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Abstract

Stochastic gradient descent (SGD) is the
workhorse in modern machine learning and data-
driven optimization. Despite its popularity, ex-
isting theoretical guarantees for SGD are mainly
derived in expectation and for convex learning
problems. High probability guarantees of noncon-
vex SGD are scarce, and typically rely on “light-
tail” noise assumptions and study the optimiza-
tion and generalization performance separately.
In this paper, we develop high probability bounds
for nonconvex SGD with a joint perspective of
optimization and generalization performance. In-
stead of the light tail assumption, we consider
the gradient noise following a heavy-tailed sub-
Weibull distribution, a novel class generalizing
the sub-Gaussian and sub-Exponential families
to potentially heavier-tailed distributions. Under
these complicated settings, we first present high
probability bounds with best-known rates in gen-
eral nonconvex learning, then move to nonconvex
learning with a gradient dominance curvature con-
dition, for which we improve the learning guaran-
tees to fast rates. We further obtain sharper learn-
ing guarantees by considering a mild Bernstein-
type noise condition. Our analysis also reveals
the effect of trade-offs between the optimization
and generalization performance under different
conditions. In the last, we show that gradient
clipping can be employed to remove the bounded
gradient-type assumptions. Additionally, in this
case, the stepsize of SGD is completely oblivious
to the knowledge of smoothness.
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1. Introduction
Stochastic gradient descent (SGD) has found wide applica-
tions in modern statistical and machine learning (Bousquet
& Bottou, 2007; Bottou et al., 2018; Lan, 2020). As itera-
tive algorithms, SGD works by querying an oracle for an
unbiased gradient estimate built on one or several training
examples in place of the exact gradients. Since its simplicity
in implementation, low memory requirement, and low com-
putational complexity per iteration, as well as good practical
behavior, SGD is becoming ubiquitous in the big data era
(Jain & Kar, 2017; Bubeck, 2015; Hazan et al., 2016; Lei &
Tang, 2018). The success of SGD motivates the researchers
to investigate its theoretical properties (Neu, 2021; Harvey
et al., 2019; Madden et al., 2021; Ghadimi & Lan, 2013).

From a theoretical point of view, existing literature pro-
vides a quite comprehensive understanding regarding the
expected guarantees of SGD (Harvey et al., 2019; Li &
Orabona, 2020). However, expectation bounds do not cap-
ture the behavior of SGD within a single or few runs, which
is related to the probabilistic nature of SGD. In addition,
in practical applications such as deep learning, it is often
the case that the algorithm is usually run only once since
the training process may take a long time. Therefore, ob-
taining a high probability bound is essential to ensure the
performance of the algorithm on single runs (Li & Orabona,
2020; Harvey et al., 2019; Ward et al., 2019; Cutkosky &
Mehta, 2021). In particular, many problems of interest (e.g.,
neural network training) are nonconvex, however, few high
probability analyses of SGD in the nonconvex context exist
(Ghadimi & Lan, 2013; Li & Orabona, 2020; Zhou et al.,
2018; Lei & Tang, 2021; Ward et al., 2019).

Many recent works suggest that SGD exhibits heavier noise
than light sub-Gaussian tails (Madden et al., 2021; Gur-
buzbalaban et al., 2021; Simsekli et al., 2019; Panigrahi
et al., 2019; Şimşekli et al., 2019; Zhang et al., 2020a;b;
2019; Gorbunov et al., 2020; Cutkosky & Mehta, 2021). For
example, Zhang et al. (2020b) provide empirical evidence
that large natural language processing models based on at-
tention and transformers (Vaswani et al., 2017; Cutkosky
& Mehta, 2021) have heavy-tailed gradient noise. It was
suggested in (Nguyen et al., 2019; Hodgkinson & Mahoney,
2021) that the heavier-tailed noise of SGD may strongly
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corrupt its generalization performance to testing data. In
this case, many existing theoretical results assuming light
sub-Gaussian tails appear to be restrictive (Li & Orabona,
2020; Zhou et al., 2018; Madden et al., 2021). Therefore, it
is significant to investigate the high probability theoretical
guarantees of nonconvex SGD in a heavy-tailed noise set-
ting since it is towards a more realistic analysis (Cutkosky
& Mehta, 2021; Madden et al., 2021; Barsbey et al., 2021).

Moreover, existing learning guarantees of SGD are mainly
derived separately either from the point of optimization per-
formance or generalization performance (Lei et al., 2021a).
Optimization performance concerns how the learning algo-
rithm minimizes the empirical risk, while generalization per-
formance concerns how the predictive models learned from
training samples behave on the testing samples. However,
with the development of theoretical studies, it is gradually
revealed that the learning performance of models is influ-
enced by both the complexity of models and the optimiza-
tion algorithms used to train the model (Lei & Tang, 2021;
Neyshabur et al., 2017). Bousquet & Bottou (2007) also
show that it is the interaction of optimization and generaliza-
tion that determines the model’s final learning performance.
In this spirit, to investigate the learning guarantees of SGD,
it is necessary to consider both the optimization and gen-
eralization properties. However, for nonconvex learning,
such theoretical studying is still scarce (Lei & Tang, 2021),
since existing works of nonconvex SGD mainly focus on
the optimization (Reddi et al., 2016; Li & Orabona, 2020;
Ward et al., 2019; Cutkosky & Mehta, 2021; Allen-Zhu &
Hazan, 2016; Ghadimi & Lan, 2013; Ghadimi et al., 2016;
Zhou et al., 2018; Madden et al., 2021).

Motivated by the above problems, in this paper, we study
the high probability guarantees for nonconvex stochastic
gradient descent with heavy tails by joint consideration of
the optimization properties and generalization properties.
To be specific, we consider a novel heavy-tailed distribution,
sub-Weibull distribution (Vladimirova et al., 2020), which
generalizes the sub-Gaussian and sub-Exponential families
to potentially heavier-tailed ones (Camuto et al., 2021; Mad-
den et al., 2021; Vladimirova et al., 2019; 2020; Kuchibhotla
& Chakrabortty, 2018). We develop high probability bounds
for the optimization and generalization properties under this
distribution. Our contributions can be summarized below.

(1.) We first investigate the general nonconvex learning, for
which we establish high probability optimization bounds
and generalization bounds of gradients with relaxed assump-
tions. The analysis confirms the trade-off between the opti-
mization and generalization performance.

(2.) We then study the nonconvex stochastic gradient de-
scent with a gradient dominance curvature condition, for
which we derive faster rates for the generalization bound of
gradients and the optimization error. By balancing the two

bounds, we also give fast rates for excess risk.

(3.) We then consider a mild Bernstein-type noise condi-
tion, and further provide sharper learning guarantees for the
generalization bound of gradients and the excess risk. The
analysis reveals that, in this case, optimization will always
benefit the generalization, and the over-fitting phenomena
would never happen.

(4.) We finally study SGD with clipped gradients, for which
we provide a high probability learning guarantee and re-
move a commonly used bounded gradient assumption. To
our knowledge, this is the first high probability bound for
nonconvex SGD with clipping.

This paper is organized as follows. We first review the
related work in Section 1.1 and then introduce the prelim-
inaries relevant to our discussion in Section 2. Section 3
presents the main results, where we derive a series of learn-
ing guarantees for SGD. In Section 4, we conclude this
paper. The complete proofs are provided in the Appendix.

1.1. Related Work

High Probability Bounds of SGD. Most of the literature
proves bounds of SGD in expectation (Harvey et al., 2019;
Lei & Ying, 2021; 2020). The high probability bounds of
SGD are mainly provided for convex learning problems, in-
cluding optimization performance (Kakade & Tewari, 2009;
Hazan & Kale, 2014; Rakhlin et al., 2012; Gorbunov et al.,
2020; Harvey et al., 2019; Davis & Drusvyatskiy, 2020;
Davis et al., 2021; Gorbunov et al., 2021; Jain et al., 2019;
Lei & Tang, 2018) and generalization performance (London,
2017; Lei et al., 2021a;b; Feldman & Vondrak, 2019; Bassily
et al., 2020). As a comparison, there is relatively less high
probability studies on the nonconvex learning (Madden et al.,
2021; Li & Orabona, 2020). In the related work of noncon-
vex learning, Ghadimi & Lan (2013); Li & Orabona (2020);
Zhou et al. (2018); Ward et al. (2019); Lei & Tang (2021);
Madden et al. (2021) provide high probability bounds for
SGD or adaptive SGD. However, most of these works as-
sume the light-tailed sub-Gaussian gradient noise.

Noise in Neural Network. Recently, Simsekli et al. (2019);
Panigrahi et al. (2019); Şimşekli et al. (2019); Gurbuzbala-
ban et al. (2021); Camuto et al. (2021) started the topic of
heavy-tailed stochastic gradient noise, mainly focusing on
Langevin dynamics and escaping saddle points. Wang et al.
(2021) provide expected convergence analysis of optimiza-
tion for a α-stable distribution with α ∈ [1, 2) for strongly
convex learning problems. Zhang et al. (2020b); Cutkosky
& Mehta (2021) instead present convergence rates for a con-
dition that the gradients having bounded p-th moments for
some p ∈ (1, 2]. Specifically, Zhang et al. (2020b) provide
an in-expectation analysis for nonconvex SGD with clip-
ping. And Cutkosky & Mehta (2021) prove high probability
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bounds with a combination of gradient clipping, momen-
tum, and normalized gradient descent under the noncon-
vex setting. It is not clear whether the proof techniques in
(Cutkosky & Mehta, 2021) can guarantee the convergence
of the vanilla SGD since the momentum brings some expo-
nential terms to accelerate convergence, and the normalized
gradient descent operation is coupled with the momentum.
Meanwhile, Madden et al. (2021) provide high probabil-
ity analysis for nonconvex SGD with the heavy-tailed sub-
Weibull gradient noise. However, they only derive bounds
in the general nonconvex learning regime and focus on the
optimization performance of SGD. Therefore, the high prob-
ability analysis of nonconvex SGD with heavy tails has not
been thoroughly studied, even far from be understood. This
paper makes an effort in this direction.

2. Preliminaries
2.1. Notations

Let P be a probability measure defined on a sample space
Z , many problems of machine learning can be cast into the
following stochastic optimization problem with a hypothesis
space indexed byW ⊆ Rd

min
w∈W

F (w) := Ez∼P [f(w; z)],

where the objective f : W × Z 7→ R+ is possibly non-
convex and Ez∼P denotes the expectation with respect to
(w.r.t.) the random variable z drawn form P .

In statistical learning, F (w) is often referred to as popula-
tion risk (Li & Liu, 2021b). People want to learn a prediction
model with small population risk. However, F (w) is typi-
cally not accessible since the underlying distribution P is
unknown. In practice, we often sample a set of i.i.d. training
data S = {z1, ..., zn} from P and minimize the following
empirical risk (Liu, 2021; Yin et al., 2021; Li et al., 2018)

FS(w) :=
1

n

n∑
i=1

f(w; zi).

SGD has shown its powerful efficiency in optimizing the
empirical risk FS(w) (Bottou et al., 2018; Ghadimi & Lan,
2013). The steps of SGD are shown in Algorithm 1.

We then introduce some notations used in this paper. Let
b′ = supz∈Z ‖∇f(0; z)‖, where ∇f(·; z) denotes the gra-
dient of f w.r.t. the first argument and ‖ · ‖ denotes the Eu-
clidean norm. Let B(w0, R) := {w ∈ Rd : ‖w −w0‖ ≤
R} denote a ball with center w0 ∈ Rd and radius R. In
this paper, we mainly assume that the setW satisfiesW :=
B(0, R), denoted byBR. Let w(S) ∈ arg minw∈W FS(w)
and w∗ ∈ arg minW F (w). We also denote A � B
if there exists universal constants C1, C2 > 0 such that
C1A ≤ B ≤ C2A.

Algorithm 1 SGD
Input: initial point w1 = 0, step sizes {ηt}t, dataset S =
{z1, ..., zn}.

1: for t = 1, ..., T do
2: draw jt from the uniform distribution over the set

{j : j ∈ [n]}
3: update wt+1 = wt − ηt∇f(wt; zjt).
4: end for

2.2. Sub-Weibull Distribution

We now introduce the definition of sub-Weibull random
variables, which is characterized by the moment generating
function (MGF) (Vershynin, 2018).

Definition 2.1. (Vladimirova et al., 2020) A random vari-
able X , satisfying

E
[

exp
(
(|X|/K)

1
θ

)]
≤ 2, (1)

for some positive K and θ, is called a sub-Weibull random
variable with tail parameter θ, which is denoted by X ∼
subW (θ,K).

We provide some important preliminaries of sub-Weibull
random variables in Appendix A. This novel class gener-
alizes the sub-Gaussian and sub-Exponential families to
potentially heavier-tailed distributions. Sub-Weibull dis-
tributions are parameterized by a positive tail index θ and
reduced to sub-Gaussian distributions for θ = 1/2 and to
sub-Exponential distributions for θ = 1. The higher tail pa-
rameter θ corresponds to the heavier tails. The light-tailed
distributions are often called the sub-Gaussian ones (Ver-
shynin, 2018). To explicitly show the difference between
the light-tailed distribution and sub-Weibull distribution, we
give the definition of the light-tailed distribution below.

Definition 2.2 (Light-Tailed Distribution). A random vari-
able X , satisfying

E
[

exp
(
(X/K)2

)]
≤ 2,

for some positive K, is called a light-tailed random variable.

Therefore, in the rest of the paper by stochastic gradient
noise with heavy-tailed distribution, we mean such a stochas-
tic gradient noise that satisfies (1) with θ > 1/2. However,
to complete the picture of high probability bounds of non-
convex SGD, we also provide theoretical results of θ = 1/2.
Remark 2.3. One of the appearing difficulties in studying
sub-Weibull distribution is that when θ > 1, i.e., beyond the
sub-Gaussian and sub-Exponential distribution, the MGF
of X doesn’t exist (Bakhshizadeh et al., 2020). Note that
in Definition 2.1, the MGF is defined on |X|1/θ. Therefore,
the standard technique, i.e., finding upper bounds for the
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MGF, clearly fails for the heavy-tailed sub-Weibull distri-
bution, which also means that it is not easy to establish the
concentration of measure inequalities for it. However, the
concentration of measure inequalities for martingales, espe-
cially the Bernstein-type inequality, plays an essential role
in our analysis. With the recent theoretical advances of mar-
tingale inequalities for heavy-tailed distributions (Li, 2021;
Fan & Giraudo, 2019; Madden et al., 2021; Bakhshizadeh
et al., 2020), we use these tools to derive a series of learning
guarantees for nonconvex SGD with heavy tails from both
points of the optimization and generalization properties.

2.3. Assumptions

We first demonstrate our assumption on the stochastic gradi-
ent noise, shown as follows.

Assumption 2.4 (Sub-Weibull Noise). Conditioned on
the previous iterates, we assume the gradient noise
∇f(wt; zjt) −∇FS(wt) is centered and ‖∇f(wt; zjt) −
∇FS(wt)‖ ∼ subW (θ,K) such that θ ≥ 1

2 , i.e.,

Ejt [∇f(wt; zjt)−∇FS(wt)] = 0,

and

Ejt
[

exp
(
(‖∇f(wt; zjt)−∇FS(wt)‖/K)

1
θ

)]
≤ 2.

Remark 2.5. The clear motivation of our study on the heavy-
tailed sub-Weibull stochastic gradient noise is that many
recent works suggest that SGD exhibits heavier noise than
sub-Gaussian (Madden et al., 2021; Gurbuzbalaban et al.,
2021; Simsekli et al., 2019; Panigrahi et al., 2019; Şimşekli
et al., 2019; Zhang et al., 2020a;b; 2019; Gorbunov et al.,
2020; Cutkosky & Mehta, 2021; Wang et al., 2021). For
instance, there is strong empirical evidence that the gradient
noise often exhibits a heavy-tailed behavior in fully con-
nected and convolutional neural networks (Şimşekli et al.,
2019; Gurbuzbalaban & Hu, 2021) as well as attention-
based neural networks (Wang et al., 2021; Zhang et al.,
2020b). Moreover, Vladimirova et al. (2019; 2020) show
that a Gaussian prior on the weights of a Bayesian neural
network produces a sub-Weibull distribution on the weights.
Thus, the theoretical analysis of this paper may be helpful
to the study of the Bayesian neural network.

Assumption 2.6 (Smoothness). Let β > 0. For any sample
z ∈ Z and w,w′ ∈ W , a differentiable function w 7→
f(w; z) is β-smooth if

‖∇f(w; z)−∇f(w′; z)‖ ≤ β‖w −w′‖.

Remark 2.7. This assumption is necessary to have the con-
vergence of the gradients to zero (Li & Orabona, 2020). It
is widely used in the optimization and generalization analy-
sis of nonconvex learning problems (Feldman & Vondrak,
2019; Hardt et al., 2016; Reddi et al., 2016; Foster et al.,
2018; Li & Liu, 2021c; 2022).

Assumption 2.8. There exists G > 0 such that for all
S ∈ Zn,

ηt‖∇FS(wt)‖ ≤ G,∀t ∈ N.

Remark 2.9. The bounded stochastic gradient assumption,
i.e., ‖∇f(wt; z)‖ ≤ G for ∀t ∈ N and z ∈ Z , is very
common in the stochastic optimization literature (Hardt
et al., 2016; Kuzborskij & Lampert, 2018; Reddi et al.,
2016; Harvey et al., 2019; Li et al., 2021). Compared to this
bounded gradient assumption, Assumption 2.8 is mild since
the stepsize ηt should goes to zero along with the increase
of iterate number t. Typical choices of ηt are O(t−

1
2 ) and

O(t−1) (Ghadimi & Lan, 2013; Lei & Tang, 2021), which
are also our studied ones in this paper. We highlight that we
also show the gradient clipping can be served as a potential
tool to remove this assumption, please refer to Section 3.4.

Assumption 2.10 (Noise Condition). There exists G∗ > 0
such that for all 2 ≤ k ≤ n,

Ez
[
‖∇f(w∗, z)‖k

]
≤ 2−1k!Ez

[
‖∇f(w∗, z)‖2

]
Gk−2
∗ .

Remark 2.11. Assumption 2.10 is a classical Bernstein con-
dition (Wainwright, 2019) on gradient norms. This assump-
tion is pretty mild since it was assumed at the optima w∗.
Moreover, in our theoretical results, G∗ will always exist in
the O(1/n2) term, it, therefore, produces little influence on
the learning guarantees.

Assumption 2.12 (PL Condition). Assume that for any
S ∈ Zn, there exists an µS > 0 such that

FS(w)− FS(w(S)) ≤ (4µS)−1‖∇FS(w)‖2,∀w ∈ W.

Remark 2.13. PL condition is also referred to as “gradient
dominance condition” (Foster et al., 2018). This condi-
tion simply requires that the gradient grows faster than a
quadratic function as we move away from the optimal func-
tion value. PL condition is one of the weakest curvature con-
ditions and is widely employed in nonconvex learning, such
as (Xu & Zeevi, 2020; Xu & Zeevi, 2020; Lei & Tang, 2021;
Lei & Ying, 2021; Lei et al., 2021a; Charles & Papailiopou-
los, 2018; Zhou et al., 2018; Reddi et al., 2016; Karimi et al.,
2016), to mention but a few. Under suitable assumptions on
the input, many popular nonconvex objective functions sat-
isfy the PL condition, including mixture of two Gaussians
(Balakrishnan et al., 2017), phase retrieval (Sun et al., 2018),
robust regression (Liu et al., 2016), blind deconvolution (Li
et al., 2019), matrix factorization (Liu et al., 2016), linear
dynamical systems (Hardt et al., 2018), neural networks
with one hidden layer (Li & Yuan, 2017), ResNets with lin-
ear activations (Hardt & Ma, 2016), etc. Moreover, Liu et al.
(2020) recently show that sufficiently over-parameterized
systems, including wide neural networks, generally satisfy
the PL condition locally around random initialization.
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3. Main Results
In this section, we show the main results of this paper. We
first consider general non-convex learning setting in Section
3.1 and then non-convex learning satisfying the PL condition
in Section 3.2. Section 3.3 further considers the Bernstein-
type noise condition (Assumption 2.10). In Section 3.4 we
study SGD with clipping.

3.1. General Nonconvex Learning

We study heavy-tailed SGD with joint consideration of op-
timization and generalization performance, as discussed
before. For characterizing this, we first present high prob-
ability bounds on the gradients of empirical risks, written
as ‖∇FS(wt)‖2, which is relevant for the optimization per-
formance since it corresponds to that the optimization algo-
rithm minimizes the empirical risk FS .

Theorem 3.1. Suppose Assumptions 2.4 and 2.6 hold.
Let wt be the iterate produced by Algorithm 1. Assume
ηt = η1t

− 1
2 with η1 ≤ 1/(2β). For any δ ∈ (0, 1), with

probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

1√
T

T∑
t=1

ηt‖∇FS(wt)‖2 = O
( log(1/δ) log T√

T

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

1√
T

T∑
t=1

ηt‖∇FS(wt)‖2 = O
( log2θ(1/δ) log T√

T

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have

1√
T

T∑
t=1

ηt‖∇FS(wt)‖2

=O
( logθ−1(T/δ) log(1/δ) + log2θ(1/δ) log T√

T

)
.

Remark 3.2. In the general nonconvex case, since we cannot
guarantee that the algorithm can find a global minimizer, we
therefore use the norm of gradients to measure the perfor-
mance of SGD (Ghadimi & Lan, 2013; Madden et al., 2021).
From Theorem 3.1, one can see that when θ increases,
the learning guarantees of optimization performance are
growing worse. For instance, when θ > 1, an extra term
logθ−1(T/δ) log(1/δ) appears. Nonetheless, the learning
bounds we established are still of the orderO(1/

√
T ) when

hiding the logarithmic terms. Theorem 3.1 also shows that
for the light-tailed sub-Gaussian noise (i.e., θ = 1/2), As-
sumption 2.8 doesn’t required, which is because in this
case, the sub-Weibull Freedman inequality in Lemma A.5

is hold for any α > 0 (see (3) for details). But for heavy-
tailed gradient noise, we need Assumption 2.8 to guarantee
α ≥ bmaxi∈[T ]mi (see (4) and (5) for details). We now
compare Theorem 3.1 with the related work of high prob-
ability bounds of nonconvex SGD. Ghadimi & Lan (2013)
are the first to analyze nonconvex SGD, whose bound’s de-
pendency on the confidence parameter 1/δ is linear. As a
comparison, Theorem 3.1 presents a logarithm dependency.
Lei & Tang (2021) then provide theO(log(1/δ)/

√
T ) order

bound, but require assuming
√
ηt‖∇f(wt; zjt)‖ ≤ G. The

work most relevant to us is (Madden et al., 2021). Motivated
by recent research on heavy-tailed phenomena in SGD, Mad-
den et al. (2021) also study the heavy-tailed sub-Weibull
gradient noise. They provide upper bounds of the similar
order, but require assuming ‖∇FS(wt)‖ ≤ G. By com-
parison, Assumption 2.8 is milder than the corresponding
ones of (Madden et al., 2021; Lei & Tang, 2021), meaning
that we establish the comparable bounds by the relaxed as-
sumption. Additionally, Li & Orabona (2020); Zhou et al.
(2018); Ward et al. (2019) provide high probability bounds
for adaptive SGD under the nonconvex setting. However,
Li & Orabona (2020); Zhou et al. (2018) only focus on
the case of θ = 1/2 and the bounds in Ward et al. (2019)
have linear dependency on the confidence parameter 1/δ.
Roughly speaking, their bounds are of the order O(1/

√
T )

(Li & Orabona, 2020; Zhou et al., 2018; Ward et al., 2019).
Overall, in comparison with related work, our established
learning bounds under the heavy-tailed setting in Theorem
3.1 show pretty strong competitiveness. We highlight here
we also improve the O(1/

√
T ) order bounds to O(1/T )

order in Section 3.2.

We then provide high probability bounds on the generaliza-
tion error of gradients, written as ‖∇FS(wt)−∇F (wt)‖2,
which is related to the generalization performance since it
corresponds to approximating the population gradient by
its empirical counterpart based on training samples (Foster
et al., 2018; Mei et al., 2018; Lei & Tang, 2021).

Theorem 3.3. Suppose Assumptions 2.4 and 2.6 hold. Let
wt be the iterate produced by Algorithm 1. Assume ηt =
η1t
− 1

2 with η1 ≤ 1/(2β). For any δ ∈ (0, 1) and uniformly
for all t = 1, ...T , with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2

=O
(T 1

2 log2( 1
δ )(log T )

(
d+ log( 1

δ )
)

n

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

‖∇F (wt+1)−∇FS(wt+1)‖2

=O
(T 1

2 log2θ+1( 1
δ )(log T )

(
d+ log( 1

δ )
)

n

)
;
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(c.) if θ > 1 and Assumption 2.8 holds, then we have

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
((
d+ log(

1

δ
)
)

×
T

1
2

(
logθ−1(T/δ) log(1/δ) + log(2θ+1)( 1

δ ) log T
)

n

)
.

Remark 3.4. Theorem 3.3 shows that when θ ∈ [1/2, 1],
the generalization error bounds of gradients are of the order
O(T

1
2 (d+log( 1

δ ))/n) when hiding other logarithmic terms.
When the tail θ > 1, the guarantee is clearly worse since
an extra term logθ−1(T/δ) log(1/δ) appears. Similarly, for
light-tailed sub-Gaussian noise, Assumption 2.8 is unneces-
sary. Lei & Tang (2021) also study the generalization error
bound of gradient in the general nonconvex case, but they
need assuming

√
ηt‖∇f(wt; zjt)‖ ≤ G, which is stronger

than Assumption 2.8 , as discussed in Remark 3.2. More-
over, Madden et al. (2021); Li & Orabona (2020); Zhou
et al. (2018); Ward et al. (2019); Ghadimi & Lan (2013)
only study the optimization performance. The generaliza-
tion bounds in Theorem 3.3 would converge if the sample
size n ≥ O

(
T

1
2 (d+ log( 1

δ ))
)
. Therefore, it provides novel

high probability learning guarantees for the generalization
property of nonconvex SGD with heavy tails.

Based on Theorems 3.1 and 3.3, we present high probability
generalization bounds on the gradients of population risk.

Theorem 3.5. Suppose Assumptions 2.4 and 2.6 hold. Let
wt be the iterate produced by Algorithm 1. Assume ηt =
η1t
− 1

2 with η1 ≤ 1/(2β). Selecting T � n/d. For any
δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d
n

) 1
2 log(

n

d
) log3(

1

δ
)
)

;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d
n

) 1
2 log(

n

d
) log(2θ+2)(

1

δ
)
)

;

(c.) if θ > 1 and Assumption 2.8 holds, then we have

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d
n

) 1
2
(

log(
n

d
) log(2θ+2)(

1

δ
)

+ logθ−1(
n

dδ
) log2(

1

δ
)
))
.

Remark 3.6. The analysis of Theorem 3.5 is based on an
error decomposition: ‖∇F (wt)‖2 ≤ 2(‖∇FS(wt)‖2 +
‖∇FS(wt) − ∇F (wt)‖2), where the latter two terms are
bounded in Theorems 3.1 and 3.3. Clearly, the optimiza-
tion performance in Theorem 3.1 improves as the iterate

number T increases, while the generalization performance
would worsen as shown in Theorem 3.3. Therefore, we need
to trade off the optimization and generalization to reach a
better balance. By choosing the proper iteration number
T � n/d, we obtain the stated bounds of Theorem 3.5.

3.2. Nonconvex Learning with PL Condition

Analogous to Section 3.1, we first show high probability
bounds for optimization error. Note that we can derive
guarantees for optimization error of function values instead
of gradients under the PL condition.
Theorem 3.7. Suppose Assumptions 2.4, 2.6, and 2.12 hold.
Let wt be the iterate produced by Algorithm 1. Assume ηt =

2
µS(t+t0) with t0 ≥ max{ 4β

µS
, 1}. Then for any δ ∈ (0, 1),

with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

FS(wT+1)− FS(w(S)) = O
( log(1/δ)

T

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

FS(wT+1)− FS(w(S)) = O
( log(θ+ 3

2 )( 1
δ ) log

1
2 T

T

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have

FS(wT+1)− FS(w(S))

=O
( log(θ+ 3

2 )( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T

)
.

Remark 3.8. The learning bounds established in Theorem
3.7 are of the order O(1/T ) when hiding the logarithmic
terms, which are faster than the orderO(1/

√
T ) in Theorem

3.1. Similar to the analysis in Section 3.1, Theorem 3.7
confirms that when θ increases, the learning guarantees of
the optimization error are becoming worse.

We then develop high probability bounds for the generaliza-
tion error of gradients under the PL condition.
Theorem 3.9. Suppose Assumptions 2.4, 2.6, and 2.12 hold.
Let wt be the iterate produced by Algorithm 1. Assume ηt =

2
µS(t+t0) with t0 ≥ max{ 4β

µS
, 1}. Then for any δ ∈ (0, 1)

and uniformly for all t = 1, ...T , with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2

=O
(d+ log( 1

δ )

n
log2(

1

δ
) log T

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

‖∇F (wt+1)−∇FS(wt+1)‖2

=O
(d+ log( 1

δ )

n
log(2θ+1)(

1

δ
) log T

)
;
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(c.) if θ > 1 and Assumption 2.8 holds, then we have

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(d+ log( 1

δ )

n

×
(

log(2θ+1)(
1

δ
) + logθ−1(T/δ) log(1/δ)

)
log T

)
.

Remark 3.10. Theorem 3.9 suggests that when the PL condi-
tion is satisfied, the generalization error of gradients would
have a logarithmic dependency on the iterate number T ,
which significantly improves the square-root dependency
in Theorem 3.3. Therefore, compared to the sample size
n in the upper bounds, the increasing optimization process
(i.e., increasing T ) has little influence on the generalization
performance due to the logarithmic dependency of T .

Combined with Theorems 3.7 and 3.9, we show high prob-
ability bounds for excess risk F (wT+1)− F (w∗) (Foster
et al., 2018; Feldman & Vondrak, 2019; Bassily et al., 2020).
Additionally, we assume the population risk F satisfies the
PL condition for some positive constant µ:

F (w)− F (w∗) ≤ 1

2µ
‖∇F (w)‖,∀w ∈ W. (2)

Theorem 3.11. Suppose Assumptions 2.4, 2.6, 2.12, and
(2) hold. Let wt be the iterate produced by Algorithm 1.
Assume ηt = 2

µS(t+t0) with t0 ≥ max{ 4β
µS
, 1}. Selecting

T � n. Then for any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

F (wT+1)− F (w∗) = O
(d+ log( 1

δ )

n
log2(

1

δ
) log n

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

F (wT+1)− F (w∗) = O
(d+ log( 1

δ )

n
log(2θ+1)(

1

δ
) log n

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have

F (wT+1)− F (w∗)

=O
(d+ log( 1

δ )

n
log(2θ+1)(

1

δ
) log

3(θ−1)
2 (

n

δ
) log n

)
.

Remark 3.12. Theorem 3.11 suggests that if FS and F sat-
isfy the PL condition, the excess risk would be of the order
O(1/n) w.r.t. the sample size n, which significantly im-
proves the O(1/

√
n) order in Theorem 3.5. The previous

Theorem 3.9 also confirms the trade-off between the opti-
mization and generalization even under the PL condition.
Specifically, when the generalization error bound of gradi-
ents dominates the final excess risk bound, more training
processes (i.e., increasing T ), although reducing the op-
timization error of Theorem 3.7, would still increase the
excess risk bound due to the logarithmic dependency of T .
By choosing the appropriate iteration number T � n, we
obtain the stated bounds of Theorem 3.11.

3.3. Towards Sharper Learning Guarantees

In this section, we consider the case w ∈ W := B(w∗, R).
When the Bernstein-type noise condition is satisfied, we can
further improve the learning guarantees of the generalization
error of gradients and the excess risk.

Theorem 3.13. Suppose Assumptions 2.4, 2.6, 2.10, 2.12,
and (2) hold. Let wt be the iterate produced by Algorithm
1. Assume ηt = 2

µS(t+t0) with t0 ≥ max{ 4β
µS
, 1}. When

n ≥ cβ2(d+log(
8 log(2nR+2)

δ ))

µ2 where c is an absolute constant,
then for any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

‖∇F (wT+1)−∇FS(wT+1)‖2 =

O
( log(1/δ)

T
+

log2(1/δ)

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

‖∇F (wT+1)−∇FS(wT+1)‖2 = O
( log(θ+ 3

2 )( 1
δ ) log

1
2 T

T

+
log2(1/δ)

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have

‖∇F (wT+1)−∇FS(wT+1)‖2

= O
(E[‖∇f(w∗, z)‖2] log(1

δ )

n
+

log2(1/δ)

n2

+
log(θ+ 3

2 )( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T

)
.

Remark 3.14. Theorem 3.13 demonstrates that when both
the PL condition and the Bernstein-type noise condition
are satisfied, the generalization error of gradients would
be of the order O(1/T ) w.r.t. the iterate number T
when hiding the logarithmic terms, which significantly im-
proves the logarithmic dependency in Theorem 3.9. This
means that the optimization (i.e., increasing T ) will al-
ways benefit the generalization, and the over-fitting phe-
nomena would never happen. Additionally, note that in
this case, more training processes will reduce the influence
of heavy-tailed gradient noise. For instance, when θ > 1,(

log(θ+ 3
2 )( 1

δ ) log
3(θ−1)

2 (T/δ) log
1
2 T
)
/T will remain to de-

crease as the iterate number T increases.

Combined with Theorems 3.13 and 3.7, we further improve
the learning guarantees of excess risk, shown as follows.

Theorem 3.15. Suppose Assumptions 2.4, 2.6, 2.10, 2.12,
and (2) hold. Let wt be the iterate produced by Algorithm
1. Assume ηt = 2

µS(t+t0) with t0 ≥ max{ 4β
µS
, 1}. Selecting

T � n2. When n ≥ cβ2(d+log(
8 log(2nR+2)

δ ))

µ2 where c is an
absolute constant, for any δ ∈ (0, 1), with probability 1− δ,
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(a.) if θ = 1
2 , then we have the following inequality

F (wT+1)− F (w∗) =

O
( log2( 1

δ )

n2
+

E[‖∇f(w∗, z)‖2] log( 1
δ )

n

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

F (wT+1)− F (w∗) =

O
( log(θ+ 3

2 )( 1
δ ) log

1
2 n

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have

F (wT+1)− F (w∗) = O
(E[‖∇f(w∗, z)‖2] log(1/δ)

n

+
log

3(θ−1)
2 (n/δ) log(θ+ 3

2 )( 1
δ ) log

1
2 n

n2

)
.

Remark 3.16. Theorem 3.15 suggests that under an extra
Bernstein-type noise condition, the excess risk would be
of the orderO

((
E[‖∇f(w∗, z)‖2] log(1/δ)

)
/n
)
. The term

E[‖∇f(w∗, z)‖2]
)

is tiny since it depends on the optima
w∗ and involves the expectation operator. Compared to The-
orem 3.11, Theorem 3.15 presents sharper learning guaran-
tees, and another distinctive improvement of Theorem 3.15
is that we successfully remove the dimension d. Indeed,
from Lemma 4.1 of (Srebro et al., 2010), if f is nonnegative
and β-smooth, we have ‖∇f(w∗, z)‖2 ≤ 4β∇f(w∗, z),
implying that E[‖∇f(w∗, z)‖2] ≤ 4βF (w∗). Therefore,
we can show the following Theorem 3.17.

Theorem 3.17. Suppose Assumptions 2.4, 2.6, 2.10, 2.12,
and (2) hold. Let wt be the iterate produced by Algorithm
1. Assume ηt = 2

µS(t+t0) with t0 ≥ max{ 4β
µS
, 1}. Assume

that F (w∗) = O
(

1
n

)
. Selecting T � n2. When n ≥

cβ2(d+log(
8 log(2nR+2)

δ ))

µ2 where c is an absolute constant, for
any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , we have the following inequality

F (wT+1)− F (w∗) = O
( log2( 1

δ )

n2

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have

F (wT+1)− F (w∗) = O
( log(θ+ 3

2 )( 1
δ ) log

1
2 n

n2

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have

F (wT+1)− F (w∗) = O
( log

3(θ−1)
2 (nδ ) log(θ+ 3

2 )( 1
δ ) log

1
2 n

n2

)
.

Remark 3.18. The assumption F (w∗) = O(1/n) we used
just to show that we can get improved bounds under low

noise conditions. The term F (w∗) should be independent of
n. This assumption is common and can be found in (Srebro
et al., 2010; Zhang et al., 2017; Zhang & Zhou, 2019; Lei
et al., 2021a; Liu et al., 2018; Lei & Ying, 2020). Theorem
3.17 presentsO(1/n2) order high probability generalization
bounds for nonconvex SGD with heavy tails when hiding the
logarithmic terms. The O(1/n2) order bounds significantly
improve the O

(
(d+ log( 1

δ ))/n
)

order bounds of Theorem
3.11. We highlight the sharper learning bounds in Section
3.3 are novel and have not been derived in the related work
of nonconvex SGD (Ghadimi & Lan, 2013; Lei & Tang,
2021; Madden et al., 2021), as well as adaptive SGD (Li &
Orabona, 2020; Zhou et al., 2018; Ward et al., 2019).

3.4. SGD with Clipping

The steps of SGD with clipping are shown in Algorithm
2. In this section, we consider gradient clipping to remove
Assumption 2.8 for nonconvex heavy-tailed SGD.

Theorem 3.19. Suppose Assumptions 2.6 and 2.12 hold.
Let wt be the iterate produced by Algorithm 2. As-
sume ηt = η1t

− 1
2 for some constant η1 > 0 and take

τ = max
{

20K logθ( 2
δ ), 4K logθ

√
T
}

. Then for any
δ ∈ (0, 1), with probability 1− δ, we have

1

T

T∑
t=1

min
{
‖∇FS(wt)‖, ‖∇FS(wt)‖2

}
= O

( logθ(T/δ) log T + log2θ+1(T ) log(Tδ )
√
T

)
.

Remark 3.20. The bounded stochastic gradient assumption
is very commonly used in previous literature (Hardt et al.,
2016; Kuzborskij & Lampert, 2018; Zhou et al., 2018; Reddi
et al., 2016), but also pretty strong for deep learning (Li &
Orabona, 2020). In Theorem 3.19, we successfully remove
Assumption 2.8 and provide the high probability guaran-
tee under smoothness and sub-Weibull noise conditions.
We now compare Theorem 3.19 with the related work of
SGD with clipping. Gorbunov et al. (2020) focus on con-
vex learning problems, Zhang et al. (2020b) only provide
an in-expectation analysis, and Cutkosky & Mehta (2021)
prove bounds for momentum, as discussed in Section 1.1.
To our knowledge, this is the first high probability bound
for nonconvex SGD with clipping. Another improvement
of Theorem 3.19 to Theorem 3.1 is that its stepsize ηt does
not depend on the smoothness argument β, i.e., completely
oblivious to the knowledge of smoothness. Thus, the conver-
gence of clipped SGD is robust to the choice of the stepsize.

4. Conclusions
This paper establishes high probability learning guarantees
for nonconvex SGD. In contrast to most theoretical stud-
ies, we consider the stochastic gradient noise following a
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Algorithm 2 SGD with Clippling
Input: initial point w1 = 0, step sizes {ηt}t, dataset S =
{z1, ..., zn}, and τ > 0.

1: for t = 1, ..., T do
2: draw jt from the uniform distribution over the set

{j : j ∈ [n]}
3: obtain ∇f̄(wt; zjt) =

∇f(wt;zjt )

‖∇f(wt;zjt )‖
min{τ, ‖∇f(wt; zjt)‖}

4: update wt+1 = wt − ηt∇f̄(wt; zjt).
5: end for

novel class of heavy-tailed sub-Weibull distribution. Our
analysis involves joint consideration of optimization and
generalization performance. Under different assumptions,
we push the learning guarantees to different orders. We
also study clipped SGD to remove a very commonly used
assumption. We believe our theoretical findings can provide
in-depth insights into the learning guarantees of nonconvex
SGD. We also think that further investigating the theoretical
properties of clipped algorithms is of great significance.
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A. Preliminaries of Sub-Weibull Distribution
A.1. Properties

Define the Lp norm of random variable X as ‖X‖p = (E|X|p)1/p, for any p ≥ 1. A sub-Weibull random variable X can
equivalently be characterized using the following properties.

Proposition A.1 (Equivalent definition). (Vladimirova et al., 2020; Bastianello et al., 2021) Given θ ≥ 0, the following
properties are equivalent:

• ∃K1 > 0 such that P (|X| ≥ t) ≤ 2 exp
(
− (t/K1)

1/θ
)

, ∀t > 0;

• ∃K2 > 0 such that ‖X‖k ≤ K2k
θ, ∀k ≥ 1;

• ∃K3 > 0 such that E[exp
(
(λ|X|)1/θ

)
)] ≤ exp

(
(λK3)1/θ

)
, ∀λ ∈ (0, 1/K3);

• ∃K4 > 0 such that E[exp((|X|/K4)
1/θ

)] ≤ 2.

The parameters K1,K2,K3,K4 differ each by a constant that only depends on θ.

By the tail probabilities in Proposition A.1, we can derive the following high probability bounds for sub-Weibull random
variables.

Lemma A.2. Let X ∼ subW (θ,K) according to Definition 2.1, then for any δ ∈ (0, 1), with probability 1− δ we have

|X| ≤ K logθ(2/δ).

Proof. According to Theorem 2.1 in (Vladimirova et al., 2020), if the forth property in Proposition A.1 hold, then K1 = K4.

By setting the RHS of P (|X| ≥ t) ≤ 2 exp
(
−
(
t
K

)1/θ)
equal to δ, and solving for t we get t = K logθ(2/δ). Thus, with

probability at least 1− δ there holds |X| ≤ t.

A.2. Concentration Inequalities

Lemma A.3. (Vladimirova et al., 2020; Wong et al., 2020; Madden et al., 2021) Suppose X1, · · · , Xn are sub-Weibull(θ)
with respective parameters K1, . . . ,Kn. Then, for all t ≥ 0,

P

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≥ t
)
≤ 2 exp

(
−
(

t

g(θ)
∑n
i=1Ki

)1/θ
)
,

where g(θ) = (4e)θ for θ ≤ 1 and g(θ) = 2(2eθ)θ for θ ≥ 1.

The following two lemmas provide results for the concentration of the sum of a sub-Weibull martingale difference sequence.

Lemma A.4. (Li, 2021; Fan & Giraudo, 2019) Let θ ∈ (0,∞) be given. Assume that (Xi, i = 1, · · · , N) is a sequence
of Rd-valued martingale differences with respect to filtration Fi, i.e. E[Xi|Fi−1] = 0, and it satisfies the following weak

exponential-type tail condition: for some θ > 0 and all i = 1, ..., N we have for some scalar 0 < Ki, E
[
exp

(∥∥∥Xi

Ki

∥∥∥ 1
θ

)]
≤

2. Assume that Ki <∞ for each i = 1, ..., N . Then for an arbitrary N ≥ 1 and t > 0,

P

(
max
n≤N

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 4

[
3 + (3θ)

2θ 128
∑N
i=1K

2
i

t2

]
exp

−
(

t2

64
∑N
i=1K

2
i

) 1
2θ+1

 .

Lemma A.5. (Madden et al., 2021)[Sub-Weibull Freedman inequality] Let (Ω,F , (Fi), P ) be a filtered probability space.
Let (ξi) and (Ki) be adapted to (Fi). Let n ∈ N, then for all i ∈ [n], assume Ki−1 ≥ 0, E[ξi|Fi−1] = 0, and

E
[

exp
(

(|ξi|/Ki−1)1/θ
)
|Fi−1

]
≤ 2
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where θ ≥ 1/2. If θ > 1/2, assume there exists (mi) such that Ki−1 ≤ mi.

If θ = 1/2, let a = 2. Then for all x, β′ ≥ 0, and α > 0, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β′
} ≤ exp(−λx+ 2λ2β′), (3)

and for all x, β′, λ ≥ 0,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ β′

} ≤ exp

(
−λx+

λ2

2
β′
)
.

If θ ∈
(

1
2 , 1
]
, let a = (4θ)2θe2 and b = (4θ)θe. For all x, β′ ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈

[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β′
} ≤ exp(−λx+ 2λ2β′), (4)

and for all x, β′ ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n] mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ β′

} ≤ exp

(
−λx+

λ2

2
β′
)
.

If θ > 1, let δ ∈ (0, 1), a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)
3 and b = 2 logθ−1(n/δ), where Γ(x) =

∫∞
0
tx−1e−tdt.

For all x, β′ ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β′
} ≤ exp(−λx+ 2λ2β′) + 2δ, (5)

and for all x, β′ ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n] mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ β′

} ≤ exp

(
−λx+

λ2

2
β′
)

+ 2δ.

B. Some Basic Lemmas
Lemma B.1. (Lei & Tang, 2021) Let e be the base of the natural logarithm. There holds the following elementary
inequalities.

(a) If θ ∈ (0, 1), then
∑t
k=1 k

−θ ≤ t1−θ/(1− θ);

(b) If θ = 1, then
∑t
k=1 k

−θ ≤ log(et);

(c) If θ > 1, then
∑t
k=1 k

−θ ≤ θ
θ−1 ;

(d)
∑t
k=1

1
k+k0

≤ log(t+ 1), where k0 ≥ 1.

Lemma B.2 (Properties of Smoothness). (Nesterov, 2014; Boyd et al., 2004) If the function f satisfies Assumption 2.6, then
we have for any z

f(w; z)− f(w′; z) ≤ 〈w −w′,∇f(w′; z)〉+
1

2
β‖w −w′‖2

and
1

2β
‖∇f(w; z)‖2 ≤ f(w; z)− inf

w
f(w; z).
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Lemma B.3. (Lei & Tang, 2021) Let δ ∈ (0, 1), R > 0, and S = {z1, ..., zn} be a set of i.i.d. samples. Suppose Assumption
2.6 holds. Then with probability at least 1− δ we have

sup
w∈BR

‖∇F (w)−∇FS(w)‖ ≤ (βR+ b′)√
n

(
2 + 2

√
48e
√

2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)
,

where e is the base of the natural logarithm.

Lemma B.4. (Li & Liu, 2021a) Suppose Assumptions 2.6 and 2.10 hold. Assume the population risk F satisfies F (w)−
F (w∗) ≤ 1

2µ‖∇F (w)‖. For all w ∈ W := B(w∗, R) and any δ > 0, with probability at least 1 − δ, when n ≥
cβ2(d+log(

8 log(2nR+2)
δ ))

µ2 ,

‖∇F (w)−∇FS(w)‖ ≤ ‖∇FS(w)‖+
µ

n
+

2G∗ log(4/δ)

n
+ 2

√
2E[‖∇f(w∗, z)‖2] log(4/δ)

n
,

and

‖∇F (w)‖ ≤ 2 ‖∇FS(w)‖+
µ

n
+

2G∗ log(4/δ)

n
+ 2

√
2E[‖∇f(w∗, z)‖2] log(4/δ)

n
,

where c is an absolute constant.

Lemma B.5. (Zhang, 2005) Let z1, ..., zn be a sequence of randoms variables such that zk may depend the previous
variables z1, ..., zk−1 for all k = 1, ..., n. Consider a sequence of functionals ξk(z1, ..., zk), k = 1, ..., n. Let σ2

n =∑n
k=1 Ezk [(ξk − Ezk [ξk])2] be the conditional variance. Assume |ξk − Ezk [ξk]| ≤ b for each k. Let ρ ∈ (0, 1] and

δ ∈ (0, 1). With probability at least 1− δ we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤ ρσ2
n

b
+
b log 1

δ

ρ
.

Lemma B.6. (Cutkosky & Mehta, 2020) For any vector v ∈ Rd, 〈v/‖v‖,∇FS(w)〉 ≥ ‖∇FS(w)‖
3 − 8‖v−∇FS(w)‖

3 .

C. Proof of Main Results
For better readability, we restate the theorems in the main paper.

C.1. Proof of Section 3.1

C.1.1. PROOF OF THEOREM 3.1

Theorem C.1. Suppose Assumptions 2.4 and 2.6 hold. Let wt be the iterate produced by Algorithm 1. Assume ηt = η1t
− 1

2

with η1 ≤ 1
2β . For any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

1√
T

T∑
t=1

ηt‖∇FS(wt)‖2 = O
( log(1/δ) log T√

T

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

1√
T

T∑
t=1

ηt‖∇FS(wt)‖2 = O
( log2θ(1/δ) log T√

T

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

1√
T

T∑
t=1

ηt‖∇FS(wt)‖2 = O
( logθ−1(T/δ) log(1/δ) + log2θ(1/δ) log T√

T

)
.
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Proof. According to Assumption 2.6 and Lemma B.2, we have

FS(wt+1)− FS(wt) ≤ 〈wt+1 −wt,∇FS(wt)〉+
1

2
β‖wt+1 −wt‖2

= −ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 − ηt‖∇FS(wt)‖2 +
1

2
βη2

t ‖∇f(wt; zjt)‖2

≤ −ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 −
(
ηt − βη2

t

)
‖∇FS(wt)‖2 + βη2

t ‖∇f(wt; zjt)−∇FS(wt)‖2

≤ −ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 −
1

2
ηt‖∇FS(wt)‖2 + βη2

t ‖∇f(wt; zjt)−∇FS(wt)‖2, (6)

where the second inequality follows from that (a+ b)2 ≤ 2(a2 + b2),∀a, b ∈ R and the last inequality follows from that
βη2

t − ηt ≤ −
ηt
2 due to the assumption ηt ≤ 1

2β .

Then, by a summation form t = 1 to T , we get

FS(wT+1)− FS(w1)

≤−
T∑
t=1

ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 −
1

2

T∑
t=1

ηt‖∇FS(wt)‖2 +

T∑
t=1

βη2
t ‖∇f(wt; zjt)−∇FS(wt)‖2,

which means that

T∑
t=1

ηt‖∇FS(wt)‖2

≤2(FS(w1)− FS(w(S)))−
T∑
t=1

2ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉+

T∑
t=1

2βη2
t ‖∇f(wt; zjt)−∇FS(wt)‖2.

(7)

It is clear that 2(FS(w1)− FS(w(S))) can be seen as a constant.

Now, let us consider the second term −
∑T
t=1 2ηt〈∇f(wt; zjt) − ∇FS(wt),∇FS(wt)〉. Since Ejt [−ηt〈∇f(wt; zjt) −

∇FS(wt),∇FS(wt)〉] = 0, thus the sequence (−ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉, t ∈ N) is a martingale difference
sequence. We use the sub-Weibull Freedman inequality in Lemma A.5 to bound this term.

Specifically, we set ξt = −ηt〈∇f(wt; zjt) − ∇FS(wt),∇FS(wt)〉, Kt−1 = ηt‖∇FS(wt)‖K, β′ = 0, λ = 1
2α , and

x = 2α log(1/δ).

If θ = 1
2 , for all α > 0, we have the following inequality with probability at least 1− δ

−
T∑
t=1

2ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 ≤ 4α log(1/δ) +
2aK2

α

T∑
t=1

η2
t ‖∇FS(wt)‖2.

If θ ∈ ( 1
2 , 1], according to Assumption 2.8, we set mt = KG. Then for all α ≥ bKG, we have the following inequality

with probability at least 1− δ

−
T∑
t=1

2ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 ≤ 4α log(1/δ) +
2aK2

α

T∑
t=1

η2
t ‖∇FS(wt)‖2.

If θ > 1, according to Assumption 2.8, we set mt = KG. We also set δ = δ. Then, for all α ≥ bKG, we have the following
inequality with probability at least 1− 3δ

−
T∑
t=1

2ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 ≤ 4α log(1/δ) +
2aK2

α

T∑
t=1

η2
t ‖∇FS(wt)‖2.
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Then, we consider the last term
∑T
t=1 2βη2

t ‖∇f(wt; zjt)−∇FS(wt)‖2. Since ‖∇f(wt; zjt)−∇FS(wt)‖ is a sub-Weibull
random variable, we get

E

[
exp

(
η2
t ‖∇f(wt; zjt)−∇FS(wt)‖2

η2
tK

2

) 1
2θ

]
≤ 2,

which means that η2
t ‖∇f(wt; zjt) −∇FS(wt)‖2 ∼ subW (2θ, η2

tK
2). According to Lemma A.3, we get the following

inequality with probability at least 1− δ
T∑
t=1

2βη2
t ‖∇f(wt; zjt)−∇FS(wt)‖2 ≤ 2βK2g(2θ) log2θ(2/δ)

T∑
t=1

η2
t ,

where g(θ) = (4e)θ for θ ≤ 1 and g(θ) = 2(2eθ)θ for θ ≥ 1.

Taking the above upper bounds into (7), we obtain

T∑
t=1

ηt‖∇FS(wt)‖2 ≤ 2(FS(w1)− FS(w(S)))

+ 4α log(1/δ) +
2aK2

α

T∑
t=1

η2
t ‖∇FS(wt)‖2 + 2βK2g(2θ) log2θ(2/δ)

T∑
t=1

η2
t ,

implying that

T∑
t=1

ηt

(
1− 2aK2ηt

α

)
‖∇FS(wt)‖2 ≤ 2(FS(w1)− FS(w(S))) + 4α log(1/δ) + 2βK2g(2θ) log2θ(2/δ)

T∑
t=1

η2
t .

To continue the proof, we set α ≥ 4aK2η1. Then we obtain 1− 2aK2ηt
α ≥ 1

2 . Thus, we derive that

T∑
t=1

ηt‖∇FS(wt)‖2 ≤ 4(FS(w1)− FS(w(S))) + 8α log(1/δ) + 4βK2g(2θ) log2θ(2/δ)

T∑
t=1

η2
t .

We now use the union bound.

Hence, if θ = 1
2 , taking α = 4aK2η1 = 8K2η1, with probability at least 1− 2δ, we have

T∑
t=1

ηt‖∇FS(wt)‖2 ≤ 4(FS(w1)− FS(w(S))) + 64K2η1 log(1/δ) + 4βK2g(1) log(2/δ)

T∑
t=1

η2
t . (8)

If θ ∈ ( 1
2 , 1], taking α = max{bKG, 4aK2η1} = max{(4θ)θeKG, 4(4θ)2θe2K2η1}, with probability at least 1− 2δ, we

have
T∑
t=1

ηt‖∇FS(wt)‖2 ≤ 4(FS(w1)− FS(w(S)))

+ 8 max
{

(4θ)θeKG, 4(4θ)2θe2K2η1

}
log(1/δ) + 4βK2g(2θ) log2θ(2/δ)

T∑
t=1

η2
t . (9)

If θ > 1, taking α = max
{
bKG, 4aK2η1

}
= max

{
2 logθ−1(T/δ)KG, 4

(
(22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)

3

)
K2η1

}
,

with probability at least 1− 4δ, we have

T∑
t=1

ηt‖∇FS(wt)‖2 ≤ 4(FS(w1)− FS(w(S))) + 4βK2g(2θ) log2θ(2/δ)

T∑
t=1

η2
t

+ 8 max
{

2 logθ−1(T/δ)KG, 4
(
(22θ+1 + 2)Γ(2θ + 1) +

23θΓ(3θ + 1)

3

)
K2η1

}
log(1/δ). (10)
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For brevity, we just focus on parameters δ and T . Moreover, note that the dependence on confidence parameter 1/δ in (8),
(9), and (10) is logarithmic. One can replace δ to δ/2 or δ/4. Therefore, (8), (9), and (10) mean that with probability at least
1− δ, there holds

T∑
t=1

ηt‖∇FS(wt)‖2 =


O
(

log(1/δ)
∑T
t=1 η

2
t

)
if θ = 1

2 ,

O
(

log2θ(1/δ)
∑T
t=1 η

2
t

)
if θ ∈ ( 1

2 , 1],

O
(

logθ−1(T/δ) log(1/δ) + log2θ(1/δ)
∑T
t=1 η

2
t

)
if θ > 1,

(11)

=


O (log(1/δ) log T ) if θ = 1

2 ,

O
(

log2θ(1/δ) log T
)

if θ ∈ ( 1
2 , 1],

O
(

logθ−1(T/δ) log(1/δ) + log2θ(1/δ) log T
)

if θ > 1,

(12)

where the second equality holds by using Lemma B.1. The proof is complete.

C.1.2. PROOF OF THEOREM 3.3

Theorem C.2. Suppose Assumptions 2.4 and 2.6 hold. Let wt be the iterate produced by Algorithm 1. Assume ηt = η1t
− 1

2

with η1 ≤ 1
2β . For any δ ∈ (0, 1) and uniformly for all t = 1, ...T , with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(T 1

2 log2( 1
δ ) log T

n
×
(
d+ log(

1

δ
)
))

;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(T 1

2 log2θ+1( 1
δ ) log T

n
×
(
d+ log(

1

δ
)
))

;

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(T 1

2

(
logθ−1(T/δ) log(1/δ) + log(2θ+1)( 1

δ ) log T
)

n
×
(
d+ log(

1

δ
)
))
.

Proof. For better presentation, we introduce a notation Y (T, δ, θ) := logθ−1(T/δ) log(1/δ)Iθ>1, where Iθ>1 is an indicate
function that is valued 1 when θ > 1. Since wt+1 = wt − ηt(∇f(wt; zjt)−∇FS(wt) +∇FS(wt)), by a summation and
using w1 = 0, we get

wt+1 =

t∑
i=1

−ηi(∇f(wi; zji)−∇FS(wi))−
t∑
i=1

ηi∇FS(wi).

This gives that

‖wt+1‖ ≤
∥∥∥ t∑
i=1

ηi(∇f(wi; zji)−∇FS(wi))
∥∥∥+

∥∥∥ t∑
i=1

ηi∇FS(wi)
∥∥∥. (13)

Let’s consider the first term
∥∥∥∑t

i=1 ηi(∇f(wi; zji) − ∇FS(wi))
∥∥∥. It is clear that the sequence (ηi(∇f(wi; zji) −

∇FS(wi)), i ∈ N) is a martingale difference sequence. Since ‖∇f(wi; zji) − ∇FS(wi)‖ ∼ subW (θ,K), we have
‖ηi(∇f(wi; zji)−∇FS(wi))‖ ∼ subW (ηiθ,K) according to Proposition 2.15 in (Bastianello et al., 2021). Then, we can
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apply Lemma A.4 to derive the following inequality

P

(
max

1≤t≤T

∥∥∥∥∥
t∑
i=1

ηi(∇f(wi; zji)−∇FS(wi))

∥∥∥∥∥ ≥ x
)

≤ 4

[
3 + (3θ)

2θ 128K2
∑T
i=1 η

2
i

x2

]
exp

−
(

x2

64K2
∑T
i=1 η

2
i

) 1
2θ+1

 .

Setting the dominated exponential term 4 exp

{
−
(

x2

64K2
∑T
i=1 η

2
i

) 1
2θ+1

}
equal to δ, we get x =

8 log(θ+ 1
2 )( 4

δ )K(
∑T
i=1 η

2
i )

1
2 . Thus, with probability at least 1− 3δ − 8(3θ)2θ

log2θ+1 4
δ

δ, we have

max
1≤t≤T

∥∥∥∥∥
t∑
i=1

ηi(∇f(wi; zji)−∇FS(wi))

∥∥∥∥∥ ≤ 8 log(θ+ 1
2 )(

4

δ
)K
( T∑
i=1

η2
i

) 1
2

. (14)

Since θ ≥ 1/2 and δ ∈ (0, 1), we have log2θ+1 4
δ > 1. Thus, (14) means that with probability at least 1− 3δ − 8(3θ)2θδ,

we have

max
1≤t≤T

∥∥∥∥∥
t∑
i=1

ηi(∇f(wi; zji)−∇FS(wi))

∥∥∥∥∥ ≤ 8 log(θ+ 1
2 )(

4

δ
)K
( T∑
i=1

η2
i

) 1
2

.

Now, with probability at least 1− δ, we get

max
1≤t≤T

∥∥∥∥∥
t∑
i=1

ηi(∇f(wi; zji)−∇FS(wi))

∥∥∥∥∥ ≤ 8 log(θ+ 1
2 )
(4(3 + 8(3θ)2θ)

δ

)
K
( T∑
i=1

η2
i

) 1
2

. (15)

For the second term
∥∥∥∑t

i=1 ηi∇FS(wi)
∥∥∥, we have the following inequality with probability at least 1− δ uniformly for all

t = 1, ..., T

∥∥∥ t∑
i=1

ηi∇FS(wi)
∥∥∥2

≤
( t∑
i=1

ηi‖∇FS(wi)‖
)2

≤
( t∑
i=1

ηi

)( t∑
i=1

ηi‖∇FS(wi)‖2
)

≤
( t∑
i=1

ηi

)
O

(
Y (T, δ, θ) + log2θ(1/δ)

t∑
i=1

η2
i

)
, (16)

where the second inequality follows from the Schwartz’s inequality and the last inequality follows from (11).

For brevity, in the following proofs, we also just focus on parameters δ and T . Readers can recover the constants by
following the analysis.

Plugging (15) and (16) into (13), we have the following inequality with probability at least 1 − 2δ uniformly for all
t = 1, ..., T

‖wt+1‖ = O

(
log(θ+ 1

2 )(
1

δ
)(

T∑
i=1

η2
i )

1
2

)
+

(( t∑
i=1

ηi

)
O
(
Y (T, δ, θ) + log2θ(1/δ)

t∑
i=1

η2
i

)) 1
2

(17)

= O
(

log(θ+ 1
2 )(

1

δ
) log

1
2 T

)
+
((
t

1
2

)
O
(
Y (T, δ, θ) + log2θ(1/δ) log t

)) 1
2

≤ O
(
t

1
4

(
Y

1
2 (T, δ, θ) + log(θ+ 1

2 )(
1

δ
) log

1
2 T
))

, (18)

where the second equation holds by using Lemma B.1.
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Further plugging (18) into Lemma B.3, by the union bound, with probability at least 1−3δ, we have the following inequality
uniformly for all t = 1, ...T

‖∇F (wt+1)−∇FS(wt+1)‖ ≤ (βRt+1 + b′)√
n

(
2 + 2

√
48e
√

2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)

=
(β‖wt+1‖+ b′)√

n

(
2 + 2

√
48e
√

2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)

≤
O
(
t

1
4

(
Y

1
2 (T, δ, θ) + log(θ+ 1

2 )( 1
δ ) log

1
2 T
))
β + b′

√
n

×

(
2 + 2

√
48e
√

2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)
, (19)

where the first inequality holds due to the fact that the bound of BR at iterate number t+ 1 is Rt+1, that is ‖wt+1‖, and
where the last inequality follows from (18).

(19) also means that we have the following inequality uniformly for all t = 1, ...T with probability at least 1− δ

‖∇F (wt+1)−∇FS(wt+1)‖2 = O

T 1
2

(
Y (T, δ, θ) + log(2θ+1)( 1

δ ) log T
)

n
×
(
d+ log(

1

δ
)
) . (20)

By a transformation of (20), we prove the stated bounds.

C.1.3. PROOF OF THEOREM 3.5

Theorem C.3. Suppose Assumptions 2.4 and 2.6 hold. Let wt be the iterate produced by Algorithm 1. Assume ηt = η1t
− 1

2

with η1 ≤ 1
2β . Selecting T � n

d . For any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d
n

) 1
2 log(

n

d
) log3(

1

δ
)
)

;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d
n

) 1
2 log(

n

d
) log(2θ+2)(

1

δ
)
)

;

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d
n

) 1
2
(

log(
n

d
) log(2θ+2)(

1

δ
) + logθ−1(

n

dδ
) log2(

1

δ
)
))
.

Proof. It is clear that

T∑
t=1

ηt‖∇F (wt)‖2 ≤ 2

T∑
t=1

ηt‖∇F (wt)−∇FS(wt)‖2 + 2

T∑
t=1

ηt‖∇FS(wt)‖2

≤ 2

T∑
t=1

ηt max
1≤t≤T

‖∇F (wt)−∇FS(wt)‖2 + 2

T∑
t=1

ηt‖∇FS(wt)‖2

= 2

T∑
t=1

ηt‖∇F (wT )−∇FS(wT )‖2 + 2

T∑
t=1

ηt‖∇FS(wt)‖2, (21)
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where the last equation follows from the fact that ‖∇F (wt)−∇FS(wt)‖2 increases as the iterate number t increases (see
(19) for details). Then, we have the following inequality with probability at least 1− 2δ

1

T

T∑
t=1

‖∇F (wt)‖2 ≤
1

η1

√
T

T∑
t=1

ηt‖∇F (wt)‖2 ≤
2√
T

(1

2
T 1/2‖∇F (wT )−∇FS(wT )‖2 +

T∑
t=1

ηt‖∇FS(wt)‖2
)

=O

T 1/2
(
Y (T, δ, θ) + log(2θ+1)( 1

δ ) log T
)

n
×
(
d+ log(

1

δ
)
)+O

(
Y (T, δ, θ) + log2θ(1/δ) log T

)
,

where the second inequality follows from that
∑T
t=1 ηt ≤

1
2η1T

1/2 by using Lemma B.1, where the last equality follows
from (12) and (20), and where Y (T, δ, θ) := logθ−1(T/δ) log(1/δ)Iθ>1.

Taking T � n
d , then we have the following inequality with probability at least 1− 2δ

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d

n

) 1
2
(

log(
n

d
) log(2θ+2)(

1

δ
) + Y (

n

d
, δ, θ) log(1/δ)

))
,

which also means that with probability at least 1− δ we have

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d

n

) 1
2
(

log(
n

d
) log(2θ+2)(

1

δ
) + Y (

n

d
, δ, θ) log(1/δ)

))
= O

(( d
n

) 1
2
(

log(
n

d
) log(2θ+2)(

1

δ
) + logθ−1(

n

dδ
) log2(1/δ)Iθ>1

))
. (22)

By a transformation of (22), we prove the stated bounds.

C.2. Proof of Section 3.2

We first prove Theorem 3.9.

C.2.1. PROOF OF THEOREM 3.9

Theorem C.4. Suppose Assumptions 2.4, 2.6, and 2.12 hold. Let wt be the iterate produced by Algorithm 1. Assume
ηt = 2

µS(t+t0) with t0 ≥ max{ 4β
µS
, 1}. Then for any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(d+ log( 1

δ )

n
log2(

1

δ
) log T

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(d+ log( 1

δ )

n
log(2θ+1)(

1

δ
) log T

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(d+ log( 1

δ )

n
×
(

log(2θ+1)(
1

δ
) + logθ−1(T/δ) log(1/δ)

)
log T

)
.

Proof. Since t0 ≥ 4β
µS

and ηt = 2
µS(t+t0) , we have ηt ≤ 1

2β . Thus, we can use (17) to bound ‖wt+1‖ under this stepsize.
According to (17), with probability at least 1− δ we have

‖wt+1‖ = O

(
log(θ+ 1

2 )(
1

δ
)(

T∑
i=1

η2
i )

1
2 +

( t∑
i=1

ηi

) 1
2
(
Y

1
2 (T, δ, θ) + logθ(1/δ)

( t∑
i=1

η2
i

) 1
2
))

= O
((

log(θ+ 1
2 )(

1

δ
) + Y

1
2 (T, δ, θ)

)
log

1
2 t

)
, (23)
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where Y (T, δ, θ) := logθ−1(T/δ) log(1/δ)Iθ>1, and where the second equality follows from ηt = 2
µS(t+t0) with t0 ≥ 1

and using Lemma B.1.

Plugging (23) into Lemma B.3, by the union bound, with probability at least 1 − 2δ, we have the following inequality
uniformly for all t = 1, ...T

‖∇F (wt+1)−∇FS(wt+1)‖ ≤ (βRt+1 + b′)√
n

(
2 + 2

√
48e
√

2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)

=
(β‖wt+1‖+ b′)√

n

(
2 + 2

√
48e
√

2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)

≤
O
((

log(θ+ 1
2 )( 1

δ ) + Y
1
2 (T, δ, θ)

)
log

1
2 t
)
β + b′

√
n

×

(
2 + 2

√
48e
√

2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)
, (24)

where the first inequality holds due to the fact that the bound of BR at iterate number t+ 1 is Rt+1, that is ‖wt+1‖, and
where the last inequality follows from (23).

(24) also means that we have the following inequality uniformly for all t = 1, ...T with probability at least 1− δ

‖∇F (wt+1)−∇FS(wt+1)‖2 = O
(
d+ log( 1

δ )

n

(
log(2θ+1)(

1

δ
) + Y (T, δ, θ)

)
log T

)
. (25)

By a transformation of (25), we prove the stated bounds.

C.2.2. PROOF OF THEOREM 3.7

Theorem C.5. Suppose Assumptions 2.4, 2.6, and 2.12 hold. Let wt be the iterate produced by Algorithm 1. Assume
ηt = 2

µS(t+t0) with t0 ≥ max{ 4β
µS
, 1}. Then for any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

FS(wT+1)− FS(w(S)) = O
( log(1/δ)

T

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

FS(wT+1)− FS(w(S)) = O
( log(θ+ 3

2 )( 1
δ ) log

1
2 T

T

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

FS(wT+1)− FS(w(S)) = O
( log(θ+ 3

2 )( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T

)
.

Proof. From (6), we know that

FS(wt+1)− FS(wt) ≤ −ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 −
1

2
ηt‖∇FS(wt)‖2 + βη2

t ‖∇f(wt; zjt)−∇FS(wt)‖2

≤ −ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 −
1

4
ηt‖∇FS(wt)‖2

+ ηtµS(FS(w(S))− FS(wt)) + βη2
t ‖∇f(wt; zjt)−∇FS(wt)‖2,

from which we have

1

4
ηt‖∇FS(wt)‖2 + FS(wt+1)− FS(w(S)) ≤ −ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉

+ (1− ηtµS)(FS(wt)− FS(w(S))) + βη2
t ‖∇f(wt; zjt)−∇FS(wt)‖2.
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Since ηt = 2
µS(t+t0) , multiplying both sides by (t+ t0)(t+ t0 − 1), we get

(t+ t0 − 1)

2µS
‖∇FS(wt)‖2 + (t+ t0)(t+ t0 − 1)(FS(wt+1)− FS(w(S))) ≤ 4β

µ2
S

‖∇f(wt; zjt)−∇FS(wt)‖2

+ (t+ t0 − 1)(t+ t0 − 2)(FS(wt)− FS(w(S)))− (t+ t0)(t+ t0 − 1)ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉.

Taking a summation from t = 1 to t = T , we derive that

T∑
t=1

(t+ t0 − 1)

2µS
‖∇FS(wt)‖2 + (T + t0)(T + t0 − 1)(FS(wT+1)− FS(w(S))) ≤

T∑
t=1

4β

µ2
S

‖∇f(wt; zjt)−∇FS(wt)‖2

+ t0(t0 − 1)(FS(w1)− FS(w(S)))−
T∑
t=1

(t+ t0)(t+ t0 − 1)ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉. (26)

Since ‖∇f(wt; zjt)−∇FS(wt)‖ ∼ subW (θ,K), we get E
[
exp

(
‖∇f(wt;zjt )−∇FS(wt)‖2

K2

) 1
2θ

]
≤ 2. By Lemma A.3, we

get the following inequality with probability at least 1− δ

4β

µ2
S

T∑
t=1

‖∇f(wt; zjt)−∇FS(wt)‖2 ≤
4β

µ2
S

TK2g(2θ) log2θ(2/δ).

Furthermore, since Ejt [−(t + t0)(t + t0 − 1)ηt〈∇f(wt; zjt) −∇FS(wt),∇FS(wt)〉] = 0, we know that the sequence
(−(t+ t0)(t+ t0 − 1)ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉, t ∈ N) is a martingale difference sequence. Thus, we can
apply Lemma A.5 to bound it.

We set ξt = −(t+ t0)(t+ t0 − 1)ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 and

Kt−1 = (t+ t0)(t+ t0 − 1)ηtK‖∇FS(wt)‖ = 2µ−1
S (t+ t0 − 1)K‖∇FS(wt)‖.

We also set β′ = 0, λ = 1
2α , and x = 2α log(1/δ).

Moreover, according to Assumption 2.6, we know

‖∇FS(wt)‖ ≤ (β‖wt‖+ ‖∇FS(0)‖) ≤ (β‖wt‖+ b′). (27)

In the next, the bound in (27) will be used to give the bound of mt.

If θ = 1
2 , for all α > 0, we have the following inequality with probability at least 1− δ

−
T∑
t=1

(t+ t0)(t+ t0 − 1)ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 ≤ 2α log(1/δ) +
4aK2

µ2
Sα

T∑
t=1

(t+ t0 − 1)2‖∇FS(wt)‖2.

If θ ∈ ( 1
2 , 1], according to (27), we set mt = 2µ−1

S (t + t0 − 1)K(β‖wt‖ + b′). Then for all α ≥ b2µ−1
S (T + t0 −

1)K(β‖wT ‖+ b′), we have the following inequality with probability at least 1− δ

−
T∑
t=1

(t+ t0)(t+ t0 − 1)ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 ≤ 2α log(1/δ) +
4aK2

µ2
Sα

T∑
t=1

(t+ t0 − 1)2‖∇FS(wt)‖2.

If θ > 1, according to (27), we set mt = 2µ−1
S (t+ t0 − 1)K(β‖wt‖+ b′) and δ = δ. Then, for all α ≥ b2µ−1

S (T + t0 −
1)K(β‖wT ‖+ b′), we have the following inequality with probability at least 1− 3δ

−
T∑
t=1

(t+ t0)(t+ t0 − 1)ηt〈∇f(wt; zjt)−∇FS(wt),∇FS(wt)〉 ≤ 2α log(1/δ) +
4aK2

µ2
Sα

T∑
t=1

(t+ t0 − 1)2‖∇FS(wt)‖2.
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Taking the above bounds into (26), we have

T∑
t=1

(
(t+ t0 − 1)

2µS
− 4aK2

µ2
Sα

(t+ t0 − 1)2

)
‖∇FS(wt)‖2 + (T + t0)(T + t0 − 1)(FS(wT+1)− FS(w(S)))

≤ 4β

µ2
S

TK2g(2θ) log2θ(2/δ) + t0(t0 − 1)(FS(w1)− FS(w(S))) + 2α log(1/δ).

When α ≥ 8aK2(t+t0−1)
µS

, we have

(t+ t0 − 1)

2µS
− 4aK2

µ2
Sα

(t+ t0 − 1)2 ≥ 0.

In this case, we derive that

(T + t0)(T + t0 − 1)(FS(wT+1)− FS(w(S)))

≤ 4β

µ2
S

TK2g(2θ) log2θ(2/δ) + t0(t0 − 1)(FS(w1)− FS(w(S))) + 2α log(1/δ).

We now use the union bound.

Hence, if θ = 1
2 , taking α = 8aK2(T+t0−1)

µS
= 16K2(T+t0−1)

µS
, with probability at least 1− 2δ, we have

(T + t0)(T + t0 − 1)(FS(wT+1)− FS(w(S)))

≤ 4β

µ2
S

TK2g(1) log(2/δ) + t0(t0 − 1)(FS(w1)− FS(w(S))) +
32K2(T + t0 − 1)

µS
log(1/δ).

If θ ∈ ( 1
2 , 1], we take α = max

{
8aK2(T+t0−1)

µS
, b2µ−1

S (T + t0 − 1)K(β‖wT ‖ + b′)
}

=

max
{

8(4θ)2θe2K2(T+t0−1)
µS

, (4θ)θe2µ−1
S (T + t0 − 1)K(β‖wT ‖+ b′)

}
.

From (23), we know the bound of ‖wT ‖. Thus with probability 1 − δ, α =

max
{

8(4θ)2θe2K2(T+t0−1)
µS

, (4θ)θe2µ−1
S (T + t0 − 1)K

(
βO
(
(log(θ+ 1

2 )( 1
δ ) + Y

1
2 (T, δ, θ)) log

1
2 T
)

+ b′
)}

.

Thus, with probability at least 1− 3δ, we have

(T + t0)(T + t0 − 1)(FS(wT+1)− FS(w(S))) ≤ 4β

µ2
S

TK2g(2θ) log2θ(2/δ) + t0(t0 − 1)(FS(w1)− FS(w(S)))

+ max

{
8(4θ)2θe2K2(T + t0 − 1)

µS
, (4θ)θe2µ−1

S (T + t0 − 1)K
(
βO
(
(log(θ+ 1

2 )(
1

δ
) + Y

1
2 (T, δ, θ)) log

1
2 T
)

+ b′
)}

× 2 log(
1

δ
).

If θ > 1, we take α = max
{

8aK2(T+t0−1)
µS

, b2µ−1
S (T + t0 − 1)K(β‖wT ‖ + b′)

}
=

max
{

8
(

(22θ+1+2)Γ(2θ+1)+
23θΓ(3θ+1)

3

)
K2(T+t0−1)

µS
, 2 logθ−1(T/δ)2µ−1

S (T + t0 − 1)K(β‖wT ‖+ b′)
}

.

From (23), we know the bound of ‖wT ‖. Thus with probability 1− δ,

α = max

{
8
(
(22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)

3

)
K2(T + t0 − 1)

µS
,

2 logθ−1(T/δ)2µ−1
S (T + t0 − 1)K

(
βO
(
(log(θ+ 1

2 )(
1

δ
) + Y

1
2 (T, δ, θ)

)
log

1
2 T ) + b′

)}
.
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Therefore, with probability at least 1− 5δ, we have

(T + t0)(T + t0 − 1)(FS(wT+1)− FS(w(S))) ≤ 4β

µ2
S

TK2g(2θ) log2θ(2/δ) + t0(t0 − 1)(FS(w1)− FS(w(S)))

+ 2 max

{
8
(
(22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)

3

)
K2(T + t0 − 1)

µS

, 2 log(T/δ)θ−12µ−1
S (T + t0 − 1)K

(
βO
(
(log(θ+ 1

2 )(
1

δ
) + Y (T, δ, θ)

1
2

)
log

1
2 T ) + b′

)}
log(1/δ).

We just focus on parameters δ and T . Finally, the above bounds mean that with probability at least 1− δ, there holds

FS(wT+1)− FS(w(S)) =



O
(

log(1/δ)
T

)
if θ = 1

2 ,

O
(

log(θ+ 1
2

)( 1
δ ) log

1
2 T

T log( 1
δ )

)
if θ ∈ ( 1

2 , 1],

O

( log(θ+ 1
2

)( 1
δ )+Y

1
2 (T,δ,θ)

)
log

1
2 T

T logθ−1(T/δ) log(1
δ )

 if θ > 1,

which means that with probability at least 1− δ we have

FS(wT+1)− FS(w(S)) =


O
(

log(1/δ)
T

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 T

T

)
if θ ∈ ( 1

2 , 1],

O
(

log(θ+ 3
2

)( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T

)
if θ > 1,

(28)

The proof is complete.

C.2.3. PROOF OF THEOREM 3.11

Theorem C.6. Suppose Assumptions 2.4, 2.6, 2.12, and (2) hold. Let wt be the iterate produced by Algorithm 1. Assume
ηt = 2

µS(t+t0) with t0 ≥ max{ 4β
µS
, 1}. Selecting T � n. Then for any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

F (wT+1)− F (w∗) = O
(d+ log( 1

δ )

n
log2(

1

δ
) log n

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

F (wT+1)− F (w∗) = O
(d+ log( 1

δ )

n
log(2θ+1)(

1

δ
) log n

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

F (wT+1)− F (w∗) = O
(
d+ log( 1

δ )

n
log(2θ+1)(

1

δ
) log

3(θ−1)
2 (

n

δ
) log n

)
.

Proof. According to (2), we know

F (wT+1)− F (w∗) ≤ 1

2µ
‖∇F (wT+1)‖2 ≤ µ−1(‖∇F (wT+1)−∇FS(wT+1)‖2 + ‖∇FS(wT+1)‖2). (29)
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From the smoothness property in Lemma B.2 and the optimization error bound in (28), with probability at least 1− δ, we
have

‖∇FS(wT+1)‖2 ≤ (2β)−1(FS(wT+1)− FS(w(S)))

=


O
(

log(1/δ)
T

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 T

T

)
if θ ∈ ( 1

2 , 1],

O
(

log(θ+ 3
2

)( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T

)
if θ > 1.

(30)

Plugging (30) and (25) into (29), we have the following inequality with probability at least 1− 2δ

F (wT+1)− F (w∗)

=


O
(

log(1/δ)
T +

d+log( 1
δ )

n log2( 1
δ ) log T

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 T

T +
d+log( 1

δ )

n log(2θ+1)( 1
δ ) log T

)
if θ ∈ ( 1

2 , 1],

O
(

log(θ+ 3
2

)( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T +
d+log( 1

δ )

n

(
log(2θ+1)( 1

δ ) + logθ−1(Tδ ) log(1
δ )
)

log T

)
if θ > 1.

Selecting T � n, the above abounds means that with probability at least 1− δ, we have

F (wT+1)− F (w∗) =


O
(
d+log( 1

δ )

n log2( 1
δ ) log n

)
if θ = 1

2 ,

O
(
d+log( 1

δ )

n log(2θ+1)( 1
δ ) log n

)
if θ ∈ ( 1

2 , 1],

O
(
d+log( 1

δ )

n log(2θ+1)( 1
δ ) log

3(θ−1)
2 (nδ ) log n

)
if θ > 1.

The proof is complete.

C.3. Proof of Section 3.3

C.3.1. PROOF OF THEOREM 3.13

Theorem C.7. Suppose Assumptions 2.4, 2.6, 2.10, 2.12, and (2) hold. Let wt be the iterate produced by Algorithm 1.

Assume ηt = 2
µS(t+t0) with t0 ≥ max{ 4β

µS
, 1}. When n ≥ cβ2(d+log(

8 log(2nR+2)
δ ))

µ2 where c is an absolute constant, then for
any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

‖∇F (wT+1)−∇FS(wT+1)‖2 = O
(

log(1/δ)

T
+

log2(1/δ)

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
,

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

‖∇F (wT+1)−∇FS(wt+1)‖2 = O

(
log(θ+ 3

2 )( 1
δ ) log

1
2 T

T
+

log2(1/δ)

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
,

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

‖∇F (wT+1)−∇FS(wt+1)‖2 = O

(
log(θ+ 3

2 )( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T
+

log2(1/δ)

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
.

Proof. According to Lemma B.4, by Assumptions 2.6, 2.10, and (2), with probability at least 1− δ we have

‖∇F (wT+1)−∇FS(wT+1)‖2 ≤
(
‖∇FS(wT+1)‖+

µ

n
+ 2

G∗ log(4/δ)

n
+ 2

√
2E[‖∇f(w∗, z)‖2] log(4/δ)

n

)2

≤ 4
(
‖∇FS(wT+1)‖2 + 4

G2
∗ log2(4/δ)

n2
+ 8

E[‖∇f(w∗, z)‖2] log(4/δ)

n
+
µ2

n2

)
. (31)
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In (30), we have proved that the following optimization error bound holds with probability at least 1− δ

‖∇FS(wT+1)‖2 =


O
(

log(1/δ)
T

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 T

T

)
if θ ∈ ( 1

2 , 1],

O
(

log(θ+ 3
2

)( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T

)
if θ > 1.

(32)

Plugging (32) into (31), we have the following inequality with probability at least 1− 2δ

‖∇F (wT+1)−∇FS(wT+1)‖2

=


O
(

log(1/δ)
T + log2(1/δ)

n2 + E[‖∇f(w∗,z)‖2] log(1/δ)
n

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 T

T + log2(1/δ)
n2 + E[‖∇f(w∗,z)‖2] log(1/δ)

n

)
if θ ∈ ( 1

2 , 1],

O
(

log(θ+ 3
2

)( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T + log2(1/δ)
n2 + E[‖∇f(w∗,z)‖2] log(1/δ)

n

)
if θ > 1,

which also means that with probability at least 1− δ we have

‖∇F (wT+1)−∇FS(wT+1)‖2

=


O
(

log(1/δ)
T + log2(1/δ)

n2 + E[‖∇f(w∗,z)‖2] log(1/δ)
n

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 T

T + log2(1/δ)
n2 + E[‖∇f(w∗,z)‖2] log(1/δ)

n

)
if θ ∈ ( 1

2 , 1],

O
(

log(θ+ 3
2

)( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T + log2(1/δ)
n2 + E[‖∇f(w∗,z)‖2] log(1/δ)

n

)
if θ > 1.

(33)

The proof is complete.

C.3.2. PROOF OF THEOREM 3.15

Theorem C.8. Suppose Assumptions 2.4, 2.6, 2.10, 2.12, and (2) hold. Let wt be the iterate produced by Algorithm 1.

Assume ηt = 2
µS(t+t0) with t0 ≥ max{ 4β

µS
, 1}. Selecting T � n2. When n ≥ cβ2(d+log(

8 log(2nR+2)
δ ))

µ2 where c is an absolute
constant, for any δ ∈ (0, 1), with probability 1− δ,

(a.) if θ = 1
2 , then we have the following inequality

F (wT+1)− F (w∗) = O

(
log2( 1

δ )

n2
+

E[‖∇f(w∗, z)‖2] log( 1
δ )

n

)
;

(b.) if θ ∈ ( 1
2 , 1] and Assumption 2.8 holds, then we have the following inequality

F (wT+1)− F (w∗) = O

(
log(θ+ 3

2 )( 1
δ ) log

1
2 n

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
;

(c.) if θ > 1 and Assumption 2.8 holds, then we have the following inequality

F (wT+1)− F (w∗) = O

(
log

3(θ−1)
2 (n/δ) log(θ+ 3

2 )( 1
δ ) log

1
2 n

n2
+

E[‖∇f(w∗, z)‖2] log(1/δ)

n

)
.

Proof. According to (2), we know

F (wT+1)− F (w∗) ≤ 1

2µ
‖∇F (wT+1)‖2 ≤ µ−1(‖∇F (wT+1)−∇FS(wT+1)‖2 + ‖∇FS(wT+1)‖2). (34)
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Plugging (33) and (32) into (34), we derive that the following inequality holds with probability at least 1− 2δ

F (wT+1)− F (w∗) =


O
(

log(1/δ)
T + log2(1/δ)

n2 + E[‖∇f(w∗,z)‖2] log(1/δ)
n

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 T

T + log2(1/δ)
n2 + E[‖∇f(w∗,z)‖2] log(1/δ)

n

)
if θ ∈ ( 1

2 , 1],

O
(

log(θ+ 3
2

)( 1
δ ) log

3(θ−1)
2 (T/δ) log

1
2 T

T + log2(1/δ)
n2 + E[‖∇f(w∗,z)‖2] log(1/δ)

n

)
if θ > 1.

Choosing T � n2, the above abounds means that with probability at least 1− δ, we have

F (wT+1)− F (w∗) =


O
(

log2(1/δ)
n2 + E[‖∇f(w∗,z)‖2] log(1/δ)

n

)
if θ = 1

2 ,

O
(

log(θ+ 3
2

)( 1
δ ) log

1
2 n

n2 + E[‖∇f(w∗,z)‖2] log(1/δ)
n

)
if θ ∈ ( 1

2 , 1],

O
(

log
3(θ−1)

2 (n/δ) log(θ+ 3
2

)( 1
δ ) log

1
2 n

n2 + E[‖∇f(w∗,z)‖2] log(1/δ)
n

)
if θ > 1,

The proof is complete.

C.4. Proof of Section 3.4

Theorem C.9. Suppose Assumptions 2.6 and 2.12 hold. Let wt be the iterate produced by Algorithm 2. Assume ηt = η1t
− 1

2

for some constant η1 > 0 and take τ = max
{

20K logθ( 2
δ ), 4K logθ

√
T
}

. Then for any δ ∈ (0, 1), with probability 1− δ,
we have the following inequality

1

T

T∑
t=1

min
{
‖∇FS(wt)‖, ‖∇FS(wt)‖2

}
= O

(
logθ(T/δ) log T + log2θ+1(T ) log(Tδ )

√
T

)
.

Proof. It is easy to verify that ‖∇f̄(wt; zjt)‖ ≤ τ . We consider two cases: ‖FS(wt)‖ ≤ τ/2 and ‖FS(wt)‖ ≥ τ/2.

We first consider the case ‖FS(wt)‖ ≤ τ/2. With the smoothness property in Lemma B.2, we have

FS(wt+1)− FS(wt) ≤ 〈wt+1 −wt,∇FS(wt)〉+
1

2
β‖wt+1 −wt‖2

≤ −ηt〈∇f̄(wt; zjt),∇FS(wt)〉+
1

2
βη2

t τ
2 (35)

= −ηt〈∇f̄(wt; zjt)− Ejt∇f̄(wt; zjt) + Ejt∇f̄(wt; zjt)−∇FS(wt),∇FS(wt)〉 − ηt‖∇FS(wt)‖2 +
1

2
βη2

t τ
2

= −ηt〈∇f̄(wt; zjt)− Ejt∇f̄(wt; zjt),∇FS(wt)〉 − ηt〈Ejt∇f̄(wt; zjt)−∇FS(wt),∇FS(wt)〉

− ηt‖∇FS(wt)‖2 +
1

2
βη2

t τ
2.

By a summation from t = 1 to t = T , it gives

T∑
t=1

ηt‖∇FS(wt)‖2 ≤ FS(w1)− FS(wS) +

T∑
t=1

1

2
βη2

t τ
2

−
T∑
t=1

ηt〈∇f̄(wt; zjt)− Ejt∇f̄(wt; zjt),∇FS(wt)〉 −
T∑
t=1

ηt〈Ejt∇f̄(wt; zjt)−∇FS(wt),∇FS(wt)〉.

Since Ejt [−ηt〈∇f̄(wt; zjt) − Ejt∇f̄(wt; zjt),∇FS(wt)〉] = 0, thus the sequence (−ηt〈∇f̄(wt; zjt) −
Ejt∇f̄(wt; zjt),∇FS(wt)〉, t ∈ N) is a martingale difference sequence. Denoted by ξt = −ηt〈∇f̄(wt; zjt) −
Ejt∇f̄(wt; zjt),∇FS(wt)〉. We have

|ξt| ≤ ηt(‖∇f̄(wt; zjt)‖+ ‖Ejt∇f̄(wt; zjt)‖)‖∇FS(wt)‖ ≤ η1τ
2.
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According to the inequality Ejt [(ξt − Ejtξt)2] ≤ Ejt [ξ2
t ], we have

T∑
t=1

Ejt [(ξt − Ejtξt)2] ≤
T∑
t=1

η2
tEjt [‖∇f̄(wt; zjt)− Ejt∇f̄(wt; zjt)‖2‖∇FS(wt)‖2] ≤ 4τ2

T∑
t=1

η2
t ‖∇FS(wt)‖2.

According to Lemma B.5, with probability 1− δ, we have

T∑
t=1

ξt ≤
ρ4τ2η1

∑T
t=1 ηt‖∇FS(wt)‖2

η1τ2
+
η1τ

2 log(1/δ)

ρ
.

Taking ρ = 1
16 , we derive

T∑
t=1

ξt ≤
∑T
t=1 ηt‖∇FS(wt)‖2

4
+ 16η1τ

2 log(1/δ).

Thus, we have the following inequality with probability 1− δ,

3

4

T∑
t=1

ηt‖∇FS(wt)‖2 ≤ FS(w1)− FS(wS) +

T∑
t=1

1

2
βη2

t τ
2 + 16η1τ

2 log(1/δ)

−
T∑
t=1

ηt〈Ejt∇f̄(wt; zjt)−∇FS(wt),∇FS(wt)〉. (36)

Furthermore, we bound term −
∑T
t=1 ηt〈Ejt∇f̄(wt; zjt)−∇FS(wt),∇FS(wt)〉. We have

−
T∑
t=1

ηt〈Ejt∇f̄(wt; zjt)−∇FS(wt),∇FS(wt)〉 ≤
1

2

T∑
t=1

ηt‖Ejt∇f̄(wt; zjt)−∇FS(wt)‖2 +
1

2

T∑
t=1

ηt‖∇FS(wt)‖2.

(37)

Define xt = I{‖∇f(wt;zjt )‖>τ} and yt = I{‖∇f(wt;zjt )−∇FS(wt)‖> 1
2 τ}

. Since ‖FS(wt)‖ ≤ τ/2, we have

‖∇f(wt; zjt)‖ ≤ ‖∇f(wt; zjt)−∇FS(wt)‖+ ‖∇FS(wt)‖

≤ ‖∇f(wt; zjt)−∇FS(wt)‖+
1

2
τ,

which implies that xt ≤ yt.
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For the term ‖Ejt∇f̄(wt; zjt)−∇FS(wt)‖, we have

‖Ejt∇f̄(wt; zjt)−∇FS(wt)‖ = ‖Ejt
[
(∇f̄(wt; zjt)−∇f(wt; zjt))xt

]
‖

= ‖Ejt
[
∇f(wt; zjt)(

τ

‖∇f(wt; zjt)‖
− 1)xt

]
‖

= ‖Ejt
[
∇f(wt; zjt)(

τ − ‖∇f(wt; zjt)‖
‖∇f(wt; zjt)‖

)xt

]
‖

≤ Ejt
[
‖∇f(wt; zjt)(

τ − ‖∇f(wt; zjt)‖
‖∇f(wt; zjt)‖

)xt‖
]

= Ejt
[
|‖∇f(wt; zjt)‖ − τ |xt

]
≤ Ejt

[
|‖∇f(wt; zjt)‖ − ‖∇FS(wt)‖|xt

]
≤ Ejt

[
|‖∇f(wt; zjt)−∇FS(wt)‖|xt

]
≤ Ejt

[
‖∇f(wt; zjt)−∇FS(wt)‖yt

]
≤
√

Ejt
[
‖∇f(wt; zjt)−∇FS(wt)‖2

]
Ejty2

t

≤
√

2K2Γ(2θ + 1)
√
Ejty2

t , (38)

where the first inequality holds due to Jensen’s inequality, the second inequality holds due to ‖∇FS(wt)‖ ≤ τ/2 and
‖∇f(wt; zjt)‖ > τ , the fifth inequality follows from the Schwartz’s inequality, and the last inequality follows from Lemma
22 of (Madden et al., 2021). Moreover, we can derive the following inequality with probability 1− δ

Ejty2
t = Pjt(yt = 1) = Pjt

(
‖∇f(wt; zjt)−∇FS(wt)‖ >

1

2
τ
)

≤ 2 exp
(
−
( τ

4K

) 1
θ
)
, (39)

where the inequality holds due to the tail bound of the subWeibull random variable in Lemma A.1. Thus, Combined (37)
with (38) and (39), we have the following inequality with probability 1− Tδ

−
T∑
t=1

ηt〈Ejt∇f̄(wt; zjt)−∇FS(wt),∇FS(wt)〉

≤2K2Γ(2θ + 1)

T∑
t=1

ηt exp
(
−
( τ

4K

) 1
θ
)

+
1

2

T∑
t=1

ηt‖∇FS(wt)‖2. (40)

Plugging (40) into (36), and by a rearrangement, we have the following inequality with probability 1− Tδ − δ

1

4

T∑
t=1

ηt‖∇FS(wt)‖2

≤FS(w1)− FS(wS) +

T∑
t=1

1

2
βη2

t τ
2 + 16η1τ

2 log(1/δ) + 2K2Γ(2θ + 1)

T∑
t=1

ηt exp
(
−
( τ

4K

) 1
θ
)
.

To continue the proof, we let

exp
(
−
( τ

4K

) 1
θ
)
≤ 1√

T
.

Then we get

τ ≥ 4K logθ
√
T .
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Thus, when τ = 4K logθ
√
T , with probability 1− Tδ − δ we have

T∑
t=1

ηt‖∇FS(wt)‖2

≤4(FS(w1)− FS(wS)) +

T∑
t=1

2βη2
t τ

2 + 64η1τ
2 log(1/δ) + 8K2Γ(2θ + 1)

T∑
t=1

ηt exp
(
−
( τ

4K

) 1
θ
)

≤4(FS(w1)− FS(wS)) + 16K2 log2θ
√
T2β

T∑
t=1

η2
t + 64η116K2 log2θ

√
T log(1/δ) + 8K2Γ(2θ + 1)

1√
T

T∑
t=1

ηt.

Since ηt = η1
1√
t
, according to Lemma B.1, we can further get the following inequality with probability 1− Tδ − δ

1√
T

T∑
t=1

ηt‖∇FS(wt)‖2

≤ 1√
T

(
4(FS(w1)− FS(wS)) + 16K2 log2θ

√
T2βη2

1 log(eT ) + 64η116K2 log2θ
√
T log(1/δ) + 4K2Γ(2θ + 1)η1

)
=O

(
1√
T

(
log2θ

√
T log(T ) log(1/δ)

))
,

which implies that with probability 1− δ

1

T

T∑
t=1

‖∇FS(wt)‖2 ≤
1

η1

√
T

T∑
t=1

ηt‖∇FS(wt)‖2 = O
(

1√
T

(
log2θ+1(T ) log(

T

δ
)
))

.

Secondly, we consider the case ‖FS(wt)‖ ≥ τ/2. Recall that from (35) we have

FS(wt+1)− FS(wt) ≤ −ηt〈∇f̄(wt; zjt),∇FS(wt)〉+
1

2
βη2

t τ
2.

We now analyze the term −ηt〈∇f̄(wt; zjt),∇FS(wt)〉. Specifically,

− ηt〈∇f̄(wt; zjt),∇FS(wt)〉
=− ηt〈∇f̄(wt; zjt),∇FS(wt)〉I‖∇f(wt;zjt )‖>τ − ηt〈∇f̄(wt; zjt),∇FS(wt)〉I‖∇f(wt;zjt )‖≤τ

=− ηtτ〈∇f(wt; zjt)/‖∇f(wt; zjt)‖,∇FS(wt)〉I‖∇f(wt;zjt )‖>τ − ηt〈∇f(wt; zjt),∇FS(wt)〉I‖∇f(wt;zjt )‖≤τ .

Then, according to Lemma B.6, we have

− ηtτ〈∇f(wt; zjt)/‖∇f(wt; zjt)‖,∇FS(wt)〉I‖∇f(wt;zjt )‖>τ

≤− ηtτ
(
‖∇FS(wt)‖

3
(1− I‖∇f(wt;zjt )‖≤τ )− 8

3
‖∇f(wt; zjt)−∇FS(wt)‖

)
.

Moreover, we have

− ηt〈∇f(wt; zjt),∇FS(wt)〉I‖∇f(wt;zjt )‖≤τ

=− ηt(‖∇FS(wt)‖2 + 〈∇FS(wt),∇f(wt; zjt)−∇FS(wt)〉)I‖∇f(wt;zjt )‖≤τ

≤− ηt(‖∇FS(wt)‖2 − ‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖)I‖∇f(wt;zjt )‖≤τ

=− ηt
(
‖∇FS(wt)‖2I‖∇f(wt;zjt )‖≤τ − ‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖I‖∇f(wt;zjt )‖≤τ,‖∇f(wt;zjt )−∇FS(wt)‖≤τ/8−

‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖I‖∇f(wt;zjt )‖≤τ,‖∇f(wt;zjt )−∇FS(wt)‖≥τ/8

)
≤− ηt

(3

4
‖∇FS(wt)‖2I‖∇f(wt;zjt )‖≤τ − ‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖

)
≤− ηt

(3

8
τ‖∇FS(wt)‖I‖∇f(wt;zjt )‖≤τ − ‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖

)
≤− ηt

(1

3
τ‖∇FS(wt)‖I‖∇f(wt;zjt )‖≤τ − ‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖

)
,
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where the first equation holds due to 〈∇f(wt; zjt),∇FS(wt)〉 = ‖∇FS(wt)‖2 + 〈∇FS(wt),∇f(wt; zjt)−∇FS(wt)〉,
where the second inequality follows from that if ‖FS(wt)‖ ≥ τ/2 and ‖∇f(wt; zjt)−∇FS(wt)‖ ≤ τ/8, then

−‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖ ≥ −
τ2

16
≥ −‖∇FS(wt)‖2

4
,

and where the third inequality holds due to ‖FS(wt)‖ ≥ τ/2. Thus, we have

− ηt〈∇f̄(wt; zjt),∇FS(wt)〉

≤ − ηt
(1

3
τ‖∇FS(wt)‖I‖∇f(wt;zjt )‖≤τ − ‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖

)
− ηtτ

(
‖∇FS(wt)‖

3
(1− I‖∇f(wt;zjt )‖≤τ )− 8

3
‖∇f(wt; zjt)−∇FS(wt)‖

)
=− ηt

(1

3
τ‖∇FS(wt)‖ −

8

3
τ‖∇f(wt; zjt)−∇FS(wt)‖ − ‖∇FS(wt)‖‖∇f(wt; zjt)−∇FS(wt)‖

)
.

According to Lemma A.2, with probability at least 1− δ, we also have

‖∇f(wt; zjt)−∇FS(wt)‖ ≤ K logθ(
2

δ
).

Thus, with probability at least 1− δ, there holds

FS(wt+1)− FS(wt) ≤
1

2
βη2

t τ
2

− ηt
(1

3
τ‖∇FS(wt)‖ −

16

3
‖∇FS(wt)‖K logθ(

2

δ
)− ‖∇FS(wt)‖K logθ(

2

δ
)
)
,

where the inequality also follows from ‖FS(wt)‖ ≥ τ/2. Taking a Summation form t = 1 to t = T , with probability at
least 1− Tδ, we have

FS(wT+1)− FS(w1) ≤ 1

2
β

T∑
t=1

η2
t τ

2

−
T∑
t=1

ηt

(1

3
τ‖∇FS(wt)‖ −

16

3
‖∇FS(wt)‖K logθ(

2

δ
)− ‖∇FS(wt)‖K logθ(

2

δ
)
)
,

which means

T∑
t=1

(1

3
τ − 19

3
K logθ(

2

δ
)
)
ηt‖∇FS(wt)‖ ≤ FS(w1)− FS(wS) +

T∑
t=1

1

2
βη2

t τ
2.

To continue the proof, we take τ ≥ 20K logθ( 2
δ ). Then we get

T∑
t=1

(1

3
K logθ(

2

δ
)
)
ηt‖∇FS(wt)‖ ≤

T∑
t=1

(1

3
τ − 19

3
K logθ(

2

δ
)
)
ηt‖∇FS(wt)‖ ≤ FS(w1)− FS(wS) +

T∑
t=1

1

2
βη2

t τ
2.

It implies that

T∑
t=1

ηt‖∇FS(wt)‖ ≤
3(FS(w1)− FS(wS))

K logθ( 2
δ )

+

T∑
t=1

3

2K logθ( 2
δ )
βη2

t τ
2.

Therefore, with probability at least 1− Tδ,

1√
T

T∑
t=1

ηt‖∇FS(wt)‖ ≤
3(FS(w1)− FS(wS))√

TK logθ( 2
δ )

+
1√
T

T∑
t=1

3

2K logθ( 2
δ )
βη2

t τ
2.
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Taking τ = 20K logθ( 2
δ ) and since ηt = η1

1√
t
, we get the following inequality with probability at least 1− Tδ,

1√
T

T∑
t=1

ηt‖∇FS(wt)‖ = O

(
logθ(1/δ) log T√

T

)
,

implying that with probability at least 1− δ,

1

T

T∑
t=1

‖∇FS(wt)‖ ≤
1

η1

√
T

T∑
t=1

ηt‖∇FS(wt)‖ = O

(
logθ(T/δ) log T√

T

)
.

Till here, combined with the two cases and taking τ = max
{

20K logθ( 2
δ ), 4K logθ

√
T
}

, we finally obtain the following
inequality with probability 1− δ

1

T

T∑
t=1

min
{
‖∇FS(wt)‖, ‖∇FS(wt)‖2

}
= O

(
logθ(T/δ) log T√

T

)
+O

(
1√
T

(
log2θ+1(T ) log(

T

δ
)

))

= O

(
logθ(T/δ) log T + log2θ+1(T ) log(Tδ )

√
T

)
.

The proof is complete.


