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Abstract

Adaptive optimization methods have become the
default solvers for many machine learning tasks.
Unfortunately, the benefits of adaptivity may de-
grade when training with differential privacy, as
the noise added to ensure privacy reduces the ef-
fectiveness of the adaptive preconditioner. To
this end, we propose AdaDPS, a general frame-
work that uses non-sensitive side information to
precondition the gradients, allowing the effec-
tive use of adaptive methods in private settings.
We formally show AdaDPS reduces the amount
of noise needed to achieve similar privacy guar-
antees, thereby improving optimization perfor-
mance. Empirically, we leverage simple and read-
ily available side information to explore the per-
formance of AdaDPS in practice, comparing to
strong baselines in both centralized and feder-
ated settings. Our results show that AdaDPS im-
proves accuracy by 7.7% (absolute) on average—
yielding state-of-the-art privacy-utility trade-offs
on large-scale text and image benchmarks.

1. Introduction
Privacy-sensitive applications in areas such as healthcare
and cross-device federated learning have fueled a demand
for optimization methods that ensure differential privacy
(DP) (Dwork et al., 2006; Chaudhuri et al., 2011; Abadi
et al., 2016; McMahan et al., 2018). These methods typically
perturb gradients with random noise at each iteration in
order to mask the influence of individual examples on the
trained model. As the amount of privacy is directly related
to the number of training iterations, private applications
stand to benefit from optimizers that improve convergence
speed. To capitalize on this, a number of recent works have
naturally tried to combine DP with adaptive optimizers such
as Adagrad, RMSProp, and Adam, which have proven to be
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Figure 1. Test performance on IMDB with logistic regression.
AdaS refers to using preconditioning in AdaDPS for non-private
training. Adaptive methods (Adam) become less effective when
trained with differential privacy (DP-Adam), while AdaDPS re-
tains the benefits of adaptivity.

effective for non-private machine learning tasks, especially
those involving sparse gradients or non-uniform stochastic
noise (Duchi et al., 2011; Hinton et al., 2012; Kingma & Ba,
2015; Reddi et al., 2018a;b; Zhang et al., 2020).

Unfortunately, tasks where adaptive optimizers work par-
ticularly well (e.g., sparse, high-dimensional problems),
are exactly the tasks where DP is known to degrade perfor-
mance (Bassily et al., 2014). Indeed, as we show in Figure 1,
this can result in existing private adaptive optimization meth-
ods performing only marginally better than simple baselines
such as differentially private stochastic gradient descent
(DP-SGD), even under generous privacy budgets.

In this work, we aim to close the gap between adaptive op-
timization in non-private and private settings. We propose
AdaDPS, a simple yet powerful framework leveraging non-
sensitive side information to effectively adapt to the gradient
geometry. Our framework makes two key changes over prior
art in private adaptive optimization: (1) Rather than privatiz-
ing the gradients first and then applying preconditioners, we
show that transforming the gradients prior to privatization
can reduce detrimental impacts of noise; (2) To perform
gradient transformations, we explore using simple, easily
obtainable side information in the data. We discuss two
practical scenarios for obtaining such information below.

With Public Data. A natural choice for side information
is to use a small amount of public data generated from a
similar distribution as the private data, a common assump-
tion in private optimization (Amid et al., 2021; Asi et al.,
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2021; Kairouz et al., 2021a; Zhou et al., 2021; 2020). In
practice, public data could be obtained through proxy data
or from ‘opt-out’ users who are willing to share their in-
formation (Kairouz et al., 2021a; Aldaghri et al., 2021).
Indeed, the notion of heterogeneous DP where subsets of
samples require zero or weak privacy has been extensively
studied in prior works (e.g., Alaggan et al., 2015; Jorgensen
et al., 2015). Another line of works is to assume that the
gradients are low rank, and then use public data to estimate
this gradient subspace—thereby mitigating some of the ear-
lier discussed poor performance of DP in high-dimensional
regimes. We do not consider using public data for this pur-
pose in this work, as such a low-rank assumption might
not hold in practice, particularly for the problems settings
where adaptive optimizers are known to excel (Asi et al.,
2021). Instead, we propose to use the public data more di-
rectly: we estimate gradient statistics on public data at each
iteration, and then apply these statistics as a preconditioner
before privatizing the gradients. Despite the simplicity of
this procedure, we unaware of any work that has explored it
previously.

Without Public Data. Of course, there may also be appli-
cations where it is difficult to obtain public data, particularly
data that follows the same distribution as the private data.
In such scenarios, our insight is that for many applications,
in lieu of public data we may have access to some common
knowledge about the training data that can be (i) computed
before training, and (ii) used to improve optimization perfor-
mance in both private and non-private settings. For instance,
in many language tasks, certain aggregate statistics (e.g.,
frequency) of different words/tokens are common knowl-
edge or may be easily computed prior to training, and serve
as reasonably good estimates of the predictiveness of each
feature. AdaDPS considers leveraging such simple heuris-
tics to precondition the gradients. Perhaps surprisingly, in
our experiments (Section 6), we demonstrate that the perfor-
mance of AdaDPS when scaling gradients via these simple
statistics (such as feature frequency) can even match the
performance of AdaDPS with public data.

We summarize our main contributions below.

• We propose a simple yet effective framework, AdaDPS,
to precondition the gradients with non-sensitive side infor-
mation before privatizing them to realize the full benefits
of adaptive methods in private training. Depending on the
application at hand, we show that such side information
can be estimated from either public data or some common
knowledge about the data (e.g. feature frequencies or
TF-IDF scores in NLP applications).

• We analyze AdaDPS and provide convergence guarantees
for both convex and non-convex objectives. In convex
cases, we analyze a specific form of AdaDPS using RM-

SProp updates to provably demonstrate the benefits of our
approach relative to differentially private SGD when the
gradients are sparse.

• Empirically, we evaluate our method on a set of real-
world datasets. AdaDPS improves the absolute accuracy
by 7.7% on average compared with strong baselines under
the same privacy budget, and can even achieve similar
accuracy as adaptive methods in non-private settings. We
additionally demonstrate how to apply AdaDPS to the
application of federated learning, where it outperforms
existing baselines by a large margin.

2. Related Work
There are many DP algorithms for machine learning, includ-
ing object perturbation, gradient perturbation, and model
perturbation. In this work, we focus on the popular gradient
perturbation method with Gaussian mechanisms (Dwork
et al., 2014). Without additional assumptions on the prob-
lem structure, DP algorithms can suffer from O(

√
d

nε ) excess
empirical risk where d is the dimension of the model param-
eters and n is the number of training samples (Bassily et al.,
2014). While it is possible to mitigate such a dependence
in the unconstrained setting (Kairouz et al., 2021a; Song
et al., 2021) or assuming oracle access to a constant-rank
gradient subspace (Zhou et al., 2021; Kairouz et al., 2021a),
we do not focus on such a setting in this work, as it does
not align with the settings in which adaptive methods have
been designed (Duchi et al., 2011; Asi et al., 2021). Re-
cent work (Amid et al., 2021) proposes to use public data
differently (evaluating public loss as the mirror map in a
mirror descent algorithm) to obtain dimension-independent
bounds. However, this method do not account for gradient
preconditioning, as their approximation is a linear combina-
tion of private and public gradients. We empirically verify
AdaDPS’s superior performance in Section 6 (Table 2).

In the context of adaptive differentially private optimization,
we note that ‘adaptivity’ may have various meanings. For
example, Andrew et al. (2021) adaptively set the clipping
threshold based on the private estimation of gradient norms,
which is out of the scope of this work. Instead, our work is
related to a line of work that aims to develop and analyze dif-
ferentially private variants of common adaptive optimizers
(e.g., private AdaGrad, private Adam), which mostly focus
on estimating gradient statistics from noisy gradients (Zhou
et al., 2020; Asi et al., 2021; Pichapati et al., 2019). They
differ from AdaDPS in the order of preconditioning and pri-
vatization, the techniques used to approximate the gradient
geometry, and the convergence analysis (see Section 5 for
details). In empirical evaluation (Section 6), we compare
AdaDPS with these works on diverse tasks and show that
even AdaDPS without public data can outperform them.
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3. Preliminaries and Setup
In terms of privacy formulations, we consider classic sample-
level DP in centralized settings (Section 6.1), and a variant
of it—user-level DP—in distributed/federated environments
(Section 6.2). We define both more formally below.

Definition 1 (Differential privacy (Dwork et al., 2006)). A
randomized algorithmM is (ε, δ)-differentially private if
for all neighbouring datasetsD,D′ differing by one element,
and every possible subset of outputs O,

Pr(M(D)∈O)≤eεPr(M(D′)∈O)+δ.

Within DP, neighbouring datasets can be defined in different
ways depending on the application of interest. In this work,
we also apply AdaDPS to federated learning (Section 6.2),
where differential privacy is commonly defined at the granu-
larity of users/devices (McMahan et al., 2018; Kairouz et al.,
2021c), as stated below.

Definition 2 (User-level DP for federated learning (McMa-
han et al., 2018)). A randomized algorithm M is (ε, δ)-
differentially private if for all datasets U,U ′ differing by
one user, and every possible subset of outputs O,

Pr(M(U)∈O)≤eεPr(M(U ′)∈O)+δ.

In centralized empirical risk minimization, our goal is to
learn model parameters w ∈ Rd to fit n training samples
{xi}i∈[n]: minw F (w) = 1

n

∑n
i=1 f(xi;w), where f(·)

is the individual loss function. Optionally, there may exist
pubic data denoted as xpub, which does not overlap with
{xi}i∈[n]. We focus primarily on the classic centralized
training, and later on extend our approach to federated set-
tings (Objective (1)) (McMahan et al., 2017).
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Figure 2. The estimates of gradient statistics (e.g., second mo-
ments) in private adaptive methods (e.g., DP-Adam) are noisy and
may become uninformative of the relative importance of coordi-
nates.

In gradient-based optimization, adaptive optimizers and
their properties have been extensively studied (e.g., Mukka-
mala & Hein, 2017; Reddi et al., 2018a; Duchi et al., 2011;
Kingma & Ba, 2015). They effectively result in coordinate-
wise learning rates, which can be advantageous for many

learning problems. The preconditioners can be estimated
via a moving average of mini-batch gradients (as in, e.g.,
Adam) or simply by calculating the sum of gradients so
far (AdaGrad). In private settings, estimating the required
statistics on noisy gradients can introduce significant noise
(Figure 2), making these methods less effective. To address
this we introduce AdaDPS in the next section, and setup
some notation below.

Notations. For vectors u, v ∈ Rd, we use u + v for
coordindate-wise addition, and u

v for coordinate-wise di-
vision. For a vector v and scalar a, v + a denotes adding a
to every dimension of v. For any vector v, vj always denotes
the j-th coordinate of v. For example, gi,tj refers to the j-th
coordinate of gradient gi,t. We use ‖ · ‖M to denote the
matrix norm defined as ‖ · ‖M :=

√
〈·,M ·〉 for a symmet-

ric and positive definite matrix M ∈ Rd×d, or a diagonal
matrix with non-negative diagonal entries M ∈ Rd.

4. AdaDPS: Private Adaptive Optimization
with Side Information

Gradient-based private optimization methods usually up-
date the model parameters with noisy gradients at each
iteration and then release the private final models (Abadi
et al., 2016). To control the sensitivity of computing and
summing individual gradients from a mini-batch, methods
based on the subsampled Gaussian mechanism typically first
clip each individual gradient and then add i.i.d. zero-mean
Gaussian noise with variance determined by the clipping
threshold and the privacy budget. To use adaptivity effec-
tively, in AdaDPS, we instead propose first preconditioning
the raw gradients with side information estimated either
on public data or via some auxiliary knowledge, and then
applying the Gaussian mechanism with noise multiplier σ
on top. AdaDPS in centralized training is summarized in
Algorithm 1. Note that AdaDPS is a general framework in
that it incorporates a set of private adaptive methods. As
described in Algorithm 1, the functions φ, ϕ, andA abstract
a set of updating rules of different adaptive methods. Next,
we describe the algorithm in more detail and instantiate φ, ϕ,
and A.

Option 1 (With Public Data). We first consider estimating
gradient statistics based on public data. Functions φ, ϕ,
and A can define a very broad a set of common adaptive
updating rules, as shown below.

• Adam: At is the square root of the second moment es-
timation, and M t is the first moment estimation; with
A(gi,t, At,M t) = βtgi,t+(1−βt)Mt

At for some moving av-
eraging parameter βt.

• AdaGrad: The update corresponds to M t = 0, (At)2 =

(At−1)2 + (ĝt)2, and A(gi,t, At,M t) = gi,t

At .
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Algorithm 1: AdaDPS
Input: T , batch size b, noise multiplier σ, clipping

threshold C, initial model w1 ∈ Rd, side
information At ∈ Rd, learning rate αt,
potential momentum buffer M0 ∈ Rd

1 for t = 1, · · · , T − 1 do
2 Uniformly sample a mini-batch B (|B|=b) from

the training set and get b gradients:
gi,t ← ∇f(xi;wt), i ∈ B

3 Option 1: With public data xpub
4 Uniformly sample a mini-batch B′ (|B′|=b)

from xpub, get gradients, and update At and
M t with recurrence φ and ϕ respectively:

ĝt ← 1

b

∑
j∈B′
∇f(xj ;wt), xj ∈ xpub

At ← φ(At−1, ĝt),M t ← ϕ(M t−1, ĝt),

5 Option 2: Without public data

At estimated via heuristics
6 Precondition individual gradients by A:

gi,t ← A(gi,t, At,M t)

7 Privatize preconditioned gradients:

g̃t ← 1

b

∑
i∈B

clip
(
gi,t, C

)
+

1

b
N
(
0, σ2C2

)
,

where clip(g, C) clips a vector g to L2 norm C
8 Update the model parameter w as

wt+1 ← wt − αtg̃t

9 return wT

• RMSProp: At is the square root of the second moment
estimation with M t = 0. And A(gi,t, At,M t) = gi,t

At .

We note that the AdaDPS framework can potentially in-
corporate other adaptive optimizers, beyond what is listed
above. In our analysis and experiments, we mainly focus
on using RMSProp updates to obtain the preconditioner, be-
cause AdaGrad which sums up gradients in all iterations so
far in the denominator, often has poor practical performance,
and Adam needs to maintain an additional mean estimator.
However, we also evaluate the use of Adam within AdaDPS
in Table 6 in Appendix C, showing that it yields similar
improvements as RMSProp across all datasets. In Section 5,
we analyze the convergence of At as E[(ĝt)2], and prove
that in sparse settings, AdaDPS allows the addition of less
noise under the same privacy budget.

Option 2 (Without Public Data). When there is no public
data available, we develop simple and effective heuristics
to determine which coordinates are more predictive based
on non-sensitive side information. In particular, for gen-

eralized linear models in NLP applications, we set At to
be (i) proportional to the frequency of input tokens, or (ii)
proportional to the TF-IDF values of input tokens. Follow a
similar analysis as that of Option 1, we provide theoretical
justification in Theorem 3 in Section 5.1.1. While these
are simple approaches to remove the dependence on public
data, we find that they can significantly outperform DP-SGD
for real-world tasks with several million model parameters
(Section 6.1).

Privacy guarantees. We now state the differential privacy
guarantees of Algorithm 1. As the side information At

(as well as the potential momentum buffer M t) is non-
sensitive, its privacy property directly follows from previous
results (Abadi et al., 2016).
Theorem 1 (Privacy guarantee of Algorithm 1 (Abadi
et al., 2016)). Assume the side information At is non-
sensitive. There exist constants c1 and c2 such that for any
ε < c1b

2T/n2, Algorithm 1 is (ε, δ)-differentially private

for any δ > 0 if σ ≥ c2
b
√
T log(1/δ)

nε .

4.1. Intuition for At

In this section we provide further intuition for the AdaDPS
framework. When At is an all-ones vector, AdaDPS re-
duces to the normal DP-SGD algorithm. Otherwise, At is
indicative of how informative each coordinate is. Intuitively,
suppose clipping does not happen and the public data come
from the same distribution as private data so that for the RM-
SProp preconditioner, we have At =

√
E[(gi,t)2]. Then the

effective transformation on each individual gradient gi,t is
gi,t+N(0,σ2C2E[(gi,t)2])√

E[(gi,t)2]
. This can be viewed as first adding

non-isotropic noise proportional to the second moment of
gradients, and then applying RMSProp updates, which is
beneficial as coordinates with higher second moments are
more tolerant to noise. Therefore, AdaDPS could improve
privacy/utility tradeoffs via adding coordinate-specific noise
(formalized in Theorem 2).

We next consider a toy example to highlight one of the
regimes where AdaDPS (or, adaptive methods) is partic-
ularly effective. Consider a linear regression task with
the objective minw∈R500

1
2n

∑
i∈[n](w

>xi − yi)2 where
n = 1, 000 and each sample xi ∈ R500. In many real-
world applications, the tokens (features) are sparse and their
frequencies follow heavy-tailed distributions. Without loss
of generality, we assume the first 10% features are frequent
and uninformative; and the later 90% rare and informative.
Let the j-th feature of all data points be sampled from a
random variable xj ∈ {0, 1}. Features and the underlying
true w are generated as follows:

Pr(xj=1)=

{
0.9, j≤50

0.01, j>50
, wj=

{
0.01, j≤50

1.0, j>50
.
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Labels are generated by yi=
〈
w,xi

〉
+bi where bi∼

N (0,0.01). For AdaDPS, we assume model engineers
know which words are more frequent, thus setting Atj=1
for j≤50 and Atj=0.01 otherwise for all t. Using larger
learning rates on informative coordinates, side information
helps to improve optimization performance dramatically
(see results in Figure 3).
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Figure 3. Training loss on the linear regression problem described
in Section 4 (averaged over five runs). We tune optimal learning
rates separately for each method. Private training (right) achieves
(4.13,10−3)-DP.

Comparison to Asi et al. (2021). The most related work
to ours is Asi et al. (2021), which adds non-isotropic noise
which lies in a non-uniform ellipsoid to the gradients, and
(optionally) transforms the resulting gradients with the de-
moninator used in AdaGrad. AdaDPS differs from their
approach in several ways, as we (i) first precondition then
add noise (as opposed to the other way round), (ii) consider
a broader class of preconditioners (beyond AdaGrad), and
(iii) make the approaches to estimating gradient geometry
in Asi et al. (2021) more explicit in lieu of public data (as dis-
cussed in previous sections). Empirically, we compare with
another state-of-the-art method (Amid et al., 2021) which
outperforms Asi et al. (2021), and demonstrate AdaDPS’s
superior performance (Section 6, Table 2).1

5. Convergence Analysis
We now analyze the convergence of AdaDPS (Algorithm 1)
with and without public data, in both convex (Section 5.1)
and non-convex (Section 5.2) settings. When there is public
data available, we prove that AdaDPS adds less noise (plus,
with noise proportional to the magnitude of gradients) com-
pared with DP-SGD. Our theory extends previous proofs in
related contexts, but considers stochastic gradients, adding
random Gaussian noise to the processed gradients, and es-
timating the preconditioner on public data (as opposed to
updating it with the raw gradients on training data). When
there is no public data, we present convergence results for
general At, covering the heuristics used in practice.

1We do not compare with Asi et al. (2021) directly as the code
is not publicly available.

5.1. Convex Convergence

For convex functions, we define the optimal model w∗ as
w∗∈ argminwF (w). First we state a set of assumptions
that are used in the analyses.

Assumption 1. There exists a constant D such that ‖wt−
w∗‖2≤D for any t∈[T ].

Assumption 2. There exists a constant C such that∥∥∥ gi,tAt

∥∥∥
2
≤C for any t∈[T ] and i∈[n].

Assumption 3. Denote gt:= 1
b

∑
i∈Bg

i,t. There exists
a constant a∈(0,1] such that for any j∈[d] and t∈[T ],
a(ĝtj)

2≤(gtj)
2≤ 1

a (ĝtj)
2 holds.

Assumption 2 aims to bound the L2 norm of the transformed
gradient, thus resulting in bounded L2 sensitivity on the
operation of calculating and averaging (scaled) individual
gradients from a mini-batch. Assuming bounded stochastic
gradient norm is standard in prior works on convex and
non-convex private optimization (e.g., Kairouz et al., 2021a;
Zhou et al., 2020). Assumption 3 bounds the dissimilarity
between public and private data.

Within the framework of AdaDPS, we explore the con-
vergence of the RMSProp preconditioner where At=√

E[(ĝt)2]+εt (with public data) where εt is some small
constant or At is obtained via side information heuristics.
We first look at the case where there exist public data, and
therefore the exact updating rule at the t-th iteration is:

ĝt,gt←1

b

∑
j∈B′
∇f(xj ;wt) (xj∈xpub),

1

b

∑
i∈B
∇f(xi;wt),

vt←βtvt−1+(1−βt)(ĝt)2, At←
√
vt+εt,

wt+1←wt−αt
(
gt

At
+N

)
, N∼1

b
N (0,σ2C2).

Theorem 2 below states the convergence guarantees.

Theorem 2. Assume F (w) is a convex function w.r.t. w. Let
Assumptions 1-3 hold. Additionally, choose βt such that 1−
γ
t≥β

t≥1− 1
t holds for some γ∈(0,1]; and let

√
t+1εt+1≥√

tεt for any t. After running Algorithm 1 using learning
rates αt= α√

t
with public data for T iterations, we have

min
t∈[T ]

E[F (wt)]−F ∗≤ G√
T

d∑
j=1

E
[
ATj
]
+

α√
T

max
t∈[T ]

E
[
‖N‖2At

]
,

where F ∗:=F (w∗), G=D2

2α+α(2−γ)
aγ , and ATj =

√
vTj +εT .

The full proof is deferred to Appendix A.1. Our proof ex-
tend the proof of the original RMSProp method with full
gradients in Mukkamala & Hein (2017) to stochastic and
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private settings. From Theorem 4, we see that the first term
in the bound is standard for the RMSProp optimizer, and
the last term is due to noise added to ensure differential
privacy. Fixing the noise multiplier σ, the second term de-
pends on the clipping value C and the preconditioner At.
We see that when the gradients are sparse, it is likely that
the added DP noise would be significantly reduced. In other
words, to guarantee overall (ε,δ)-differential privacy by run-
ning T total iterations, we can set σ2=O

(
b2T log(1/δ)

n2ε2

)
and

T=O

(
n2ε2

maxt∈[T ]E[‖At‖1]log(1/δ)

)
. The convergence rate

therefore becomes

min
t∈[T ]

E[F (wt)]−F ∗≤O

(√
maxt∈[T ]E[‖At‖1]

nε

)
.

When gradients are sparse (hence maxt∈[T ]E[‖At‖1]<d),
the amount of noise added will be significantly smaller com-
pared with that of vanilla DP-SGD to guarantee the same
level of privacy. This highlights one regime where AdaDPS
is particularly useful, though AdaDPS also yield improve-
ments in other settings with dense gradients (Table 6 in the
appendix). Here, Theorem 2 assumes access to E[(ĝt)2].
When there is no public data available, we leverage other
easily obtainable side information to determine fixed At

prior to training, as analyzed in the next section.

5.1.1. FIXED At

Theorem 3. Let assumptions in Theorem 2 hold. Running
Algorithm 1 using learning rates αt= α√

t
without public

data with side information A∈Rd for T iterations gives

min
t∈[T ]

E[F (wt)]−F ∗≤O

αR+1√
T

d∑
j=1

Aj+
α√
T
E
[
‖N‖2A

],
where R:=maxj,t

E[(gtj)
2]

A2
j

and gt:= 1
b

∑
i∈Bg

i,t.

From Theorem 3 above, we observe thatA should be chosen
such that both R and

∑d
i=jAj are minimized. For a large

class of generalized linear models, we are able to obtain
appropriate A based on the feature space information to
control the values of R, as discussed in the following.

Considering generalized linear models. Under the model
parameter w∈Rd, for any xi, the gradients are c(xi;w)xi

where c(xi;w)∈R is a function of xi and w. We assume
that for any i∈[n] and w, there exists a constant cmax such
that |c(xi;w)|≤cmax. One natural choice of A is to set Aj=√

E[x2j ]+ε for each coordinate j∈[d] (such that R≤c2max),

which could improve the noise term E
[
‖N‖2A

]
when the

features are sparse. Nevertheless, E[x2] can be unrealistic
to obtain prior to training. Instead, one side information

of choice is E[x], which implies how rare the raw features
are in some NLP applications. Let Aj=E[|xj |]+ε (j∈[d]).
Then

R=max
j,t

E
[
(gtj)

2
]

(E[|xj |]+ε)2
≤max

j,t

c2maxE[x2j ]

(E[|xj |])2+ε2
.

To reason about how large R is, we consider a simple setup
where each feature takes the value of v>0 with probability
p, and 0 with probability 1−p. It is straightforward to see
the scaling of the last two terms in the convergence bound
in Theorem 3:

R

d∑
j=1

Aj=O

(
1

p

)
O(dpv)=O(dv),

E
[
‖N‖2A

]
=σ2C2

d∑
j=1

Aj=O

(
max
i,t
‖gi,t‖2 dpv

(pv+ε)2

)
.

E
[
‖N‖2A

]
will reduce to O(d) if the gradients are sparse

in a certain way, i.e., maxi,t‖gi,t‖2=O(p). Note that only
using this simple first moment information (Aj=E[|xj |]+
ε), we are not able to obtain a constant improvement in
the convergence bound as in Theorem 2 with public data.
However, we empirically demonstrate that these ideas can
be effective in practice in Section 6.

5.2. Non-Convex Convergence

In addition to convex problems, we also consider conver-
gence to a stationary point for non-convex and smooth func-
tions. We introduce additional assumptions in the following.

Assumption 4. F (·) is L-smooth.

Assumption 5. The expectation of stochastic gradient vari-
ance is bounded, i.e., E[‖gi,tj −E[gi,tj ]‖22]≤τ2j for all i,t,j.
Denote τ2:=(τ21 ,···,τ2d )∈Rd.

Assumption 4 together with Assumption 1 implies that there
exists a constant that bounds ‖∇F (wt)‖ for any t, which
we denote as B.

Theorem 4. Let Assumptions 1-5 hold. After running Algo-
rithm 1 with public data for T iterations using a constant
learning rate α and a constant ε, choosing the constants to
satisfy α≤ ε

2L and B
√

1−β≤
√
aε
4 , we have

1

T

∑
t∈[T ]

E
[
‖∇F (wt)‖2

]
≤O
(

1

T

)
+O

(
‖τ2‖1
b

+
σ2

b2

)
.

The proof is mostly extended from Adam’s proof in Reddi
et al. (2018a) (see Appendix A.2 for complete steps). When
the batch size increases, both the stochastic gradient noise
and differential privacy noise would be reduced.
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Theorem 5. Let Assumptions 1-5 hold. After running Algo-
rithm 1 with a fixed A as prior information for T iterations
using a constant learning rate α and a constant ε, choosing
the constants to satisfy α≤ ε

L , we have

1

T

∑
t∈[T ]

E
[
‖∇F (wt)‖2A−1

]
≤O
(

1

T

)
+O

(
τ2

A

1

b
+
σ2

b2

)
.

6. Experiments
We evaluate the performance of AdaDPS in both central-
ized (Section 6.1) and federated (Section 6.2) settings for
various tasks and models. In centralized training, we
investigate two practical scenarios for obtaining side in-
formation with and without public data (Section 6.1.1
and 6.1.2). We describe our experimental setup below;
details of datasets, models, and hyperparameter tuning are
described in Appendix B. Our code is publicly available
at github.com/litian96/AdaDPS.

Datasets. We consider common benchmarks for adaptive
optimization in centralized or federated settings (Amid et al.,
2021; Reddi et al., 2018a; 2021) involving varying types
of models (both convex and non-convex) and data (both
text and image data). Both linear and non-convex models
contain millions of learnable parameters.

Hyperparameters. We fix the noise multiplier σ for each
task, and select an individual (fixed) clipping threshold for
each differentially private run. To track the privacy loss (to
ensure (ε,δ)-DP), we add the same amount of noise to all
compared methods, set the δ value to be the inverse of the
number of all training samples, and compute ε using Rényi
differential privacy (RDP) accountant for the subsampled
Gaussian mechanism (Mironov et al., 2019).

6.1. Centralized Training

Common Baselines. One can directly privatize an adaptive
optimizer by first privatizing the raw gradients, and then ap-
plying that adaptive method on top of noisy gradients (Zhou
et al., 2020). We consider these baselines named DP-Adam
or DP-RMSProp where the adaptive optimizer is chosen to
be Adam or RMSProp (same as DP-Adam appearing in pre-
vious sections). As the empirical results of DP-Adam and
DP-RMSProp are very similar (Table 6 in the appendix),
in the main text, we mainly compare AdaDPS with DP-
Adam (Zhou et al., 2020) and DP-SGD (Abadi et al., 2016).
For completeness, we present the exact DP-Adam algorithm
in Appendix B.

6.1.1. WITH PUBLIC DATA

In the main text, we set the public data size to be 1% of train-
ing data size. We further explore the effects of public data
size empirically in Table 10, Appendix C. Next, we present

results of comparing AdaDPSwith several baselines, and re-
sults using both in-distribution (ID) and out-of-distribution
(OOD) data as public data to estimate the preconditioner.

Preconditioning Noisy Gradients with Public Data. In
addition to DP-SGD and DP-Adam mentioned in Sec-
tion 6.1, we consider another method of preconditioning
the noisy gradients with second moment estimates obtained
from public data. Specifically, the updating rule at iteration
t is

g̃t←1

b

∑
i∈B

clip
(
gi,t,C

)
+

1

b
N (0,σ2C2),

g̃t← g̃t√
E[(ĝt)2]+εt

, where ĝt:=∇f(x;wt) for x∈xpub.

We call this adaptive baseline DP-R-Pub, which is equiv-
alent to standard DP-RMSProp but using public data to
estimate the preconditioner. Comparing with this method di-
rectly reflects the importance of the order of preconditioning
and privatization in AdaDPS.

Results with in-distribution proxy data (randomly sampled
from training sets) are shown in Figure 4 and Table 1 below.
We see that across three datasets, (i) DP-Adam does not
necessarily outperform DP-SGD all the same, (ii) AdaDPS
improves over all baselines significantly, including DP-R-
Pub. Full results involving DP-RMSProp and AdaDPS with
Adam as the updating rule are presented in Table 6.
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Figure 4. Test accuracies of baselines and AdaDPS assuming ac-
cess to public data. ε values on these two datasets are 0.84 and 2.8,
respectively. AdaDPS significantly improves test performance,
even reaching an accuracy much higher than the accuracy of SGD
in non-private training on StackOverflow.

Methods Loss ×100 (σ=1) Loss ×100 (σ=0.75)
DP-SGD 5.013 (.001) 3.792 (.001)
DP-Adam 3.697 (.020) 3.286 (.016)
AdaDPS 3.566 (.008) 3.158 (.003)

Table 1. Test reconstruction loss (mean and standard deviation
across three runs) on MNIST under a deep autoencoder model.
σ=1 and σ=0.75 correspond to ε=1.6 and ε=3, respectively. DP-
Adam works well in this task compared with DP-SGD. AdaDPS
improves over DP-Adam.

https://github.com/litian96/AdaDPS
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For completeness, we also evaluate AdaDPS on the MNIST
image classification benchmark, and observe that it yields
0.5%−2% accuracy improvements (Table 6), depending on
which specific adaptive method to use.

Comparisons with Amid et al. (2021). We compare
AdaDPS with one recent work, PDA-DPMD, which is the
state-of-the-art that leverages public data to improve pri-
vacy/utility tradeoffs in a mirror descent framework (Amid
et al., 2021). We take their proposed approximation, where
the actual gradients are a convex combination of gradients
on private and public data. As this approximation does not
precondition gradients, PDA-DPMD could underperform
AdaDPS in the tasks where adaptivity is critical, as shown
in Table 2 below.

Datasets Metrics PDA-DPMD AdaDPS AdaDPS
w/ public w/ public w/o public

IMDB accuracy 0.62 0.80 0.75
StackOverflow accuracy 0.33 0.40 0.41
MNIST loss 0.039 0.036 —

Table 2. Comparison with a recent method (PDA-DPMD) using
public data in private mirror descent. AdaDPS outperforms PDA-
DPMD due to preconditioning.

Out-Of-Distribution Public Data As mentioned in Sec-
tion 1, public data could be obtained via a small amount
of proxy data or ‘opt-out’ users that do not need privacy
protection. We consider two practical cases where we use
OOD data to extract side information. For IMDB sentiment
analysis, we use a small subset of Amazon reviews2 (Zhang
et al., 2015) as public data (1% the size of IMDB). Ama-
zon reviews study a more fine-grained 5-class classification
problem on product reviews, and we map labels {1, 2} to
0 (negative), and labels {4, 5} to 1 (positive). For Stack-
Overflow tag prediction task which consists of 400 users
with different styles and interested topics, we simply hold
out the first four of them to provide public data. We show
results in Table 3 below. We see that the preconditioners
obtained from out-of-distribution but related public data are
fairly effective.

Datasets DP-SGD AdaDPS AdaDPS
OOD public ID public

IMDB 0.63 0.79 0.80
StackOverflow 0.28 0.40 0.40

Table 3. Using small out-of-distribution data as public data
achieves the same improvements. For IMDB, we leverage Amazon
reviews data (1% the size of IMDB) as public data. For Stack-
Overflow, we hold out 1% users as those who opt out of privacy
training.

2figshare.com/articles/dataset/Amazon Reviews Full/13232537/1

6.1.2. WITHOUT PUBLIC DATA

When it is difficult to obtain public data that follow suf-
ficiently similar distribution as private training data, we
explore two specific heuristics as side information tailored
to language tasks: token frequencies and TF-IDF values of
input tokens (or features). These statistics are always known
as open knowledge, thus can be used as an approximate
how important each feature is. We compare AdaDPS with
DP-SGD and DP-Adam described before.

At Based on Token Frequencies. One easily obtainable
side information is token frequencies, and we can set
At (t∈[T ]) to be proportional to that accordingly. Note
that our implicit assumption here is that rare features are
more informative than frequent ones. We investigate the
logistic regression model on two datasets in Figure 4 be-
low. Despite the simplicity, this simple method works well
on StackOverflow and IMDB under a tight privacy budget,
outperforming DP-SGD and DP-Adam significantly. Espe-
cially for StackOverflow, the test accuracy is the same as
that of AdaDPSwith a small set of public data (Figure 4).
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Figure 5. AdaDPS uses token frequencies as the side information,
demonstrating superior performance than the baselines. Meth-
ods in each subfigure reach (0.84,4.2×10−6)- and (2.8,4×10−5)-
DP.

At Based on TF-IDF Values. Another common criterion
to measure the relevance of tokens to each data point in
a collection of training data is TF-IDF values. With the
presence of such information available in a data processing
pipeline, we explore the effects of At being inversely pro-
portional to TF-IDF scores for linear models. The results are
reported in Table 4. The ‘ideal’ method refers to AdaDPS
with RMSProp updates and the second moment estimated
on clean gradients from private training data, which serves
a performance upper bound. As expected, across all meth-
ods, TF-IDF features result in higher accuracies than BoW
features. AdaDPS outperforms the baselines by ∼10% ab-
solute accuracy, only slightly underperforming the ‘ideal’
oracle.

Remark (Side Information in Non-Private Training).
The idea of using side information (with or without public
data) can also improve the performance of vanilla SGD in
non-private training, yielding similar accuracies as that of

https://figshare.com/articles/dataset/Amazon_Reviews_Full/13232537/1
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Features Methods
DP-SGD DP-Adam AdaDPS ideal

BoW 0.62 (.02) 0.68 (.01) 0.75 (.01) 0.82 (.01)
TF-IDF 0.68 (.01) 0.65 (.01) 0.80 (.00) 0.83 (.00)

Table 4. We preprocess IMDB into two versions with either BoW
or TF-IDF features, and report average test accuracy along with
standard deviation across three runs. AdaDPS with At being
inversely proportional to features’ TF-IDF values outperforms the
baselines of DP-SGD and DP-Adam by a large margin. AdaDPS
also performs relatively closely to the ‘ideal’ upper bound.

adaptive methods. We report additional results along this
line in Table 9 in the appendix.

6.2. Federated Learning

In this section, we discuss AdaDPS adapted to federated
learning (FL) (learning statistical models over heteroge-
neous networks while keeping all data local) to satisfy user-
level, global differential privacy (assuming a trusted central
server). The canonical objective for FL is to fit a single
model w∈Rd to data across a network of n devices:

min
w∈Rd

F (w)=

n∑
i=1

pifi(w), (1)

where fi(w) is the empirical local loss on each device i,
and pi is some pre-defined weight for device i such that∑n
i=1pi=1, which can be 1

n or proportional to the number
of local samples. In this work, we simply set pi= 1

n , i∈[n].
For this privacy-sensitive application, we assume there is no
public data available.

Due to the practical constraints of federated settings (e.g.,
unreliable network conditions, device heterogeneity, etc),
federated optimization algorithms typically randomly sam-
ples a small subset of devices at each communication round,
and allows each device to run optimization methods lo-
cally (e.g., local mini-batch SGD) before sending the up-
dates back to the server (McMahan et al., 2017). Adapting
AdaDPS to federated learning is not straightforward, rais-
ing questions of applying preconditioning at the server side,
the device side, or both (Wang et al., 2021). We empiri-
cally find that on the considered dataset, preconditioning
the mini-batch gradients locally at each iteration demon-
strates superior performance than preconditioning the entire
model updates at the server side. The exact algorithm is
summarized in Algorithm 3 in the appendix.

We investigate the same StackOverflow dataset described
in Section 6.1, but follow its original, natural partition (by
Stack Overflow users) for federated settings, one device
per user. There are 400 devices in total for the subsampled
version we use. We select 20 devices at each communication
round and use a noise multiplier σ=0.3. While we arrive
at a large ε value for user-level DP, the final model could

still be useful for defending against membership inference
attacks in practice (Kairouz et al., 2021b).
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Figure 6. Test accuracy of StackOverflow in non-private and pri-
vate settings under (34,0.0025) user-level DP (Definition 2).
AdaDPS extended to federated learning (Algorithm 3 in the ap-
pendix) improves over baselines of DP-FedAvg (McMahan et al.,
2018) and DP-FedAdam by 5% in terms of test accuracy.

In Figure 6, we plot test accuracy versus the number of com-
munication rounds. AdaDPS has ∼5% higher test accuracy
than other two methods. We note that in federated learning
applications involving massive and unreliable networks, it
is not always realistic to allow for uniform device sampling.
Incorporating recent advances in DP without sampling (e.g.,
Kairouz et al., 2021b) to address this is left for future work.

7. Conclusion
In this work, we explored a simple and effective framework,
AdaDPS, to realize the benefits of adaptive optimizers in
differentially private learning via side information. Such
information is used to precondition gradients before privatiz-
ing them. We analyzed the benefits of AdaDPS in terms of
reducing the effective noise to reach similar privacy bounds,
and empirically validated its superior performance across
various tasks in both centralized and federated settings.
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A. Convergence
A.1. Proof for Theorem 2 (Convex cases)

Based on our assumptions, the updating rule becomes

gt←1

b

∑
i∈B
∇f(xi;wt) (2)

ĝt←1

b

∑
j∈B′
∇f(xj ;wt), xj∈xpub (3)

vt←βtvt−1+(1−βt)(ĝt)2 (4)

At←
√
vt+εt (5)

wt+1←wt−αt
(
gt

At
+N

)
, N∼1

b
N (0,σ2C2) (6)

We extend the proof in Mukkamala & Hein (2017) to stochastic, private cases with preconditioner estimated on public data.
Based on the updating rule, we have∥∥wt+1−w∗

∥∥2
At (7)

=
∥∥wt−αt(At)−1gt−αtN−w∗∥∥2

At (8)

=
∥∥wt−w∗∥∥2

At+
∥∥αt(At)−1gt+αtN∥∥2

At−2
〈
wt−w∗,αtgt+αtAtN

〉
(9)

=
∥∥wt−w∗∥∥2

At−2αt
〈
gt,wt−w∗

〉
+(αt)2

〈
gt,(At)−1gt

〉
−2αt〈wt−w∗,AtN〉+(αt)2‖N‖2At+2(αt)2〈gt,N〉. (10)

Rearranging terms gives〈
gt,wt−w∗

〉
=
‖wt−w∗‖2At−‖wt+1−w∗‖2At

2αt
+
αt

2

〈
gt,(At)−1gt

〉
−〈wt−w∗,AtN〉+αt

2
‖N‖2At+αt〈gt,N〉. (11)

Take expectation on both sides conditioned on wt,〈
∇F (wt),wt−w∗

〉
=
Et
[
‖wt−w∗‖2At

]
−Et[‖wt+1−w∗‖2At ]

2αt
+
αt

2
Et
[〈
gt,(At)−1gt

〉]
+
αt

2
Et
[
‖N‖2At

]
, (12)

where we have used the fact that N is a zero-mean Gaussian variable independent of gt,wt. Taking expectation on both
sides and using the convexity of F (·):

E[F (wt)]−F (w∗)≤
E[‖wt−w∗‖2At ]−E[‖wt+1−w∗‖2At ]

2αt
+
αt

2
E[
〈
gt,(At)−1gt

〉
]+
αt

2
E
[
‖N‖2At

]
. (13)

Applying telescope sum, we have

T∑
t=1

(
E[F (wt)]−F (w∗)

)
(14)

≤
‖w1−w∗‖2A1

2α1
+

T∑
t=2

(
E
[
‖wt−w∗‖2At

]
2αt

−
E
[
‖wt−w∗‖2At−1

]
2αt−1

)
+

T∑
t=1

αt

2
E
[〈
gt,(At)−1gt

〉]
+

T∑
t=1

αt

2
E
[
‖N‖2At

]
. (15)

Let αt= α√
t
,

T∑
t=1

(
E[F (wt)]−F (w∗)

)
(16)

≤
‖w1−w∗‖2A1

2α
+

T∑
t=2

E
[
‖wt−w∗‖2√

tAt−
√
t−1At−1

]
2α︸ ︷︷ ︸

T1

+

T∑
t=1

α

2
√
t
E
[〈
gt,(At)−1gt

〉]
︸ ︷︷ ︸

T2

+

T∑
t=1

α

2
√
t
E
[
‖N‖2At

]
. (17)
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Let 1− γ
t≥β

t≥1− 1
t for some γ∈(0,1] and

√
tεt≥
√
t−1εt−1. We first bound T1. Based on the relations between vt and

vt−1 and βt≥1− 1
t , we can prove for any t,j

√
t(Atj)=

√
t
(√

vtj+ε
t
)

=
√
t

(√
βtvt−1j +(1−βt)(ĝtj)2+εt

)
≥
√

(t−1)vt−1j +
√
t−1εt−1. (18)

So for any j,t,
√
tAtj≥

√
t−1At−1j . (19)

Hence,

E

[
T∑
t=2

‖wt−w∗‖2√
tAt−

√
t−1At−1

]
=E

 T∑
t=2

d∑
j=1

(wtj−w∗j )2
(√

tvtj+
√
tεt−

√
(t−1)vt−1j −

√
t−1εt−1

) (20)

=E

 d∑
j=1

T∑
t=2

(wtj−w∗j )2
(√

tvtj+
√
tεt−

√
(t−1)vt−1j −

√
t−1εt−1

) (21)

≤E

 d∑
j=1

D2
T∑
t=2

(√
tvtj+

√
tεt−

√
(t−1)vt−1j −

√
t−1εt−1

) (22)

=E

 d∑
j=1

D2
(√

TvTj +
√
TεT−

√
v1j−ε

1
). (23)

We next bound T2. We prove a variant of Lemma 4.1 in Mukkamala & Hein (2017). The major differences are in that we
consider the stochastic case and estimating vt on public data. We prove the following inequality by induction:

T∑
t=1

E

 (gtj)
2√

tvtj+
√
tεt

≤2(2−γ)

aγ
E
[√

TvTj +
√
TεT

]
, j∈[d]. (24)

For t=1,

E

 (g1j )2√
vtj+ε

1

=E

 (g1j )2√
(1−β1)(ĝ1j )2+ε1

≤E
 (ĝ1j )2

a
√

(1−β1)(ĝ1j )2+ε1

≤E

√

(1−β1)(ĝ1j )2+ε1

a(1−β1)

. (25)

Suppose that the conclusion holds when t=T−1, i.e., for any j∈[d],

T−1∑
t=1

E

 (gtj)
2√

tvtj+
√
tεt

≤2(2−γ)

aγ
E
[√

(T−1)vT−1j +
√
T−1εT−1

]
. (26)

In addition, combined with the fact that vTj =βT vT−1j +(1−βT )(ĝTj )2 and
√
TεT≥

√
T−1εT−1, we have

√
(T−1)vT−1j +

√
T−1εT−1≤

√
(T−1)vTj

βT
−

(T−1)(1−βT )(ĝTj )2

βT
+
√
TεT (27)

≤

√
TvTj −

(T−1)(1−βT )(ĝTj )2

βT
+
√
TεT (28)

≤
√
TvTj −

(T−1)(1−βT )(ĝTj )2

2βT
(√

TvTj +
√
TεT

)+
√
TεT (29)

≤
√
TvTj +

√
TεT−

a(T−1)(1−βT )(gTj )2

2βT
(√

TvTj +
√
TεT

) . (30)
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The third inequality comes from
√
a−b≤

√
a− b

2
√
a

(a≥b) by letting a be TvTj and b be
(T−1)(1−βT )(ĝTj )2

βT . Hence

T∑
t=1

E

 (gtj)
2√

tvtj+
√
tεt

≤2(2−γ)

aγ
E

√TvTj +
√
TεT−

a(T−1)(1−βT )(gTj )2

2βT
(√

TvTj +
√
TεT

)
+E

 (gTj )2√
TvTj +

√
TεT

 (31)

≤2(2−γ)

aγ
E
[√

TvTj +
√
TεT

]
+

(
1− (2−γ)(T−1)(1−βT )

γβT

)
E

 (gTj )2√
TvTj +

√
TεT

 (32)

≤2(2−γ)

aγ
E
[√

TvTj +
√
TεT

]
. (33)

We then bound T2 as follows.

T2=E

 T∑
t=1

αt

2

d∑
j=1

(gtj)
2√

vtj+ε
t

=
α

2
E

 T∑
t=1

d∑
j=1

(gtj)
2√

tvtj+
√
tεt

≤α
2

d∑
j=1

2(2−γ)

aγ
E
[√

TvTj +
√
TεT

]
. (34)

Noting that ∥∥w1−w∗
∥∥2
A1

2α
≤D

2

2α

d∑
j=1

(√
v1j+ε1

)
, (35)

combined with the bounds of T1,T2 yields
T∑
t=1

(
E[F (wt)−F (w∗)]

)
≤
(
D2

2α
+
α(2−γ)

aγ

) d∑
j=1

E
[√

TvTj +
√
TεT

]
, (36)

which implies that

min
t∈[T ]

E[F (wt)]−F (w∗)≤
(
D2

2α
+
α(2−γ)

aγ

)
1

T

d∑
j=1

E
[√

TvTj +
√
TεT

]
+

1

T

T∑
t=1

α

2
√
t
E
[
‖N‖2At

]
(37)

≤
(
D2

2α
+
α(2−γ)

aγ

)
1√
T

d∑
j=1

E
[√

vTj +εT
]
+

α√
T

max
t∈[T ]

E
[
‖N‖2At

]
. (38)

The first term is standard for the RMSprop optimizer, and the last term is due to noise added to ensure differential
privacy. To guarantee overall (ε,δ)-differential privacy by running T total iterations, we set σ2=O

(
b2T log(1/δ)

n2ε2

)
and

T=O

(
n2ε2

maxt∈[T ]E[
∑d

j=1A
t
j]log(1/δ)

)
. The convergence rate becomes

min
t∈[T ]

E[F (wt)]−F (w∗)≤O


√

maxt∈[T ]E
[∑d

j=1A
t
j

]
log(1/δ)

nε

. (39)

A.1.1. PROOF FOR THEOREM 3 (FIX At BEFORE TRAINING)

Denote the side information as a fixed A at any iteration t. Similar as previous analysis, setting a decaying learning rate
αt= α√

t
, we have

T∑
t=1

(
E[F (wt)]−F (w∗)

)
(40)

≤‖w
1−w∗‖2A

2α
+

T∑
t=2

E
[
‖wt−w∗‖2√

tA−
√
t−1A

]
2α︸ ︷︷ ︸

T1

+

T∑
t=1

α

2
√
t
E
[〈
gt,(A)−1gt

〉]
︸ ︷︷ ︸

T2

+

T∑
t=1

α

2
√
t
E
[
‖N‖2A

]
. (41)
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To bound T1, we have

T∑
t=2

E
[
‖wt−w∗‖2√

tA−
√
t−1A

]
=E

 T∑
t=2

d∑
j=1

(wtj−w∗j )2
(

(
√
t−
√
t−1)(Aj)

)≤O
√T d∑

j=1

Aj

−∥∥w1−w∗
∥∥2
A
. (42)

We consider T2 next. From the assumptions on the clipping bound,

R:=max
j,t

E
[
(gtj)

2
]

A2
j

≤C2. (43)

Then

T∑
t=1

d∑
j=1

α

2
√
tAj

E
[
(gtj)

2
]
≤

T∑
t=1

d∑
j=1

α

2
√
t
RAj≤

√
TαR

d∑
j=1

Aj . (44)

Therefore, we obtain

min
t∈[T ]

E[F (wt)]−F (w∗)≤O

 1√
T

d∑
j=1

Aj+
αR√
T

d∑
j=1

Aj+
α√
T
E
[
‖N‖2A

]. (45)

A.2. Proof for Theorem 4 (Non-convex and smooth cases)

We use the same ε at each iteration. Let∇jF (w) denote the j-th coordinate of∇F (w) for anyw. Based on theL-smoothness
of F (·),

F (wt+1)≤F (wt)−αt
d∑
j=1

∇jF (wt)·

 gtj√
vtj+ε

+N

+
(αt)2L

2

d∑
j=1

 (gtj)
2(√

vtj+ε
)2 +N2+

gtj√
vtj+ε

·2N

, (46)

where N∼ 1
bN (0,σ2C2) and E[N2]= σ2C2

b2 . Taking expectation conditioned on wt on both sides gives

Et[F (wt+1)]≤F (wt)−αt
d∑
j=1

∇jF (wt)Et

 gtj√
vtj+ε

+
(αt)2L

2

d∑
j=1

Et

 (gtj)
2(√

vtj+ε
)2
+

(αt)2Ld

2b2
σ2C2. (47)

The following proof is extended from that of Theorem 1 in Reddi et al. (2018a).

Et[F (wt+1)]≤F (wt)−αt
d∑
j=1

∇jF (wt)Et

 gtj√
vtj+ε

−
gtj√

βvt−1j +ε
+

gtj√
βvt−1j +ε



+
(αt)2L

2

d∑
j=1

Et

 (gtj)
2(√

vtj+ε
)2
+

(αt)2Ld

2b2
σ2C2 (48)

≤F (wt)−αt
d∑
j=1

(∇jF (wt))2√
βvt−1j +ε

+αt
d∑
j=1

∣∣∇jF (wt)
∣∣∣∣∣∣∣∣Et

 gtj√
vtj+ε

−
gtj√

βvt−1j +ε

∣∣∣∣∣∣
+

(αt)2L

2

d∑
j=1

Et

 (gtj)
2(√

vtj+ε
)2
+

(αt)2Ld

2b2
σ2C2. (49)
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Further,

gtj√
vtj+ε

−
gtj√

βvt−1j +ε
≤
∣∣gtj∣∣

∣∣∣∣∣∣ 1√
vtj+ε

− 1√
βvt−1j +ε

∣∣∣∣∣∣ (50)

=

∣∣gtj∣∣(√
vtj+ε

)(√
βvt−1j +ε

) (1−β)(ĝtj)
2(√

vtj+
√
βvt−1j

) (51)

=

∣∣gtj∣∣(√
vtj+ε

)(√
βvt−1j +ε

) (1−β)(ĝtj)
2(√

βvt−1j +(1−β)(ĝtj)
2+
√
βvt−1j

) (52)

≤ 1(√
vtj+ε

)(√
βvt−1j +ε

)√1−β√
a

(gtj)
2≤ 1(√

βvt−1j +ε
)
ε

√
1−β√
a

(gtj)
2. (53)

We have used the observation
(1−β)(ĝtj)

2(√
βvt−1

j +(1−β)(ĝtj)2+
√
βvt−1

j

)≤√1−βĝtj , and ĝtj≤ 1√
a
gtj .

From L-smoothness of F (·) which implies that ‖∇F (u)−∇F (v)‖≤L‖u−v‖ for any u,v∈Rd, and Assumption 1, it is
easy to see there exists a constant B such that |∇jF (w)|≤B for any j∈[d].

Et[F (wt+1)] (54)

≤F (wt)−αt
d∑
j=1

(∇jF (wt))2√
βvt−1j +ε

+
αtB
√

1−β
ε
√
a

d∑
j=1

Et

 (gtj)
2√

βvt−1j +ε

+
(αt)2Ld

2

d∑
j=1

Et

 (gtj)
2(√

vtj+ε
)2
+

(αt)2Ld

2b2
σ2C2

(55)

≤F (wt)−αt
d∑
j=1

(∇jF (wt))2√
βvt−1j +ε

+
αtB
√

1−β
ε
√
a

d∑
j=1

Et

 (gtj)
2√

βvt−1j +ε

+
(αt)2L

2ε

d∑
j=1

Et

 (gtj)
2√

βvt−1j +ε

+
(αt)2Ld

2b2
σ2C2,

(56)

where the last inequality holds due to
(√

vtj+ε
)2
≥ε
(
ε+
√
vtj

)
≥ε
(
ε+
√
βvt−1j

)
. Lemma 1 in Reddi et al. (2018a) proves

that Et
[
(gtj)

2
]
≤ τ2

j

b +(∇jF (wt))2 where τ2j is the variance bound of the j-th coordinate, i.e., E
[
‖gtj−∇jF (wt)‖2

]
≤τ2j .

Plugging this inequality into Eq. (56), combined with Lαt

2ε ≤
1
4 and B

√
1−β√
aε
≤ 1

4 , we obtain

Et[F (wt+1)]≤F (wt)− αt

2(
√
βB+ε)

‖∇F (wt)‖2+

(
αtB
√

1−β√
aε2

+
L(αt)2

2ε2
√
β

)∑
j∈[d]τ

2
j

b
+

(αt)2Ld

2b2
σ2C2. (57)

Taking expectation on both sides and applying the telescope sum yields

1

T

∑
t∈[T ]

E[‖∇F (wt)‖2]≤O
(

1

T

)
+O

(
‖τ2‖1
b

)
+O

(
σ2

b2

)
(58)

A.2.1. PROOF FOR THEOREM 5 (FIX A BEFORE TRAINING)

Due to L-smoothness of F (·), we have

F (wt+1)≤F (wt)−αt
d∑
j=1

(
∇jF (wt)·

(
gtj
Aj

+N

))
+

(αt)2L

2

d∑
j=1

(
(gtj)

2

A2
j

+N2+
gtj
Aj
·2N

)
, (59)
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where N∼ 1
bN (0,σ2C2). Taking expectation conditioned on wt on both sides gives

Et
[
F (wt+1)

]
≤F (wt)−αt

d∑
j=1

(∇jF (wt))2

Aj
+

(αt)2L

2

d∑
j=1

1

A2
j

Et
[
(gtj)

2
]
+

(αt)2Ld

2b2
σ2C2 (60)

≤F (wt)−αt
d∑
j=1

(∇jF (wt))2

Aj
+

(αt)2L

2

d∑
j=1

1

A2
j

(
τ2j
b

+(∇jF (wt))2

)
+

(αt)2Ld

2b2
σ2C2 (61)

≤F (wt)−αt
d∑
j=1

(∇jF (wt))2

Aj
+

(αt)2L

2ε

d∑
j=1

1

Aj

(
τ2j
b

+(∇jF (wt))2

)
+

(αt)2Ld

2b2
σ2C2 (62)

≤F (wt)−α
t

2

∥∥∇F (wt)
∥∥2
A−1+

(αt)2L

2ε

d∑
j=1

τ2j
Ajb

+
(αt)2Ld

2b2
σ2C2. (63)

The last inequality is due to αt≤ ε
L . Taking expectation on both sides yields

E
[
F (wt+1)

]
≤E
[
F (wt)

]
−α

t

2
E[‖∇F (wt)‖2A−1 ]+

(αt)2L

2ε

d∑
j=1

τ2j
Ajb

+
(αt)2Ld

2b2
σ2C2. (64)

Similarly, by rearranging terms and applying telescope sum, we obtain

1

T

∑
t∈[T ]

E
[
‖∇F (wt)‖2A−1

]
≤O

(
1

T

)
+O

(
τ2

A
·1
b

)
+O

(
σ2

b2

)
. (65)

B. Experimental Details
Pseudo Code of some Algorithms. For completeness, we present the full baseline DP-Adam algorithm in Algorithm 2 and
AdaDPS extended to federated learning in Algorithm 3.

Algorithm 2: DP-Adam (Zhou et al., 2020)

Input: T , batch size b, noise multiplier σ, clipping threshold C, initial model w1∈Rd, v0=0, m0=0, small
constant vector εt∈Rd, learning rate αt, moving average parameters β1, β2

1 for t=1,···,T−1 do
2 Uniformly randomly sample a mini-batch B with size b from private training data
3 Get individual gradients for sample i∈B:

gi,t←∇f(xi;wt)

4 Private gradients using Gaussian mechanism:

g̃t←1

b

∑
i∈B

clip
(
gi,t,C

)
+

1

b
N (0,σ2C2)

5 Update first and second moment estimates as

mt←β1mt−1+(1−β1)g̃t

vt←β2vt−1+(1−β2)(g̃t)2

6 Update the model parameter w as

wt+1←wt−αt mt/(1−βt1)√
vt/(1−βt2)+εt

,

where βt1,β
t
2 denotes β1,β2 to the power of t (with slight abuse of notations)

7 return wT
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Algorithm 3: AdaDPS applied to federated learning
Input: T communication rounds, b selected devices each round, noise multiplier σ, clipping threshold C, initial

model w1∈Rd, non-sensitive side information A, number of local iterations s, local learning rate ηt

1 for t=1,···,T−1 do
2 Server uniformly selects a subset B of b devices and sends the current global model wt to them
3 Each device i∈B sets the local model to be the current global model:

wi,0←wt

4 Each device i∈B runs adaptive mini-batch SGD locally with side information A to obtain model updates:
5 for j=0,···,s do
6

wi,j+1←wi,j−ηt∇f(wi,j)

A
7 And then privatize model updates:

∆i,t←wi,s+1−wi,0

∆̃i,t←clip(∆i,t,C)+N (0,σ2C2)

8 Each device i∈B sends ∆̃i,t to the server
9 Server updates the global model as:

wt+1←wt+ 1

b

∑
i∈B

∆̃i,t

10 return wT

Datasets and Models. We consider a diverse set of datasets and tasks.

• StackOverflow (Authors, 2019) consists of posts on the Stack Overflow website, where the task is tag prediction (500-
class classification). We randomly subsample 246,092 samples from the entire set. There are 10,000 input features in
StackOverflow, resulting in more than 5 million learnable parameters in a logistic regression model.

• IMDB (Maas et al., 2011) is widely used for for binary sentiment classification of movie reviews, consisting of 25,000
training and 25,000 testing samples. We study two models on IMDB: logistic regression and neural networks (with
LSTM) with 20,002 and 706,690 parameters, respectively. For logistic regression, we set the vocabulary size to 10,000
and consider two sets of commonly-used features separately: bag-of-words (BoW) and TF-IDF values.

• MNIST (LeCun et al., 1998) images with a deep autoencoder model (for image reconstruction) which has the same
architecture as that in previous works (Reddi et al., 2018a) (containing more than 2 million parameters). The loss is
reconstruction error measured as the mean squared distance in the pixel space. We scale each input feature to the range of
[0,1].

Hyperparameter Tuning. We detail our hyperparameter tuning protocol and the hyperparameter values here. Our code is
publicly available at github.com/litian96/AdaDPS.

• For non-private training experiments, we fix the mini-batch size to 64, and tune fixed learning rates by performing a grid
search over {0.0005,0.001,0.005,0.01,0.05,0.1,0.2,0.5,1,2} separately for all methods on validation data. We do not
use momentum for AdaS (i.e., applying the idea of preconditioning of AdaDPS without privatization) for all centralized
training experiments.

• For differentially private training, the δ values in the privacy budget are always inverse of the number of training samples.
We fix the noise multiplier σ for each dataset, tune the clipping threshold, and compute the final ε values. Specifically, the
σ values are 1, 1, and 0.95 for IMDB (convex), IMDB (LSTM), and StackOverflow; 1 and 0.75 for MNIST (autoencoder).
The clipping threshold C (in Algorithm 1) is tuned from {0.01,0.02,0.05,0.1,0.2,0.5,1,2,3}, jointly with tuning the
(fixed) learning rates. The number of micro-batches is 16 for all related experiments, and the mini-batch size is 64 (i.e.,
we privatize each gradient averaged over 4 individual ones to speed up computation).

https://github.com/litian96/AdaDPS
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• For federated learning experiments, we fix server-side learning rate to be 1 (i.e., simply applying the unscaled average
of noisy model updates in Line 9 of Algorithm 3), and apply server-side momentum (Reddi et al., 2021) with a moving
average parameter 0.9 for all methods in the left sub-figure in Figure 6. The number of local epochs is set to 1 for all runs,
and the local mini-batch size is 100.

The tuned hyperparameter values (clipping threshold C, learning rate) for private training are summarized in Table 5 below.

Datasets DP-SGD DP-Adam DP-RMSProp AdaDPS (RMSProp) AdaDPS (Adam)
IMDB (convex) (0.1, 1) (0.02, 0.1) (0.05, 0.1) (2, 0.5) (2, 1)
IMDB (LSTM) (0.1, 0.1) (0.1, 0.001) (0.1, 0.001) (0.2, 0.1) (0.2, 0.05)
StackOverflow (linear) (0.1, 1) (0.1, 0.01) (0.2, 0.01) (1, 0.5) (1, 0.5)
MNIST (autoencoder) (0.05, 0.5) (0.01, 0.001) (0.01, 0.001) (3, 0.005) (3, 0.005)
MNIST (classification) (0.5, 0.01) (0.5, 0.001) (0.5, 0.001) (2, 0.005) (2, 0.005)

Table 5. Major hyperparameter values (learning rate and clipping threshold C) used in private experiments for all datasets. ‘IMDB
(convex)’ is IMDB (BoW features) on a logistic regression model. StackOverflow results are for centralized training. The noise multiplier
σ values in these four tasks are 1, 1, 0.95, 1, respectively, resulting in ε values being 1.5, 2.8, 0.84, and 1.6.

C. Additional Results
C.1. Additional Baselines

Other Private Adaptive Optimization Baselines. In the main text, we mainly compare AdaDPS with DP-Adam (sum-
marized in Algorithm 2). There are other possible baselines similar as DP-Adam, by replacing Adam with other adaptive
methods, resulting in DP-AdaGrad and DP-RMSProp. This line of differentially private optimizers has similar empirical
performance as DP-Adam, as shown in the results in Table 6 below (using DP-RMSProp as an example).

Datasets Metrics DP-SGD DP-Adam DP-RMSProp AdaDPS (RMSProp) AdaDPS (Adam)
IMDB (convex) accuracy 0.63 0.69 0.67 0.80 0.80
IMDB (LSTM) accuracy 0.70 0.69 0.69 0.73 0.73
StackOverflow (linear) accuracy 0.28 0.30 0.31 0.40 0.40
MNIST (autoencoder) loss (×100) 5.013 3.697 3.636 3.566 3.443
MNIST (classification) accuracy 0.9273 0.9333 0.9314 0.9377 0.9541

Table 6. Full comparisons between AdaDPS and private adaptive optimization methods. The evaluation metrics are reported on test data.
‘IMDB (convex)’ is IMDB (BoW features) on a logistic regression model. For (ε,δ)-differential privacy, the ε values of experiments in the
five rows are 1.5, 2.8, 0.84, 1.6, and 1.25, respectively, and the δ values are the inverse of the number of training samples (as mentioned in
the main text).

Using Public Data for Pretraining. Another possible way of leveraging public data to improve privacy/utility tradeoffs
is to pretrain on them. However, this would give only limited performance improvement if the amount of public data is very
small. In the main text, when needed, AdaDPS randomly samples 1% training data as public data. Under this setup, we
empirically compare AdaDPS with the pre-training baseline (denoted as DP-SGD w/ warm start). From Table 7, we see that
AdaDPS outperforms it by a large margin.

Datasets Metrics DP-SGD DP-SGD AdaDPS
w/ warm start w/ public

IMDB (convex) accuracy 0.63 0.73 0.80
StackOverflow accuracy 0.28 0.33 0.40
MNIST (autoencoder) loss 0.050 0.049 0.036

Table 7. Compare AdaDPS with an additional baseline of DP-SGD pre-trained on public data on three datasets. For ‘DP-SGD w/ warm
start’, we first train on public data for 10 epochs via adaptive methods (RMSProp), and then run DP-SGD on private data starting from
that initialization.
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DP-Adam with Public Data. In the main text (Section 6.1.1), we discuss the DP-R-Pub. baseline based on the RMSProp
method with the preconditioner estimated on public data. Similarly, one can also apply such clean preconditioners in
DP-Adam updates, resulting in another baseline which we call DP-Adam-Pub. The main differences between DP-Adam-Pub
and DP-R-Pub are that DP-Adam-Pub additionally considers momentum. Formally, the updates of wt is as follows:

g̃t←1

b

∑
i∈B

clip
(
gi,t,C

)
+

1

b
N (0,σ2C2), ĝt←Ex

[
∇f(x;wt)

]
for x∈xpub,

mt←β2mt+(1−β2)
(
β1g̃

t+(1−β1)ĝt
)
, vt←β3vt+(1−β3)(ĝt)2,

wt+1←wt−αt mt/(1−(β2)t)√
vt/(1−(β3)t)+ε

,

where β1,β2,β3,ε are small constants.

Datasets Metrics DP-SGD DP-Adam-Pub AdaDPS
w/ public

IMDB (convex) accuracy 0.63 0.74 0.80
StackOverflow accuracy 0.28 0.31 0.40
MNIST (autoencoder) loss 0.050 0.064 0.036

Table 8. Results of comparing AdaDPS with to DP-Adam-Pub (i.e., DP-Adam using clean preconditioners estimated on public data).

C.2. Side Information in Non-Private Training

In the main text, we mainly focus on private optimization. It is expected that side information (even without the assist of
public data) would also be beneficial in non-private settings, which could serve as a simple alternative to adaptive methods.
We report results in Table 9.

Datasets Metrics SGD Adam AdaS (w/ public) AdaS (w/o public)
IMDB (convex) accuracy 0.66 0.88 0.88 0.88
IMDB (LSTM) accuracy 0.88 0.88 0.88 0.88
StackOverflow (linear) accuracy 0.38 0.64 0.64 0.64
MNIST (autoencoder) loss (×100) 5.013 1.151 1.805 —

Table 9. Performance of each method in non-private training. We see that AdaS can match the performance of Adam in non-private
settings.

C.3. Effects of Public Data Size

We further study the effects of public data size. Only a very small set of public data (even 0.04% the size of private training
data) can provide good preconditioner estimates.

Datasets upper bound
AdaDPS AdaDPS AdaDPS
1% public 5× less 25× less

IMDB (convex) 0.82 0.80 0.80 0.75
StackOverflow 0.41 0.40 0.40 0.39

Table 10. Effects of public data sizes.


