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Abstract

Recent works put much effort into tensor network
structure search (TN-SS), aiming to select suit-
able tensor network (TN) structures, involving the
TN-ranks, formats, and so on, for the decomposi-
tion or learning tasks. In this paper, we consider
a practical variant of TN-SS, dubbed TN permuta-
tion search (TN-PS), in which we search for good
mappings from tensor modes onto TN vertices
(core tensors) for compact TN representations.
We conduct a theoretical investigation of TN-PS
and propose a practically-efficient algorithm to
resolve the problem. Theoretically, we prove the
counting and metric properties of search spaces
of TN-PS, analyzing for the first time the impact
of TN structures on these unique properties. Nu-
merically, we propose a novel meta-heuristic al-
gorithm, in which the searching is done by ran-
domly sampling in a neighborhood established
in our theory, and then recurrently updating the
neighborhood until convergence. Numerical re-
sults demonstrate that the new algorithm can re-
duce the required model size of TN’ in extensive
benchmarks, implying the improvement in the ex-
pressive power of TNs. Furthermore, the compu-
tational cost for the new algorithm is significantly
less than that in (Li & Sun, 2020).

1. Introduction

Over the years, tensor network (TN) has been widely ap-
plied to various technical fields. It enables us to resolve
extremely high-dimensional problems, such as deep learn-
ing (Novikov et al., 2015; Kossaifi et al., 2020), probability
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density estimation (Glasser et al., 2019; Miller et al., 2021;
Novikov et al., 2021), partial differential equations (Bach-
mayr et al., 2016; Richter et al., 2021), and quantum circuit
simulation (Markov & Shi, 2008; Huggins et al., 2019), with
acceptable computational and storage costs. However, as an
inevitable side-effect, practitioners have to face a notorious
challenge when applying TNs to practical tasks: how to
efficiently select the optimal TN structures from a massive
quantity of candidates?

Recent works thus put effort into this challenge, in the
heading of TN structure search (TN-SS). Most recently,
there have been studies, which focus on searching TN
ranks (Hashemizadeh et al., 2020; Kodryan et al., 2020), for-
mats (Hayashi et al., 2019; Li & Sun, 2020), and orders (Li
et al., 2020; Qiu et al., 2021) to achieve more compact rep-
resentations. These results also confirm numerically that the
structures impact the expressive power (Cohen et al., 2016)
of TNs in learning tasks.

In this paper, we consider a practical variant of TN-SS. The
goal is to improve the compactness and expressiveness of a
TN while preserving its format, such as tensor train (TT, Os-
eledets 2011) or tensor ring (TR, Zhao et al. 2016). Several
existing works (Zhao et al., 2016; Zheng et al., 2021) have
noticed that the mapping from tensor modes onto the TN
vertices, also known as core tensors, also influences the ex-
pressive power of the model. To see this, we implement a toy
experiment, in which TR is utilized to approximate a tensor
of order four. Figure 1 shows the required ranks for achiev-
ing the same approximation accuracy in the experiment. We
see that a good “mode-vertex”” mapping (corresponding to
Model 1) would produce smaller ranks than the other two
models. It implies lower computational and storage costs
and more promising generalization capability in learning
tasks (Khavari & Rabusseau, 2021). This fact thus moti-
vates this work for searching both the optimal TN-ranks and
“mode-vertex” mappings.

Despite the potential benefit, searching for the optimal
“mode-vertex” mappings is non-trivial in general. For in-
stance, there would be O(N!) different candidates for TR
of order N > 3 even though the optimal ranks are known. It
is apparently unacceptable to solve it by exhaustive search,
particularly when combinatorially searching the TN-ranks
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Figure 1. Impact of the “mode-vertex” relations on ranks in TR for-
mat. The chart shows the required ranks and number of parameters
(#Para.) in average. See supplementary materials for details.

is required as well. Unlike TN-SS, it also appears new the-
oretical questions for the variant: how fast the scale of the
mappings grows with the structures parameters, e.g., format,
order and ranks? Why does the growth rate change? And
what bounds the growth?

To this end, we conduct a thorough investigation of this
variant, named TN permutation search (TN-PS), from both
the theoretical and numerical aspects. Theoretically, we
answer the preceding questions by analyzing the counting
property of the search space of TN-PS, proving a universal
non-asymptotic bound for TNs in arbitrary formats. The
result is helpful for fast estimation of the computational
budget in searching. We also establish the basic geometry
for TN-PS with group-theoretical instruments, involving the
(semi-)metric and neighborhood of the search space, such
that the local searching can be applied to the task.

Numerically, we develop an efficient algorithm for TN-PS.
In contrast to the existing sampling-based methods (Hayashi
et al., 2019; Li & Sun, 2020), we draw samples in the estab-
lished neighborhood to explore the ‘steepest-descent” path
of the landscape, thereby accelerating the searching proce-
dure and decreasing the computational cost. Experimental
results on extensive benchmarks demonstrate that the pro-
posed algorithm is unigue to resolving TN-PS consistently
so far, and the required model evaluations are much fewer
than the previous algorithm. We summarize the main contri-
butions of this work as follows:

* We propose for the first time the problem of fensor-
network permutation search (TN-PS), an important
variant of TN-SS in practice;

* We rigorously prove new theoretical properties for TN-
PS, involving the counting, (semi-)metric, and neigh-
borhood, revealing how TN structures impact these
properties;

* We develop a local-sampling-based meta-heuristic,
which significantly reduces the computational cost
compared to (Li & Sun, 2020).

1.1. Related Works

Searching tensor-network (TN) structures. Searching
the optimal structures for TN is typically thought of as
an extension of the rank selection problem for tensor learn-
ing (Zhao et al., 2015; Yokota et al., 2016; Zhao et al.,
2016; Cheng et al., 2020; Mickelin & Karaman, 2020; Cai
& Li, 2021; Hawkins & Zhang, 2021; Li et al., 2021; Long
et al., 2021; Sedighin et al., 2021), which is widely known
to be challenging, especially when the TN formats con-
tain cycles (Landsberg et al., 2011; Batselier, 2018; Ye &
Lim, 2019). More recently, several studies put much ef-
fort into this problem, i.e., TN-SS, for exploring unknown
formats (Hayashi et al., 2019; Hashemizadeh et al., 2020;
Kodryan et al., 2020; Li & Sun, 2020; Nie et al., 2021).
The latest works (Razin et al., 2021; 2022) also study the
implicit regularization over TN-ranks. Another line of work
closely related to ours is those that study the partition issue
for hierarchical Tucker (HT, Falco et al. 2020; Haberstich
et al. 2021) decomposition, which aims to search for the
optimal tree structures. Compared to these works, we focus
on the search over the “mode-vertex” mappings, which have
remained unexplored until now.

Sampling-based optimization. Our new algorithm is in-
spired by zeroth-order optimization, which is also known
as gradient-free optimization or bandit optimization. The
methods can date back to stochastic hill-climbing (Rus-
sell & Norvig, 1995), followed by numerous evolutionary
programming algorithms (Back, 1996), and are restudied
recently by Golovin et al. (2019) and applied to various
machine learning tasks (Liu et al., 2020a;b; Savarese et al.,
2021; Singh, 2021). Inspired by the work (Golovin et al.,
2019), we refine the sampling strategy for TN-PS by taking
the unique property of the neighborhood into account but
maintaining its original simplicity and efficiency.

2. Preliminaries

We first summarize notations and elementary results used
throughout the paper. After that, definitions related to tensor
networks (TNs) are reviewed for the self-contained purpose.

Throughout the paper, we use blackboard letters, such as G
and S, to denote sets of subjects. With additional structures,
they are also used to represent specific algebraic subjects
according to the context, such as groups, fields or linear
spaces. In particular, we use Sy, R, Z1, and Rt ¥ 12 xIn
to represent the symmetric group of order N, the real field,
positive integers and the real linear space of dimension
I; x Iy x -+ x Iy, respectively. The size of a finite set A
is denoted by |A|, and the Cartesian product of two sets A
and B is denoted by A x B. We say two sets, e.g., A, B, are
equivalent if there exists a bijective mapping from A and B,
and sometimes write A = B without explicit declaration of
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the mapping if it is unambiguous. For convenience, we use
[N] C Z™ to denote a set of positive integers from 1 to N,
where C represents the subset relation.

A graph G = (V,E) consists of a vertex set V and an edge
set E. For a graph G of N vertices, the set of its automor-
phisms, written Aut(G), is a collection of vertex permuta-
tions, under which the edges are preserved, and equivalent
to a subgroup of the symmetric group, i.e., Aut(G) < Sy.
We call H = (Vg,EN) a (spanning) subgraph of G if
Vg =VandEy CE. Let Ky = (V,Ek,, ) be a complete
graph with N vertices and Gy be the set containing all sub-
graphs of K ;. We then know that any simple graphs of N
vertices are elements of G . The minimum and maximum
degree of a graph G are denoted by ¢ and A, respectively.

2.1. Tensor and Tensor Networks (TNs)

We consider an order-N tensor as a multi-
dimensional array of real numbers represented
by X iy..iy € RIV¥2XXIN - where the indices

in, n € [N] correspond to the R'»-associated tensor mode.
Sometimes we ignore the indices by representing the same
tensor as X for notational simplicity. Tensor contraction
roughly refers to the process of summing over a pair of
repeated indices between two tensors, which is though of as
a natural extension of matrix multiplication into high-order
tensors. An explicit calculation of tensor contraction used in
this paper follows the definition in (Cichocki et al., 2016).

We consider tensor network (TN) as defined by Ye & Lim
(2019). Suppose a sequence of vector spaces R’¢, i € [N]
and an edge-labelled simple graph (G,r) = (V,E,r),
where 7 : E — Z7T represents the function labelling edges
with positive integers. TN is thus intuitively defined as a set
of tensors, whose elements are of the form of a sequence
of tensor contraction of “core tensors” corresponding to
vertices of G. See (Ye & Lim, 2019) for an explicit defi-
nition of a TN. In the paper we refer to those core tensors
as vertices, to the unlabelled graph G as TN format, and to
the function r as TN-(model)-ranks. Being consistent with
(Ye & Lim, 2019), we use the same mathematical expres-
sion TNS(G,r,RIt Rz ... RIV) to represent a TN in
our analysis. The expression is also rewritten as TN .S(G, r)
for shorthand if R’», n € [N] are unimportant in the con-
text. Let F be the set consisting of all possible functions of
r’s associated to G. Then note that F is equivalent to a pos-
itive cone except zero of dimension |E|, i.e., Fg = 7+ IEl

2.2. TN Structure Search (TN-SS)

Let X € RI1x12>XIN be an order-N tensor. TN-SS with-
out noise is to solve an optimization problem as follows:

min ¢ (Kn,r),

r€FK

st. X €e TNS(Kn,r), (1)

where ¢ : Gy X Fg,, — R represents a loss function mea-
suring the model complexity of a TN. Note that, although
in (1) the first term of ¢ is fixed to be K , the TN format
can degenerate into any simple graphs of N vertices, as the
edges of labeling with “1”, i.e., {e € Ex |r(e) = 1}, can
be harmlessly discarded from the format (Ye & Lim, 2019;
Hashemizadeh et al., 2020). We see that solving (1) is an
integer programming problem, generally NP-complete (Pa-
padimitriou & Yannakakis, 1982). Nevertheless, thanks to
the fact F i, = 7 Exnl some practical algorithms have
been proposed (Hashemizadeh et al., 2020; Kodryan et al.,
2020; Li & Sun, 2020), as ZHIExy is a well-defined metric
space with the isotropic property. However, we will see next
that such good properties do not hold for TN-PS anymore
in general.

3. Tensor-Network Permutation
Search (TN-PS)

In this section, we first make precise the problem of TN-PS
and then prove the properties involving counting, metric,
and neighborhood, which are crucial for both understanding
the problem and deriving efficient algorithms.

3.1. Problem Setup

Recall the example illustrated in Figure 1. Suppose a tensor
X of order N and a simple graph Gy, , dubbed template, of
N vertices. Apart from the TN-ranks, the primary goal of
TN-PS is to find the optimal mappings in some sense from
the modes of A" onto vertices of Gy. We thus easily see that
the problem amounts to searching the optimal permutation
of vertices of a graph. More precisely, solving TN-PS is
to repeatedly index the vertices of G consecutively from 1
to IV, and then to seek the optimal index sequence in some
sense from all possibilities. Since the permutations are
bijective to each other, the TN structures arising from these
permutations naturally form an equivalence class, of which
all elements preserve the same “diagram” as G. Formally,
such the equivalence class to the template Gy = (V,Eg)
can be written as follows:

GQZ{GEGNK;gGQ}, )

where = denotes the relation of graph isomorphism, mean-
ing that for each G € Gy there exists a vertex permu-
tation g¢ € Sy such that G = (gg (V),Eo) holds, or
G = gg - Gy for shorthand. TN-PS (without noise) is
thus defined by restricting the search space of (1) to Gg as
follows:

min o (G,r),

st. X e TNS(G,r). (3)
(G,T‘)EGO XFGO

Compared to TN-SS, we search TN structures from a new
space consisting of two ingredients: a non-trivial graph set
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Figure 2. “Geometrical shape” of search spaces of TN-SS and TN-
PS, where the equivalence class Go makes the “shape” for TN-PS
as a combination of flips of low-dimensional spaces.

Gop and Fg, = 7+[Eol that corresponds to the TN-ranks.
We see that TN-PS is no longer an integer programming
problem as TN-SS due to the irregular geometry of Gy.
Meanwhile, the size of the new search space varies with
different template G. Figure 2 visualizes intuitively the
“geometrical shape” of the search space for TN-PS associ-
ated to a template of three vertices and two edges. We see
that the search space of TN-PS is more “collapsed” than the
original TN-SS. One immediate consequence of collapsing
is that the searching path and solutions for TN-SS would run
out of the TN-PS region, thereby failing to preserve the orig-
inal TN format. Next, we will establish formal statements
for these observations, and the results will help develop
feasible algorithms for resolving TN-PS.

3.2. Counting TN Structures

We begin by counting the size of the new search space,
proving that the graph degrees of the template G give a
universal bound for the size of the search space of TN-PS.

Suppose first a simple graph Gy = (V,Eg) of N vertices
as the template, by which we then construct the set G as
Eq. (2). As mentioned above, we have known two facts: 1)
Aut(Gg) forms a subgroup of Sy, ie., Aut(Go) < Sy,
such that Gy = a - Go for any a € Aut(Gp); and
2) for every G € Gy there exists go¢ € Sy such that
G = gg - Gy. By these facts, G = g’ - Gy holds
for any ¢ = gg - a, implying that for each G € G
there exists a left coset of Aut(Gp), which is of the form
ga - Aut(Go) := {g¢ - ala € Aut(Gp)}. According to the
Lagrange’s theorem in group theory, we thus obtain the
following equation with respect to the size of Gy:

ISn| = [Gol - [Aut(Go)l. )

Table 1 lists the values of | Aut(Go)| associated with several
commonly used TNs. The size of G for those TNs can be
therefore derived by (4), shown in the last row of Table 1.

However, counting the automorphisms for a general graph
is difficult (Chang et al., 1995). Blow we prove that the
size of the search space of TN-PS is controlled by the the
minimum and maximum degree of Gy. For convenience,
we further assume that TN-ranks are only searched within a

Table 1. Illustration of several counting-related properties for com-
monly used TNs of order N > 3, including tensor train (TT,
Oseledets 2011), tensor tree (TTree, Ye & Lim 2019), TR and
projected entangled pair states (PEPS, Verstraete & Cirac 2004),
where Go = (V,Eg), and do and A denote the minimum and
maximum degree of Gy, respectively.

TT TTree TR PEPS
Go Path Tree Cycle Lattice
do 1 1 2 2
Ao 2 [2,N —1] 2 2,3,4
|Eo| N-1 N-1 N <N
|Aut(Go)| 2 [2,(N — 1] 2N <N
|Go| N1/2 [N, N!/2] (n—1)172 < N!/4

finite range F, r C Fg,, meaning that the rank r(e) < R
holds for any r € Fg, r and e € Ey. We then have the
following counting bounds.

Theorem 3.1. Assume G to be a simple and connected
graph of N vertices, and Gq is constructed as (2). Let
0 = N/dy and A = N/ds, di > do > 1, be the minimum
and maximum degree of G, respectively. The size of the
search space of (3), written Lo, r := Go x Fg, g is
bounded as follows:

N2 N2
Rz . N!'> |Lg, g| > R0 - ¢7(%2) N=zlogda—1/24,

®)

where y(d) = log d + é — 1 is a positive and monotonically
increasing function for d > 1.

Proving the above theorem requires the following lemma
about an upper-bound of the size of Aut(Gy), of which the
proof is given in Appendix A.

Lemma 3.2. Let G be a simple graph of N vertices, and
Aut(Gy) be the set containing automorphisms of Go. As-
sume that G is connected and its maximum degree A\ satis-
fies N/A = d > 1, then the inequality

|Aut(Go)| < N1 e~V N3 logd+1/24 ©)
holds, where ~y( - ) is defined in Theorem 3.1.

As shown in (5), the bounds of |Lg,, g| are determined by
three factors: the number of vertices N, the searching range
of TN-ranks R, and the graph degrees of GG parameterized
by d; and ds. Figure 3 shows the bounds in (5) with varying
these factors. We see from the left panel that the upper and
lower bounds go closer with increasing the value of d (where
we assume d; = do = d for brevity). It implies that the
bounds are tight for graphs with small degrees. We also see
from the middle panel that |L¢, r| grows fast with N, even
though the graph degree d been sufficiently small such as in
TT/TR, while the growth is relatively slow with increasing
R, the search range for TN-ranks.
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Figure 3. Illustration of bounds given in Theorem 3.1 with varying
the parameters d, N and R, where “U.b.” and “L.b.” denote the
upper and lower bounds, respectively, and d1 = d2 = d.

3.3. Semi-Metric and Neighborhood

The notion of metric and neighborhood of the search space
are fundamental for most steepest-descent-based optimiza-
tion methods. We have seen that they are well-defined for
TN-SS but remain unknown for TN-PS. To address the issue,
we establish below a new (semi-)metric and neighborhood
for TN-PS with rigorous proofs using group-theoretic in-
struments. The application of these results to developing
efficient algorithms for TN-PS will be introduced in the next
section.

We begin by establishing the semi-metric, a relaxation of
metric satisfying separation and symmetry except possibly
for the triangle inequality, over the graph set Gy. Although
there has been much literature in which different definitions
of the graph metric or similarity are proposed, most of them
are computationally hard (Koutra et al., 2011). Unlike those
works, we construct the semi-metric over Gy based on the
equivalence property of its elements given in (2), so it can
be built up by graph isomorphisms in a simple fashion.

Recall the symmetric group Sy. Let Ty C Sy be the set
consisting of its all adjacent transpositions, the operations
of swapping adjacent two integers in [N] and fixing all other
integers. We thus know from group theory that Ty gener-
ates Sy. Furthermore, let dr,, : Sy x Sy — R be the word
metric (Liick, 2008) of S induced by T . Intuitively, the
value of dr (p1,p2), p1,p2 € Sy reflects the minimum
number of adjacent swapping operations required for trans-
forming the permutation from p; to pa. Since we saw in
Section 3.1 that for each G € G there is a permutation
ga € Sy such that G = g - G, we thus construct a func-
tion dg, : Go x Gp — R using the word metric dr, as
follows:

dg, (G1,G2) = min

d 7
pi€gi-Aut(Go),i=1,2 Ty (Prop2), (7)

where G1,Gy € Gy and g1,92 € Sy are permutations
satisfying G; = g; - Go, ¢ = 1,2. The following lemma
shows that (7) is in fact a semi-metric function, followed by
the construction of the corresponding neighborhood in Gy.

Lemma 3.3. Let G be a simple graph and G be the set
defined as (2). The function dg, : Go x Gg — R defined
by (7) is a semi-metric on Gg. Furthermore, let 14 (G) be a

Algorithm 1 Random sampling over I4(G)

Input: Center: G € Gy with N vertices; Radius: d.

Initialize: G’ = G where G’ = (V' E').

for k =1toddo
Uniformly draw i, j € [N], i # j in random.
Choose v;, v; € V' and swap them.

end for

Output: G'.

set constructed as follows:
d
14 (G) ={G' € Go|G' = q ] i - Go.
i=1

q € g-Aut(Go), t; € Tn, 1 € [d”

®)

Then Np (G) = U?:o I4(G) is the neighborhood of
G =g -Gy € Gy induced by (7), with the radius D €
Z+ u{0}.

We see from (8) that Np (G) consists of combinations of
two sets: Aut(Gp) and T, followed by the permutation
representative g associated to the center graph G. It thus
suggests a straightforward sampling method over Np, (G),
that is, combinatorially sampling over Aut(Gg) and Ty
from some distributions. However, obtaining all elements of
Aut(Gy) is computationally hard (NP-intermediate, Gold-
wasser et al. 1989) in general. To avoid this, we prove
that sampling using Alg. 1 can cover all elements of I;(G)
without sampling directly over Aut(G).

Theorem 3.4. For every G' € 14(G) with G € Gy and
d > 1, the probability that the output of Alg. 1 equals G’ is
positive.

The (semi-)metric and neighborhood for the overall search
space of TN-PS, i.e., Gy x Fg, g, can be thus derived by
composing the Euclidean metric of Fg, r C Z1Eol I the
next section, Alg. 1 will be applied to the new algorithm, by
which the searching efficiency is significantly improved.

4. Meta-Heuristic via Local Sampling

We present now a new meta-heuristic algorithm for search-
ing TN structures. Unlike the existing methods such as (Li
& Sun, 2020), we exploit the information of the “steepest-
descent” direction, estimated by sampling over a neigh-
borhood of the search space, to accelerate the searching
procedure.

Suppose a tensor X" of order V. For the practical purpose,
we take the influence of noise into (3), which is given by

min ¢ (G,r) + A- RSE(X, 2)
G,T,Z , (9)
st.(G,r) € Go x Fg, r, and Z € TNS(G, )



Permutation Search of Tensor Network Structures via Local Sampling

where A > 0 denotes a tuning parameter associated with the
noise variance, and RSE is the function of relative squared
error (RSE) for modeling the influence of Gaussian noise.
In other applications such as in generative models (Liu
et al., 2021), it can be replaced by KL-divergence without
modifying the algorithm details. The searching algorithm is
illustrated in Alg. 2, where N|gj(a, b) denotes a Gaussian
distribution of the mean a and variance b, followed by a
truncation operation such that the samples out of the range
[R] are pulled back to the closest bound, Ber(p) denotes
the Bernoulli distribution of the mean p, and I denotes the
identity matrix of dimension |Eq| x |Eo|.

In each iteration, we elaborate the algorithm into three
phases: local-sampling, evaluation, and updating. Suppose
the starting point (G}, 7{™1}) at the mth iteration. In the
local-sampling phase, we randomly draw samples for both
the TN-ranks (s;) and the “mode-vertex” maps (H}) over
the neighborhood centered at (G{™} +{™}). The aim is to
explore good descent directions within the neighborhood.
The sampling distributions, involving the rounded truncated
Gaussian and the uniform distribution in Alg. 1, are chosen
as a non-informative searching prior. Note that for the two
variance-related parameters c;, co € [0.9,1), we apply the
annealing trick to the shrinkage of the sampling range in
each iteration. The trick guarantees the convergence of the
algorithm. In the evaluation phase, we employ arbitrarily
proper optimization or learning methods to minimize RSE or
other alternatives for the sampled structures (Hy, si), k €
[#Sample]. In the updating phase, we calculate the over-
all loss function f;, for each sampled structures, and then
update (Gim+1} r{m+1}) once there exists new samples,
whose performance is better than (G{™}, +{"}). More pre-
cisely, let fo be the loss of (9) with respect to (G{™}, rim})
and f,,;, be the minimum among all fz’s. If f,.., < fo,
we update (GIm+1 pim+1by — ([, .0 5,05 otherwise,
we remain (Gim 1} plmtihy — (glm} pimd),

Discussion. Compared with the global-sampling methods,
such as genetic algorithm (GA) (Hayashi et al., 2019; Li &
Sun, 2020), we restrict the sampling range into the neigh-
borhoods of the structure candidates, rather than the whole
search space. The advantages in doing so are mainly two-
folds: first, the neighborhood geometry allows to construct
gradient-like directions, which result in a faster decrease
of the loss function if the landscape is related smooth; sec-
ond, a smaller sampling range can mitigate the curse of
dimensionality. Otherwise, the algorithm would “lose itself”
in searching if the TN structure is large scale. However,
it should be mentioned that the local-sampling methods
would perform worse than the global-searching ones if the
landscape is too “flat” or “swinging”. We conjecture with
rich empirical observations that TN-PS (including TN-SS)
seems more suitable for “local-sampling” methods. Since a
small perturbation on the structure such as ranks would not

Algorithm 2 TN-structure Local Sampling (TNLS)

Input: template graph: Go = (V,Ep);
searching range of TN-ranks: R;  function:
f(G,r,2):=¢(G,r)+A-RSE(X, Z), maxi-

mum iteration: #Iter > 0; number of sampling:
#Sample > 0; tuning parameters: c1,cz € [0.9,1).
0. Initialize:
(G0} {0}y with random selection from Gy x Fg, g-
Obtain Z{°} by arbitrary TN approximation methods
with (G103, r10}),
for m = 1 to #Iter do
1. Local sampling:
for £ = 1 to #Sample do
Sample s3, ~ Nig (rim} =1 . 1) with rounding.
if TRUE by sampling from Ber(cy'~') then
Sample Hj, € Gy from I; (G™}) using Alg. 1.
else
Hy, = Gim,
end if
end for
2. Evaluation: (be possible in parallel)
for £ = 1 to #Sample do
Obtain Z;, by arbitrary TN approximation methods
with the given (Hy, s).
end for
3. Update:

(G{m+1},T{m+1},Z{nL+l}) —
argmin{ (G, r, Z)|(G,r, 2) = (Gt} rm}, Ztmh),
(G, T, Z) = (Hkta Sk, Zk)}

end for
Return: (G{m+1}7 74{m+1}).

dramatically change the RSE, it implies that the landscape
of (9) tends to be smooth. Although a rigorous discussion on
this issue remains open, we use extensive numerical results
to verify the efficiency of Alg. 2 in the next section.

S. Experimental Results

In this section, we numerically verify the effectiveness and
efficiency of the proposed method on both the synthetic and
real-world tensors.

5.1. Synthetic Data in TT/TR Format and Beyond

Using synthetic data, we first verify: (a) TN-PS can re-
duce the required TN model size for the low-rank tensor
approximation task, reflecting the improvement of the ex-
pressive power of TNs; and (b) the proposed local-sampling
method achieves more efficient searching than the existing
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Table 2. Experimental results on synthetic data in TT/TR format. In the table, Eff. denotes the parameter efficiency defined in (Li & Sun,
2020), # Eva. denotes the number of evaluations, and “-” denotes that the methods fail to satisfy the condition RSE < 10,

TR methods TN-SS methods TN-PS methods
Trial TR-SVD TR-LM TR-ALSAR Bayes-TR | Greedy TNGA* | TNGA+ TNLS
Order 4 — Eff.1 (Is TT/TR format preserved? or No.) [#Eva.]]
A 1.00 1.00 0.21 1.00 1.00 (Yes)  1.00 (Yes) [600] | 1.00 [450]  1.00 [361]
B 0.64 1.00 1.00 0.64 0.89(No)  1.00 (Yes) [300] | 1.00[450]  1.00 [241]
C 1.17 1.17 0.23 1.00 1.17 (Yes)  1.17 (Yes) [750] | 1.17 [450] 1.17 [181]
D 0.57 0.57 0.32 - 1.00 (Yes) 1.0 (Yes) [450] | 1.00 [300]  1.00 [301]
E 0.43 0.48 0.40 0.40 1.00 (Yes) 1.00 (Yes) [1050] | 1.00 [450]  1.00 [361]
Order 6 — Eff.1 (Is TT/TR format preserved? or No.) [#Eva.]]
A 021 0.44 - ] 0.16 (No)  0.82 (No) [1650] | 1.00 [1500]  1.00 [661]
B 0.14 0.15 0.14 - 0.27 (No) - 1.00 [1350]  1.00 [601]
C 0.57 1.00 0.85 0.29 0.97 (No)  1.00 (Yes) [3300] | 1.00 [1800] 1.00 [661]
D 0.21 0.39 0.10 0.13 1.04 (Yes) 1.04 (Yes) [2700] | 1.16 [1500] 1.16 [601]
E 0.15 0.30 - 0.12 1.00 (Yes) 1.00 (Yes) [2400] | 1.00 [1050]  1.00 [541]
Order 8 — Eff:1 (Is TT/TR format preserved? or No.) [#Eva.]]
A 0.10 0.16 ] 0.03 | 0.88 (No) 0.48 (No) [2550] | 1.00 [2850] 1.00 [1021]
B 0.09 0.43 - - 0.61(No) - 1.02 [2250] 1.02 [961]
C 0.03 0.31 - 0.02 116(No)  0.49 (No) [2250] | .11 [3750] 1.11 [1321]
D 0.20 0.53 - - 1.03(No)  0.32 (No) [4050] | 1.06 [1950] 1.06 [781]
E 0.33 0.33 - : 117 (Yes) 023 (No) [1500] | 0.88 [1500]  1.17 [901]

== TNGA+
—e— TNLS

2 4 6 8
#Eva. (x100)

(a) Order-8, #Sample = 60

2 4 6 8 10 12 14 16 18 20
#Eva. (x100)

(b) Order-8, #Sample = 100

== TNGA+
—— TNLS

10 12 14 16 18

== TNGA+
—6— TNLS

2 4 6 8 10 12 14 16 18 20
#Eva. (x100)

(d) Order-12, #Sample = 100

2 4 6 8 10 12 14 16 18
#Eva. (x100)

(c) Order-12, #Sample = 60

Figure 4. Average loss with varying the number of evaluations.

sampling-based methods.

Data generation. We choose TT/TR, the most commonly
used TN formats in machine learning, to generate tensor
data. For each tensor order, i.e., the number of vertices,
N € {4,6,8}, we generate five tensors by randomly choos-
ing ranks and values of vertices (core tensor). In more detail,
the dimensions for each tensor modes are set to equal 3.
Here we choose a small dimension as same as the one in (Li
& Sun, 2020) because it is typically irrelevant to the search-

ing difficulty, as shown in Theorem 3.1. Meanwhile, we
uniformly select the TN-ranks from {1, 2, 3,4} in random,
and i.i.d. draw samples from Gaussian distribution N (0, 1)
as the values of vertices. After contracting all vertices, we
finally uniformly permute the tensor modes in random. The
permutations maintain unknown for all algorithms in the
experiment.

Experiment setup. In our method, we set the template G
as a cycle graph, the searching range for TN-ranks R = 7,
the maximum iteration #Iter = 30, the number of samples
#Sample = 60, and the tuning parameters ¢; = 0.9 and
co = 0.9,0.94, 0.98 for three different tensor orders N =
4,6, 8, respectively.

In the experiment, we also implement various TR decompo-
sition methods with adaptive rank selection for comparison,
including TR-SVD and TR-ALSAR (Zhao et al., 2016),
Bayes-TR (Tao & Zhao, 2020), and TR-LM (Mickelin &
Karaman, 2020). We also compare our method with two SO-
TAs for TN-SS, including “Greedy” (Hashemizadeh et al.,
2020) and TNGA (Li & Sun, 2020). Note that the origi-
nal TNGA is forced to search only the TN formats. For
a fair comparison, we extend it into two new versions: in
“TNGA*” we trivially allow the method to search the for-
mats and ranks simultaneously; and in “TNGA+” we use
the classic “random-key” trick (Bean, 1994) to encode G
into chromosomes, such that TNGA+ is capable of solving
TN-PS as well but remaining the same genetic operations as
TNGA. In these two methods and ours, we set the function
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Table 3. Experimental results on synthetic data in various TN
formats.

TNs Methods Trial — Eff.1 (formats preserved? Y or N.)
A B C D
TNGA+ 1.29 1.17 1.11 1.55
TTree TNLS 1.29 1.17 1.11 1.55
Greedy 129 (N) 1.03 (N) 0.79 (N) 1.27 (N)
TNGA+ 1.14 1.00 1.00 1.21
PEPS TNLS 1.14 1.00 1.00 1.21
Greedy 1.03 (N) 1.00 (Y) 1.13(Y) 1.21(Y)
TNGA+ 1.45 1.21 1.18 1.29
HT TNLS 1.45 1.21 1.18 1.29
Greedy  1.81 (N) 1.91 (N) 1.73 (N) 2.16 (N)
TNGA+ 0.95 1.32 2.30 1.00
MERA TNLS 1.09 1.88 2.88 1.03
Greedy ~ 165 (N) 078 (N) 0.8 (N)

Table 4. Average RSE| for image completion by methods
TRALS (Wang et al., 2017), Greedy, TNGA+-, and TNLS (ours),
where the values in square brackets are the number of evaluations
required by methods.

TRALS  Greedy

0.192 0.186
0.142 0.142

TNGA+

0.178 [4929]
0.132 [6086]

TNLS

0.178 [1544]
0.136 [1437]

90%
70%

¢ in (9) to be the compression ratio defined in (Li & Sun,
2020), the parameter A = 200, and apply the “Adam” opti-
mizer (Kingma & Ba, 2014) with the same parameters in
the evaluation phase of Alg. 2.

We force all methods to achieve RSE < 10~* for each
tensor, a pretty small approximation error, in the experiment.
Otherwise we say the approximation fails. For performance
evaluation, we use the Eff. index (Li & Sun, 2020), the
ratio of parameter number of TNs between the searched
structure and the one in data generation, as the main perfor-
mance measure. A larger value of Eff. implies using fewer
parameters to achieve the close approximation error. For
the sampling-based methods, we also report the total num-
ber of evaluations required to obtain the solution, shown as
[#FEwva.] in Table 2, reflecting the computational cost for
those methods.

Results. The experimental results are reported in Table 2,
where the symbol “—” denotes that the method fails to
achieve the condition RSE < 10~%, and the *“( or No)”
denotes whether the structures obtained by methods preserve
the TT/TR format or not. As shown in Table 2, TNGA+
and TNLS achieve the best Eff. values, implying that they
utilize the fewest parameters to achieve the approximation
accuracy similar to others. Most TR methods with rank
selection obtain poor performance in this case, and the per-

formance of the two TN-SS methods also becomes worse
with increasing the tensor order. We also see that “Greedy”
and TNGA* cannot guarantee the solution preserving the
TR format, even though the data are generated with TR.
Last, we observe that TNLS costs significantly fewer eval-
uations than TNGA+ to achieve the same Eff.. To see this,
we generate another two tensors of order-8, 12, respectively,
and employ TNGA+ and TNLS to search the optimal TR
structures. Figure 4 shows the loss with varying the num-
ber of evaluations, averaged from five i.i.d. runs. We see
that TNLS obtains consistently faster loss reduction than
TNGA+ with the same number of evaluations.

As well as TT/TR, we also verify the effectiveness of our
method in other TN formats, including TTree (order-7),
PEPS (order-6), hierarchical Tucker (HT, order-6, Hack-
busch & Kiihn 2009) and multi-scale entanglement renor-
malization ansatz (MERA, order-8, Cincio et al. 2008;
Reyes & Stoudenmire 2020), which are widely known in
both machine learning and physics. Being consistent with
the results for TT/TR, the results in Table 3 also demonstrate
the effectiveness of our method.

5.2. Real-World Data

We now apply the proposed method to three benchmark
problems on real-world data: image completion, image com-
pression, and model compression of tensorial Gaussian pro-
cess (TGP). In these problems, TT/TR has been widely ex-
ploited (Wang et al., 2017; Izmailov et al., 2018; Yuan et al.,
2019a). The goal of the experiment is to verify whether im-
posing TN-PS can further improve their performance. Note
that in all benchmarks TNGA+ and TNLS are implemented
in the TR format. See Appendix for experimental details.

Image completion. TNLS is utilized to predict the miss-
ing values from natural images. In the experiment, seven
images from USC-SIPI (Weber, 1997) are chosen, resized
by 256 x 256, and then reshaped by visual data tensoriza-
tion (VDT) (Latorre, 2005; Bengua et al., 2017; Yuan et al.,
2019b) into a tensor of order-9. After that, the entries
are uniformly removed at random with the missing rate
{70%,90%}, respectively. The average of the prediction
RSE is shown in Table 4.

Image compression. Tensor decomposition methods are
utilized to compress ten natural images randomly chosen
from BSD500 (Arbelaez et al., 2010). In the data prepara-
tion phase, the images are grayscaled, resized by 256 x 256,
and then reshaped into order-8 tensors by both the VDT
and the trivial reshaping operations as done in Python. The
results are shown in Table 5, where we demonstrate the
compression ratio (in the form of logarithm base 10) and
the corresponding RSE. For comparison, we implement the
methods, including TR-SVD, TR-LM, Greedy, TNGA+,
and TNLS, in the experiment.



Permutation Search of Tensor Network Structures via Local Sampling

Table 5. Average compression ratiof (log) and RSE] (in parentheses) for image compression, where “Reshape” and “VDT”, denote two
different tensorization operations, and the values in square brackets are the number of evaluations required by methods.

TR-SVD TR-LM Greedy TNGA+ TNLS
Reshape  0.92 (0.15) 0.90(0.14) 0.95(0.15) 1.36 (0.13) [5700] 1.32(0.14) [1876]
VDT 1.10(0.15)  1.07 (0.15) 091 (0.15) 1.28(0.15) [5700] 1.30 (0.15) [1546]

Table 6. Number of parameters (x 1000) and mean square error (MSE, in round brackets) for TGP model compression, where CCPP, MG
and Protein are three datasets, and the values in [square brackets] show the number of evaluations required in each method.

CCPP

MG Protein

TGP (Izmailov et al., 2018)
TNGA+
TNLS

2.64 (0.06) [N/A]
2.24 (0.06) [1500]
2.24 (0.06) [1051]

3.36 (0.33) [N/A]  2.88 (0.74) [N/A]
3.01 (0.33) [4900]  2.03 (0.74) [3900]
3.01 (0.33) [3901] 1.88 (0.74) [3601]

Compressing TGP models. In this task, we consider com-
pressing not data but parameters of a learning model. To
be specific, we compress the well-trained high-dimensional
variational mean of TGP (Izmailov et al., 2018) by tensor
decomposition. We evaluate the performance using three
datasets for the regression task, including CCPP (Tiifekci,
2014), MG (Flake & Lawrence, 2002), and Protein (Dua &
Graff, 2017), for which we have the targeted tensors of the
order-{4, 6, 9}, respectively. Table 6 shows the number of
the parameters (x 1000) after decomposition and the corre-
sponding mean square error (MSE, in the round brackets)
for each dataset.

Results. We can observe from the experimental results
that TN-PS can boost the performance of the TR models
in all tasks. With the search of vertex permutations, i.e.,
the “mode-vertex” mappings, the expressive and general-
ization power of the TR models can be significantly im-
proved. Compared with TN-SS methods like Greedy, TN-
PS takes more “inductive bias” modeled as the template. As
a consequence, imposing suitable “inductive bias” acceler-
ates the searching process and helps avoid the loss in high-
dimensional landscapes. Compared with TNGA+, TNLS
achieves similar performance in three tasks and costs signif-
icantly less number of evaluations. This result is expected
as we mentioned that the local sampling could leverage the
more efficient “steepest-descent” path, which is not thought
of in the GA-based methods.

6. Concluding Remarks

The experiential results demonstrate that TN-PS, a new vari-
ant of searching TN structures, can further improve the
expressive power of TNs in various tasks. The new search-
ing algorithm TNLS is verified as being more efficient than
existing sampling-based algorithms, with fewer evaluations
and faster convergence.

Our theoretical results analyze how the symmetry of TN

s

formats determines the number of all possible “mode-vertex’
mappings, i.e., the counting property, proving that a univer-
sal bound on the counting property exists if the TN formats
are sufficiently sparse. We also establish the basic geometry
of the search space for TN-PS. By the graph isomorphism
relation of the TN structures, we construct a semi-metric
function and prove its corresponding neighborhood for the
search space. There results are applied as the theoretical
foundation to the proposed sampling algorithm. Taken to-
gether, TN-PS explores more efficient TN structures for
tensor decomposition/completion/learning tasks, preserving
the TN formats in contrast to the previous TN-SS problem.

Limitation. One main limitation of our method is the higher
running time compared with the greedy method (Hashem-
izadeh et al., 2020) in searching. A rigorous analysis about
the smoothness of the landscape of TN-SS/PS also remains
open. Our code is available at https://github.com/
ChaoLiAtRIKEN/TNLS.
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In the appendix, we first give the proofs for the results mentioned in the main body of the paper. After that, more details of
the experiments, including tuning parameter settings and additional experimental results, will be introduced.

A. Proofs
A.1. Proof of Lemma 3.2
Proof. To obtain the result, we first have the following inequalities:
log | Aut(Go)| — log |[Sy| < log N +log Al + (N — A — 1) log(A — 1) — log N!

1 1

< _ _ A — _ A -
<(1/2—=N)logN +(A+1/2)logA+ (N —-A—-1)log(A—-1)+N—-A 12N+1+12A (10)

< (1/27N)log%+NfA+1:(1/27N)logd+NfN/d+1/12,

where the first inequality follows from Theorem 2 given in (Krasikov et al., 2006). In this theorem, it is proved that
|Aut(Gp)| is above bounded by the maximum graph degree, written A, as follows:

log |Aut(Go)| < log N +1log Al + (N — A — 1) log(A —1). (11)

The second inequality of (10) follows by |Sy| = N! and Stirling approximation of factorials, by which the terms log A! and
—log N! are bounded as follows:

1
logA!§0.510g27r+(A+1/2)logA—A+m, (12)

and

1

—logN!'< —0.5log2r — (N +1/2)logN + N — ——
og N! < og2m — (N +1/2)log N + BN T

13)

respectively. In the third line of (10), the (in-)equalities follows from: log(A — 1) < log(A), 1/ (12A) < 1/24and N > 0,
and the assumption N/A = d. The proof is thus accomplished by eliminating the logarithm on the both sides of the
inequality. O
A.2. Proof of Theorem 3.1

Proof. According to the Lagrange’s theorem in group theory, the size of L, r is equal to

Sn|-|F Sn| - |Zg|Eo!
v e v oy (o
where the equation [F, r| = |Zg|®°! holds by the TN-PS model. By the handshaking lemma in graph theory,
L
[Eo| = 5;%9(%)7 (15)

where Gy = (V,Ey), v, € V for n € [N], and deg(v,,) denotes the degree of v,,. The number of edges is thus bounded by

N N

— < |Eo| < —A. 1

50 < |Eo| < 5 (16)
The inequalities (5) in Theorem 3.1 are finally obtained by combing Lemma 3.2 to (14) and (16). ]

A.3. Proof of Lemma 3.3

Proof. First, we prove that (Gg, d¢,) defines a semi-metric space. To do this, we should prove the function d¢, defined
by (7) satisfying the following claims:
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(@) dg,(G1,G2) > 0if G1 # Ga; dg, (G, G) = 0, otherwise;

(b) da,(G1,G2) = dg, (G2, Gh);

for G1,G2, G € Gy. We first see that the three claims are naturally true for a trivial Ggy. Then in the following we only
consider the case of non-trivial Gy. To prove the claim (a), we suppose G1 # G2 with G; = g1 - Gy, G2 = g2 - Gg. It
thus give g1 # g2 holds. g1 - Aut(Go) N ga - Aut(Go) = 0, since g; - Aut(Go), i = 1,2 are left cosets of Aut(Gp) which
partitions S. We therefore have p; # po and dy(p1,p2) > 0, Vp; € g; - Aut(Go), i = 1,2, by which dg, (G1,G2) > 0.
Suppose conversely that G; = G, then we have g; lg, € Aut(Gg). We thus know that there exist p € g1 - Aut(Gp) such
that p = g19; Lgo = go. Therefore, it obeys

= 1 < D = = .
da, (G1,G2) oA s dry (p1,p2) < dry (P, g2) = dry (92, 92) =0 (17)

By dg,(G1,G2) > 0, the claim (a) is thus proved.
The claim (b) is obviously true.

Next, we show the set Ny (G) defines the neighborhood of G in G associated with d¢,. We first see that it is trivially true
if D = 0. For D > 0, we prove that dg, (G', G) < D holds for all G’ € Np(G). By the assumption G = g - G we first
have that p- Gy = gA-Gog = g- Go = G holds for all p € g- Aut(Gy) where A € Aut(Gy). By G’ € Np(G), there exists
dp € [D] such that G’ € 14, (G). Thus

dg, (G',G) = L min dry (P, p)
p’€g-Aut(Go) [1;2, ti-Aut(Go); pEg-Aut(Go)

do
<dr, <9A1 HtiA2v 9A3>

i=1
do -1
Tn <g 1};[1 2) gAas (18)

-1

do do
=dry | 1,43" (H ti> ATl lgAs | =dny (LH%J_?;)
i=1 i=1
do
= dry (1, tho—i> <dy <D,

i=1

where A; € Aut(Go), i = 1,2,3, Ay = Az and A, is equal to the identity of Aut(Gy). In (18), the fist line follows
from the definition of I, (G); the third line holds the left-isometry property of the world metric; the last line holds by the
definition of the word metric and the fact ¢ L= t; € Ty . Next, we prove the converse side, that is, G, € Np(G) for all
G, € {G' € Gyldg,(G',G) < D}. By the definition of dg,,

dGo (Gm,G) = dTN (pzvp) < D (19)

min
Pz €ga-Aut(Go);p€g-Aut(Go)
Thus, there exist A, A € Aut(Go) such that the inequality
dr(goAs, pA) = dry (1,4, 19, '9A) < D (20)

holds. Let g, = g - h,. for some h, € Sy, then dr, (1, A;'h;1A) < D. According to the definition of the word metric
dr » we know there exists d < D and a sequence of permutations {t1, s, ...,tq} C Ty such that A;1h 1A = Hle t,
where € = {+1, —1} (Liick, 2008). Since ti_1 = t;, the equation h, = A Hle t; A7 holds, and G, = g.Go = gh.Go =
gA H?Zl tiA;1Gy = gA H?zl t;Go consequently holds, where the last equation follows from A;! € Aut(Gy). The
equations say that G, is an element of I;(G), namely, G, € 1;(G) C Np(G). Combing the results from the both two sides,
the proof of the lemma is accomplished. O
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A.4. Proof of Theorem 3.4

Before the proof of Theorem 3.4, we first restate a classic claim in group theory about the cycle decomposition of a
permutation under conjugation.

Lemma A.l. Let o and T be two elements of Sn. Suppose that o = (ay,as,...,ax)(b1,a2,...,b) ... is the cycle
decomposition of o. The 0 = (1(a1),7(az),...,7(ag))(7(b1),7(az),...,7(br)) ... is the cycle decomposition of ToT~ 1,
the conjugate of o by T.

We then apply this lemma to the following result:

Lemma A.2. Let Cy = {(4,7)|1 <i < j < N} be the collection of all 2-cycles of Sy.g For any G' € 14(G) where
G = g- Gy € Gy, there exist a series of 2-cycles, ie., c1,ca, . ..,cq € Cn such that G' = szl crG.

Proof. We first consider the case d = 1. By G’ € I4(G), there exist A’ € Aut(Gy) and ¢ € T such that G’ = gA'tG.
Let ¢ € Sy be a permutation satisfying G' = ¢ - G, then we know G’ = ¢- G = c¢19A - Gy for any A € Aut(Gy).
Combining the above equations,

c=gA't(gA)! 21)

by A = A’, implying that c is the conjugate of ¢ by gA’. Applying Lemma A.1 to (21), we have that ¢ € C is true. Next,
we extent it to the case d = 2. In this we have the equation G’ = gA’t1t2G holding for t1,t2 € T . We further assume
that ¢1,c2 € Sy and ¢; = (gA’)t1(gA’) ™1, such that G’ = c;¢2G. So we can have the following equations:

G/ = gA/tth . Go = C]_gA/tQ . GO = ClgA/tQ(gA/)_lgA/GO = ClgA/tQ(gA/)_lG’ (22)

where the last equation holds for G = gA’G(. We thus have c; = gA’t3(gA’)~!, namely, the conjugate of t5 by gA’.
Applying Lemma A.1 to these equations, we know that ¢1, co € Cy. Lemma A.2 is proved by extending the above procedure
to the cases d > 2. O

Last, to prove Theorem 3.4, we see that swapping two vertices using Alg. 1 is equivalent to acting a 2-cycle from Cx on
the vertices of the graph. Since for all iy, ji. € [N], ix # ji k € [d] can be sampled with a positive probability, it deduces
that any two-cycles ¢ = (ig, jx) € Cx can be drawn with a positive probability using Alg. 1, covering I;(G) according to
Lemma A.2. O

B. Experiment details and additional results
B.1. TNGA+: an Extension of TNGA for TN-PS

In this subsection, we briefly explain how TNGA+, an extension of TNGA (Li & Sun, 2020) for TN-PS, encodes the vertex
permutations into chromosomes, which are used to seek for the optimal TN structures by genetic operators.

Figure. 5 depicts the encoding process. We encode the structures for TN-PS from two ingredients, the TN-ranks and the
permutations, respectively. For the former, by Fg, = 77[Fol | the ranks can be directly encoded into a string of dimension
|Eo| with their coordinates in Z*Fol.

For the latter, we randomly embed a permeation into the space [0, 1]/, a set of decimal number vectors, by a random-
key trick (Bean, 1994), which is popularly used to solve the optimal sequencing tasks. More precisely, the random-key
representation encode a permutation with a vector of random numbers from [0, 1], and the order of these random numbers
reflects the permutation. For instance, the code (0.46, 0.91,0.33) would represent the permutation 2 — 3 — 1. Finally,the
encoded strings are simply the concatenation of the two ingredients.

B.2. Synthetic Data in TT/TR Format

Configuration of TNGA*, TNGA+. Both of these two algorithms are based on the GA framework (Li & Sun, 2020).
Throughout the TT/TR format synthetic data experiments, they share the same parameters listed as follows. The maximum
number of generations is set to be 30. The population in each generation is set to be 150 under all settings. During each
generation in GA, the elimination rate is 36%. The reproduction trick in (Snyder & Daskin, 2006) is adopted and we
set the reproduction number to be 2. Meanwhile, for the selection probability of the recombination operation, we set
hyper-parameters o = 20 and 3 = 1. Moreover, there is a chance of 24% for each gene to mutate after the recombination
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Figure 5. Tlustration of how the TN structures for TN-PS are encoded by TNGA+.
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Figure 6. RSE and Eff. values by TNLS with the varying of the tuning parameter A, averaged over the synthetic TT/TR data.

finished. We initialize the vertices (core tensors) with each element i.i.d. sampled from Gaussian distribution N (0,0.1).
We set the learning rate of the Adam optimizer (Kingma & Ba, 2014) to 0.001. The decomposition for each individual is
repeated 4 times.

Experiment setup of Figure 4 in the manuscript. In this experiment, the order-8 tensor is selected from the TR structure
search experiment. For the order-12 data, we uniformly choose TR-ranks from {1,2, 3,4} and set the dimension of all
tensor modes to 3. The values of vertices are drawn from Gaussian distribution N (0, 1). After contracting all vertices, we
finally uniformly permute the tensor modes in random. For TNGA+ and TNLS, all the parameters are set the same as in the
TR structure search experiment, except that the population of TNGA+ and the sample number of TNLS are set to be 60 or
100.

Trade off between model complexity and approximation accuracy. In the experiment, the tuning parameter A given
in (9) balances the influence of model complexity and approximation accuracy in the searching process. Figure 6 shows how
RSE and Eff. values change with the varying of A. In more details, we choose the values of A from {0.1,1, 10,100, 1000}
and calculate the RSE and Eff. averaged over the data used in the synthetic TT/TR data experiments of the order {4, 6,8},
respectively. Other experiment configuration remains the same as used in the experiment. We can see from Figure 6 that the
Eff. values are larger than 1 consistently with a wide range of A in all the three orders. It implies that the TNLS method is
relatively stable with the varying of the parameter \ if the tensor is generated with TN models. The result is expected since
in this case the RSE will decrease dramatically once a good TN structure is found, so the value \ - RS FE, the second term of
the objective function in (9), is neglected compared with the first term corresponding to the model complexity. However,
note that the stability would be not held if the tensor is not in low-rank TN formats such as those tensorized natural images.

B.3. Synthetic Data in Other TN Format

Data Generation. For the synthetic data generation of TTree (order-7) (Ye & Lim, 2019), PEPS (order-6) (Verstraete &
Cirac, 2004), hierarchical Tucker (HT, order-6) (Hackbusch & Kiihn, 2009) and multi-scale entanglement renormalization
ansatz (MERA, order-8) (Cincio et al., 2008; Reyes & Stoudenmire, 2020) which the structures are demonstrated in Figure
7, we first set the dimensions of each tensor mode to 3 and uniformly randomly generate the TN-ranks from {1, 2, 3, 4}.
Then, each element of the cores is generated i.i.d. from Gaussian distribution N (0, 0.1). After contracting all vertices, we
finally uniformly permute the tensor modes in random.



Permutation Search of Tensor Network Structures via Local Sampling

./ .\. ./7 ./7 ./ / .‘\ /.\ /.\ /.\ | /.\
. & R °

@ ® ® / ] [ ] @ \

| /\ /N / / / / / \ / \

Cecde , , Sesese ssssecee
TTree PEPS HT MERA

Figure 7. Illustration of the TN structures applied in the synthetic experiment. The blue nodes with an outer indices indicate the external
cores and the orange nodes indicate the internal cores.

Figure 8. Illustration of the employed images in image completion experiment.

Configuration of the comparing methods. For TNGA+ and TNLS, the parameters are set as same as the TR structure
search experiment, except that for TNGA+ the population in each generation is increased to be 120. Moreover, the coding
schemes for HT and MERA are different from TTree and PEPS, which only contain external cores (vertices of color blue).
Specifically, for HT and MERA, we fix the permutation of the internal cores (vertices of color orange), and therefore only
encode the permutation of the external cores. The experimental results including the evaluation numbers of TNGA+ and
TNLS are shown in Table 3.

B.4. Real-World Data

Image completion. In this experiment, we consider uniformly random missing with the missing rates 70% and 90%. In
specific, we firstly use Matlab command “randperm” to generate random integer sequence with length that equals to the
number of image elements. Then, according to the missing rate, we select a subset of this sequence to generate a binary
mask tensor with the same size as the image. Finally, using this mask, we can generate the missing image. For recovery
performance evaluation, we use the RSE of predicted values on the missing entries.

For the proposed TNLS, we set the the maximum iteration #/ter = 30, and tuning parameters c; = 0.95, c2 = 0.9, and
the number of sampling #Sample = 150. Moreover, the rank bound, the learning rate of Adam, and the variance of the
Gaussian distribution for core tensors initialization are set to 14, 0.001, 0.1 respectively. For the trade-off parameter A\, we
set it as 0.0008, 0.0007 for missing rate 0.7, 0.9. For TNGA+, the maximum number of the generations is set to be 30. The
population in each generation are set to be 300. The elimination rate is 10% and the reproduction number is set to be 1.
Moreover, we set o = 20 and 8 = 1. The chance for each gene to mutate after the recombination is 24%. Other settings,
including A, Gaussian distribution for initialization, the rank bound and the learning rate, are the same with TNLS.

Image compression. In the experiment, we randomly select 10 natural images from the BSD500 (Arbelaez et al., 2010)".

'"https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/
images.html


https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html
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Figure 9. Illustration of the employed images in image compression experiment.

The images used in this experiment are shown in Figure 9. We use the Matlab commands “resize” and “rgb2gray” to turn
them into grayscaled images of size 256 x 256, and then rescale them to [0, 1]. Moreover, in this section, we tensorized
these images into order-8 tensors by two different ways: a directly reshaping operation denoted by “Reshape” and visual
data tensorization (Latorre, 2005; Bengua et al., 2017; Yuan et al., 2019b), a image-resolution-based tensorization method,
denoted by “VDT"”.

For the proposed TNLS, we set the the maximum iteration #Iter = 20, and tuning parameters c¢; = 0.95, c3 = 0.9, and
the number of sampling #Sample = 150. Moreover, the rank bound, the learning rate of Adam, and the variance of the
Gaussian distribution for core tensors initialization are set to be 14,0.01, 0.1, respectively. For the trade-off parameter A, we
set it as 5. For TNGA+, the maximum number of the generations is set to be 30. The population in each generation are set
to be 300. The the elimination rate is 10% and the reproduction number is set to 1. Moreover, we set « = 25 and 8 = 1.
The chance for each gene to mutate after the recombination is 30%. Other settings, including A\, Gaussian distribution for
initialization, the rank bound and the learning rate, are the same with TNLS.

Compressing TGP models. In this task, we choose three univariate regression datasets from the UCI and LIBSVM archives.
The Combined Cycle Power Plant (CCPP)? dataset consists of 9569 data points collected from a power plant with 4 features
and a single response. The MG? data have 1385 data points with 6 features and a single response. The Protein* data contain
45730 instances with 9 attributes and a single response. For all the datasets, we randomly choose 80% of the data for training
and the rest for testing, then standardize the training and testing sets respectively by removing the mean and scaling to unit
variance, which is the same with settings in TTGP (Izmailov et al., 2018).

In this experiment, we aim to demonstrate that our method is capable of searching more efficient structures in this learning
task. This is different from the above tasks since we search for TN structures of model parameters, instead of compressing
data. Specifically, tensor train Gaussian process (TTGP) tensorizes the variational mean vector in GP to a tensor whose
order equals to the number of input features, and the dimension of each order is the number of inducing points on the
corresponding feature. In our settings, for CCPP, we choose 12 inducing points on each feature and result in an order-4 tensor
of shape 12 x 12 x 12 x 12. For MG, we choose 8 inducing points and get an order-6 tensor of shape 8 x 8 X 8 X 8 x 8 x 8.
For Protein, we choose 4 inducing points and obtain an order-9 tensor of shape 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4. TTGP
uses TT to approximate these tensors. However, the original TTGP are restriced to TT representation and the TT-ranks are
treated as pre-defined hyper-parameters. For all the datasets, we set TT-ranks as 10.

To learn more compact representations, we apply the structure searching to TTGP. In particular, we firstly train a TTGP with
given TT-ranks and get the TT representation of the variational mean. Then we use our method to search for alternative TR
structures of the TT variational mean. Finally, we plug the reparameterized variational mean back into the original TTGP
model for inference. In summary, we follow the settings of TTGP except that we reparameterize the TT tensor.

For the proposed TNLS, we set the the maximum iteration #Iter = 20, and tuning parameters ¢; = 0.9, co = 0.9, and
the number of sampling #Sample = 150, 300, 300 for the TT variational mean of CCPP, MG and Protein regression

https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

*https://www.csie.ntu.edu.tw/-cjlin/libsvmtools/datasets/regression.html#mg

*nttps://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+tof+ProteintTertiary+
Structure
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https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
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task. Moreover, the rank bound, the learning rate of Adam, and the variance of the Gaussian distribution for core tensors
initialization are set to be 14,0.001, 0.01, respectively. For the trade-off parameter )\, we setitas A = 1x 103, 1x 107, 1x 103
for CCPP, MG and Protein, respectively. For TNGA+, the maximum number of the generations is set to be 30. The population
in each generation are set to be 150, 190, 300 for the TT variational mean of CCPP, MG and Protein regression task. The
elimination rate is 30% and the reproduction number is set to 1. Moreover, we set « = 20 and 3 = 1. The chance for each
gene to mutate after the recombination is 30%. Other settings, including A\, Gaussian distribution for initialization, the rank
bound and the learning rate, are the same with TNLS.



