ2
max C

2
2h

3 + 2σmaxC1ekh
2 + 2σmaxC2

√
C̃ekh

5
2

≤(1− λ′h)e2k + σ2
max2(U

2
2 e

2
k + V 2

2 )h
3 + 2σmax(U1ek + V1)ekh

2 + 2σmax(U2ek + V2)
√
C̃ekh

5
2

=

(
1− λ′h+ 2σ2

maxU
2
2h

3 + 2σmaxU1h
2 + 2σmaxU2

√
C̃h

5
2

)
e2k

+

(
2σmaxV1 + 2σmaxV2

√
C̃h

)
ekh

2 + 2σ2
maxV

2
2 h

3

≤
(
1− λ′h+ 2σ2

maxU
2
2h

3 + 2σmaxU1h
2 + 2σmaxU2

√
C̃h

5
2

)
e2k +

λ′

8
he2k

+
2
(
2σmaxV1 + 2σmaxV2

√
C̃h
)2

λ′
h3 + 2σ2

maxV
2
2 h

3

=

(
1− 7

8
λ′h+ 2σ2

maxU
2
2h

3 + 2σmaxU1h
2 + 2σmaxU2

√
C̃h

5
2

)
e2k

+

2
(
2σmaxV1 + 2σmaxV2

√
C̃h
)2

λ′
+ 2σ2

maxV
2
2

h3

(i)

≤(1− 1

2
λ′h)e2k +

2
(
2σmaxV1 + 2σmaxV2

√
C̃h
)2

λ′
+ 2σ2

maxV
2
2

h3

≜(1− 1

2
λ′h)e2k +Kh3

where (i) is due to h < min{h1, h2, h3} and

h1 =

√
λ′

4
√
2κ′Lmax{α+ 1.25, γ + 1}(1.92 + 2.30αL)

,

h2 =
λ′

16
√
2κ′(L+G)max{α+ 1.25, γ + 1}(1.74 + 0.71α)

,

h3 =
λ′

8κ′Lmax{α+ 1.25, γ + 1}(1.92 + 2.30αL)
.

Unfolding the above inequality, we arrive at

e2k ≤
(
1− λ′

2
h

)k

e20 +

(
1 + (1− λ′

2
h) + · · ·+ (1− λ′

2
h)k−1

)
Kh3

(i)

≤Kh3
∞∑
i=0

(
1− λ′

2
h

)i

=
2K

λ′
h2

where (i) is due to ek = 0. Therefore

(
E∥xk − x̄k∥2

) 1
2

=

(
E
∥∥∥P−1(yk − ȳk)

∥∥∥2) 1
2

≤ 1

σmin
ek ≤

1

σmin

√
2K

λ′
h
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Collecting all the constants and we have

1

σmin

√
2K

λ′
≤8κ′

λ′
(L+G)max{α+ 1.25, γ + 1}(1.74 + 0.71α)

√∫
Rd

∥q∥2 dµ+ d+ κ′W2(π0, π)


+
4κ′

λ′
(L+G)max{α+ 1.25, γ + 1}

(
0.5α+ (1.26

√
α+ 1.14α

√
α+ 2.32

√
γ)
√
d
)

+
8κ′√
λ′

(√
κ′L′
√
λ′

+ 1

)
Lmax{α+ 1.25, γ + 1}(1.92 + 2.30αL)

√∫
Rd

∥q∥2 dµ+ d+ κ′W2(π0, π)


+

4κ′√
λ′

(√
κ′L′
√
λ′

+ 1

)
Lmax{α+ 1.25, γ + 1}(2.60

√
α+ 3.34

√
γ)
√
d

≜ C

It is clear that in terms of the dependence on dimension d, we have C = O(
√
d). In the regime where γ2−L

γ ≥ m
γ +mα,

then λ′ = m
γ +mα. Recall the definition of κ′ and there exist A′, B′ > 0 such that κ′ ≤ A′√α+B′. It follows that

C ≤ a1α
3 + a2α

5
2 + a3α

2 + a4α
3
2 + a5α+ a6α

1
2 + a7

λ′
≤ b

α3 + 1
γ3

λ′
= b

α3 + 1
γ3

m
γ +mα

=
b

m
(α2 − α

γ
α+

1

γ2
)

for some positive constants a1, a2, a3, a4, a5, a6, a7, b > 0 and independent of α, in particular, we have b = O(
√
d).

C.1. Proof of Theorem 5.2

Proof. Denote the k-th iterate of the Strang’s splitting method of HFHR by x̄k with time step h, the solution of HFHR

dynamics at time hk by xk. Both x̄k and xk start from x0 =

[
q0
p0

]
. Also denote the solution of HFHR dynamics starting

from x̃0 at time kh by x̃k where x̃0 =

[
q̃0
p0

]
, (q̃0, p̃0) ∼ π and E

∥∥∥∥∥
[
q0 − q̃0
p0 − p̃0

]∥∥∥∥∥
2

= W 2
2 (π0, π). Since π is the invariant

distribution of HFHR dynamics, it follows that x̃k ∼ π.

By Lemma D.5 and Theorem C.1, we have

W2(µk, µ) ≤W2(πk, π)

≤W2(πk,Law(x̃k)) +W2(Law(x̃k), π)

≤
{
E∥x̄k − x̃k∥2

} 1
2

+
{
E∥x̃k − xk∥2

} 1
2

≤Ch+ ∥P−1∥2
{
E
∥∥P (xk − x̃k)

∥∥2} 1
2

≤Ch+ ∥P−1∥2
{
e−2λ′khE

∥∥P (x0 − x̃0)
∥∥2} 1

2

=Ch+ κ′e−λ′kh
{
E
∥∥(x0 − x̃0)

∥∥2} 1
2

=Ch+ κ′e−λ′khW2(π0, π)

which completes the proof.

C.2. Proof of Corollary 5.4

Proof. By Theorem 5.2, we have
W2(µk, µ) ≤ Ch+ κ′e−λ′khW2(π0, π).
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Given any target accuracy ϵ > 0, if we run the Strang’s splitting method of HFHR with h⋆ = min{h0, ϵ
2C }, then after

k⋆ = 1
λ′ max{ 1

h0
, 2Cϵ } log

2κ′W2(π0,π)
ϵ , we have

W2(µk⋆ , µ) ≤ Ch+ κ′e−λ′khW2(µ0, µ) ≤
ϵ

2
+
ϵ

2
= ϵ.

Recall C = O(
√
d), when high accuracy is needed, e.g. ϵ < 2Ch0, the iteration complexity to reach ϵ-accuracy

under 2-Wasserstein distance is k⋆ = O(
√
d
ϵ log 1

ϵ ) = 2 C
λ′

1
ϵ log

2κ′W2(π0,π)
ϵ = Õ(

√
d
ϵ ). Recall from Theorem C.1,

C ≤ b
m (α2 − α

γ + 1
γ2 ), we have

C

λ′
≤ b

m2

α2 − α
γ + 1

γ2

1
γ + α

Denote g(α) = b
m2

α2−α
γ + 1

γ2

1
γ +α

, simple calculation shows that α⋆ = argminα≥0 g(α) =
√
3−1
γ = O( 1γ ).

D. Technical/Auxiliary Lemmas and Their Proofs
D.1. Dependence of error of SDE on initial values

Lemma D.1. Consider the following two SDE with different initial condition{
dxt = a(xt)dt+ σdW t,

x(0) = x0

{
dyt = a(yt)dt+ σdW t,

y(0) = y0

where a(u) ∈ Rd is L-Lipschitz, andσ ∈ Rn×n is a constant matrix. For 0 < h < 1
4L , we have the following representation

xh − yh = x0 − y0 + z

with
E∥z∥2 ≤ 2L2∥x0 − y0∥

2
h2

Proof. Let z = (xh − yh)− (x0 − y0) =
∫ h

0
a(xs)− a(ys)ds. Ito’s lemma readily implies that

E∥xh − yh∥
2
=∥x0 − y0∥

2
+ 2E

∫ h

0

⟨xs − ys,a(xs)− a(ys)⟩ds

≤∥x0 − y0∥
2
+ 2L

∫ h

0

E∥xs − ys∥
2
ds

By Gronwall’s inequality, it follows that

E∥xh − yh∥
2 ≤∥x0 − y0∥

2
e2Lh ≤ 2∥x0 − y0∥

2
, for 0 < h <

1

4L

and

E∥z∥2 =

∥∥∥∥∥∥E
[∫ h

0

a(xs)− a(ys)ds

]∥∥∥∥∥∥
2

≤

(∫ h

0

∥∥∥E [a(xs)− a(ys)
]∥∥∥ ds)2

≤
∫ h

0

12ds

∫ h

0

∥∥∥E [a(xs)− a(ys)
]∥∥∥2 ds

≤h
∫ h

0

E
∥∥a(xs)− a(ys)

∥∥2 ds
≤L2h

∫ h

0

E∥xs − ys∥
2
ds

≤2L2∥x0 − y0∥
2
h2
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D.2. Growth bound of SDE with additive noise

Lemma D.2. Consider the following SDE with constant diffusion{
dxt = a(xt)dt+ σdW t,

x(0) = x0

where a(x) ∈ Rd is L-smooth, i.e., |a(y)− a(x)| ≤ L|y − x|, a(0) = 0 and σ ∈ Rd×d is a constant matrix independent
of time t and xt. Then for 0 < h < 1

4L , we have

E∥xh − x0∥2 ≤ 2.57
(
∥σ∥2F + 2hL2∥x0∥2

)
h.

Proof. We have

E∥xh − x0∥2 =E

∥∥∥∥∥
∫ h

0

a(xt)dt+

∫ h

0

σdW t

∥∥∥∥∥
2

≤2E

∥∥∥∥∥
∫ h

0

a(xt)dt

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
∫ h

0

σdW t

∥∥∥∥∥
2

(i)
=2E

∥∥∥∥∥
∫ h

0

a(xt)dt

∥∥∥∥∥
2

+ 2

∫ h

0

∥σ∥2F dt

≤2E

(∫ h

0

∥∥a(xt)
∥∥ dt)2

+ 2h∥σ∥2F

≤2E

(∫ h

0

∥∥a(xt)− a(x0)
∥∥ dt+ ∫ h

0

∥∥a(x0)
∥∥ dt)2

+ 2h∥σ∥2F

≤2E

(L∫ h

0

∥xt − x0∥ dt+ h
∥∥a(x0)

∥∥)2
+ 2h∥σ∥2F

≤4E

L2

(∫ h

0

∥xt − x0∥ dt

)2

+ h2
∥∥a(x0)

∥∥2+ 2h∥σ∥2F

(ii)

≤ 2h∥σ∥2F + 4h2
∥∥a(x0)

∥∥2 + 4L2h

∫ h

0

E∥xt − x0∥2 dt

where (i) is due to Ito’s isometry, (ii) is due to Cauchy-Schwarz inequality and ∥σ∥F is the Frobenius norm of σ. By
Gronwall’s inequality, we obtain

E∥xh − x0∥2 ≤
(
2h∥σ∥2F + 4h2

∥∥a(x0)
∥∥2) exp{4L2h2

}
.

Since
∥∥a(x0)

∥∥ =
∥∥a(x0)− a(0)

∥∥ ≤ L∥x0∥, when 0 < h < 1
4L , we finally reach at

E∥xh − x0∥2 ≤ 2
(
∥σ∥2F + 2hL2∥x0∥2

)
e

1
4h ≤ 2.57

(
∥σ∥2F + 2hL2∥x0∥2

)
h.

D.3. Lipschitz continuity of the drift of HFHR dynamics

Lemma D.3. Assume∇f is L-Lipschitz, i.e.
∥∥∇f(x)−∇f(y)∥∥ ≤ L∥x− y∥, then the drift term of HFHR dynamics[

p− α∇f(q)
−γp−∇f(q)

]
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is L′-Lipschitz, where L′ ≜
√
2max{

√
1 + α2 max{ 1√

2
, L},

√
1 + γ2}. Let P be defined in Appendix A and

[
ϕ
ψ

]
=

P

[
q
p

]
, then

[
ϕ
ψ

]
satisfies the following SDE

[
dϕ
dψ

]
= P

[
p(ϕ,ψ)− α∇f(q(ϕ,ψ))
−γp(ϕ,ψ)−∇f(q(ϕ,ψ))

]
dt+ P

[√
2αI 0
0

√
2γI

] [
dW
dB

]
and the drift term

P

[
p(ϕ,ψ)− α∇f(q(ϕ,ψ))
−γp(ϕ,ψ)−∇f(q(ϕ,ψ))

]
is L′′-Lipschitz, where L′′ = κ′L′ and κ′ is the condition number of P .

Proof. By direct computation and Cauchy-Schwarz inequality, we have∥∥∥∥∥
[
p1 − α∇f(q1)
−γp1 −∇f(q1)

]
−
[
p2 − α∇f(q2)
−γp2 −∇f(q2)

]∥∥∥∥∥
=

√∥∥∥−α (∇f(q1)−∇f(q2))+ (p1 − p2)
∥∥∥2 +∥∥∥− (∇f(q1)−∇f(q2))− γ(p1 − p2)∥∥∥2

≤
√
2α2

∥∥∇f(q1)−∇f(q2)∥∥+ 2∥p1 − p2∥
2
+ 2
∥∥∇f(q1)−∇f(q2)∥∥+ 2γ2∥p1 − p2∥

2

≤
√

(2α2L2 + 2L2)∥q1 − q2∥+ (2 + 2γ2)∥p1 − p2∥
2

≤
√
2max{L

√
1 + α2,

√
1 + γ2}

∥∥∥∥∥
[
q1 − q2
p1 − p2

]∥∥∥∥∥
≤
√
2max{

√
1 + α2 max{ 1√

2
, L},

√
1 + γ2}

∥∥∥∥∥
[
q1 − q2
p1 − p2

]∥∥∥∥∥
≜L′

∥∥∥∥∥
[
q1 − q2
p1 − p2

]∥∥∥∥∥
By Ito’s lemma, we have[

dϕ
dψ

]
= P

[
p(ϕ,ψ)− α∇f(q(ϕ,ψ))
−γp(ϕ,ψ)−∇f(q(ϕ,ψ))

]
dt+ P

[√
2αI 0
0

√
2γI

] [
dW
dB

]
Using the Lipschitz constant obtained for the drift of HFHR, we further have∥∥∥∥∥P

[
p(ϕ1,ψ1)− α∇f(q(ϕ1,ψ1))
−γp(ϕ1,ψ1)−∇f(q(ϕ1,ψ1))

]
− P

[
p(ϕ2,ψ2)− α∇f(q(ϕ2,ψ2))
−γp(ϕ2,ψ2)−∇f(q(ϕ2,ψ2))

]∥∥∥∥∥
≤σmax

∥∥∥∥∥
[
p1 − α∇f(q1)
−γp1 −∇f(q1)

]
−
[
p2 − α∇f(q2)
−γp2 −∇f(q2)

]∥∥∥∥∥
≤σmaxL

′

∥∥∥∥∥
[
q1 − q2
p1 − p2

]∥∥∥∥∥
≤σmaxL

′

∥∥∥∥∥P−1

[
ϕ1 − ϕ2

ψ1 −ψ2

]∥∥∥∥∥
≤σmaxL

′ 1

σmin

∥∥∥∥∥
[
ϕ1 − ϕ2

ψ1 −ψ2

]∥∥∥∥∥
=κ′L′

∥∥∥∥∥
[
ϕ1 − ϕ2

ψ1 −ψ2

]∥∥∥∥∥
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where σmax, σmin and κ′ are the largest, smallest singular values and the condition number (w.r.t. 2-norm) of matrix P .

Remark D.4. The following inequalities associated with L′ will turn out to be useful in many proofs

L′ ≥ 1, L′ ≥
√
2γ, L′ ≥

√
2α,L ≥

√
2L and L′ ≥

√
2αL.

D.4. Contraction of (Transformed) HFHR Dynamics

Lemma D.5. Suppose f is L-smooth, m-strongly convex and γ2 > L. Consider two copies of HFHR dynamics
[
qt
pt

]
,
[
q̃t
p̃t

]
(driven by the same Brownian motion) with initialization

[
q0
p0

]
,
[
q̃0
p̃0

]
respectively, then we have

∥∥∥∥∥P
[
qt − q̃t
pt − p̃t

]∥∥∥∥∥ ≤ e−λ′t

∥∥∥∥∥P
[
q0 − q̃0
p0 − p̃0

]∥∥∥∥∥
where P =

[
γI I
0
√
1 + αγI

]
and λ′ = min{mγ + αm, γ

2−L
γ }.

Proof. Consider two copies of HFHR that are driven by the same Brownian motion{
dqt = (pt − α∇f(qt))dt+

√
2αdB1

t

dpt = (−γpt −∇f(qt))dt+
√
2γdB2

t

,

{
dq̃t = (p̃t − α∇f(q̃t))dt+

√
2αdB1

t

dp̃t = (−γp̃t −∇f(q̃t))dt+
√
2γdB2

t

.

Based on Taylor’s expansion, the difference of the two copies is expressed as

d

dt

[
qt − q̃t
pt − p̃t

]
=−

[
αHt −I
Ht γI

] [
qt − q̃t
pt − p̃t

]
≜ −A

[
qt − q̃t
pt − p̃t

]
whereHt =

∫ 1

0
∇2f(q̃t+s(q−q̃t))ds. Denote the eigenvalues ofHt by ηi, 1 ≤ i ≤ d, by strong convexity and smoothness

assumption on f , we have m ≤ ηi ≤ L, 1 ≤ i ≤ d.

Denote
[
ϕt

ψt

]
= P

[
qt − q̃t
pt − p̃t

]
and consider Lt =

1
2

∥∥∥∥∥
[
ϕt

ψt

]∥∥∥∥∥
2

, we have

d

dt
Lt =−

[
ϕt

ψt

]T
PAP−1

[
ϕt

ψt

]
=−

[
ϕt

ψt

]T
1

2
(PAP−1 + (P−1)TATPT )

[
ϕt

ψt

]
=−

[
ϕt

ψt

]T
1

γ

[
(1 + αγ)Ht 0d×d

0d×d γ2I −Ht

] [
ϕt

ψt

]
≜−

[
ϕt

ψt

]T
B(α)

[
ϕt

ψt

]
It is easy to see that

λmin(B(α)) = min
i=1,2,··· ,d

{min{ηi
γ

+ αηi, γ −
ηi
γ
}} ≥ min{m

γ
+ αm,

γ2 − L
γ
} ≜ λ′.

Therefore we have d
dtLt ≤ −2λminB(α)Lt ≤ −2λ′Lt. By Gronwall’s inequality, we obtain∥∥∥∥∥

[
ϕt

ψt

]∥∥∥∥∥
2

≤ e−2λ′t

∥∥∥∥∥
[
ϕ0

ψ0

]∥∥∥∥∥
2

.

and the desired inequality follows by taking square root.
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D.5. Local error between the exact Strang’s splitting method and HFHR dynamics

Lemma D.6. Assume f is L-smooth and 0 ∈ argminx∈Rd f(x), i.e. ∇f(0) = 0. If 0 < h ≤ 1
4L′ , then compared with the

HFHR dynamics, the exact Strang’s splitting method has local mathematical expectation of deviation of order p1 = 2 and
local mean-squared error of order p2 = 2, i.e. there exist constants Ĉ1, Ĉ2 > 0 such that∥∥Ex(h)− Ex̂(h)

∥∥ ≤ Ĉ1h
p1

(
E
[∥∥x(h)− x̂(h)∥∥2]) 1

2

≤ Ĉ2h
p2

where x(h) =

[
q(h)
p(h)

]
is the solution of the HFHR dynamics with initial value x0 =

[
q0
p0

]
and x̂(h) =

[
q̂(h)
p̂(h)

]
is the

solution of the implementable Strang’s splitting with initial value x0 =

[
q0
p0

]
, p1 = 2 and p2 = 2. More concretely, we have

Ĉ1 = Lmax{α+ 1.25, γ + 1}
(
1.74∥x0∥+ (1.26

√
α+ 2.84

√
γ)
√
hd
)
,

Ĉ2 = Lmax{α+ 1.25, γ + 1}
(
1.92∥x0∥+ (1.30

√
α+ 3.22

√
γ)
√
hd
)
.

Proof. The exact Strang’s splitting integrator with step size h reads as ϕ
h
2 ◦ ψh ◦ ϕh

2 where

ϕ :

{
dq = pdt

dp = −γpdt+
√
2γdB

ψ :

{
dq = −α∇f(q)dt+

√
2αdW

dp = −∇f(q)dt
.

The ϕ flow can be explicitly solved and the solution is

{
q(t) = q0 +

1−e−γt

γ p0 +
√
2γ
∫ t

0
1−e−γ(t−s)

γ dB(s)

p(t) = e−γtp0 +
√
2γ
∫ t

0
e−γ(t−s)dB(s)

.

The ψ flow can be written as {
q(t) = q0 −

∫ t

0
α∇f(q(s))ds+

√
2α
∫ t

0
dW (s)

p(t) = p0 −
∫ t

0
∇f(q(s))ds

.

The solution of one-step exact Strang’s splitting integrator with step size h can be written as

q3 = q2(h) +
1−e−γ h

2

γ p2(h) +
√
2γ
∫ h

h
2

1−e−γ(h−s)

γ dB(s)

p3 = e−γ h
2 p2(h) +

√
2γ
∫ h

h
2
e−γ(h−s)dB(s)

q2(r) = q1 −
∫ r

0
α∇f(q2(s))ds+

√
2α
∫ r

0
dW (s) (0 ≤ r ≤ h)

p2(r) = p1 −
∫ r

0
∇f(q2(s))ds

q1 = q0 +
1−e−γ h

2

γ p0 +
√
2γ
∫ h

2

0
1−e−γ(h

2
−s)

γ dB(s)

p1 = e−γ h
2 p0 +

√
2γ
∫ h

2

0
e−γ(h

2 −s)dB(s)
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Therefore, we have q̂(h) = q3, p̂(h) = p3 and

q̂(h) =
√
2γ

∫ h

h
2

1− e−γ(h−s)

γ
dB(s) + q1 −

∫ h

0

α∇f(q2(s))ds+
√
2α

∫ h

0

dW (s)︸ ︷︷ ︸
q2(h)

+
1− e−γ h

2

γ

p1 −
∫ h

0

∇f(q2(s))ds︸ ︷︷ ︸
p2(h)


=
√
2γ

∫ h

h
2

1− e−γ(h−s)

γ
dB(s)−

∫ h

0

α∇f(q2(s))ds+
√
2α

∫ h

0

dW (s)− 1− e−γ h
2

γ

∫ h

0

∇f(q2(s))ds

+ q0 +
1− e−γ h

2

γ
p0 +

√
2γ

∫ h
2

0

1− e−γ(h
2 −s)

γ
dB(s)︸ ︷︷ ︸

q1

+
1− e−γ h

2

γ

e−γ h
2 p0 +

√
2γ

∫ h
2

0

e−γ(h
2 −s)dB(s)︸ ︷︷ ︸

p1


=q0 +

1− e−γh

γ
p0 −

(
α+

1− e−γ h
2

γ

)∫ h

0

∇f(q2(s))ds

+
√
2α

∫ h

0

dW (s) +
√
2γ

∫ h

h
2

1− e−γ(h−s)

γ
dB(s) +

√
2γ

∫ h
2

0

1− e−γ(h
2 −s)

γ
dB(s)

+
1− e−γ h

2

γ

√
2γ

∫ h
2

0

e−γ(h
2 −s)dB(s)

p̂(h) =e−γ h
2

p1 −
∫ h

0

∇f(q2(s))ds︸ ︷︷ ︸
p2(h)

+
√
2γ

∫ h

h
2

e−γ(h−s)dB(s)

=e−γ h
2

e−γ h
2 p0 +

√
2γ

∫ h
2

0

e−γ(h
2 −s)dB(s)︸ ︷︷ ︸

p1

− e−γ h
2

∫ h

0

∇f(q2(s))ds+
√
2γ

∫ h

h
2

e−γ(h−s)dB(s)

=e−γhp0 − e−γ h
2

∫ h

0

∇f(q2(s))ds+ e−γ h
2

√
2γ

∫ h
2

0

e−γ(h
2 −s)dB(s) +

√
2γ

∫ h

h
2

e−γ(h−s)dB(s)

It is clear that q̂(h), p̂(h) should be compared with the exact solution of HFHR at time h, which can be written as

q(h) =q0 +
1− e−γh

γ
p0 −

∫ h

0

(
1− e−γ(h−s)

γ
+ α

)
∇f(q(s))ds+

√
2α

∫ h

0

dW s +
√
2γ

∫ h

0

1− e−γ(h−s)

γ
dBs

p(h) =e−γhp0 −
∫ h

0

e−γ(h−s)∇f(q(s))ds+
√
2γ

∫ h

0

e−γ(h−s)dB(s)
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Subtracting q(h),p(h) from q̂(h), p̂(h) respectively, we obtain

q̂(h)− q(h) =−

(
α+

1− e−γ h
2

γ

)∫ h

0

∇f(q2(s))−∇f(q(s))ds

+

∫ h

0

(
1− e−γ(h−s)

γ
− 1− e−γ h

2

γ

)
∇f(q(s))ds

p̂(h)− p(h) =− e−γ h
2

∫ h

0

∇f(q2(s))−∇f(q(s))ds+
∫ h

0

(
e−γ(h−s) − e−γ h

2

)
∇f(q(s))ds

It should be clear now that we will need to bound the term∇f(q2)−∇f(q) and ∇f(q). Since

q2(r) =q0 +
1− e−γ h

2

γ
p0 +

√
2γ

∫ h
2

0

1− e−γ(h
2 −s)

γ
dB(s)− α

∫ r

0

∇f(q2(s))ds+
√
2α

∫ r

0

dW (s)

q(r) =q0 +
1− e−γr

γ
p0 −

∫ r

0

(
1− e−γ(r−s)

γ
+ α

)
∇f(q(s))ds+

√
2α

∫ r

0

dW (s)

+
√

2γ

∫ r

0

1− e−γ(r−s)

γ
dB(s),

we then have

q2(r)− q(r) =
e−γr − e−γ h

2

γ
p0 − α

∫ r

0

∇f(q2(s))−∇f(q(s))ds+
∫ r

0

1− e−γ(r−s)

γ
∇f(q(s))ds

+
√
2γ

∫ h
2

0

1− e−γ(h
2 −s)

γ
dB(s)−

√
2γ

∫ r

0

1− e−γ(r−s)

γ
dB(s)

By Lemma D.3 and D.2, when 0 < h < 1
4L′ , we have the following for the solution of HFHR dynamics

E[
∥∥x0,x0

(h)− x0

∥∥2] ≤ Ĉ0h

where Ĉ0 = 5.14
{
(α+ γ)d+ h

(
L′)2∥x0∥2

}
and hence

E
[∫ r

0

∥∥∇f(q(s))∥∥2 ds] ≤E [2 ∫ r

0

∥∥∇f(q(0))∥∥2 ds+ 2

∫ r

0

∥∥∇f(q(s))−∇f(q(0))∥∥2 ds]
≤E

[
2L2r

∥∥q(0)∥∥2 + 2L2

∫ r

0

∥∥q(s)− q(0)∥∥2 ds]
≤2L2r∥x0∥2 + 2L2E

[∫ r

0

∥∥q(s)− q(0)∥∥2 ds]
≤2L2r∥x0∥2 + 2L2Ĉ0

∫ r

0

sds

≤L2r
(
2∥x0∥2 + hĈ0

)
≤L2r

(
2.33∥x0∥2 + 5.14(α+ γ)dh

)
(12)
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Now E
[
∥q2 − q∥

2
]

can be bounded as follow

E
[∥∥q2(r)− q(r)∥∥2]

≤5


(
e−γr − e−γ h

2

γ

)2

∥p0∥
2
+ α2E

∥∥∥∥∫ r

0

∇f(q2(s))−∇f(q(s))ds
∥∥∥∥2 + E

∥∥∥∥∥
∫ r

0

1− e−γ(r−s)

γ
∇f(q(s))ds

∥∥∥∥∥
2


+ 5

2γE

∥∥∥∥∥
∫ h

2

0

1− e−γ(h
2 −s)

γ
dB(s)

∥∥∥∥∥
2

+ 2γE

∥∥∥∥∥
∫ r

0

1− e−γ(r−s)

γ
dB(s)

∥∥∥∥∥
2
 (Cauchy-Schwartz Inequality)

≤5

h24 ∥x0∥2 + α2L2r

∫ r

0

E
∥∥q2(s)− q(s)∥∥2 ds+ ∫ r

0

(
1− e−γ(r−s)

γ

)2

ds

∫ r

0

E
∥∥∇f(q(s))∥∥2 ds


+ 5

{
γdh3

12
+

2γd

3
r3

}

≤5

{
h2

4
∥x0∥2 + α2L2r

∫ r

0

E
∥∥q2(s)− q(s)∥∥2 ds+ h3

3
E
[∫ r

0

∥∥∇f(q(s))∥∥2]+ 3γd

4
h3

}

≤5

{
h2

4
∥x0∥2 +

3γd

4
h3 +

h3

3
L2
(
2.33∥x0∥2 + 5.14(α+ γ)dh

)
r + α2L2r

∫ r

0

E
∥∥q2(s)− q(s)∥∥2 ds

}

≤5h2
{
1

4
∥x0∥2 +

3γd

4
h+

h2

3
L2
(
2.33∥x0∥2 + 5.14(α+ γ)dh

)}
+ 5α2L2h

∫ r

0

E
∥∥q2(s)− q(s)∥∥2 ds

By Gronwall’s inequality and 0 < h ≤ 1
4L′ , we have

E
[∥∥q2(r)− q(r)∥∥2] ≤5h2

{
1

4
∥x0∥2 +

3γd

4
h+

h2

3
L2
(
2.33∥x0∥2 + 5.14(α+ γ)dh

)}
exp{5α2L2h2}

≤5h2
{
1

4
∥x0∥2 +

3γd

4
h+

h2

3
L2
(
2.33∥x0∥2 + 5.14(α+ γ)dh

)}
e

5
32

≤5.85h2
{
0.28∥x0∥2 + (0.06α+ 0.81γ)hd

}
≤h2

{
1.64∥x0∥2 + (0.36α+ 4.74γ)hd

}
. (13)

With bounds in Equation (12) and (13), we are now ready to show p1 and p2. For p1, i.e. the order of the mathematical
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expectation of deviation, we have

∥∥∥∥∥∥E
[[
q̂(h)
p̂(h)

]
−
[
q(h)
p(h)

]]∥∥∥∥∥∥
≤
∥∥∥E [q̂(h)− q(h)]∥∥∥+∥∥∥E [p̂(h)− p(h)]∥∥∥
≤

(
α+

1− e−γ h
2

γ

)∥∥∥∥∥
∫ h

0

E
[
∇f(q2(s))−∇f(q(s))

]
ds

∥∥∥∥∥+
∥∥∥∥∥∥
∫ h

0

(
1− e−γ(h−s)

γ
− 1− e−γ h

2

γ

)
E
[
∇f(q(s))

]
ds

∥∥∥∥∥∥
+ e−γ h

2

∥∥∥∥∥
∫ h

2

0

E
[
∇f(q2(s))−∇f(q(s))

]
ds

∥∥∥∥∥+
∥∥∥∥∥
∫ h

0

(
e−γ(h−s) − e−γ h

2

)
E
[
∇f(q(s))

]
ds

∥∥∥∥∥
≤
(
α+ 1 +

h

2

)
L

∫ h

0

E
∥∥q2(s)− q(s)∥∥ ds

+

∫ h

0

∣∣∣∣∣1− e−γ(h−s)

γ
− 1− e−γ h

2

γ

∣∣∣∣∣+ ∣∣∣e−γ(h−s) − e−γ h
2

∣∣∣
∥∥∥E [∇f(q(s))]∥∥∥ ds

≤L
(
α+ 1 +

h

2

)∫ h

0

E
∥∥q2(s)− q(s)∥∥ ds

+


∫ h

0

∣∣∣∣∣1− e−γ(h−s)

γ
− 1− e−γ h

2

γ

∣∣∣∣∣
2

ds

 1
2

+

(∫ h

0

∣∣∣e−γ(h−s) − e−γ h
2

∣∣∣2 ds) 1
2


(∫ h

0

∥∥∥E [∇f(q(s))]∥∥∥2 ds) 1
2

≤L
(
α+ 1 +

h

2

)∫ h

0

(
E
∥∥q2(s)− q(s)∥∥2) 1

2

ds+
1 + γ

2
√
3
h

3
2

(
E
∫ h

0

∥∥∥[∇f(q(s))]∥∥∥2 ds) 1
2

≤L
(
α+ 1 +

h

2

)
h2
{
1.64∥x0∥2 + (0.36α+ 4.74γ)hd

} 1
2

+
1 + γ

2
√
3
h2L

(
2.33∥x0∥2 + 5.14(α+ γ)dh

) 1
2

≤L (α+ 1.25)h2
(
1.29∥x0∥+

√
0.36α+ 4.74γ

√
hd
)
+ (1 + γ)h2L

(
0.45∥x0∥+

√
0.43α+ 0.43γ

√
dh
)

≤Lh2 max{α+ 1.25, γ + 1}
(
1.74∥x0∥+ (1.26

√
α+ 2.84

√
γ)
√
hd
)

The above derivation proves p1 = 2 with

Ĉ1 = Lmax{α+ 1.25, γ + 1}
(
1.74∥x0∥+ (1.26

√
α+ 2.84

√
γ)
√
hd
)
.
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We now proceed with p2, i.e. mean-square error

E

∥∥∥∥∥
[
q̂(h)
p̂(h)

]
−
[
q(h)
p(h)

]∥∥∥∥∥
2

≤2
(
α+

h

2

)2

E

∥∥∥∥∥
∫ h

0

∇f(q2(s))−∇f(q(s))ds

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
∫ h

0

(
1− e−γ(h−s)

γ
− 1− e−γ h

2

γ

)
∇f(q(s))ds

∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
∫ h

0

∇f(q2(s))−∇f(q(s))ds

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
∫ h

0

(
e−γ(h−s) − e−γ h

2

)
∇f(q(s))ds

∥∥∥∥∥
2

≤2
(
(α+

h

2
)2 + 1

)
L2E

(∫ h

0

|q2(s)− q(s)|ds

)2

+ 2

∫ h

0

∣∣∣∣∣1− e−γ(h−s)

γ
− 1− e−γ h

2

γ

∣∣∣∣∣
2

ds

∫ h

0

E
∥∥∇f(q(s))∥∥2 ds

+ 2

∫ h

0

∣∣∣e−γ(h−s) − e−γ h
2

∣∣∣2 ds ∫ h

0

E
∥∥∇f(q(s))∥∥2 ds

≤2
(
(α+

h

2
)2 + 1

)
L2h

∫ h

0

E|q2(s)− q(s)|2ds+
1 + γ2

6
h3
∫ h

0

E|∇f(q(s))|2ds

≤2
(
(α+

h

2
)2 + 1

)
L2
{
1.64∥x0∥2 + (0.36α+ 4.74γ)hd

}
h4 +

1 + γ2

6
L2
{
2.33∥x0∥2 + 5.14(α+ γ)hd

}
h4

≤L2 max{(α+ 1.25)2, 1 + γ2}
(
3.67∥x0∥2 + (1.68α+ 10.34γ)hd

)
h4

The above derivation implies p2 = 2 with

Ĉ2 = Lmax{α+ 1.25, 1 + γ}
(
1.92∥x0∥+ (1.30

√
α+ 3.22

√
γ)
√
hd
)
.

D.6. Local error between Algorithm 1 and the exact Strang’s splitting method

Lemma D.7. Assume f is L-smooth, 0 ∈ argminx∈Rd f(x), i.e. ∇f(0) = 0 and the operator ∇∆f grows at most

linearly, i.e.
∥∥∇∆f(q)∥∥ ≤ G√1 +∥q∥2. If 0 < h ≤ 1

4L′ , then compared with the exact Strang’s splitting method of HFHR
dynamics, the implementable Strang’s splitting method has local mathematical expectation of deviation of order p1 = 2 and
local mean-squared error of order p2 = 1.5, i.e. there exist constants C̄1, C̄2 > 0 such that∥∥Ex̂(h)− Ex̄(h)

∥∥ ≤ C̄1h
p1

(
E
[∥∥x̂(h)− x̄(h)∥∥2]) 1

2

≤ C̄2h
p2

where x̂(h) =
[
q̂(h)
p̂(h)

]
is the solution of the exact Strang’s splitting method for HFHR with initial value x0 =

[
q0
p0

]
and

x̄(h) =

[
q̄(h)
p̄(h)

]
is the one-step result of Algorithm 1 with initial value x0 =

[
q0
p0

]
, p1 = 2 and p2 = 1.5. More concretely,

we have

C̄1 = α(α+ 1.125)(L+G)
[
0.5 + 0.71∥x0∥+ (1.14

√
α+ 0.21

√
γh)
√
hd
]

and

C̄2 = L(α+ 0.73)
(
2.30
√
hαL∥x0∥+ (2.27

√
α+ 0.12

√
γh)
√
d
)
.
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Proof. The solution of one-step exact Strang’s splitting integrator with step size h can be written as

q3 = q2(h) +
1−e−γ h

2

γ p2(h) +
√
2γ
∫ h

h
2

1−e−γ(h−s)

γ dB(s)

p3 = e−γ h
2 p2(h) +

√
2γ
∫ h

h
2
e−γ(h−s)dB(s)

q2(r) = q1 −
∫ r

0
α∇f(q2(s))ds+

√
2α
∫ r

0
dW (s) (0 ≤ r ≤ h)

p2(r) = p1 −
∫ r

0
∇f(q2(s))ds

q1 = q0 +
1−e−γ h

2

γ p0 +
√
2γ
∫ h

2

0
1−e−γ(h

2
−s)

γ dB(s)

p1 = e−γ h
2 p0 +

√
2γ
∫ h

2

0
e−γ(h

2 −s)dB(s)

and the solution of one-step implementable Strang’s splitting integrator with step size h can be written as

q̄3 = q̄2(h) +
1−e−γ h

2

γ p̄2(h) +
√
2γ
∫ h

2

0
1−e−γ(h

2
−s)

γ dB(h2 + s)

p̄3 = e−γ h
2 p̄2(h) +

√
2γ
∫ h

2

0
e−γ(h

2 −s)dB(h2 + s)

q̄2(r) = q1 −
∫ r

0
α∇f(q1)ds+

√
2α
∫ r

0
dW (s) (0 ≤ r ≤ h)

p̄2(r) = p1 −
∫ r

0
∇f(q1)ds

q1 = q0 +
1−e−γ h

2

γ p0 +
√
2γ
∫ h

2

0
1−e−γ(h

2
−s)

γ dB(s)

p1 = e−γ h
2 p0 +

√
2γ
∫ h

2

0
e−γ(h

2 −s)dB(s)

Note that in the implementable Strang’s splitting method, ϕ flow can be explicitly integrated and hence q1,p1 are the same
as that in the exact Strang’s splitting method.

First, we will bound the deviation of mathematical expectation and mean squared error of q2(h)− q̄2(h) and p2(h)− p̄2(h).
We have {

q2(h)− q̄2(h) = −α
∫ h

0
∇f(q2(s))−∇f(q1)ds

p2(h)− p̄2(h) = −
∫ h

0
∇f(q2(s))−∇f(q1)ds

(14)

Square both sides of the first equation in (14) and take expectation, we obtain

E
∥∥q2(h)− q̄2(h)∥∥2 =α2E

∥∥∥∥∥
∫ h

0

∇f(q2(s))−∇f(q1)ds

∥∥∥∥∥
2

≤α2E

(∫ h

0

∥∥∇f(q2(s))−∇f(q1)∥∥ ds
)2

≤α2L2E

(∫ h

0

∥∥q2(s)− q1∥∥ ds
)2

≤α2L2h

∫ h

0

E
∥∥q2(s)− q1∥∥2 ds

Note that q2 is the solution of a rescaled overdamped Langevin dynamics whose drift vector field is αL-Lipschitz, by
conditional expectation version of Lemma D.2, for 0 < h < 1

4L′ < 1
4αL , we have E

∥∥q2(h)− q1∥∥2 ≤ C̄0h with

C̄0 = 5.14
{
αd+ h(αL)2E∥q1∥

2
}

and it follows that

{
E
∥∥q2(h)− q̄2(h)∥∥2 ≤ α2L2C̄0h

3

E
∥∥p2(h)− p̄2(h)∥∥2 ≤ L2C̄0h

3.
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Now consider p1, i.e., the deviation of mathematical expectation. By Ito’s lemma, we have

q2(h)− q̄2(h)

=− α
∫ h

0

∇f(q2(s))−∇f(q1)ds

=− α
∫ h

0

[∫ s

0

−α∇2f(q2(r))∇f(q2(r))dr + α

∫ s

0

∇∆f(q2(r))dr + ρ

]
ds (15)

where ρ is a stochastic integral term. Take expectation and norm for Equation (15), we have∥∥∥E [q2(h)− q̄2(h)]∥∥∥
=α2

∥∥∥∥∥
∫ h

0

E
[∫ s

0

∇2f(q2(r))∇f(q2(r))dr −
∫ s

0

∇∆f(q2(r))dr
]
ds

∥∥∥∥∥
≤α2

∫ h

0

E
[∫ s

0

∥∇2f(q2(r))∥2
∥∥∇f(q2(r))∥∥ dr + ∫ s

0

∥∥∇∆f(q2(r))∥∥ dr] ds
≤α2

∫ h

0

E
[
L

∫ s

0

∥∥q2(r)∥∥ dr + ∫ s

0

G(1 +
∥∥q2(r)∥∥)dr] ds

=α2(L+G)

∫ h

0

∫ s

0

E
∥∥q2(r)∥∥ dr + α2G

h2

2

≤α2(L+G)

∫ h

0

∫ s

0

E
∥∥q2(r)− q1∥∥+ E∥q1∥ dr + α2G

h2

2

≤α2(L+G)

∫ h

0

∫ s

0

√
E
∥∥q2(r)− q1∥∥2 + E∥q1∥ dr + α2G

h2

2

≤α2(L+G)
√
C̄0h

h2

2
+ α2(L+G)

h2

2
E∥q1∥+ α2G

h2

2

≤α2

{√
C̄0h+ E∥q1∥

2
(L+G) +

G

2

}
h2

≤1

2
α2(L+G)

{√
C̄0h+ E∥q1∥+ 1

}
h2

Similarly, we have
∥∥∥E [p2(h)− p̄2(h)]∥∥∥ ≤ 1

2α(L+G)
{√

C̄0h+ E∥q1∥+ 1
}
h2.

For p2, i.e., mean-square error, we have

E
∥∥q2(h)− q̄2(h)∥∥2 ≤α2E

{∫ h

0

∥∥∇f(q2(s))−∇f(q1)∥∥ ds
}2

≤α2E

{∫ h

0

1ds

∫ h

0

∥∥∇f(q2(s))−∇f(q1)∥∥2 ds
}

≤α2L2h

∫ h

0

E
∥∥q2(s)− q1∥∥2 ds

≤α
2L2C̄0

2
h3

Similarly we obtain E
∥∥p2(h)− p̄2(h)∥∥2 ≤ L2C̄0

2 h3. Recallq3 − q̄3 = q2(h)− q̄2(h) + 1−e−γ h
2

γ (p2(h)− p̄2(h))
p3 − p̄3 = e−γ h

2 (p2(h)− p̄2(h))
.
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and it follows that when 0 < h ≤ 1
4L′ < 1∥∥∥∥∥E

[
q3 − q̄3
p3 − p̄3

]∥∥∥∥∥ ≤α(α+ 1 +
h

2
)(L+G)

√
C̄0h+ E∥q1∥+ 1

2
h2 (16)

E

∥∥∥∥∥
[
q3 − q̄3
p3 − p̄3

]∥∥∥∥∥
2

≤L2C̄0

(
α2 +

1

2
+
h2

4

)
h3. (17)

Finally we need to bound E∥q1∥
2 by E∥x0∥2, to this end, we have

E∥q1∥
2
=E

∥∥∥∥∥q0 + 1− e−γ h
2

γ
p0 +

√
2γ

∫ h
2

0

1− e−γ(h
2 −s)

γ
dB(s)

∥∥∥∥∥
2

≤(1 + h2

4
)E∥q0∥

2
+ (1 +

h2

4
)E∥p0∥

2
+ 2γd

∫ h
2

0

(
1− e−γ(h

2 −s)

γ

)2

ds

≤(1 + h2

4
)E∥x0∥2 +

γd

12
h3 (18)

=(1 +
h2

4
)∥x0∥2 +

γd

12
h3 (19)

Collecting all pieces together, including (16), (17), (19), the definition of C̄0 and 0 < h < 1
4L′ , it is not difficult to obtain

the following ∥∥∥∥∥E
[
q3 − q̄3
p3 − p̄3

]∥∥∥∥∥ ≤C̄1h
2

E

∥∥∥∥∥
[
q3 − q̄3
p3 − p̄3

]∥∥∥∥∥
2
 1

2

≤C̄2h
3
2

with
C̄1 = α(α+ 1.125)(L+G)

[
0.5 + 0.71∥x0∥+ (1.14

√
α+ 0.21

√
γh)
√
hd
]

and
C̄2 = L(α+ 0.73)

(
2.30
√
hαL∥x0∥+ (2.27

√
α+ 0.12

√
γh)
√
d
)

D.7. Local error between Algorithm 1 and HFHR dynamics

Lemma D.8. Assume f is L-smooth, 0 ∈ argminx∈Rd f(x), i.e. ∇f(0) = 0 and the operator∇∆f grows at most linearly,

i.e.
∥∥∇∆f(q)∥∥ ≤ G

√
1 +∥q∥2. If 0 < h ≤ 1

4L′ , then compared with the HFHR dynamics, the implementable Strang’s
splitting method has local weak error of order p1 = 2 and local mean-squared error of order p2 = 1.5, i.e. there exist
constants C1, C2 > 0 such that ∥∥Ex(h)− Ex̄(h)

∥∥ ≤ C1h
p1(

E
[∥∥x(h)− x̄(h)∥∥2]) 1

2

≤ C2h
p2

where x(h) =
[
q(h)
p(h)

]
is the solution of HFHR with initial value x0 =

[
q0
p0

]
and x̄(h) =

[
q̄(h)
p̄(h)

]
is the solution of the

implementable Strang’s splitting with initial value x0 =

[
q0
p0

]
, p1 = 2 and p2 = 1.5. More concretely, we have

C1 = (L+G)max{α+ 1.25, γ + 1}
[
0.5α+ (1.74 + 0.71α)∥x0∥+

(
1.26
√
α+ 1.14α

√
α+ 2.32

√
γ
)√

hd
]



Hessian-Free High-Resolution Nesterov Acceleration For Sampling

and
C2 = Lmax{α+ 1.25, γ + 1}

[
(1.92 + 2.30αL)

√
h∥x0∥+ (2.60

√
α+ 3.34

√
γh)
√
d
]

Proof. Denote by x̂(h) =
[
q̂(h)
p̂(h)

]
the solution of the exact Strang’s splitting method with initial value x0 =

[
q0
p0

]
. By

triangle inequality and Minkowski’s inequality, we have∥∥Ex(h)− Ex̄(h)
∥∥ ≤∥∥Ex(h)− Ex̂(h)

∥∥+∥∥Ex̂(h)− Ex̄(h)
∥∥ ,(

E
∥∥x(h)− x̄(h)∥∥2) 1

2 ≤
(
E
∥∥x(h)− x̂(h)∥∥2) 1

2

+
(
E
∥∥x̂(h)− x̄(h)∥∥2) 1

2

.

By Lemma D.6 and D.7, we have∥∥Ex(h)− Ex̂(h)
∥∥ ≤ Ĉ1h

2,
∥∥Ex̂(h)− Ex̄(h)

∥∥ ≤ C̄1h
2(

E
∥∥x(h)− x̂(h)∥∥2) 1

2 ≤ Ĉ2h
3
2 ,

(
E
∥∥x̂(h)− x̄(h)∥∥2) 1

2 ≤ C̄2h
3
2

and hence ∥∥Ex(h)− Ex̄(h)
∥∥ ≤(Ĉ1 + C̄1)h

2(
E
∥∥x(h)− x̄(h)∥∥2) 1

2 ≤(Ĉ2 + C̄2)h
3
2

with

Ĉ1 + C̄1 ≤C1

≜(L+G)max{α+ 1.25, γ + 1}
[
0.5α+ (1.74 + 0.71α)∥x0∥+

(
1.26
√
α+ 1.14α

√
α+ 2.32

√
γ
)√

hd
]

Ĉ2 + C̄2 ≤C2 ≜ Lmax{α+ 1.25, γ + 1}
[
(1.92 + 2.30αL)

√
h∥x0∥+ (2.60

√
α+ 3.34

√
γh)
√
d
]

E. α does create acceleration even after discretization: an analytical demonstration
If α→∞ while γ remains fixed, then dq = −α∇f(q)+

√
2αdW is the dominant part of the dynamics, and in this case the

role of α could be intuitively understood as to simply rescale the time of gradient flow, which does not create any algorithmic
advantage, as the timestep of discretization has to scale like 1/α in this case. However, finite α no longer corresponds to
solely a time-scaling, but closely couples with the dynamics and creates acceleration. This is true even after the continuous
dynamics is discretized by an algorithm .

We will analytically illustrate this point by considering quadratic f . In this case, the diffusion process remains Gaussian,
and it suffices to quantify the convergence of its mean and covariance. In fact, it can be shown that both have the same speed
of convergence, and therefore for simplicity we will only consider the mean process. Two demonstrations (with different
focuses) will be provided.

Demonstration 1 (1D, γ given; infinite acceleration). Consider f(x) = x2/2, γ fixed. The mean process is{
q̇ = p− αq
ṗ = −q − γp

Consider, for simplicity, an Euler-Maruyama discretization of the HFHR dynamics, which coressponds to a Forward Euler
discretization of the mean process (other numerical methods can be analyzed analogously):[

qk+1

pk+1

]
= A

[
qk
pk

]
, A =

[
1− αh h
−h 1− γh

]
.
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We will show that, unless γ = 2, an appropriately chosen α will converge infinitely faster than the case with α = 0, if both
cases use the optimal h.

To do so, let us compute A’s eigenvalues, which are

1

2

(
2− (α+ γ)h± h

√
−4 + (α− γ)2

)
Consider the case where |α− γ| ≤ 2, then the eigenvalues are a pair of complex conjugates. Their modulus determines the
speed of convergence, and it can be computed to be

1

2

√
(2− (α+ γ)h)2 + h2(4− (α− γ)2) =

√
1− (α+ γ)h+ (1 + αγ)h2

Minimizing the quadratic function gives the optimal h that ensures the fastest speed of convergence, and the optimal h is

h =
α+ γ

2(1 + αγ)

and the optimal spectral radius is √
1− (α+ γ)2

4(1 + αγ)
.

When one uses low-resolution ODE, in which α = 0, the optimal rate is 1− γ2/4 (note it is not surprising that the critically
damped case, i.e., γ = 2, will give the fastest convergence).

If γ ̸= 2, the additional introduction of α can accelerate the convergence by reducing the spectral radius. For instance, if
α = γ + 2, upon choosing the optimal h = 1

1+γ , the optimal spectral radius is 0 (note in this case A actually has Jordan

canonical form of
[
0 1
0 0

]
and thus the discretization converges in 2 steps instead of 1, irrespective of the initial condition).

Demonstration 2 (multi-dim, γ, α and h all to be chosen; acceleration quantified in terms of condition number).
Consider quadratic f with positive definite Hessian, whose eigenvalues are 1 = λ1 < · · · < λn = ϵ−1 for some 0 < ϵ≪ 1.
Assume without loss of generality that f = q21/2 + ϵ−1q22/2. Similar to Demonstration 1, the forward Euler discretization
of the mean process is

q1,k+1

p1,k+1

q2,k+1

p2,k+1

 =

[
A1 0
0 A2

]
q1,k
p1,k
q2,k
p2,k

 , A1 =

[
1− αh h
−h 1− γh

]
, A2 =

[
1− αϵ−1h h
−ϵ−1h 1− γh

]
(20)

We will (i) find h and γ that lead to fastest convergence of the ULD discretization, i.e. the above iteration with α = 0, and
then (ii) constructively show the existence of h, γ and α that lead to faster convergence than the optimal one in (i) — note
these may not even be the optimal choices for HFHR, but they already lead to significant acceleration. More specifically,

(i) In a ULD setup, α = 0. It can be computed that the eigenvalues of A1 and A2 are respectively

1

2

(
2− hγ ± h

√
−4 + γ2

)
and

1

2

(
2− hγ ± h

√
−4ϵ−1 + γ2

)
We now seek γ > 0, h > 0 to minimize the maximum of their norms for obtaining the optimal convergence rate. This is
done in cases.

Case (i1) When γ ≤ 2, both A1 and A2 eigenvalues are complex conjugate pairs. To minimize the maximum of their norms,
let’s first see if their norms could be made equal.

A1 eigenvalue’s norm squared ×4 is

(2− hγ)2 − h2(−4 + γ2) = 4(h− γ/2)2 + 4− γ2 (21)
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A2 eigenvalue’s norm squared ×4 is

(2− hγ)2 − h2(−4ϵ−1 + γ2) = 4ϵ−1(h− ϵγ/2)2 + 4− ϵγ2 (22)

It can be seen that for (21) is always strictly smaller than (22) for any h > 0. Therefore, the max of the two is minimized
when h = ϵγ/2, and the corresponding max value is 4− ϵγ2. γ that minimizes this max value is γ = 2. Corresponding rate
of convergence is √

1− ϵ.

Case (i2) When γ ≥ 2ϵ−1/2, both A1 and A2 eigenvalues are real. Since ϵ≪ 1, we can order them×2 as

2− hγ − h
√
−4 + γ2 < 2− hγ − h

√
−4ϵ−1 + γ2 < 2− hγ + h

√
−4ϵ−1 + γ2 < 2− hγ + h

√
−4 + γ2 < 2.

To minimize the max of their norms, consider cases in which the smallest of four is negative, in which case at optimum one
should have

−(2− hγ − h
√
−4 + γ2) = 2− hγ + h

√
−4 + γ2.

This gives h = 2/γ (which does verify the assumption that the smallest of four is negative). Corresponding max of their
norms is thus

√
1− 4/γ2. γ that minimizes this max value is γ = 2ϵ−1/2, which gives rate of convergence of

√
1− ϵ.

Case (i3) When 2 ≤ γ ≤ 2ϵ−1/2, A1 eigenvalues are real and A2 eigenvalues are complex conjugates. Again, the max of
their norms is minimized if the norms can be made all equal.

Note A1 eigenvalues cannot be of the same sign, because otherwise 2−hγ−h
√
−4 + γ2 = 2−hγ+h

√
−4 + γ2, which

means either h = 0 or γ = 2, but if γ = 2 then 2− hγ + h
√
−4 + γ2 being equal to 2*norm of A2 eigenvalue, which is√

4ϵ−1(h− ϵγ/2)2 + 4− ϵγ2, leads to h = 0 again.

Therefore, the equality of norms of A1, A2 eigenvalues means

−(2− hγ − h
√
−4 + γ2) = 2− hγ + h

√
−4 + γ2 =

√
4ϵ−1(h− ϵγ/2)2 + 4− ϵγ2.

The first equality gives hγ = 2, which, together with the second equality, gives h = ±
√

2ϵ
1+ϵ . Selecting the positive

value of optimal h, we also obtain optimal γ =
√
2(1 + ϵ)ϵ−1/2, which is ≤ 2ϵ−1/2 and thus satisfying our assumption

(2 ≤ γ ≤ 2ϵ−1/2). The corresponding rate of convergence is thus

1

2

(
2− hγ + h

√
−4 + γ2

)
=

√
1− ϵ
1 + ϵ

.

Summary of (i) Since
√

1−ϵ
1+ϵ <

√
1− ϵ, the ULD Euler-Maruyama discretization converges the fastest when

h =

√
2ϵ

1 + ϵ
, γ =

√
2(1 + ϵ)ϵ−1/2,

and the corresponding discount factor of convergence (i.e. base of exponential convergence) is√
1− ϵ
1 + ϵ

, where ϵ = 1/κ with κ being Hessian’s condition number. (23)

(ii) Now consider the HFHR setup. Let’s first state a result: when

γ =

√
4c2ϵ4 + 8c2ϵ3 + 4c2ϵ2 + ϵ2 − 2ϵ+ 1 + ϵ+ 3

2cϵ2 + 2cϵ
> 0, (24)

α =
−
√
4c2ϵ4 + 8c2ϵ3 + 4c2ϵ2 + ϵ2 − 2ϵ+ 1 + 3ϵ+ 1

2cϵ2 + 2cϵ
> 0, h = cϵ (25)
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for any c > 0 independent of ϵ, the iteration (20) converges with discount factor

1√
2(1 + ϵ)

√
(1− ϵ)

(
1− ϵ+

√
4c2ϵ4 + 8c2ϵ3 + (4c2 + 1) ϵ2 − 2ϵ+ 1

)
. (26)

While the exact expression is lengthy, it can proved that the HFHR non-optimal discount factor (26) is strictly smaller than
the ULD optimal discount factor (23) for not only small but also large ϵ’s.

For some quantitative intuition, discount factors respectively have the following Taylor expansions in ϵ:

HFHR non-optimal: 1− 2ϵ+

(
c2

2
+ 2

)
ϵ2 +O

(
ϵ3
)

(27)

ULD optimal: 1− ϵ+ ϵ2

2
+O

(
ϵ3
)

(28)
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Figure 5: Acceleration of HFHR algorithm over ULD algorithm (despite of an additional constraint α may place on h) for
multi-dimensional quadratic objectives. 1/ϵ is the condition number.

The exact expressions of discount factors are also plotted in Fig.5 (c = 1 was arbitrarily chosen) and one can see acceleration
for any (not necessarily small) ϵ.

(ii details) How were values in (25) chosen? Following the idea detailed in (i), we consider a case where A1 eigenvalues
are both real, A2 eigenvalues are complex conjugates, and all their norms are equal. Note there are 3 more cases, namely
real/real, complex/real, and complex/complex, but we do not optimize over all cases for simplicity — the real/complex case
is enough for outperforming the optimal ULD.

This case leads to at least the following equations{
trA1 = 0

detA1 + detA2 = 0
(29)

One can solve this system of equations to obtain α and γ as functions of h. Following the idea of choosing h small enough
to resolve the stiffness of the ODE {

q̇2 = p2 − αϵ−1q2

ṗ2 = −ϵ−1q2 − γp2
,
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pick h = cϵ. Then (29) gives

γ =

√
4c2ϵ4 + 8c2ϵ3 + 4c2ϵ2 + ϵ2 − 2ϵ+ 1 + ϵ+ 3

2cϵ2 + 2cϵ

α =
−
√
4c2ϵ4 + 8c2ϵ3 + 4c2ϵ2 + ϵ2 − 2ϵ+ 1 + 3ϵ+ 1

2cϵ2 + 2cϵ

or

γ =
−
√
4c2ϵ4 + 8c2ϵ3 + 4c2ϵ2 + ϵ2 − 2ϵ+ 1 + ϵ+ 3

2cϵ2 + 2cϵ

α =

√
4c2ϵ4 + 8c2ϵ3 + 4c2ϵ2 + ϵ2 − 2ϵ+ 1 + 3ϵ+ 1

2cϵ2 + 2cϵ

The former is our choice (25) because it can be checked that the latter leads to detA1 > 0 which violates the assumption of
a pair of plus and minus real eigenvalues.

It is possible to find optimal α, γ, h for HFHR for the Gaussian cases. One has to minimize detA2 under the constraint
detA2 > 0 in addition to (29). And then do similar calculations for the other 3 cases, and then finally the best among
the 4 cases. Doing so however does not give enough insights to determine optimal hyperparameters for sampling general
distributions.

F. Randomized Midpoint Discretization of HFHR
F.1. The algorithm

HFHR is based on a continuous dynamics that adds HFHR corrections to the Underdamped Langevin Dynamics (ULD).
It can be turned into a sampling algorithm via either a low-order time discretization (e.g., HFHR Algorithm 1) or a more
accurate one. To complement the main text, this section demonstrates the latter, based on a powerful recent progress in
discretizing ULD, known as Randomized Midpoint Algorithm (RMA) (Shen & Lee, 2019), and shows that the acceleration
created by the HFHR correction terms persists.

More specifically, RMA is a high-order discretization scheme for ULD that achieved a better O(d 1
3 ) dimension dependence

of mixing time than first-order discretization of ULD, e.g., 1st-order KLMC (Dalalyan & Riou-Durand, 2020). Although
RMA is originally designed specifically for ULD only, it is a general idea and already adapted to overdamped Langevin (He
et al., 2020). Here we show it can be easily adapted to HFHR as well, as illustrated by the following Algorithm 2. Red
highlights algorithmic changes we made to account for the HFHR corrections of ULD.

Algorithm 2 Randomized Midpoint Algorithm from (Shen & Lee, 2019), adapted for HFHR

1: Input: potential function f and its gradient∇f , damping coefficients α and γ, step size h, initial condition (q0,p0)
2: procedure RMA-HFHR(f,∇f, α, γ, h, q0,p0)

3: k = 0 and initialize
[
q0
p0

]
4: while not converged do
5: Generate an independent uniform random variable θk ∼ U(0, 1)

6: Generate Gaussian random vectors
(
W 1

k+1,W
2
k+1,W

3
k+1

)
∈ R3d as in (Shen & Lee, 2019, Appendix A)

7: Generate Gaussian random vectorsB1
k+1,B

2
k+1 ∈ Rd as described by (31)

8: qk+ 1
2
= qk + 1

γ (1− e
−γθkh)pk − 1

γ

(
θkh− 1

γ (1− e
−γθkh)

)
∇f(qk) +W

1
k+1 −αθkh∇f(qk) +

√
2αB1

k+1

9: qk+1 = qk+
1
γ (1−e

−γh)pk− 1
γh(1−e

−γ(h−θkh))∇f(qk+ 1
2
)+W 2

k+1−αh∇f(qk+ 1
2
)+
√
2α(B1

k+1+B
2
k+1)

10: pk+1 = pke
−γh − he−γ(h−θkh)∇f(qk+ 1

2
) + 2W 3

k+1

11: k ← k + 1
12: end while
13: end procedure

The red parts basically correspond to two Euler-Maruyama time-steppings of an auxiliary dynamics that contains only the
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HFHR correction terms
dq = −α∇f(q)dt+

√
2αdBt, (30)

first over a θkh timestep, and then over an h timestep. These two steps originate from an operator splitting treatment of the
full HFHR dynamics (eq.6), which is split into ULD and (30). Therefore, it is natural to see that

B1
k+1 =

∫ h(k+θk)

hk

dBt, B2
k+1 =

∫ h(k+1)

h(k+θk)

dBt,

and therefore B1
k+1 and B2

k+1 are, when conditioned on θk, centered Gaussian vectors independent from each other and the
W ’s, each being d-dimensional with i.i.d. entries, and they can be generated via

B1
k+1 =

√
θkhξ

1
k+1, B2

k+1 =
√
h− θkhξ2k+1, (31)

where ξ1k+1 and ξ2k+1 are i.i.d. standard d-dimensional Gaussian vectors.
Remark F.1. In the original RMA (Shen & Lee, 2019, Algorithm 1), the uniform random variable for the midpoint’s
proportional location was denoted by α. However, since we have already used this letter for the HFHR correction coefficient,
we use instead θ to denote this uniform random variable.
Remark F.2. From the red text, it is easy to see that if α = 0, Algorithm 2 degenerates to RMA for ULD. Nevertheless,
Algorithm 2 is again just one RMA discretization of HFHR but not the only one.

F.2. Numerical results: HFHR again accelerates

To numerically compare the RMA discretization of HFHR dynamics and ULD dynamics (note we don’t compare 1st-order
HFHR Algorithm 1 with RMA-ULD as we’d like to compare apple with apple), we conduct an experiment very similar
to that in Sec.6.2, with the same nonlinear potential function. We run both RMA for ULD and RMA for HFHR with
dimension d = 10, initial value (100 × 1d,0d), h = 1 (chosen to be near the stability limit of RMA-ULD), a family
of γ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100} and α ∈ {0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.55, 0.6,
0.65,0.7,0.75,0.8,0.85,0.9,0.95, 1, 2, 5, 10, 20, 50, 100}. For each algorithm and each set of parameter values, we run 1,000
independent realizations to compute statistics and estimate the mean time of reaching ε = 0.1 neighborhood of the target
distribution. Then, for each α (including α = 0, which is the original RMA), we optimize over γ choices to get the best
results. To further reduce variance, we also repeat the experiment with 100 different random seeds.

Too large α values with which Algorithm 2 fails to reach ϵ-neighborhood are not plotted and the final results are shown
in Figure 6. It clearly suggests that with appropriated chosen α (α = 0.5 in our case), RMA discretized HFHR dynamics
requires fewer iterations than RMA discretized ULD, which suggests a better iteration complexity.
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Figure 6: Improvement of RMA for HFHR (Algorithm 2) over the original RMA (for ULD) in iteration complexity. (vertical
bar = 1 standard deviation)


