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Abstract
Learning to collaborate is critical in Multi-
Agent Reinforcement Learning (MARL). Previ-
ous works promote collaboration by maximizing
the correlation of agents’ behaviors, which is typi-
cally characterized by Mutual Information (MI) in
different forms. However, we reveal sub-optimal
collaborative behaviors also emerge with strong
correlations, and simply maximizing the MI can,
surprisingly, hinder the learning towards better
collaboration. To address this issue, we propose a
novel MARL framework, called Progressive Mu-
tual Information Collaboration (PMIC), for more
effective MI-driven collaboration. PMIC uses a
new collaboration criterion measured by the MI
between global states and joint actions. Based on
this criterion, the key idea of PMIC is maximiz-
ing the MI associated with superior collaborative
behaviors and minimizing the MI associated with
inferior ones. The two MI objectives play com-
plementary roles by facilitating better collabora-
tions while avoiding falling into sub-optimal ones.
Experiments on a wide range of MARL bench-
marks show the superior performance of PMIC
compared with other algorithms.

1. Introduction
With the potential to solve complex real-world problems,
Multi-Agent Reinforcement Learning (MARL) has attracted
much attention in recent years (Lyu et al., 2022; Yang et al.,
2021b; Zheng et al., 2020; Wang et al., 2020c; Hernandez-
Leal et al., 2019) and has been applied to many practical
domains like Game AI (Peng et al., 2017), Robotics Con-
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trol (Matignon et al., 2012), Transportation (Li et al., 2019).
However, efficiently achieving collaboration and learning
optimal policies still remains challenging in MARL (Liu
et al., 2020; Wen et al., 2019; Yang et al., 2021a; Zheng
et al., 2018a;b).

Centralized Training with Decentralized Execution
(CTDE) (Rashid et al., 2018; Sunehag et al., 2017) is a
popular MARL paradigm, adopted to promote collaboration
among agents. During centralized training, agents are
granted access to other agents’ information and possibly the
global state, while during decentralized execution, agents
make decisions independently based on their individual
policies. There are many CTDE-based MARL algorithms
being proposed, including MADDPG (Lowe et al., 2017),
MASAC (Kim et al., 2020), VDN (Sunehag et al., 2017),
and QMIX (Rashid et al., 2018). However, although global
information is incorporated during centralized CTDE
training, optimizing the decentralized policies of multiple
agents only through reward signals is often inefficient,
especially when the reward signals are stochastic or sparse
— therefore, additional mechanisms are often critical to
facilitating effective collaboration. A complementing
branch of works proposes to leverage the correlation or
influence of agents (Jaques et al., 2018; 2019; Xie et al.,
2020; Liu et al., 2020; Merhej & Chetouani, 2021). The
intuition behind these works is that if agents make decisions
that account for their influence on the behaviors of other
agents, the problem of non-stationarity could be mitigated,
and thus agents are more likely to achieve collaboration.

Several works (Chen et al., 2021; Mahajan et al., 2019; Kim
et al., 2020) proposed to maximize the correlation of agents’
behaviors to promote collaboration, which commonly quan-
tifies the correlation of agents’ behaviors by the mutual
information (MI). Unfortunately, these previous works over-
look the fact that agents with a high degree of collaboration
may not necessarily generate high rewards. In complex
environments, there exist multiple types of collaborations
differing in return when agents achieve them — simply
maximizing the MI of agents’ behaviors cannot guarantee
high-quality collaboration because agents in sub-optimal
collaborations can also have a high degree of correlation.
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Furthermore, maximizing MI exacerbates the problem: an
agent can easily overfit its strategy to the behaviors of other
agents (Zhang et al., 2019; Lanctot et al., 2017).

To solve the problem, this paper proposes a novel frame-
work, called Progressive Mutual Information Collaboration
(PMIC). In PMIC, a new collaboration criterion is measured
by the MI between global states and joint actions, freeing us
from relying on additional global input (existing in previous
works) and addressing the scalability issue. Based on the
new criterion, PMIC uses two main components to promote
agents’ collaboration. The first component is the Dual Pro-
gressive Collaboration Buffer (Du-PCB), which includes a
positive and a negative buffer to dynamically maintain data
about superior and inferior collaborations, respectively. The
second component is the Dual Mutual Information Estima-
tor (Du-MIE), which employs two MI neural estimators to
estimate the MI of global states and joint actions for transi-
tions in Du-PCB. In particular, one estimator is trained on
the positive buffer to provide the lower bound of MI and
the other is trained on the negative buffer to provide the
upper bound of MI. By maximizing the lower bound and
minimizing the upper bound, the agents can progressively
break the current sub-optimal collaboration and learn to
achieve better ones, which thus promotes an efficient and
stable learning process. Importantly, PMIC is general and
can be easily combined with existing MARL algorithms.
Our experiments show that PMIC significantly accelerates
existing MARL algorithms, outperforming other baseline
algorithms on a wide range of MARL benchmarks.

In summary, our contributions are threefold: First, we reveal
that simply maximizing the correlation of agents without
distinguishing what kind of behaviors are expected can hin-
der the learning towards better collaborations. Secondly,
we propose a novel framework PMIC to solve the problem,
including a new collaboration criterion and a progressive MI
estimation designed by Du-MIE and Du-PCB. Last but not
least, we build PMIC on many MARL algorithms such as
MADDPG (Lowe et al., 2017), MASAC (Kim et al., 2020),
RODE (Wang et al., 2020a) and show their superior perfor-
mance by comparing them with other competitive methods
on a wide range of MARL benchmarks.

2. Background
This section presents the necessary background to under-
stand PMIC and its relationship to existing works.

2.1. Preliminaries

We consider a fully cooperative multi-agent task where a
team of agents are situated in a stochastic, partially observ-
able environment, it can be modeled as a decentralised par-
tially observable Markov decision process (Dec-POMDP)

(Oliehoek & Amato, 2016), which can be defined as a tuple:
⟨N ,S,U ,O, T ,R, γ⟩. Here N = {1, ..., N} denotes the
set of N agents. In Dec-POMDP, the full state of the envi-
ronment st ∈ S cannot be observed by agents at each time
step t. Each agent i ∈ N can only observe its individual
observation oit determined by observation function O(st, i),
each agent i uses a stochastic policy πi to choose actions
ui
t ∼ πi(·|oit), yielding the joint action ut = {ui

t}Ni=1 ∈ U .
After executing ut in state st, the environment transits to the
next state st+1 according to transition function T (st, ut)
and agents receive a common reward rt from R(st, ut),
with a discount factor γ ∈ [0, 1). We denote the joint policy
as π = (π1, π2, ..., πN ) ∈ Π, where Π is the joint policy
space. In cooperative MARL, the collaborative team aims to
find a joint policy to maximize the total expected discounted
return, denoted by J(π) = Eπ [

∑∞
t=0 γ

trt].

2.2. Related Work

Centralized training & decentralized execution (CTDE)
has been a major paradigm in recent efforts in MARL. For
example, MADDPG (Lowe et al., 2017) uses a centralized
critic to train decentralized policies. VDN (Sunehag et al.,
2017), QMIX (Rashid et al., 2018), MAAC (Iqbal & Sha,
2019), COMIX, and FAC-MADDPG (de Witt et al., 2020)
achieve CTDE through value function factorisation.

MI-based collaboration MARL: Many existing algorithms
explicitly maximize the correlation or influence of agents
to facilitate collaboration, where the correlation or influ-
ence is often quantified by the MI of the agent’s behavior.
For example, Signal Instructed Coordination (SIC) (Chen
et al., 2021) takes a holistic view and facilitates collabora-
tion by increasing the MI of the agent’s behavior and the
joint policy. Specifically, SIC extracts the information of
the joint policy into the latent variables z (sampled from
a predefined distribution), which are then used as the in-
put of agents’ policy networks. SIC then maximizes the
MI of each agent’s behaviors and the latent variables z to
improve the correlation of agents. Based on the latent vari-
ables, the agents can know what kind of joint policy the
whole team is executing and what kind of action should
be selected. Multi-agent Variational Exploration (MAVEN)
(Mahajan et al., 2019) shares a similar idea with SIC, except
that MAVEN extracts the latent variables about joint policy
information from the initial global state and maximizes the
mutual information of future trajectories and the latent vari-
ables. However, one common drawback of both methods is
the shared latent variable required during decentralized exe-
cution violates the CTDE paradigm. This makes algorithms
fail in some real-world deployment scenarios where global
communication is not available. EITI (Wang et al., 2020b)
leverages MI to capture the influence between one agent’s
current actions/states and the other agents’ transitions in
grid environments. SI (Jaques et al., 2019) proposes a social
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Figure 1: (a) A motivating example: Wildlife Rescue (Lowe et al., 2017). The optimal joint behavior here is to rescue target
A collaboratively, while other joint behaviors lead to sub-optimal collaborations. (b) The reward matrix for the agents
capturing different targets at the end of the game, where ‘N’ means an agent does not catch any target. (c) The probability of
optimal and sub-optimal joint behaviors learned by different algorithms, averaged over 10k (1k x 10 seeds) episodes. (d)
The degree of correlation is measured by different algorithms for different joint behaviors. (e) The performance of episodic
rewards averaged over 10 seeds with 95% confidence regions for different algorithms.
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Figure 2: Left: Trajectories collected during the learning
process contain a mix-up of different joint behaviors. Right:
An ideal learning process that identifies the distinctions and
performs progressive improvement.

influence intrinsic reward measured by the MI between any
two agents’ actions to achieve coordination in sequential
social dilemmas. SI-MOA (Jaques et al., 2019) extends this
idea to CTDE by modeling the other agents’ actions and pro-
motes coordination by the MI between one agent’s current
action and the other agent’ next action. VM3-AC (Kim et al.,
2020) also tries to extend SI to CTDE. VM3-AC modifies
policy iteration based on the MI of any two agents’ current
action and introduces additional input to explicitly represent
the relation of agents’ policies, and VM3 achieves better
performance than previous methods.

Unfortunately, these methods may fall into the trap of
blindly maximizing MI, resulting in a high degree of corre-
lation, but failing to achieve high-performing policies. The
next section will explain this failure mode, while Section 4
will provide a solution to avoid the problem.

3. Why Can MI-based Collaboration Fail?
This section motivates our approach, showing why blindly
enhancing the correlation of agents’ behaviors can lead to
agents falling into sub-optimal collaborations. Figure 1a
illustrates a motivating example where two agents need to
collaborate to rescue three targets (i.e., A, B, and C), and

receive a team reward (Figure 1b). The joint behaviors of the
two agents are various in this game, and figure 1a presents
three kinds of joint behaviors. Apparently, the expected
joint behavior is that both agents collaborate to rescue target
A, since this achieves the highest reward.

Due to the stochasticity of the environment and the learning
dynamics of agents’ policies, trajectories of different behav-
iors are collected by the two agents’ joint policy, as shown
in the left of Figure 2. These trajectories mix up many joint
behaviors of a high collaboration degree, which have dis-
tinct outcomes (e.g., rescue B or C). Intuitively, to achieve
an ideal learning process as depicted in the right of Figure 2,
agents not only 1) need to enhance the correlation of their
joint behaviors to form collaborations, but also 2) need to
be capable of escaping from a sub-optimal collaboration
to reach a better one. The contradiction between the two
objectives indicates that the correlation should be enhanced
and loosened in an adaptive manner.

Existing MARL methods with MI-based collaboration only
focus on the first point, maximizing MI while neglecting
the second. In principle, this can be problematic because
the consistent enhancement of behavioral correlation can
prevent learning other joint behaviors. One natural solution
is to enhance the correlation of agents in superior trajectories
and reduce the correlation in inferior ones. Following this
idea, in our PMIC framework, we maintain the superior and
inferior trajectories separately. PMIC then maximizes the
MI associated with the superior trajectories and minimizes
the MI associated with the inferior trajectories. Thus, agents
learn to form superior joint behavior and avoid inferior ones.

We verify our analysis by empirically evaluating the policies
achieved by different methods in our motivating example.
VM3 (Kim et al., 2020) and SIC (Chen et al., 2021) are
representative methods that use MI maximizing approaches
and MADDPG serves as a basic reference. Figure 1c shows
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Figure 3: An overall illustration of Progressive Mutual Information Estimation, consisting of two main components: 1)
Du-PCB maintains superior and inferior trajectories separately in a progressive manner and 2) Du-MIE estimates the
collaboration criterion I(s;u) from Equation 1 using IMINE and ICLUB.

the probability of converging to the optimal and sub-optimal
joint behaviors. We can see that the methods maximizing the
correlation of agents indiscriminately (i.e., SIC and VM3)
have a greater probability of falling into the sub-optimal
joint behaviors than PMIC (our algorithm). In turn, PMIC
achieves higher rewards during the learning process (Figure
1e). Furthermore, Figure 1d shows the degrees of correlation
over three joint behaviors measured by different methods
with corresponding MI forms. The results show that sub-
optimal joint behaviors (rescuing B and C) can also gain
high degrees of correlation (even higher than rescuing A) in
VM3 and SIC. In contrast, the degree of correlation for the
optimal joint behavior in PMIC is significantly higher than
in other methods. This further explains the results shown
in Figures 1c and 1e. Overall, these empirical results in
our motivating example demonstrate that only maximizing
MI can make agents fall into sub-optimal collaboration be-
haviors and prevent them from learning the optimal ones,
revealing the necessity of breaking the correlation over sub-
optimal behaviors during the learning process. We detail
our methodology and deeper experimental studies in the
following sections.

4. Progressive Mutual Information
Collaboration for MARL

This section introduces our framework, Progressive Mutual
Information Collaboration (PMIC) to improve cooperative
MARL based on our discovery in the previous section. The
key idea of PMIC is to identify superior and inferior collabo-
ration behaviors during the learning process, and encourage
agents to achieve superior behaviors while avoiding sticking
to inferior ones. This dual guidance of joint policy learning

is imposed in a progressive manner as the learning proceeds.
We first propose a new MI-based collaboration criterion
(Sec. 4.1) for measuring the collaboration degree of agents.
Second, we introduce our approach to realize the dual col-
laboration guidance by progressive MI estimation (Sec. 4.2).
Third, we show how to integrate PMIC into general MARL
algorithms (Sec. 4.3).

4.1. A New Collaboration Criterion

Previous works measure the correlation of agents using MI
in different forms. However, they often suffer from at least
one of the following limitations. First, measuring correlation
with the MI of any two agents’ actions (Jaques et al., 2019;
Kim et al., 2020) can be computationally infeasible with the
increase in the number of agents (i.e., the scalability issue).
Second, other methods (Mahajan et al., 2019; Chen et al.,
2021) leverage the MI of additional shared latent variables
and the joint policy (or trajectories), which violates the
CTDE paradigm and makes the methods fail in some real-
world deployment scenarios when global communication is
not available during execution.

To resolve these problems, we propose a new criterion to
measure the degree of multiagent collaboration, which is
defined as the mutual information between global state s
and joint action u, which is formulated as follows:

I(s;u) = H(u)−H(u | s)
= H(u)−H(ui | s)−H(u−i | ui, s),

(1)

where H(·) and H(·|·) denote the entropy and conditional
entropy respectively, ui is the action of any agent i, and
u−i is the joint action of all agents except i. Note that
I(s;u) can be decomposed into three distinct terms: (1)
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H(u) describes the ability to explore various behaviors of
all agents (via joint actions), which could help generate
diverse trajectories and avoid policy collapse when maxi-
mized; (2) H(ui|s) measures the behavioral uncertainty of
agent i, which encourages the agent to behave deterministi-
cally given global state s when minimized; (3) H(u−i|ui, s)
measures the uncertainty of agent i about the actions of
other agents, which implicitly characterizes the correlation
between agents’ behavior and will drive agents to coherent
joint behaviors when minimized. Overall, I(s;u) can serve
as a quantitative measure of collaboration, which can be op-
timized to incentivize agents to enhance or break different
joint behaviors.

Compared with the aforementioned MI-based criteria, our
collaboration criterion obeys the CTDE paradigm because
it does not incorporate extra latent variables. Moreover,
the MI measurement of our criterion is free of calculating
the MI for all possible two agents, thus it does not suffer
from the scalability issue as the number of agents increases.
In the following subsection, we introduce how I(s;u) is
estimated and used as collaboration guidance.

4.2. Progressive Mutual Information Estimation

We now introduce dual collaboration guidance by progres-
sive estimation of the collaboration criterion I(s;u) to help
agents learn to achieve better collaboration and avoid sub-
optimal collaborations. This is achieved by two components,
which are illustrated in Figure 3. The first component, Dual
Progressive Collaboration Buffer (Du-PCB), stores superior
and inferior trajectories in separate buffers, which corre-
spond to joint behaviors to achieve and avoid, respectively.
The second component, Dual Mutual Information Estimator
(Du-MIE), provides MI estimates of I(s;u) as quantitative
signals of dual collaboration guidance. We detail the two
components below.

Dual Progressive Collaboration Buffer (Du-PCB) consists
of a positive buffer D+ and a negative buffer D− to store
superior and inferior trajectories respectively. To identify
the superior trajectories, we use the average return R̄ of the
most recent M episodes as a measurement. We denote the
trajectory with the lowest return in the positive buffer as
Rlow. For each episode k, we store a trajectory with return
Rk if Rk > max(Rlow, R̄) until D+ is full; then Du-PCB
overwrites the trajectories with return Rlow. This ensures
the quality of trajectories stored in D+ monotonically in-
creases during the learning process. In contrast, trajectories
with returns Rk ≤ max(Rlow, R̄) are stored in D− in a
First-In-First-Out (FIFO) manner, since most recent inferior
behaviors are more needed to be avoided. By this means,
Du-PCB maintains the trajectories of both superior and in-
ferior joint behaviors progressively according to the policy
learned at present.

Dual Mutual Information Estimator (Du-MIE) will be
used to estimate the collaboration criterion I(s;u) described
in Section 4.1, based on the trajectories stored in Du-PCB.
MINE (Belghazi et al., 2018) will estimate the lower bound
of I(s;u) for maximization and CLUB (Cheng et al., 2020)
will estimate the upper bound of I(s;u) for minimization,
based on the positive buffer D+ and negative buffer D−,
respectively. To be concrete, MINE approximates the lower
bound of I(s;u) based on samples in D+ as follows:

I(s;u) ≥ IMINE(s;u) = sup
ω1∈Ω

EPSU [−sp (−Tω1(st, ut))]− EPS⊗PU [sp (Tω1(st, uk))]︸ ︷︷ ︸
−L(ω1)

,

(2)
where PSU is state-action joint distribution, PS and PU are
the marginals. The samples can be obtained by sampling
st, ut pairs jointly, uk solely from D+. Tω1

is a neural
network with parameters ω1 ∈ Ω that outputs a scalar and
soft-plus function sp(z) = log(1 + exp(z)). By contrast,
CLUB approximates the upper bound of I(s;u):

I(s;u) ≤ ICLUB(s;u) =

EPSU [log Tω2
(ut | st)]︸ ︷︷ ︸

−L(ω2)

−EPS⊗PU [log Tω2
(uk | st)] ,

(3)
where Tω2 is a neural network with parameters ω2 that
approximates the conditional distribution. The joint and
marginals are similarly sampled as in MINE, but are based
on the negative buffer D−.

The training losses of MINE and CLUB neural estimators
are L(ω1) and L(ω2), as defined in Equations 2 and 3. Thus,
the total loss of Du-MIE is:

LDu-MIE(ω) = L(ω1) + L(ω2), (4)

where ω = (ω1, ω2). The architecture of MINE and CLUB
are illustrated in Figure 3. The complete process of train-
ing is detailed in Appendix B. After training, given state
and joint-action samples, we can use MINE and CLUB to
estimate the upper and lower bounds of MI.

Since MINE is trained following Equation (2) based on the
samples from the positive buffer, only trajectories that resem-
ble the joint behavior of superior collaboration have large
MI estimates calculated by MINE; it is similar to CLUB.
Therefore, given the interaction samples collected by the
joint policy of current agents, MINE and CLUB can provide
effective signals in guiding agents’ behaviors towards or
away from superior and inferior ones, progressively. In the
following subsection, we show how PMIC functions with
MARL for more efficient learning.
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4.3. Integration of PMIC and MARL

With the MI estimations introduced in the previous subsec-
tion, now we aim to find the joint policy that maximizes
the expected discounted return and follows the progressive
collaboration guidance by optimizing the MI estimates from
Du-MIE. In particular, we propose a new objective function
for PMIC-MARL that combines the two types of MI esti-
mates (as additional per-step rewards) with the conventional
objective J(π):

JPMIC(π) = Es,u∼π

[ ∞∑
t=0

γt(rt + rPMIC
t )

]
, (5)

where rPMIC
t = αIMINE(st;ut)− βICLUB(st;ut)), and α, β

are the hyperparameters that weight the impact of MI guid-
ance.

In principle, PMIC-MARL is a general framework that can
be implemented with different MARL algorithms. We use
PMIC-MADDPG for a representative demonstration, build-
ing upon MADDPG (Lowe et al., 2017). We also imple-
ment PMIC-RODE, built on RODE (Wang et al., 2020a),
and study it in our experiments. The pseudo-code of PMIC-
MADDPG is shown in Algorithm 1. In each episode, agents
interact with the environment and store the trajectory sam-
ples into experience replay D (Lines 6-9). The trajectory is
added to the positive buffer or the negative buffers in Du-
PCB according to its return (Lines 10-13). Every k steps,
Du-MIE is trained with the samples from Du-PCB (Line
14) to reflect current superior and inferior joint behaviors.
Lastly, PMIC-MADDPG updates the centralized critic and
the actors according to JPMIC(π) (Line 15), by minimizing
the loss functions LQ and Lπ , defined below:

LQ(ϕ) = Est,ut,rt,st+1∼D

[
(ŷ −Qϕ (st, ut))

2
]
;

Lπ(θ) = Est∼D[−Qϕ(st, πθ(·|st))],
(6)

where ŷ = rt + rPMIC
t + γQϕ′(st+1, πθ′(st+1)), θ =

(θ1, ..., θn) and ϕ′, θ′ are the parameters of corresponding
target networks.

Overall, we provide the technical details of PMIC, as well
as how to combine PMIC with MARL algorithms, which
we then evaluate empirically in the following section.

5. Experiments
This section empirically evaluates PMIC on multiple mul-
tiagent tasks to answer the following research questions
(RQs):

RQ1 (Performance) Can PMIC effectively achieve collabo-
ration and outperform related baselines? Is PMIC a generic
framework?

Algorithm 1: PMIC-MADDPG
1 Input: the update frequency k for Du-MIE, maximum

episode length T , hyperparameters α and β to balance the
effects of maximizing and minimizing MI.

2 Initialize the critic network ϕ, n actor networks θ1...θn and
corresponding target networks ϕ′, θ1′, . . . , θn′.

3 Initialize Du-MIE parameterized by ω1 and ω2.
4 Initialize Du-PCB and experience replay buffer D
5 repeat
6 for t = 1, ..., T do
7 Execute joint actions ut via collecting ui

t ∼ πθi(o
i
t).

8 Receive ot+1 = {oit+1}ni=1 and team reward rt.

9 Store trajectory ν = {ot, ut, ot+1, rt}Tt=1 to D

10 if Rν > max(Rlow, R̄) then
11 Add ν to the positive buffer
12 else
13 Add ν to the negative buffer

14 Update Du-MIE with Du-PCB every k steps ▷ see Eq. 4
15 Update the actors and critic networks ▷ see Eq. 6
16 until reaching maximum training steps;

RQ2 (Superiority of Dual MI) Is maximizing and minimiz-
ing I(s;u) necessary? Is I(s;u) effective for performance
improvements?
RQ3 (Necessity of Du-PCB) Does Du-PCB significantly
improve performance over a normal replay buffer?

5.1. Benchmarks & Baselines

For a comprehensive comparative study, we evaluate our
algorithms on both discrete and continuous action spaces.
For the continuous action space, we consider the Multi-
Agent Particle Environment (MPE) and the Multi-Agent
MuJoCo benchmark, comparing PMIC-MADDPG with six
advanced algorithms as baselines: SIC-MADDPG (Chen
et al., 2021), VM3-AC (Kim et al., 2020), MASAC (Kim
et al., 2020), MADDPG (Lowe et al., 2017), FacMAD-
DPG (de Witt et al., 2020), and COMIX (de Witt et al.,
2020), where FacMADDPG and COMIX are the state-of-
the-art (SOTA) algorithms in Multi-Agent MuJoCo bench-
mark (de Witt et al., 2020). The StarCraft II microman-
agement (SMAC) benchmark (Samvelyan et al., 2019) is
also considered, which has high complexity of control and
requires learning policies in large discrete action space, and
we compare our PMIC-RODE algorithm with the current
SOTA algorithm, RODE (Wang et al., 2020a). More experi-
ments to integrate PMIC with MASAC and QMIX (Rashid
et al., 2018) are provided in Appendix E. The environment
description is provided in Appendix A.

For all baseline algorithms, we use the official code if avail-
able or reproduce it according to the original papers. Hyper-
parameters have been fine-tuned in all environments. For
a fair comparison, we use the same structures to avoid the
influence of different structures on the results. Further im-
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Figure 4: Comparisons of averaged return on MPE.

plementation details are in Appendix G.

5.2. Performance (RQ1)

We first evaluate the performance on 6 environments of
MPE with 10 different random seeds: Wildlife Rescue, Co-
operative Navigation, and Partial Observation Cooperative
Predator Prey with 3, 6, 12, and 24 predators (where the
agents control predators and the policy of prey is fixed). The
results in Figure 4 show that PMIC-MADDPG outperforms
other methods across all tasks. Both VM3-AC and SIC-
MADDPG receive lower rewards than PMIC-MADDPG,
indicating that simply maximizing MI does not guarantee
high-performing collaboration behaviors. PMIC can also de-
liver significant performance gains as the number of agents
increases, while some of the other algorithms cannot learn
to collaborate effectively. For example, on Predator Prey
with 24 agents, only PMIC-MADDPG and VM3-AC can
learn collaborative behaviors (but VM3-AC requires three
times more time than PMIC-MADDPG). For Wildlife Res-
cue, results show that the MASAC-related algorithms (e.g.,
MASAC and VM3-AC) can not make agents capture any
wildlife, which is due to underestimation of using double
Q-learning. To remove the influence of irrelevant factors, in
the motivating example, we use single Q-learning instead.
Details of the experiments are in Appendix H.

We further evaluate PMIC on 2 tasks of Multi-Agent Mu-
JoCo benchmark with 10 different random seeds. In these
tasks, agents need to cooperate in robot control and different
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Figure 5: Comparisons of averaged return on MA-MuJoCo.
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Figure 6: Comparisons of averaged test win rate on SMAC.

agents control different joints of the robot. In our experi-
mental setting, agents do not share information, which is
the most difficult setting in Multi-Agent MuJoCo. The re-
sults in Figure 5 show that PMIC-MADDPG outperforms
other baselines (COMIX, Fac-MADPPG, SIC-MADDPG,
VM3AC, and MASAC), which demonstrates the benefits
of PMIC in challenging continuous control tasks. We per-
form significance analysis (t-test) and prove that PMIC-
MADDPG achieves statistically significant advantages over
other baseline algorithms.

For SMAC, we evaluate PMIC on 6 maps with 5 different
random seeds. Note that RODE is the SOTA algorithm on
SMAC. The results in Figure 6 show that PMIC can provide
an improvement over RODE, reaching convergence faster
and achieving higher performance.

In summary, these experiments show that PMIC is an ef-
fective framework that can be integrated with multiple al-
gorithms and can provide significant improvements in both
continuous and discrete action space tasks. More experi-
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Figure 7: Ablation on MI maximization & minimization.
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Figure 8: Left: maximizing I(s;u) associated with optimal
and suboptimal data to guide agents. Right: minimizing
I(s;u) to break inferior behaviors .

ments, such as PMIC-MASAC and PMIC-QMIX, are in-
cluded in Appendix E.

5.3. Superiority of Dual MI (RQ2)

To answer RQ2, we first provide an ablation study on maxi-
mizing and minimizing I(s;u) to investigate the effect of
the two mechanisms. The results in Figure 7 show that max-
imizing and minimizing I(s;u) can achieve faster conver-
gence and higher performance, relative to only maximizing
or only minimizing I(s;u).

To verify whether the MINE estimator that maximizes
I(s;u) can guide agents correctly, we collect optimal (i.e.,
two agents both catch A) and sub-optimal (i.e., two agents
both catch C) trajectories to train MINE respectively, then
use the trained MINE to guide an initialized MADDPG from
the beginning. As shown in the left of Figure 8, training
MINE with optimal trajectories can quickly guide the algo-
rithm to learn the optimal joint behavior, which indicates
that maximizing I(s;u) on superior trajectories can guide
agents correctly and quickly. However, if MINE operates
on sub-optimal trajectories, the policy converges to the sub-
optima. This indicates that only maximizing MI without
distinguishing the quality of trajectories can make agents
fall into inferior ones. This further verifies our assumption
in the motivation section and also indicates the necessity of
designing Du-PCB.

Next, we examine whether the CLUB estimator that min-
imizes I(s;u) can escape sub-optima and help agents
achieve high-quality collaboration. We test on Wildlife
Rescue and find a policy in a sub-optima (e.g., rescuing
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Figure 9: Comparisons of different MI under PMIC. EITI
version measures the MI of agents’ current actions/states
and other agents’ next states. SIC version measures the MI
of the shared latent variables and agents’ joint policy VM3
version measures the MI of any two agents’ actions.

animals with lower rewards). After 2 million time steps,
we begin minimizing I(s;u) for the policy with different
β. Figure 8 (right) shows that the training curve gradually
increases and achieves higher rewards than baseline. This
indicates that minimizing I(s;u) can help the algorithm
escape from sub-optima and discover better ones.
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Figure 10: Parameter analysis on α (left) and β (right).

We further provide the parameter analysis on α and β. The
results are shown in Figure 10. The experiment proves that
appropriately sized values of α and β are critical for algo-
rithm improvement. The performance loss occurs if β or α
is too large or too small. Thus, for different environments,
we need to adjust α and β to achieve the best performances.
Intuitively, if the environment has multiple kinds of col-
laboration (e.g., Wildlife Rescue), one may scale up β to
prevent falling into the inferior ones; if the environment
has a smooth underlying path from inferior to superior col-
laboration, one may scale up α to enhance guidance and
accelerate learning.

To finish answering RQ2, we compare different MI mea-
surements under PMIC. Results in Figure 9 show that our
proposed measure is more effective than other alternatives.
Besides, we test the sensitivity of different parameters such
as the size of Du-PCB, α, and β. Due to the space limitation,
these ablation experiments are put in Appendix E.

5.4. Necessity of Du-PCB (RQ3)

To address RQ3, we consider whether the positive and nega-
tive buffers in Du-PCB can be replaced with a normal replay
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Figure 11: Ablation experiments on Du-PCB. ”PMIC-
MADDPG w/o negative buffer” means we use a regular
buffer to train CLUB, i.e., without data filtering as intro-
duced in Sec. 4.2

buffer. Results in Figure 11 show that Du-PCB is indeed
more effective. If we put all these trajectories into one
normal buffer, MINE and CLUB cannot distinguish what
behaviors are more favorable, in a result MINE and CLUB
cannot provide useful guidance for agents.

6. Conclusion & Future work
To address the potentially detrimental effect of only max-
imizing mutual information, we propose the PMIC frame-
work, consisting of a newly proposed collaboration criterion
measured by the MI between global states and joint actions;
Du-PCB to progressively maintain superior and inferior
trajectories; and Du-MIE to maintain two MI estimates of
our new criterion from samples in Du-PCB. In addition to
maximizing the expected discounted return, PMIC-MARL
maximizes the MI estimates associated with superior col-
laboration to guide agents to facilitate better collaboration,
while minimizing the MI estimates associated with inferior
collaborations, effectively encouraging exploration while
avoiding sub-optimal collaborations. In our experiments,
we evaluate several implementations of PMIC-MARL in
a wide range of cooperative environments with both con-
tinuous action space and discrete action space. The results
demonstrate the effectiveness and generalization of PMIC.

For limitations, firstly our work is empirical proof of the
effectiveness of the PMIC idea and we provide no theory
on optimality, convergence, and complexity. Secondly, the
choice of hyperparameters α and β has a significant effect
on the performances. Thirdly, the current approach to dis-
tinguishing data is relatively simple and straightforward. In
the future, we would like to improve PMIC to solve the
above limitations by theoretical support, automatic hyper-
parameter tuning technology, and more accurate methods
to distinguish data. In addition, we would like to further
develop PMIC by applying the idea to other fields, such as
communication in MARL (Sun et al., 2020) and hierarchi-
cal reinforcement learning (HRL) (Tang et al., 2018). For
example, in HRL, the maximization-minimization of MI
could help lower-level agents achieve effective execution
based on a target provided by an upper-level policy. On the

other hand, extending PMIC with advanced techniques, like
hybrid action space (Li et al., 2021), evolutionary RL (Shen
et al., 2020), or prior human knowledge (Zhang et al., 2020),
is worth further study.
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A. Environment Details

(a) Predator-Prey (b) Cooperative Navigation (c) Wildlife Rescue

Figure 12: Multi-Agent Particle Environment.

Predator Prey: N slower cooperating agents chase the faster adversary around a randomly generated environment with L
large landmarks impeding the way. In our setting, agents control the predators to chase the prey, the policy of prey is fixed.
The agents are partially observable, the observation radius of each predator is 0.25. Only when the predator captures the
prey, it can get the reward 10. we set N to 3, 6, 12, 24 separately. Each game has 25 steps.

Cooperative Navigation: Agents must cooperate through physical actions to reach a set of L landmarks. In our setting,
agents receive a shared reward which is the sum of the minimum distance of the landmarks from any agent, and the agents
who collide with each other receive negative reward -1. Besides, all agents receive 1 if all landmarks are occupied. Each
game has 25 steps.

Wildlife Rescue (the motivating example): N agents must cooperate to rescue M wildlife with different risks and rewards.
We provide a control time Tc. When an agent catches up with an animal, the agent can control Tc seconds to wait for other
agents to arrive. Each game has T steps. In the motivating example and experiment, we leverage the same setting. We set Tc

to 8, T to 60. The specific reward at the end of each episode is set in Table 1.

Table 1: The reward matrix of the rescue agents at the end of each episode. Both agents receive the same reward.

agent 1

reward agent 2
tiger deer cat on the road

tiger 11 -30 0 -30
deer -30 7 6 -30
cat 0 6 5 0

on the road -30 -10 0 0

Figure 13: The structure of Multi-Agent MuJoCo.

Multi-Agent MuJoCo (de Witt et al., 2020) is a range of challeng-
ing continuous multi-agent control tasks of Multi-Agent MuJoCo
benchmark suite. Multi-Agent MuJoCo is designed for decentralized
cooperative continuous multi-agent robotic control. The structure is
shown in Figure 13. For evaluation, we use the reward setting of the
original paper, but we set k to zero for all environments. k controls
how much information each agent can observe from its adjacent agents.
When k is zero, it means each agent can only observe information
about its own joints, which is the hardest setting for Multi-Agent
MuJoCo.

For SMAC, we use the latest version 2.4.10, and default settings for
all maps.



PMIC: Improving Multi-Agent Reinforcement Learning with Progressive Mutual Information Collaboration

B. Process of training MINE and CLUB
In this section, we detail the process of training MINE and CLUB.

First, we introduce the process of training MINE. We train MINE based on the positive buffer of Du-PCB. Figure 3 illustrates
the detailed process of estimating the lower bound. We design the network T with parameters ω1 as a state encoder Eωs

and
an action encoder Eωu

. MINE takes a batch of (st, ut) ∼ PSU and (st, uk) ∼ PS ⊗ PU as inputs and encodes the data as
vectors Eωs(st), Eωu(ut), Eωu(uk) with the same dimension. Then we take the inner product of Eωs(st) and Eωu(ut),
Eωs(st) and Eωu(uk) to get Tω1(st, ut) and Tω1(st, uk) (e.q., scores) separately. Finally we do the subtraction operation
on the scores to get the estimate of IMINE(s, u) according to Equation (2). In summary, MINE is trained by sampling data
from the positive buffer of Du-PCB to minimize L(ω1) in Equation (2).

Then we details the process of training CLUB. We train CLUB based on the negative buffer of Du-PCB. Figure 3 illustrates
the detailed process of estimating the upper bound. We design the network T with parameters ω2 as action prediction
network. The train process of CLUB is different from MINE, we only need to sample data from the joint distribution PSU .
Then we directly minimize the loss L(ω2) based on the samples to optimize CLUB.

C. Integrate PMIC with RODE
RODE is a role-based algorithm which decomposes the joint action space into a restricted role action space to reduce
the primitive action-observation spaces. In RODE, each task can be decomposed into a sub-task which has a smaller
action-observation space, and each sub-task is associated with a role ρ. To demonstrate the generalization and effectiveness
of PMIC, we design PMIC-RODE (i.e., integrate PMIC with RODE). To integrate with PMIC, we take the joint role
ρ into consideration. Thus we measure the MI between the joint actions and global states with the joint role ρ (e.q.,
I(u; ρ, s)). Since the selection of actions for the agents needs to consider the selected role and the observations. I(u; ρ, s)
has a similar effort with I(u; s) in PMIC-MADDPG where the decisions are only based on the observations. Different
from PMIC-MADDPG, we set rPMIC

t = αIMINE(st; ρt, ut) − βICLUB(st; ρt, ut)). rPMIC
t is used in the same way as in

PMIC-MADDPG. To achieve the goal in Equation 5, we only need to modify the Qtot as follows:

L = Est,ut,rt,st+1∼D

[
(yrode −Qtot(st, ut))

2
]
, (7)

where yrode = rt + rPMIC
t + γmaxat+1

Q̄tot (st+1, πθ′(st+1)) and Qtot is a QMIX-style (Rashid et al., 2018) mixing
network to estimate the total value of the state and actions and Q̄tot is the target network of Qtot. Du-MIE is updated
according to Equation 4. Since RODE is QMIX-based method, credit assignment is also applied to the MI signals. The
MI signals over superior trajectories and inferior trajectories can reward and punish the agents based on their contribution,
which can help agents to find the optimal joint behaviors.

PMIC can be easily combined with existing MARL algorithms. For example, to integrate PMIC with RODE, we only need
to initialize the networks of RODE in line 2 of Algorithm 1 and retain other components. All other processes remain the
same except changing I(u; s) to I(u; ρ, s). Finally, we update the value network according to Equation 7 and others are the
same with RODE to replace the line 15 in Algorithm 1. The same applies in combination with other algorithms.

D. Experimental Settings
For experiments on MPE and SMAC, we use episodic rewards as the criterion for adding data to Du-PCB.

On Multi-Agent MuJoCo, we can more accurately collect superior trajectories. Since the episode reward of one trajectory is
high, there is no guarantee that there are no poor sub-trajectories that affect Du-PCB. Thus we leverage a more fine-grained
filtering method to filter the trajectories on Multi-Agent MuJoCo. We leverage sub-trajectories to replace the complete
trajectory to accurately filter the superior and inferior trajectories. In particular, we set the length of sub-trajectories to 50
steps and use the total reward of each sub-trajectory as the criterion for adding data to Du-PCB. The update frequency of
MINE and CLUB is 1 on all tasks.

The experiments on MPE are carried out on Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz. The experiments on Multi-Agent
MuJoCo are carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. The
experiments on SMAC are carried out on Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and Intel(R) Xeon(R) CPU
E5-2679 v4 @ 2.50GHz.
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E. Additional Experiments
In this section, we present more experiments to help better understand our framework. Six questions are raised and more
experiments about PMIC-MASAC and PMIC-QMIX are provided:

RQ1: Is Du-PCB buffer size sensitive?

RQ2: Is only maximizing I(s;π(·|s)) better than other MI forms?

RQ3: What is the time consumption of PMIC-MADDPG?

RQ4: Can MINE be replaced by normal MI estimator?

RQ5: Can MINE trained with the positive buffer of Du-PCB provide a good guide?

RQ6: How to choose the k (Update frequency of MI estimators)?
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Figure 14: Influence of Du-PCB size.

To answer RQ1, we design experiments on MPE and adjust the size of Du-PCB. Specifically, we test 5 different buffer sizes
(100, 500, 1000, 5000, 10000) for positive buffer and negative buffer of Du-PCB. The results shown in Figure 14 indicate
that both too large size and too small size are harmful to the performance. A buffer size that is too small prevents MINE
and CLUB from characterizing trajectories well, while too large size hinders the optimality of Du-PCB which makes it
impossible for MINE and CLUB to adapt quickly to the new joint behavior. Therefore, an appropriate size is important.

To answer RQ2, we only maximize MI with different forms to give a comparison. To avoid differences caused by some
mechanisms (e.g., double Q) or structures (e.g., MINE), we apply different forms of MI to MADDPG and leverage MINE as
the MI estimator and other settings remain the same. The hyperparameters have been fine-tuned. The results are shown
in Figure 15. Maximize MI of the global states and the joint actions is better than other MI forms in terms of the final
performance. This demonstrates that our proposed method of maximizing the MI of global states and joint actions is
more effective than other MI forms. Besides, we also find that maximizing MI in environments with sparse reward brings
performance degradation to the original algorithm. The reason is: In environments with sparse reward, the MI signals play
a greater role in guiding than reward signals. Beside, maximizing MI has the problem of easily making agents fall into
sub-optimal collaborations, thus agents quickly fall into sub-optimal collaborations.

To answer RQ3, we evaluate the time consumption of different algorithms on 6-Agent HalfCheetah. The experiment is
carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. We evaluate the time
consumption of each algorithm individually with no additional programs running on the device. Each result is the average
of 10 time-consuming calculations. The time consumption includes the time consumption of the execution phase and the
time consumption of the centralized training phase. The results are shown in Table 2. PMIC-MADDPG brings less time
consuming than other methods.

To answer RQ4, we evaluate the impact of MINE on the performance of the algorithm. Because we use MINE for
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Figure 15: Comparison of only maximizing mutual information with different forms. PMIC-version leverages MI of global
states and joint actions. VM3-version leverages the MI of any two agents’ actions among agents. SIC-version leverages the
MI of z and the joint policy.

Table 2: Time consumption of different algorithms on 6-Agent HalfCheetah every 1000 time steps.

algorithm PMIC-MADDPG MADDPG SIC-MADDPG VM3-AC
seconds 30.96 24.43 31.01 182.58
algorithm COMIX Fac-MADDPG MASAC
seconds 34.43 87.13 41.68

the first time in the field of multi-agent reinforcement learning, thus we need to provide a comparison of MINE and the
normal mutual information estimation method. The results are shown in Figure 16. We can see that the performance
of both methods is similar, which demonstrates that the effectiveness of PMIC is introduced by the mechanism of the
maximization-minimization MI and new collaboration criterion, rather than MINE.

To answer RQ5, we further analyze whether MINE trained with the positive buffer in Du-PCB could act as a good guide,
which requires the MINE to estimate a large value over superior trajectories and a small value over inferior trajectories. We
train MADDPG in 2-Agent Walker. During training, we save the positive buffer every 100000 steps, which ensures that the
trajectories saved each time are better than the previous time. Then we save the MINE every 100000 steps and use it to
estimate MI of trajectories saved in the positive buffer. The estimated MI of different positive buffer by different MINE are
plotted on Figure 17. The larger the index, the newer the MINE and buffer. When we use Du-PCB to train MINE, the color
gradually darkens from left to right in each line, indicating that MINE has a higher estimation value for the better trajectories.
However, when training MINE in the same way with VM3-AC (Kim et al., 2020), MINE estimates the same value of MI for
both inferior and superior trajectories. From the perspective of visualization, the MI of superior coordination estimated
by MINE with Du-PCB is large so that such coordination can be more encouraged, which can give accurate guidance to
superior joint behavior.

We train Du-MIE at the same frequency as the critic in all our experiments and it works well. To answer RQ6, we complete
the hyperparameter analysis on k by changing this frequency to 0.5x and 2x of the critic (with other settings unchanged) and
evaluating in Predator Prey (3 agents). As shown in Fig.18, PMIC learns faster and achieves slightly better performance
when increasing the update frequency of Du-MIE to 2x (red). Increasing the frequency of training Du-MIE provides more
accurate estimates, but it also brings additional time consumption, which needs to be traded off.

Integrate PMIC with MASAC: we integrate PMIC with MASAC to further verify the generalisation and effectiveness of
PMIC. The results are shown in Figure 19. PMIC also has significant improvement on MASAC. Beside, PMIC-MASAC is
better than the other MASAC-based method, VM3-AC. The effectiveness and generalisation of PMIC in continuous action
space is more convincing by the above experiments.
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Figure 16: Comparison of PMIC with MINE and PMIC with normal estimator.

Figure 17: Visualization results of the MI estimated by different MINE for different positive buffer (The left uses our
method, the right uses the regular method). X-axis denotes the index of positive buffer. Y-axis denotes the index of MINE.
The value in coordinates (x, y) represents the MI estimated by the MINE with index y for the buffer with index x.

Integrate PMIC with QMIX: To better evaluate the generalization ability, we integrate PMIC with QMIX based on
PyMARL2 (Hu et al., 2021) and evaluate PMIC-QMIX and QMIX on 3 maps. We run QMIX and PMIC-QMIX both in
serial mode, and other settings remain the same as in the original paper. Fig.20 shows that PMIC can also improve QMIX.
This further verifies the generalization and effectiveness of PMIC on the discrete action space.

F. Comparison with Other Related Algorithms
In this section, we give a new question: Whether PMIC can be replaced by a discriminator, which can also achieve the
purpose of guiding agents to better collaboration. To answer the question, more experiments are carried out. This idea
of using a discriminator is similar to Generative Adversarial Self-Imitation Learning (GASIL) (Guo et al., 2018) where a
discriminator is trained to discriminate between superior trajectories and inferior trajectories, while the policy learns to
fool the discriminator by imitating superior trajectories. Specifically, GASIL maintains a good trajectory experience. The
discriminator scores the good trajectory to 1.0 and scores the trajectory generated by current policy to 0.0. The results are
shown in Figure 21 which indicates that our MI based architecture PMIC is more effective than GASIL, which may be
mainly due to the fact: 1) GASIL only has a guiding role based on the discriminator. The inferior collaboration data is not
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Figure 18: Hyperparameter analysis of k on Predator Prey (3 agents).
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Figure 19: Comparisons of MASAC-based methods on MPE and Multi-Agent MuJoCo.

utilized to encourage agents exploration. 2) The discriminator is difficult to train and suffers from model collapse.

G. Hyperparameters
The hyperparameters for network architecture:

1: On MPE, we use two fully connected layers comprised of units 64 with ReLU nonlinearity and a final layer with tanh to
output actions as the policy network for each agent, the critic network adopts the same architecture as the policy network
except tanh for the final layer.

2: For Multi-Agent MuJoCo, the policy networks and critic network use the same architecture as those on MPE, but with
200 and 100 units for two fully connected layers.
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Figure 20: Comparisons of PMIC-QMIX and QMIX on SMAC
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Figure 21: Comparisons between leveraging PMIC and GASIL.

3: For SMAC, we use code provided by RODE, the parameters and details are the same as the original paper.

For a fair comparison, all algorithms’ network architecture remain consistent. In addition, we do not use the attention
mechanism in the critic for all algorithms. For MADDPG, we use a centralized critic network and N policy networks.
For MINE, we use two fully connected layers (100 units on Muti-Agent MuJoCo and 64 on MPE) with Leaky ReLU
nonlinearity to encode global states and joint actions respectively, the results are obtained by a dot product of the embeddings
of global states and joint actions. For CLUB, we use two fully connected layers (50 units on Muti-Agent MuJoCo and 32
on MPE) with Leaky ReLU nonlinearity to encode global states. For SMAC, we need to encode ρ, thus CLUB uses two
fully connected layers (64 units) to encode ρ and the global states, then the outputs are concatenated to form a vector of
128 dimensions, and use the vector to predict the mean and variance of the global actions. MINE uses two fully connected
layers (32 units) to encode ρ and the global states and uses a fully connected layer (64 units) to encode the joint action. The
results are obtained by a dot product of the embeddings of the new vector (e.q., combine vectors of the global states and the
joint role ρ) and joint actions). The architectures used to calculate MI in other MI-related algorithms (SIC-MADDPG and
VM3-AC) use the same number of units and the activation function of MINE and the other parts are consistent with the
setting in their original papers.

For SIC-MADDPG and VM3-AC, there are two parameters to adjust: the dimension of z and α. For SIC-MADDPG,
we select z’s dimension from [2, 3, 5, 8, 10, 15, 20] following the setting in original paper on MPE, [2, 3, 4, 5, 8, 10, 15]
on Multi-Agent MuJoCo and select α from [0.1, 0.01, 0.001, 0.0001, 0.00001] following the setting in original pa-
per. For VM3-AC, we select z’s dimension from [2, 4, 8] following the setting in original paper and select α from
[0.1, 0.01, 0.001, 0.0001, 0.00001]. For MASAC, we adjust β from [1.0, 0.1, 0.01, 0.001, 0.0001], 0.00001 to control the
entropy. For PMIC, we need to adjust α and β, we select from [1.0, 0.1, 0.01, 0.001, 0.0001]. The final choice of α, β and
dimension of z is shown in Table 3. For FacMADDPG and COMIX, we use the official code and the parameters of the
original paper.

For other hyperparameters on MPE and Multi-Agent MuJoCo, 1× 10−3 for the critic and 1× 10−4 for the actors on MPE
except 1× 10−2 on Wildlife Rescue and use Adam optimizer with learning rate 1× 10−3 for the critic and 1× 10−4 for the
actors on Multi-Agent MuJoCo. For MINE and CLUB, the learning rate is 1× 10−4 on all environments except 1× 10−3

on Wildlife Rescue. The discounted factor γ and τ are 0.99 and 0.002 on Multi-Agent MuJoCo and 0.95 and 0.001 on MPE.
Replay buffer size is 1× 106 on MPE and Multi-Agent MuJoCo except 3× 105 on Wildlife Rescue. The batch size is 1024
on MPE and 100 on Multi-Agent MuJoCo. The size of positive buffer and negative buffer of Du-PCB is 1000 on MPE
except 6000 on Wildlife Rescue. 5000 for positive buffer and negative buffer on Multi-Agent MuJoCo. 500 for the positive
buffer and 3000 for negative buffer on SMAC.

For hyperparameters of RODE, all parameters remain the same as in the code provided in the original paper. RODE has two
main adjusted hyperparameters: The number of role clusters and role interval. Number of role clusters is used to control the
number of role types. The role interval decides how frequently the action spaces change and may have a critical influence
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on the performance. All parameter settings are consistent with the original paper. The selection of α and β is shown in
Table. 4. The batch size to update MINE and CLUB is 128. We apply the maximization and minimization of MI after
100000 timesteps on SMAC.

Table 3: Selection of α, β and dimension of z for different algorithms on MPE and Multi-Agent MuJoCo.

SIC-MADDPG PMIC-MADDPG VM3-AC MASAC
Env name α|z dim α|β α|z dim β
Predator Prey (3 Agents) 0.00001 | 2 0.01 | 0.1 0.1 | 4 0.1
Predator Prey (6 Agents) 0.0001 | 8 0.01 | 0.1 0.01 | 8 0.1
Predator Prey (12 Agents) 0.0001 | 3 0.1 | 0.1 0.01 | 4 0.1
Predator Prey (24 Agents) 0.0001 | 2 0.01 | 0.1 0.01 | 4 0.1
Cooperative Navigation 0.0001 | 2 0.0001 | 0.01 0.1 | 4 0.01
Wildlife Rescue 0.001 | 3 0.001 | 0.1 0.001 | 2 0.001
2 agents HalfCheetah 0.0001 | 3 0.1 | 0.0001 0.1 | 8 0.01
6 agents HalfCheetah 0.0001 | 2 0.1 | 0.001 0.1 | 2 0.01

Table 4: Selection of α, β on SMAC.

PMIC-RODE
Map name α|β
MMM2 0.0001 | 0.0001
MMM 0.0001 | 0.001
2s3z 0.001 | 0.1
3s vs 5z 0.001 | 0.01
3s5z 0.001 | 0.01
10 vs 11m 0.01 | 0.01

H. Experiments about MASAC-related Algorithms on Wildlife Rescue
Through experiments, we find that the MASAC-related algorithms can not learn positive rewards on Wildlife Rescue
environment. Thus we experiment MASAC on Wildlife Rescue environment to find the reason.

There are two differences between MASAC and MADDPG: βH(π) and double Q mechanism. Firstly, we make adjustments
to β and find that no matter how we adjust β, we can not get positive rewards, even if β is set to 0.0. Secondly, we change
the network architecture of MASAC by removing the double Q mechanism, then find that the algorithm can get positive
rewards. Thus we hypothesize that the main reason why MASAC-related algorithms can not learn to cooperate on Wildlife
Rescue is caused by the double Q mechanism.
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Figure 22: Ablation experiments of βH and double Q on Wildlife Rescue.

To further verify our hypothesis, we
add double Q to MADDPG and find
significant performance degradation
and slower convergence, which proves
that the double Q mechanism is the
main factor. We give some explana-
tions, the Wildlife Rescue is charac-
terized by high punishment for miss-
coordination and low positive rewards.
Double Q prevents overestimation but
can lead to underestimation, thus using
double Q might ignore less frequent
positive rewards, leading to underesti-
mation.


