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Abstract
This paper studies the accelerated gradient de-
scent for general nonconvex problems under
the gradient Lipschitz and Hessian Lipschitz as-
sumptions. We establish that a simple restarted
accelerated gradient descent (AGD) finds an
ϵ-approximate first-order stationary point in
O(ϵ−7/4) gradient computations with simple
proofs. Our complexity does not hide any poly-
logarithmic factors, and thus it improves over the
state-of-the-art one by the O(log 1

ϵ ) factor. Our
simple algorithm only consists of Nesterov’s clas-
sical AGD and a restart mechanism, and it does
not need the negative curvature exploitation or the
optimization of regularized surrogate functions.
Technically, our simple proof does not invoke the
analysis for the strongly convex AGD, which is
crucial to remove the O(log 1

ϵ ) factor.

1. Introduction
Nonconvex optimization has emerged increasingly popular
in machine learning and a lot of machine learning tasks can
be formulated as nonconvex problems, such as deep learning
(LeCun et al., 2015). This paper considers the following
general nonconvex problem:

min
x∈Rd

f(x), (1)

where f(x) is bounded from below and has Lipschitz con-
tinuous gradient and Hessian.

Gradient descent, a simple and fundamental algorithm, is
known to find an ϵ-approximate first-order stationary point
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of problem (1) (where ∥∇f(x)∥ ≤ ϵ) in O(ϵ−2) iterations
(Nesterov, 2004). This rate is optimal among the first-order
methods under the gradient Lipschitz condition (Cartis et al.,
2010; Carmon et al., 2020). When additional structure is
assumed, such as the Hessian Lipschitz condition, improve-
ment is possible.

For convex problems, gradient descent is known to be sub-
optimal. In a series of celebrated works (Nesterov, 1983;
1988; 2005), Nesterov proposed several accelerated gradient
descent (AGD) methods, which find an ϵ-optimal solution in

O(
√

L
ϵ ) and O(

√
L
µ log 1

ϵ ) iterations for L-smooth general
convex problems and µ-strongly convex problems, respec-
tively, while gradient descent takes O(Lϵ ) and O(Lµ log 1

ϵ )
steps. Motivated by the practical superiority and rich theory
of accelerated methods for convex optimization, nonconvex
AGD has attracted tremendous attentions in recent years. In
this paper, we aim to give a slightly faster convergence rate
than the state-of-the-art one by simple proofs for a simple
nonconvex AGD.

1.1. Literature Review

Nonconvex AGD has been a hot topic in the last decade.
Ghadimi & Lan (2016); Li & Lin (2015); Li et al. (2017)
studied the nonconvex AGD under the gradient Lipschitz
condition. The efficiency is verified empirically and there is
no speed improvement in theory. Carmon et al. (2017) pro-
posed a “convex until guilty” mechanism with nested-loop
under both the gradient Lipschitz and Hessian Lipschitz con-
ditions, which finds an ϵ-approximate first-order stationary
point in O(ϵ−7/4 log 1

ϵ ) gradient and function evaluations.
Their method alternates between the minimization of a reg-
ularized surrogate function and the negative curvature ex-
ploitation, where in the former subroutine, a proximal term
is added to reduce the nonconvex subproblem to a convex
one.

Most literatures focus on the second-order stationary point
when studying nonconvex AGD. Carmon et al. (2018) com-
bined the regularized accelerated gradient descent and the
Lanczos method, where the latter is used to search the nega-
tive curvature. Agarwal et al. (2017) implemented the cubic-
regularized Newton steps carefully by using accelerated
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method for fast approximate matrix inversion, while Car-
mon & Duchi (2020; 2018) employed the Krylov subspace
method to approximate the cubic-regularized Newton steps.
The above methods find an ϵ-approximate second-order
stationary point in O(ϵ−7/4 log 1

ϵ ) gradient evaluations or
Hessian-vector products. To avoid the Hessian-vector prod-
ucts, Xu et al. (2018) and Allen-Zhu & Li (2018) proposed
the NEON and NEON2 first-order procedures to extract
negative curvature of the Hessian, respectively. Other typ-
ical methods include the Newton-CG (Royer et al., 2020)
and the second-order line-search method (Royer & Wright,
2018), which are beyond the AGD class.

The methods in (Carmon et al., 2017; 2018; Agarwal et al.,
2017; Carmon & Duchi, 2020) are nested-loop algorithms.
They either alternate between the negative curvature ex-
ploitation and the optimization of a regularized surrogate
function using convex AGD (Carmon et al., 2018; 2017),
or call the accelerated methods to solve a series of cubic
regularized Newton steps (Agarwal et al., 2017; Carmon &
Duchi, 2020). Jin et al. (2018) proposed the first single-loop
accelerated method, which finds an ϵ-approximate second-
order stationary point in O(ϵ−7/4 log 1

ϵ ) gradient and func-
tion evaluations. The method in (Jin et al., 2018) runs the
classical AGD until some condition triggers, then calls the
negative curvature exploitation, and continues on the clas-
sical AGD. It is, as far as we know, the simplest algorithm
among the nonconvex accelerated methods with fast rate
guarantees.

Although achieving second-order stationary point ensures
the method not to get stuck at the saddle points, some re-
searchers show that gradient descent and its accelerated
variants that converge to first-order stationary point always
converge to local minimum. Lee et al. (2016) established
that gradient descent converges to a local minimizer almost
surely with random initialization. O’Neill & Wright (2019)
proved that accelerated method is unlikely to converge to
strict saddle points, and diverges from the strict saddle point
more rapidly than the steepest-descent method for specific
quadratic objectives.

As for the lower bound, Carmon et al. (2021) established that
no deterministic first-order method can find ϵ-approximate
first-order stationary point of functions with Lipschitz con-
tinuous gradient and Hessian in less than O(ϵ−12/7) gradi-
ent evaluations. There exists a gap of O(ϵ−1/28 log 1

ϵ ) be-
tween the lower bound and the state-of-the-art upper bound
(Carmon et al., 2017; Jin et al., 2018). It remains an open
problem of how to close this gap.

1.2. Contribution

All of the above methods (Carmon et al., 2017; 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018)
share the O(ϵ−7/4 log 1

ϵ ) complexity, which has a O(log 1
ϵ )

Algorithm 1 Restarted AGD
Initialize x−1 = x0 = xint, k = 0.
while k < K do

yk = xk + (1− θ)(xk − xk−1)
xk+1 = yk − η∇f(yk)
k = k + 1
if k
∑k−1

t=0 ∥xt+1 − xt∥2 > B2 then
x−1 = x0 = xk, k = 0

end if
end while
K0 = argmin⌊K

2 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K0+1

∑K0

k=0 y
k

factor. To the best of our knowledge, even applying the
methods designed to find second-order stationary point to
the easier problem of finding first-order stationary point, the
O(log 1

ϵ ) factor still cannot be removed. On the other hand,
almost all the existing methods are complex with nested
loops. Even the single-loop method proposed in (Jin et al.,
2018) needs the negative curvature exploitation procedure.

In this paper, we propose a simple restarted AGD, which
has the following three advantages:

1. Our method finds an ϵ-approximate first-order station-
ary point in O(ϵ−7/4) gradient computations. Our
complexity does not hide any polylogarithmic factors,
and thus it improves over the state-of-the-art one by
the O(log 1

ϵ ) factor.

2. Our method is simple in the sense that it only consists
of Nesterov’s classical AGD and a restart mechanism,
and it does not need the negative curvature exploitation
or the optimization of regularized surrogate functions.

3. Technically, our proof is much simpler than all those
in the existing literatures. Especially, we do not invoke
the analysis for the strongly convex AGD, which is
crucial to remove the O(log 1

ϵ ) factor.

2. Restarted Accelerated Gradient Descent
We make the following standard assumptions in this paper,
where we denote ∥ · ∥ to be the Euclidean norm for vectors
and the spectral norm for matrices uniformly.

Assumption 2.1. 1. f(x) is L-gradient Lipschitz:
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

2. f(x) is ρ-Hessian Lipschitz: ∥∇2f(x)−∇2f(y)∥ ≤
ρ∥x− y∥.

Our method is described in Algorithm 1. It runs Nesterov’s
classical AGD until the “if condition” triggers. Then we
restart by setting x0 and x−1 equal to xk and do the next
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round of AGD. The algorithm terminates when the “if con-
dition” does not trigger in K iterations. The restart trick
is motivated by (Fang et al., 2019), who proposed a ball-
mechanism as the stopping criteria to analyze SGD. In con-
trast with other nonconvex accelerated methods, our method
does not invoke any additional techniques, such as the nega-
tive curvature exploitation, the optimization of regularized
surrogate functions, or the minimization of cubic Newton
steps.

We present our main result in Theorem 2.2, which estab-
lishes the O(ϵ−7/4) complexity to find an ϵ-approximate
first-order stationary point.

Theorem 2.2. Suppose that Assumption 2.1 holds. Let
η = 1

4L , B =
√

ϵ
ρ , θ = 4

(
ϵρη2

)1/4
< 1, K = 1

θ . Then

Algorithm 1 terminates in at most △fL
1/2ρ1/4

ϵ7/4
gradient com-

putations and the output satisfies ∥∇f(ŷ)∥ ≤ 82ϵ, where
△f = f(xint)−minx f(x).

Among the existing methods, Carmon et al. (2017) estab-

lished the O
(

△fL
1/2ρ1/4

ϵ7/4
log

L△f

ϵ

)
complexity to find an

ϵ-approximate first-order stationary point, which has the ad-
ditional O(log 1

ϵ ) factor compared with our one. The com-
plexity given in other literatures concentrating on second-
order stationary point, such as (Carmon et al., 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018),
also has the additionalO(log 1

ϵ ) factor even for finding first-
order stationary point. Take (Jin et al., 2018) as the example.
Their Lemma 7 studies the first-order stationary point. Their
proof in Lemmas 9 and 17 is built upon the analysis for
strongly convex AGD, which generally needsO(

√
L
µ log 1

ϵ )

iterations such that the gradient norm will be less than ϵ,
and thus the O(log 1

ϵ ) factor appears.

3. Proof of Theorem 2.2
Define K to be the iteration number when the “if condition”
triggers in Algorithm 1, that is,

K = min
k

{
k

∣∣∣∣∣k
k−1∑
t=0

∥xt+1 − xt∥2 > B2

}
.

Denote the iterations from k = 0 to k = K to be one
epoch. Then for each epoch except the last one, we have
1 ≤ K ≤ K,

K
K−1∑
t=0

∥xt+1 − xt∥2 > B2, (2a)

∥xk − x0∥2 ≤ k

k−1∑
t=0

∥xt+1 − xt∥2 ≤ B2,∀k < K, (2b)

∥yk−x0∥≤∥xk−x0∥+∥xk−xk−1∥≤2B, ∀k<K. (2c)

For the last epoch, that is, the “if condition” does not trigger
and the while loop breaks until k = K, we have

∥xk − x0∥2 ≤ k

k−1∑
t=0

∥xt+1 − xt∥2 ≤ B2,∀k ≤ K, (3a)

∥yk − x0∥ ≤ 2B, ∀k ≤ K. (3b)

We will show in Sections 3.1 and 3.2 that the function value
decreases with a magnitude at least O(ϵ1.5) in each epoch
except the last one. Thus Algorithm 1 terminates in at most
O(ϵ−1.5) epochs, and accordingly O(ϵ−1.75) total gradient
computations since each epoch needs at most O(ϵ−0.25)
iterations. In the last epoch, we will show that the gradient
norm at the output iterate is less thanO(ϵ), which is detailed
in Section 3.3.

3.1. Large Gradient of ∥∇f(yK−1)∥

We first consider the case when ∥∇f(yK−1)∥ is large.
Lemma 3.1. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ > B

η , then for Algorithm 1 we have

f(xK)− f(x0) ≤ −B2

4η
.

Proof. From the L-gradient Lipschitz condition, we have

f(xk+1)

≤f(yk) +
〈
∇f(yk),xk+1 − yk

〉
+

L

2
∥xk+1 − yk∥2

=f(yk)− η∥∇f(yk)∥2 + Lη2

2
∥∇f(yk)∥2

≤f(yk)− 7η

8
∥∇f(yk)∥2,

(4)

where we use η ≤ 1
4L . From the L-gradient Lipschitz, we

also have

f(xk) ≥ f(yk) +
〈
∇f(yk),xk − yk

〉
− L

2
∥xk − yk∥2.

So we have

f(xk+1)− f(xk)

≤−
〈
∇f(yk),xk−yk

〉
+

L

2
∥xk−yk∥2− 7η

8
∥∇f(yk)∥2

=
1

η

〈
xk+1−yk,xk−yk

〉
+
L

2
∥xk−yk∥2− 7η

8
∥∇f(yk)∥2

=
1

2η

(
∥xk+1 − yk∥2 + ∥xk − yk∥2 − ∥xk+1 − xk∥2

)
+

L

2
∥xk − yk∥2 − 7η

8
∥∇f(yk)∥2

a
≤ 5

8η
∥xk − yk∥2 − 1

2η
∥xk+1 − xk∥2 − 3η

8
∥∇f(yk)∥2

b
≤ 5

8η
∥xk − xk−1∥2 − 1

2η
∥xk+1 − xk∥2 − 3η

8
∥∇f(yk)∥2,
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where we use L ≤ 1
4η in

a
≤ and ∥xk − yk∥ = (1 −

θ)∥xk − xk−1∥ ≤ ∥xk − xk−1∥ in
b
≤. Summing over

k = 0, · · · ,K − 1 and using x0 = x−1, we have

f(xK)− f(x0)

≤ 1

8η

K−2∑
k=0

∥xk+1 − xk∥2 − 3η

8

K−1∑
k=0

∥∇f(yk)∥2

c
≤B2

8η
− 3η

8
∥∇f(yK−1)∥2

d
≤ B2

8η
− 3B2

8η
≤ −B2

4η
,

where we use (2b) in
c
≤ and ∥∇f(yK−1)∥ > B

η in
d
≤.

3.2. Small Gradient of ∥∇f(yK−1)∥

If ∥∇f(yK−1)∥ ≤ B
η , then from (2c) we have

∥xK − x0∥ ≤ ∥yK−1 − x0∥+ η∥∇f(yK−1)∥ ≤ 3B.

For each epoch, denote H = ∇2f(x0) and H = UΛUT

to be its eigenvalue decomposition with U,Λ ∈ Rd×d. Let
λj be the jth eigenvalue. Denote x̃ = UTx, ỹ = UTy,
and ∇̃f(y) = UT∇f(y). Let x̃j and ∇̃jf(y) be the jth
element of x̃ and ∇̃f(y), respectively. From the ρ-Hessian
Lipschitz assumption, we have

f(xK)− f(x0)

≤
〈
∇f(x0),xK − x0

〉
+

1

2
(xK − x0)TH(xK − x0)

+
ρ

6
∥xK − x0∥3

=
〈
∇̃f(x0), x̃K − x̃0

〉
+

1

2
(x̃K − x̃0)TΛ(x̃K − x̃0)

+
ρ

6
∥xK − x0∥3

≤g(x̃K)− g(x̃0) + 4.5ρB3,

(5)

where we denote

g(x) =
〈
∇̃f(x0),x− x̃0

〉
+

1

2
(x− x̃0)TΛ(x− x̃0),

gj(x) =
〈
∇̃jf(x

0), x− x̃0
j

〉
+

1

2
λj(x− x̃0

j )
2.

Denoting

δ̃kj = ∇̃jf(y
k)−∇gj(ỹk

j ), δ̃k = ∇̃f(yk)−∇g(ỹk),

then the iterations can be rewritten as

ỹk
j = x̃k

j + (1− θ)(x̃k
j − x̃k−1

j ), (6a)

x̃k+1
j = ỹk

j − η∇̃jf(y
k) = ỹk

j − η∇gj(ỹk
j )− ηδ̃kj , (6b)

and ∥δ̃k∥ can be bounded as

∥δ̃k∥

=∥∇̃f(yk)− ∇̃f(x0)− Λ(ỹk − x̃0)∥
=∥∇f(yk)−∇f(x0)−H(yk − x0)∥

=

∥∥∥∥(∫ 1

0

∇2f(x0 + t(yk − x0))−H

)
(yk − x0)dt

∥∥∥∥
≤ρ

2
∥yk − x0∥2 ≤ 2ρB2,

(7)

for any k < K, where we use the ρ-Hessian Lipschitz
assumption and (2c) in the last two inequalities.

From (5), to prove the decrease from f(x0) to f(xK), we
only need to study g(x̃K) − g(x̃0), that is, the decrease
of g(x). Iterations (6a) and (6b) can be viewed as apply-
ing AGD to the quadratic approximation g(x) coordinately
with the approximation error δ̃k, which can be controlled
within O(ρB2). The quadratic function g(x) equals to the
sum of d scalar functions gj(xj). We decompose g(x) into∑

j∈S1
gj(xj) and

∑
j∈S2

gj(xj), where

S1 =

{
j : λj ≥ −

θ

η

}
, S2 =

{
j : λj < −

θ

η

}
.

We see that gj(x) is approximate convex when j ∈ S1, and
strongly concave when j ∈ S2.

It is pointed out in (Jin et al., 2018) that the major challenge
in analyzing nonconvex momentum-based methods is that
the objective function does not decrease monotonically. To
overcome this issue, Jin et al. (2018) design a potential
function and use the negative curvature exploitation when
the objective is very nonconvex to guarantee the decrease
of the potential function. An open problem is asked in
Section 5 of (Jin et al., 2018) whether the negative curvature
exploitation is necessary for the fast rate.

In contrast with (Jin et al., 2018), we establish the approx-
imate decrease of some specified potential function when
j ∈ S1, as shown in (9), and the approximate decrease of
gj(x) when j ∈ S2, given in (12). Thus, the negative curva-
ture exploitation is avoided. Putting the two cases together,
we can show the decrease of f(x) in each epoch.

We first consider
∑

j∈S1
gj(xj) in the following lemma.

Lemma 3.2. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ ≤ B

η , then for Algorithm 1 we have∑
j∈S1

gj(x̃
K
j )−

∑
j∈S1

gj(x̃
0
j )

≤−
∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
8ηρ2B4K

θ
.

(8)
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Proof. Since gj(x) is quadratic, we have

gj(x̃
k+1
j )

=gj(x̃
k
j ) +

〈
∇gj(x̃k

j ), x̃
k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

a
=gj(x̃

k
j )−

1

η

〈
x̃k+1
j − ỹk

j + ηδ̃kj , x̃
k+1
j − x̃k

j

〉
+
〈
∇gj(x̃k

j )−∇gj(ỹk
j ), x̃

k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

=gj(x̃
k
j )−

1

η

〈
x̃k+1
j − ỹk

j , x̃
k+1
j − x̃k

j

〉
−
〈
δ̃kj , x̃

k+1
j − x̃k

j

〉
+ λj

〈
x̃k
j − ỹk

j , x̃
k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

=gj(x̃
k
j )+

1

2η

(
|x̃k

j − ỹk
j |2−|x̃k+1

j − ỹk
j |2−|x̃k+1

j − x̃k
j |2
)

−
〈
δ̃kj , x̃

k+1
j − x̃k

j

〉
+

λj

2

(
|x̃k+1

j − ỹk
j |2 − |x̃k

j − ỹk
j |2
)

≤gj(x̃k
j )+

1

2η

(
|x̃k

j − ỹk
j |2−|x̃k+1

j − ỹk
j |2−|x̃k+1

j − x̃k
j |2
)

+
1

2α
|δ̃kj |2+

α

2
|x̃k+1

j −x̃k
j |2+

λj

2

(
|x̃k+1

j −ỹk
j |2−|x̃k

j−ỹk
j |2
)
,

where we use (6b) in a
=. Using L ≥ λj ≥ − θ

η when j ∈

S1 = {j : λj ≥ − θ
η} and

(
− 1

2η +
λj

2

)
|x̃k+1

j − ỹk
j |2 ≤(

−2L+ L
2

)
|x̃k+1

j − ỹk
j |2 ≤ 0, we have for each j ∈ S1,

gj(x̃
k+1
j ) ≤gj(x̃k

j ) +
1

2η

(
|x̃k

j − ỹk
j |2 − |x̃k+1

j − x̃k
j |2
)

+
1

2α
|δ̃kj |2 +

α

2
|x̃k+1

j − x̃k
j |2 +

θ

2η
|x̃k

j − ỹk
j |2

b
=gj(x̃

k
j ) +

(1− θ)2(1 + θ)

2η
|x̃k

j − x̃k−1
j |2

−
(

1

2η
− α

2

)
|x̃k+1

j − x̃k
j |2 +

1

2α
|δ̃kj |2,

where we use (6a) in b
=. Defining the potential function

ℓk+1
j = gj(x̃

k+1
j ) +

(1− θ)2(1 + θ)

2η
|x̃k+1

j − x̃k
j |2,

we have

ℓk+1
j ≤ℓkj +

1

2α
|δ̃kj |2

−
(

1

2η
− α

2
− (1−θ)2(1+θ)

2η

)
|x̃k+1

j − x̃k
j |2

c
≤ℓkj −

3θ

8η
|x̃k+1

j − x̃k
j |2 +

2η

θ
|δ̃kj |2,

(9)

where we let α = θ
4η in

c
≤ such that 1

2η−
θ
8η−

(1−θ)2(1+θ)
2η =

3θ
8η + θ2

2η −
θ3

2η ≥
3θ
8η . Summing over k = 0, 1, · · · ,K − 1

and j ∈ S1, using x0 − x−1 = 0, we have∑
j∈S1

gj(x̃
K
j ) ≤

∑
j∈S1

ℓKj

≤
∑
j∈S1

gj(x̃
0
j )−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2+
2η

θ

K−1∑
k=0

∥δ̃k∥2

d
≤
∑
j∈S1

gj(x̃
0
j )−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
8ηρ2B4K

θ
,

where we use (7) in
d
≤.

Next, we consider
∑

j∈S2
gj(xj).

Lemma 3.3. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ ≤ B

η , then for Algorithm 1 we have∑
j∈S2

gj(x̃
K
j )−

∑
j∈S2

gj(x̃
0
j )

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
2ηρ2B4K

θ
.

(10)

Proof. Denoting vj = x̃0
j − 1

λj
∇̃jf(x

0), gj(x) can be
rewritten as

gj(x) =
λj

2

(
x− x̃0

j +
1

λj
∇̃jf(x

0)

)2

− 1

2λj
|∇̃jf(x

0)|2

=
λj

2
|x− vj |2 −

1

2λj
|∇̃jf(x

0)|2.

For each j ∈ S2 = {j : λj < − θ
η}, we have

gj(x̃
k+1
j )− gj(x̃

k
j )

=
λj

2
|x̃k+1

j − vj |2 −
λj

2
|x̃k

j − vj |2

=
λj

2
|x̃k+1

j − x̃k
j |2 + λj

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
≤− θ

2η
|x̃k+1

j − x̃k
j |2 + λj

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
.

(11)

So we only need to bound the second term. From (6b) and
(6a), we have

x̃k+1
j − x̃k

j

=ỹk
j − x̃k

j − η∇gj(ỹk
j )− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j )− η∇gj(ỹk
j )− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j )− ηλj(ỹ
k
j − vj)− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j )

− ηλj(x̃
k
j − vj + (1− θ)(x̃k

j − x̃k−1
j ))− ηδ̃kj .
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So for each j ∈ S2, we have

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
=(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− ηλj |x̃k

j − vj |2

− ηλj(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− η

〈
δ̃kj , x̃

k
j − vj

〉
a
≥(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− ηλj |x̃k

j − vj |2

+
ηλj(1− θ)

2

(
|x̃k

j − x̃k−1
j |2 + |x̃k

j − vj |2
)

+
η

2λj(1 + θ)
|δ̃kj |2 +

ηλj(1 + θ)

2
|x̃k

j − vj |2

=(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
+

ηλj(1− θ)

2
|x̃k

j − x̃k−1
j |2 + η

2λj(1 + θ)
|δ̃kj |2

=(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k−1
j − vj

〉
+ (1− θ)|x̃k

j − x̃k−1
j |2

+
ηλj(1− θ)

2
|x̃k

j − x̃k−1
j |2 + η

2λj(1 + θ)
|δ̃kj |2

b
≥(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k−1
j − vj

〉
+

η

2λj
|δ̃kj |2,

where we use the fact that λj < 0 when j ∈ S2 in
a
≥ and(

1+
ηλj

2

)
(1−θ)≥

(
1− ηL

2

)
(1−θ)≥0 in

b
≥. So we have

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
≥(1− θ)k

〈
x̃1
j − x̃0

j , x̃
0
j − vj

〉
+

η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2

c
=− (1− θ)kηλj |x̃0

j − vj |2 +
η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2

d
≥ η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2,

where we use

x̃1
j − x̃0

j =x̃1
j − ỹ0

j = −η∇̃jf(y
0) = −η∇̃jf(x

0)

=− η∇gj(x̃0
j ) = −ηλj(x̃

0
j − vj)

in c
= and λj < 0 in

d
≥. Plugging into (11) and using λj < 0

again, we have

gj(x̃
k+1
j )− gj(x̃

k
j )

≤− θ

2η
|x̃k+1

j − x̃k
j |2 +

η

2

k∑
t=1

(1− θ)k−t|δ̃tj |2.
(12)

Summing over k = 0, 1, · · · ,K − 1 and j ∈ S2, we have∑
j∈S2

gj(x̃
K
j )−

∑
j∈S2

gj(x̃
0
j )

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j −x̃k

j |2+
η

2

K−1∑
k=0

k∑
t=1

(1− θ)k−t∥δ̃t∥2

e
≤−

∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j −x̃k

j |2+2ηρ2B4
K−1∑
k=0

k∑
t=1

(1− θ)k−t

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
2ηρ2B4K

θ
,

where we use (7) in
e
≤.

Putting Lemmas 3.2 and 3.3 together, we can show the
decrease of f(x) in each epoch.

Lemma 3.4. Suppose that Assumption 2.1 holds. Under the
parameter settings in Theorem 2.2, when the “if condition”
triggers and ∥∇f(yK−1)∥ ≤ B

η , then for Algorithm 1 we
have

f(xK)− f(x0) ≤ −ϵ3/2
√
ρ
.

Proof. Summing over (8) and (10), we have

g(x̃K)− g(x̃0) =
∑

j∈S1∪S2

gj(x̃
K
j )− gj(x̃

0
j )

≤− 3θ

8η

K−1∑
k=0

∥x̃k+1 − x̃k∥2 + 10ηρ2B4K
θ

=− 3θ

8η

K−1∑
k=0

∥xk+1 − xk∥2 + 10ηρ2B4K
θ

a
≤− 3θB2

8ηK
+

10ηρ2B4K
θ

,

where we use (2a) in
a
≤. Plugging into (5) and usingK ≤ K,

we have

f(xK)− f(x0)

≤− 3θB2

8ηK
+

10ρ2B4ηK
2θ

+ 4.5ρB3

≤− 3θB2

8ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3 ≤ −ϵ3/2

√
ρ
.

(13)

3.3. Small Gradient in the Last Epoch

In this section, we prove Theorem 2.2. The main job is to
establish ∥∇f(ŷ)∥ ≤ O(ϵ) in the last epoch.
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Proof. From Lemmas 3.1 and 3.4, we have

f(xK)− f(x0) ≤ −min

{
ϵ3/2
√
ρ
,
ϵL

ρ

}
. (14)

Note that at the beginning of each epoch in Algorithm 1,
we set x0 to be the last iterate xK in the previous epoch.
Summing (14) over all epochs, say N total epochs, we have

min
x

f(x)− f(xint) ≤ −N min

{
ϵ3/2
√
ρ
,
ϵL

ρ

}
.

So the algorithm will terminate in at most △f
√
ρ

ϵ3/2
epochs.

Since each epoch needs at most K = 1
2

(
L2

ϵρ

)1/4
gradient

evaluations, the total number of gradient evaluations must

be less than △fL
1/2ρ1/4

ϵ7/4
.

Now, we consider the last epoch. Denote ỹ = UT ŷ =
1

K0+1

∑K0

k=0 U
Tyk = 1

K0+1

∑K0

k=0 ỹ
k. Since g is

quadratic, we have

∥∇g(ỹ)∥ =

∥∥∥∥∥ 1

K0 + 1

K0∑
k=0

∇g(ỹk)

∥∥∥∥∥
a
=

1

η(K0 + 1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1 − ỹk + ηδ̃k

)∥∥∥∥∥
=

1

η(K0+1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1−x̃k−(1−θ)(x̃k−x̃k−1)+ηδ̃k

)∥∥∥∥∥
b
=

1

η(K0+1)

∥∥∥∥∥x̃K0+1− x̃0− (1−θ)(x̃K0− x̃0)+η

K0∑
k=0

δ̃k

∥∥∥∥∥
=

1

η(K0 + 1)

∥∥∥∥∥x̃K0+1 − x̃K0 + θ(x̃K0 − x̃0) + η

K0∑
k=0

δ̃k

∥∥∥∥∥
≤ 1

η(K0+1)

(
∥x̃K0+1−x̃K0∥+θ∥x̃K0−x̃0∥+η

K0∑
k=0

∥δ̃k∥

)
c
≤ 2

ηK
∥x̃K0+1 − x̃K0∥+ 2θB

ηK
+ 2ρB2, (15)

where we use (6b) in a
=, x−1 = x0 in b

=, K0 +

1 ≥ K
2 , (3a), (7), and (3b) in

c
≤. From K0 =

argmin⌊K
2 ⌋≤k≤K−1 ∥xk+1 − xk∥, we have

∥xK0+1 − xK0∥2

≤ 1

K − ⌊K/2⌋

K−1∑
k=⌊K/2⌋

∥xk+1 − xk∥2

≤ 1

K − ⌊K/2⌋

K−1∑
k=0

∥xk+1 − xk∥2
d
≤ 2B2

K2
,

(16)

where we use (3a) in
d
≤. On the other hand, we also have

∥∇f(ŷ)∥ =∥∇̃f(ŷ)∥ ≤ ∥∇g(ỹ)∥+ ∥∇̃f(ŷ)−∇g(ỹ)∥

=∥∇g(ỹ)∥+ ∥∇̃f(ŷ)− ∇̃f(x0)−Λ(ỹ− x̃0)∥
=∥∇g(ỹ)∥+ ∥∇f(ŷ)−∇f(x0)−H(ŷ−x0)∥

≤∥∇g(ỹ)∥+ ρ

2
∥ŷ − x0∥2

e
≤ ∥∇g(ỹ)∥+ 2ρB2,

where we use ∥ŷ − x0∥ ≤ 1
K0+1

∑K0

k=0 ∥yk − x0∥ ≤ 2B

from (3b) in
e
≤. So we have

∥∇f(ŷ)∥ ≤ 2
√
2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ 82ϵ.

Remark 3.5. The purpose of using k
∑k−1

t=0 ∥xt+1−xt∥2 >
B2 in the “if condition”, rather than ∥xk−x0∥ ≥ B, and the
special average as the output in Algorithm 1 is to establish
(16).

3.4. Discussion on the Acceleration Mechanism

When we replace the AGD iterations in Algorithm 1 by the
gradient descent iterations xk+1 = xk − η∇f(xk) with
η = 1

4L , similar to (4), the descent property in each epoch
becomes

f(xK)− f(x0) ≤ − 7

8η

K−1∑
k=0

∥xk+1 − xk∥2 ≤ −7B2

8ηK
,

and the gradient norm at the averaged output x̂ =
1
K

∑K−1
k=0 xk is bounded as

∥∇g(x̂)∥ ≤ 1

ηK
∥xK − x0∥+ 2ρB2 ≤ B

ηK
+ 2ρB2.

By setting B =
√

ϵ
ρ and K = L√

ϵρ , we have the O(ϵ−2)

complexity.

Comparing with (13) and (15), respectively, we see that the
momentum parameter θ is crucial to speedup the conver-
gence because it allows smaller K, that is, 1

ϵ1/4
v.s. 1

ϵ1/2
for

AGD and GD, respectively. Accordingly, smaller K results
in less total gradient computations. Thus, the acceleration
mechanism for nonconvex optimization seems irrelevant
to the analysis of convex AGD. It is just because of the
momentum.

4. Experiments
We test on the matrix completion problem (Negahban &
Wainwright, 2012) to verify the efficiency of the proposed
method. The goal of matrix completion is to recover the low
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Figure 1. Comparisons of function value and gradient norm on the matrix completion problem.

rank matrix from a set of randomly observed entries, which
can be formulated as follows:

min
X∈Rm×n

1

2N

∑
(i,j)∈O

(Xi,j −X∗
i,j)

2, s.t. rank(X) ≤ r,

where O is the set of observed entries, N is the size of O,
and X∗ is the true low rank matrix. We reformulate the
above problem in the following matrix factorization form:

min
U∈Rm×r,V∈Rn×r

1

2N

∑
(i,j)∈O

((UVT )i,j −X∗
i,j)

2

+
1

2N
∥UTU−VTV∥2F ,

where r is the rank of X∗ and the regularization is used to
balance U and V.

We test the performance on the Movielen-10M, Movielen-
20M and Netflix data sets, where the corresponding ob-
served matrices are of size 69878×10677, 138493×26744,
and 480189× 17770, respectively. We set r = 10 and com-
pare restarted AGD (Algorithm 2 in Appendix A) with Jin’s
AGD (Jin et al., 2018), the ‘convex until guilty’ method
(Carmon et al., 2017), and gradient descent (GD). Denote
XO to be the observed data and AΣBT to be its SVD. We
initialize U = A:,1:r

√
Σ1:r,1:r and V = B:,1:r

√
Σ1:r,1:r

for all the compared methods. It is efficient to compute the
maximal r singular values and the corresponding singular
vectors of sparse matrices, for example, by Lanczos. We
tune the best stepsize η for each compared method on each
dataset. Since the Hessian Lipschitz constant ρ is unknown,
we set it as 1 for simplicity. For restarted AGD, we follow
Theorem 2.2 to set ϵ = 10−16, B =

√
ϵ
ρ , θ = 4(ϵρη2)1/4,

and K = 1/θ. We set B0 = 100 and c = 2 in Algorithm 2.
For Jin’s AGD (see Algorithm 4 in Section C for example),
we set θ = 4(ϵρη2)1/4, γ = θ2

η , and s = γ
4ρ . For the ‘con-

vex until guilty’ method, we follow the theory in (Carmon
et al., 2017) to set the parameters except that we terminate
the inner loop after 100 iterations to improve its practical
performance. We run each method for 1000 total iterations.

Figure 1 plots the results. We measure the objective function
value and gradient norm at each iterate yk for restarted AGD
and Jin’s AGD. We observed that the figures are almost the
same when measured at yk and xk when preparing the ex-
periments. We see that the accelerated methods perform
better than GD, which verifies the efficiency of accelera-
tion in nonconvex optimization. We also observe that our
method decreases the objective value and gradient norm
fastest. GD and our restarted AGD only perform one gra-
dient computation at each iteration, while Jin’s AGD and
the ‘convex until guilty’ method need to evaluate additional
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objective function values. Thus, Their methods need more
total running time when we run all the methods for 1000
iterations.

5. Conclusion
This paper proposes a simple restarted AGD for general
nonconvex problems under the gradient Lipschitz and Hes-
sian Lipschitz assumptions. Our simple method finds an
ϵ-approximate first-order stationary point inO(ϵ−7/4) gradi-
ent computations with simple proofs, which improves over
the state-of-the-art complexity by the O(log 1

ϵ ) factor. We
hope our analysis may lead to a better understanding of the
acceleration mechanism for nonconvex optimization.
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A. Practical Implementation of the Restarted
AGD

In Algorithm 1, we set B of the order
√
ϵ such that the

method may restart frequently in the first few iterations.
In this case, Algorithm 1 almost reduces to the classical
gradient descent. To make use of the practical superior-
ity of AGD in the first few iterations, we should reduce
the frequency of restart. A practical implementation is
presented in Algorithm 2, which relaxes the restart con-
dition of k

∑k−1
t=0 ∥xt+1 − xt∥2 > B2 in Algorithm 1 to

k
∑k−1

t=0 ∥xt+1 − xt∥2 > max{B2, B2
0}, and B0 can be

initialized much larger than B. We decrease B0 and drop
the whole iterates in this round of AGD when the objective
value does not decrease or decreases less than a threshold of
the order ϵ3/2. When B0 ≤ B, Algorithm 2 is equivalent to
Algorithm 1. On the other hand, we output the one of xK

Algorithm 2 Practical Restarted AGD
Initialize x−1 = x0 = x0

cur = xint, k = 0, B0, c > 1.
while k < K or B0 > B do

yk = xk + (1− θ)(xk − xk−1)
xk+1 = yk − η∇f(yk)
k = k + 1
if k

∑k−1
t=0 ∥xt+1 − xt∥2 > max{B2, B2

0} or k > K
then

if f(xk)− f(x0) ≤ −min
{

ϵ3/2√
ρ , ϵL

ρ

}
then

x−1 = x0 = xk, x0
cur = xk, k = 0

else
x−1 = x0 = x0

cur, k = 0, B0 = B0/c
end if

end if
end while
K0 = argmin⌊K

2 ⌋≤k≤K−1 ∥xk+1 − xk∥
ŷ = 1

K0+1

∑K0

k=0 y
k

Output xout = argminxK ,ŷ{∥∇f(xK)∥, ∥∇f(ŷ)∥}

and ŷ with the smaller gradient norm, because in practice
we always use the last iterate, rather than the averaged iter-
ate. We present the O(ϵ−7/4) complexity of Algorithm 2 in
Theorem A.1.

Theorem A.1. Suppose that Assumption 2.1 holds and use
the parameter settings in Theorem 2.2. Then Algorithm 2 ter-

minates in at most O
(

△fL
1/2ρ1/4

ϵ7/4

)
gradient computations

and O
(

△fρ
1/2

ϵ3/2

)
function evaluations, and the output satis-

fies ∥∇f(xout)∥ ≤ 82ϵ, where△f = f(xint)−minx f(x).

Proof. Denote one epoch to be valid when the if condi-
tion f(xk)− f(x0) ≤ −min

{
ϵ3/2√

ρ , ϵL
ρ

}
holds. Otherwise,

denote the epoch to be invalid. Since each valid epoch
decreases the objective at least min

{
ϵ3/2√

ρ , ϵL
ρ

}
, we have

at most max
{

△f
√
ρ

ϵ3/2
,
△fρ
ϵL

}
= O

(
△f

√
ρ

ϵ3/2

)
valid epoches.

Each epoch, no matter valid or not, needs at most K+1 gra-
dient evaluations. On the other hand, we only need logc

B0

B
invalid epoches to decrease B0 smaller than B, and Algo-
rithm 2 is equivalent to Algorithm 1 when B0 ≤ B. From
(14), we always have f(xk)− f(x0) ≤ −min

{
ϵ3/2√

ρ , ϵL
ρ

}
when k

∑k−1
t=0 ∥xt+1 − xt∥2 > B2. That is, invalid epoch

never appears when B0 ≤ B. So we have at most logc
B0

B
invalid epoches. So the total number of function evalua-
tions and gradient evaluations is O

(
△f

√
ρ

ϵ3/2
+ logc

B0

B

)
and

O
(

△f
√
ρ

ϵ3/2
+ logc

B0

B

)
(K+1) = O

(
△fL

1/2ρ1/4

ϵ7/4

)
, respec-

tively.

In the last epoch, we have k
∑k−1

t=0 ∥xt+1 − xt∥2 ≤
B2 for all k ≤ K, and the while loop terminates
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Algorithm 3 Perturbed Restarted AGD
Initialize x−1 = x0 = xint + ξ, ξ ∼Unif(B0(r)), k = 0.
while k < K do
yk = xk + (1− θ)(xk − xk−1)
xk+1 = yk − η∇f(yk)
k = k + 1
if k
∑k−1

t=0 ∥xt+1 − xt∥2 > B2 then
x−1 = x0 = xk + ξ1∥∇f(yk−1)∥≤B

η
, k = 0,

ξ ∼Unif(B0(r))
end if

end while
K0 = argmin⌊K

2 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K0+1

∑K0

k=0 y
k

when k equals K. From the proof of Theorem
2.2, we have ∥∇f(ŷ)∥ ≤ 82ϵ. Since we output
xout = argminxK ,ŷ{∥∇f(xK)∥, ∥∇f(ŷ)∥}, we also have
∥∇f(xout)∥ ≤ 82ϵ.

B. Extension to the Second-order Stationary
Point

Algorithm 1 can also find ϵ-approximate second-order sta-
tionary point, defined as

∥∇f(x)∥ ≤ ϵ, λmin(∇2f(x)) ≥ −√ϵρ.

We follow (Jin et al., 2017; 2018) to add the perturbations
generated uniformly from the ball B0(r) with radius r and
center 0. The detailed method is presented in Algorithm 3
and the complexity is given in Theorem B.1. We see that
Algorithm 3 needs at most O(ϵ−7/4 log d

ζϵ ) gradient com-
putations to find an ϵ-approximate second-order stationary
point with probability at least 1− ζ, where d is the dimen-
sion of x in problem (1). This complexity is the same with
the one given in (Jin et al., 2018). Comparing with Theorem
2.2, we see that there is a O(log d

ζϵ ) term. Currently, it is
unclear how to remove it.

Theorem B.1. Suppose that Assumption 2.1 holds. Let χ =

O(log d
ζϵ ) ≥ 1, η = 1

4L , B = 1
288χ2

√
ϵ
ρ , θ = 1

2

(
ϵρ
L2

)1/4
<

1, K = 2χ
θ , r = min{B2 ,

θB
20K ,

√
θB2

2K } = O(ϵ). Then Al-

gorithm 3 terminates in at most O
(

△fL
1/2ρ1/4χ6

ϵ7/4

)
gradi-

ent computations and the output satisfies ∥∇f(ŷ)∥ ≤ ϵ,
where △f = f(xint) − minx f(x). It also satisfies
λmin(∇2f(ŷ)) ≥ −1.011√ϵρ with probability at least
1− ζ.

Theorem B.1 also applies to the perturbed variant of Al-
gorithm 2. In short, the while loop in Algorithm 2 will
not terminate until B0 ≤ B, and Algorithm 2 reduces to
Algorithm 1 when B0 ≤ B.

Now, we prove Theorem 3.3.

Proof. Denote xt,k to be the iterate and ξt to be the per-
turbation in the tth epoch, ŷt = 1

K0+1

∑K0

k=0 y
t,k. When

∥∇f(yt,K−1)∥ > B
η and the “if condition” triggers, we

have from Lemma 3.1 that

f(xt,K)− f(xt,0) ≤ −B2

4η
.

Since xt+1,0 = xt,K, we have

f(xt+1,0)− f(xt,0) ≤ −B2

4η
.

When ∥∇f(yt,K−1)∥ ≤ B
η and the “if condition” triggers,

we have from Lemma 3.4 that

f(xt,K)− f(xt,0) ≤ −3θB2

8ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3.

From the L-gradient Lipschitz, we have

f(xt+1,0)− f(xt,K)

≤
〈
∇f(xt,K),xt+1,0 − xt,K〉+ L

2
∥xt+1,0 − xt,K∥2

=
〈
∇f(xt,K), ξt

〉
+

L

2
∥ξt∥2 ≤ 5Br

4η
+

Lr2

2
≤ θB2

8ηK
,

where we use

∥∇f(xt,K)∥
≤∥∇f(yt,K−1)∥+ ∥∇f(xt,K)−∇f(yt,K−1)∥
≤∥∇f(yt,K−1)∥+ L∥xt,K − yt,K−1∥

=∥∇f(yt,K−1)∥+ Lη∥∇f(yt,K−1)∥ ≤ B

η
+ LB ≤ 5B

4η

and ∥ξt∥ ≤ r ≤ min{ θB
20K ,

√
θB2

2K }. So we have

f(xt+1,0)− f(xt,0) ≤− θB2

4ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3

≤− ϵ1.5

700000
√
ρχ5

.

So the algorithm will terminate in at most O(△f
√
ρχ5

ϵ3/2
)

epochs. Since each epoch needs at most K = 4χ
(

L2

ϵρ

)1/4
gradient evaluations, the total number of gradient evalua-

tions must be less than O(△fL
1/2ρ1/4χ6

ϵ7/4
).

Now, we consider the last epoch. Denote it to be the T th
epoch. Similar to the proof of Theorem 2.2, we also have

∥∇f(ŷT )∥ ≤ 2
√
2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ ϵ

χ3
≤ ϵ.
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On the other hand, we have

∥∇f(yT−1,K−1)∥
≤∥∇f(ŷT )∥+ ∥∇f(ŷT )−∇f(xT−1,K)∥
+ ∥∇f(xT−1,K)−∇f(yT−1,K−1)∥

≤∥∇f(ŷT )∥+ L∥ŷT − xT,0∥+ L∥xT,0 − xT−1,K∥
+ L∥xT−1,K − yT−1,K−1∥

a
≤ ϵ

χ2
+ 2LB + Lr + ηL∥∇f(yT−1,K−1)∥

≤ ϵ

χ2
+ 2.5LB +

1

4
∥∇f(yT−1,K−1)∥,

where we use ∥ŷT−xT,0∥ ≤ 1
K0+1

∑K0

k=0 ∥yT,k−xT,0∥ ≤

2B in
a
≤. So we have ∥∇f(yT−1,K−1)∥ ≤ 4ϵ

3χ2 + 10LB
3 ≤

4ϵ
3χ2 + 5B

6η ≤
B
η by letting ϵ ≤ L2

5762ρ . In fact, when ϵ >
L2

5762ρ , we have λmin(∇2f(x)) ≥ −L > −576√ρϵ for any
x. Thus, in the last epoch, we have ∥∇f(yT−1,K−1)∥ ≤ B

η .
This is the reason why perturbation is not needed when
∥∇f(yt,K−1)∥ > B

η .

If λmin(∇2f(xT−1,K)) ≥ −√ϵρ, from the perturbation
theory of eigenvalues (Hoffman & Wielandt, 1953), we
have for any j,

|λj(∇2f(ŷT ))− λj(∇2f(xT−1,K))|
≤∥∇2f(ŷT )−∇2f(xT−1,K)∥2

≤ρ∥ŷT − xT−1,K∥ ≤ ρ∥ŷT − xT,0∥+ ρr
b
≤ 3ρB,

and

λj(∇2f(ŷT ))

≥λj(∇2f(xT−1,K))− |λj(∇2f(ŷT ))− λj(∇2f(xT−1,K))|
≥ −√ϵρ− 3ρB ≥ −1.011√ϵρ,

where we use ∥ŷT − xT,0∥ ≤ 2B in
b
≤.

Now, we consider λmin(∇2f(xT−1,K)) < −√ϵρ. Define
the stuck region within the perturbation ball BxT−1,K(r) to
be the set of points starting from which the “if condition”
does not trigger in K iterations, that is,

X=



{
x ∈ BxT−1,K(r)

∣∣∣{xT,k} is the RAGD iterate with

xT,0 = x and K
∑K−1

k=0 ∥xT,k+1 − xT,k∥2 ≤ B2
}
,

if λmin(∇2f(xT−1,K)) < −√ϵρ,
∅, othersize.

As pointed out in (Jin et al., 2017; 2018), the shape of the
stuck region can be very complicated, but its width along
the e1 direction is thin. Similar to Lemma 8 in (Jin et al.,
2018), we know from Lemma B.2 that the probability of

the starting point xT,0 = xT−1,K + ξt located in the stuck
region X is less than

r0Vd−1(r)

Vd(r)
≤ r0

√
d

r
= ζ,

where we let r0 = ζr√
d

.

DenoteH to be the random event of xT,0 /∈ X (the location
of xT,0 only depends on xT−1,K and the random variable
ξT ). When the random event H happens, we know that
if λmin(∇2f(xT−1,K)) < −√ϵρ, the “if condition” must
trigger. Thus, with probability at least 1 − ζ (the random
eventH happens), when the “if condition” does not trigger,
we have λmin(∇2f(xT−1,K)) ≥ −√ϵρ. Thus, the output
ŷ satisfies λmin(∇2f(ŷT )) ≥ −1.011√ϵρ with probability
at least 1− ζ.

Lemma B.2. Suppose that λmin(H) < −√ϵρ, where H =

∇2f(x). Let x′0 and x′′0 be at distance at most r from
x. Let x′−1

= x′0, x′′−1
= x′′0, and x′0 − x′′0 = r0e1,

where e1 is the minimum eigen-direction of H. Under the
parameter settings in Theorem B.1, running AGD starting
at x′0 and x′′0, respectively, we have

max

{
K

K−1∑
k=0

∥x′k+1−x′k∥2,K
K−1∑
k=0

∥x′′k+1−x′′k∥2
}
>B2.

that is, at least one of the iterates triggers the “if condition”.

The proof of this lemma is almost the same as that of Lemma
18 in (Jin et al., 2018). We only list the sketch and the details
can be found in (Jin et al., 2018).

Proof. Denote wk = x′k − x′′k. From the update of AGD,
we have[
wk+1

wk

]
=

[
(2−θ)(I−ηH) −(1−θ)(I−ηH)

I 0

][
wk

wk−1

]
− η

[
(2− θ)△kwk − (1− θ)△kwk−1

0

]
=A

[
wk

wk−1

]
− η

[
ϕk

0

]
=Ak+1

[
w0

w0

]
− η

k∑
r=0

Ak−r

[
ϕr

0

]
,

and

wk = [I, 0]Ak

[
w0

w0

]
− η[I, 0]

k−1∑
r=0

Ak−1−r

[
ϕr

0

]
,

where △k =
∫ 1

0

(
∇2f(ty′k + (1− t)y′′k)−H

)
dt and

ϕk = (2− θ)△kwk − (1− θ)△kwk−1.
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Assume that none of the iterates (x′0,x′1, · · · ,x′K) and
(x′′0,x′′1, · · · ,x′′K) trigger the “if condition”, which yield

∥x′k − x′0∥ ≤ B, ∥y′k − x′0∥ ≤ 2B, ∀k ≤ K,

∥x′′k − x′′0∥ ≤ B, ∥y′′k − x′′0∥ ≤ 2B, ∀k ≤ K.
(17)

We have

∥△k∥ ≤ρmax{∥y′k − x∥, ∥y′′k − x∥}

≤ρmax{∥y′k − x′0∥, ∥y′′k − x′′0∥}+ ρr ≤ 3ρB,

∥ϕk∥ ≤6ρB(∥wk∥+ ∥wk−1∥).

We can show the following inequality for all k ≤ K by
induction:∥∥∥∥∥η[I, 0]

k−1∑
r=0

Ak−1−r

[
ϕr

0

]∥∥∥∥∥ ≤ 1

2

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ .
It is easy to check the base case holds for k = 0. Assume
the inequality holds for all steps equal to or less than k.
Then we have

∥wk∥ ≤ 3

2

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ ,
∥ϕk∥ ≤ 18ρB

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ ,
by the monotonicity of

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ in k (Lemma 33 in

(Jin et al., 2018)). We also have∥∥∥∥∥η[I, 0]
k∑

r=0

Ak−r

[
ϕr

0

]∥∥∥∥∥ ≤ η

k∑
r=0

∥∥∥∥[I, 0]Ak−r

[
I
0

]∥∥∥∥
2

∥ϕr∥

≤ 18ρBη
k∑

r=0

∥∥∥∥[I, 0]Ak−r

[
I
0

]∥∥∥∥
2

∥∥∥∥[I, 0]Ar

[
w0

w0

]∥∥∥∥
a
= 18ρBη

k∑
r=0

|ak−r||ar − br|r0

b
≤ 18ρBη

k∑
r=0

(
2

θ
+ k + 1

)
|ak+1 − bk+1|r0

≤ 18ρBηK

(
2

θ
+K

)∥∥∥∥[I, 0]Ak+1

[
w0

w0

]∥∥∥∥ ,
where we define [ak,−bk] = [1, 0]Ak

min and Amin =[
(2− θ)(1− ηλmin) −(1− θ)(1− ηλmin)

1 0

]
, a
= uses the

fact that w0 = r0e1 is along the minimum eigenvector di-

rection of H,
b
≤uses Lemma 31 in (Jin et al., 2018). From

the parameter settings, we have 18ρBηK
(
2
θ +K

)
≤ 1

2 .

Algorithm 4 AGD-Jin
Initialize x0 = xint, v0 = 0, k = 0.
while k < K do
yk = xk + (1− θ)vk

xk+1 = yk − η∇f(yk)
vk+1 = xk+1 − xk

if f(xk)< f(yk)+
〈
∇f(yk),xk−yk

〉
− γ

2 ∥x
k−yk∥2

then
xk+1 ←Negative Curvature Exploitation(xk,vk, s)
x0 = xk+1, v0 = vk+1 = 0, k = 0

else if (k + 1)
∑k

t=0 ∥xt+1 − xt∥2 > B2 then
x0 = xk+1, v0 = vk+1, k = 0

else
k = k + 1

end if
end while
K1 = argmin1≤k≤⌈K

3 ⌉ ∥xk − xk−1∥
K2 = argmin⌊ 2K

3 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K2−K1+1

∑K2

k=K1
yk

Therefore, the induction is proved, which yields

∥wK∥ ≥
∥∥∥∥[I, 0]AK

[
w0

w0

]∥∥∥∥−
∥∥∥∥∥η[I, 0]

K−1∑
r=0

AK−1−r

[
ϕr

0

]∥∥∥∥∥
≥1

2

∥∥∥∥[I, 0]AK

[
w0

w0

]∥∥∥∥ =
r0
2
|aK − bK |

c
≥θr0

4

(
1 +

θ

2

)K
d
≥ 5B,

where
c
≥ uses Lemma 33 in (Jin et al., 2018) and ηλmin ≤

−θ2,
d
≥ uses K = 2

θ log
20B
θr0

. However, (17) yields

∥wK∥ ≤∥x′K − x′0∥+ ∥x′′K − x′′0∥

+ ∥x− x′0∥+ ∥x− x′′0∥ ≤ 2B + 2r ≤ 4B,

which makes a contradiction. Thus the assumption is wrong
and we conclude that at least one of the iterates trigger the
“if condition”.

C. Extension to Jin’s Method
In this section, we extend our analysis to the method pro-
posed in (Jin et al., 2018), and detail the method in Algo-
rithm 4. No perturbation is added since we do not consider
second-order stationary point for simplicity. Except the per-
turbation and that we specify the stopping criteria and the
output, as well as that we rewrite the algorithm in epochs,
Algorithm 4 is equivalent to the one in (Jin et al., 2018).
However, we give a slightly faster convergence rate by a
O(log 1

ϵ ) factor with much simpler proofs.
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Algorithm 5 Negative Curvature Exploitation(xk,vk, s)

if ∥vk∥ ≥ s then
xk+1 = xk

else
δ = svk/∥vk∥
xk+1 = argminxk+δ,xk−δ f(x)

end if
Return xk+1

Define K = k + 1 when k resets to 0. Denote the iterations
from k = 0 to k = K to be one epoch. For each epoch, we
have three cases:

1. The negative curvature exploitation (NCE) is employed
at the last iteration.

2. The condition (k + 1)
∑k

t=0 ∥xt+1 − xt∥2 > B2 trig-
gers at the last iteration. Note that in this case, AGD
does not restart because x0 − x−1 = v0 ̸= 0.

3. None of the above two cases occurs, and the while loop
breaks until k = K. This is the last epoch.

Define the potential function ℓk = f(xk) + 1−θ
2η ∥v

k∥2.
We need the following two lemmas, which can be adapted
slightly from Lemmas 4 and 5 in (Jin et al., 2018).

Lemma C.1. Suppose that Assumption 2.1 holds. Let η ≤
1
2L and θ ∈ [2ηγ, 1

2 ]. If NCE is not performed at iteration k,
then for Algorithm 4 we have ℓk+1 ≤ ℓk− θ

2η∥x
k+1−xk∥2.

Lemma C.2. Suppose that Assumption 2.1 holds. Let θ ≤ 1
2 .

If NCE is performed at iteration k, then for Algorithm 4 we
have ℓk+1 ≤ ℓk −min

{
(1−θ)s2

2η , (γ−2ρs)s2

2

}
.

Set γ = θ2

η , s = γ
4ρ , and the other parameters the same as

those in Theorem 2.2. In Case 1, we know from Lemma
C.2 that the potential function decreases with a magnitude
at least 64ϵ1.5√

ρ at the last iteration, and it does not increase in
the previous iterations from Lemma C.1. So we have

ℓK ≤ ℓ0 −min

{
64ϵ1.5
√
ρ

,
16ϵL

ρ

}
.

In Case 2, we have

ℓK − ℓ0 ≤− θ

2η

K−1∑
k=0

∥xk+1 − xk∥2

≤− θB2

2ηK
≤ − θB2

2ηK
= −8ϵ1.5

√
ρ
,

where we use K
∑K−1

t=0 ∥xt+1 − xt∥2 > B2. So the al-
gorithm will terminate in at most △f

√
ρ

ϵ3/2
epochs, and each

epoch needs at most K gradient and function evaluations. In
the last epoch, similar to the proof of Theorem 2.2, we also
have ∥∇f(ŷ)∥ ≤ O(ϵ). So we have the following theorem.

Theorem C.3. Suppose that Assumption 2.1 holds. Let
η = 1

4L , B =
√

ϵ
ρ , θ = 4

(
ϵρη2

)1/4
, K = 1

θ , γ = θ2

η ,

s = γ
4ρ . Then Algorithm 4 terminates in at most △fL

1/2ρ1/4

ϵ7/4

gradient and function evaluations and the output satisfies
∥∇f(ŷ)∥ ≤ 267ϵ, where△f = f(xint)−minx f(x).

Our complexity improves over theO(ϵ−7/4 log 1
ϵ ) one given

in (Jin et al., 2018) by the O(log 1
ϵ ) factor. Although Jin

et al. (2018) focus on finding second-order stationary point,
their complexity to find approximate first-order stationary
point also has the additional O(log 1

ϵ ) factor, see the rea-
sons discussed in Section 2. Our analysis for Case 3 above
does not invoke the analysis for strongly convex AGD, and
moreover, it is much simpler. The proof in (Jin et al., 2018),
although very novel, is quite involved, especially the spec-
tral analysis of the second-order system. It should be noted
that we measure the convergence rate at the average of the it-
erates. When measuring at the final iterate, which is always
used in practice, we should use the proof in (Jin et al., 2018),
and we conjecture that the O(log 1

ϵ ) factor in unlikely to
cancel.

Now, we prove Theorem C.3

Proof. We only need to prove ∥∇f(ŷ)∥ ≤ O(ϵ) in the last
epoch. Denote

h(x) =
〈
∇f(x0),x− x0

〉
+

1

2
(x− x0)TH(x− x0),

δk = ∇f(yk)−∇h(yk).

Similar to the deduction in Section 3.2, we have

xk+1 = yk − η∇h(yk)− ηδk,

∥δk∥ ≤ ρ

2
∥yk − x0∥2 ≤ 2ρB2, (18a)

where we use

∥xk−x0∥2≤k

k−1∑
t=0

∥xt+1−xt∥2≤B2,∀k ≤ K, (19a)

∥yk − x0∥ ≤ 2B, ∀k ≤ K, (19b)

in the last epoch. Similar to the proof of Theorem 2.2, we
have

∥∇h(ŷ)∥ =

∥∥∥∥∥ 1

K2 −K1 + 1

K2∑
k=K1

∇h(yk)

∥∥∥∥∥
=

1

η(K2 −K1 + 1)

∥∥∥∥∥
K2∑

k=K1

(
xk+1 − yk + ηδk

)∥∥∥∥∥ ,
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and∥∥∥∥∥
K2∑

k=K1

(
xk+1 − yk + ηδk

)∥∥∥∥∥
=

∥∥∥∥∥
K2∑

k=K1

(
xk+1 − xk − (1− θ)(xk − xk−1) + ηδk

)∥∥∥∥∥
=

∥∥∥∥∥xK2+1 − xK1 − (1− θ)(xK2 − xK1−1) + η

K2∑
k=K1

δk

∥∥∥∥∥
=
∥∥xK2+1 − xK2 − xK1 + xK1−1 + θ(xK2 − xK1−1)

+η

K2∑
k=K1

δk

∥∥∥∥∥
≤∥xK2+1 − xK2∥+ ∥xK1 − xK1−1∥+ θ∥xK2 − x0∥

+ θ∥xK1−1 − x0∥+ η

K2∑
k=K1

∥δk∥.

From K2 −K1 + 1 ≥ K
3 , (19a), and (18a), we have

∥∇h(ŷ)∥ ≤ 3

ηK
∥xK2+1 − xK2∥

+
3

ηK
∥xK1 − xK1−1∥+ 6θB

ηK
+ 2ρB2.

On the other hand, from the definitions of K1 and K2, we
have

∥xK2+1 − xK2∥2

≤ 1

K − ⌊2K/3⌋

K−1∑
k=⌊2K/3⌋

∥xk+1 − xk∥2

≤ 1

K − ⌊2K/3⌋

K−1∑
k=0

∥xk+1 − xk∥2 ≤ 3B2

K2
,

and

∥xK1 − xK1−1∥2 ≤ 1

⌈K3 ⌉

⌈K
3 ⌉∑

k=1

∥xk − xk−1∥2

≤ 1

⌈K3 ⌉

K−1∑
k=0

∥xk+1 − xk∥2 ≤ 3B2

K2
.

So we have

∥∇h(ŷ)∥ ≤ 6
√
3B

ηK2
+

6θB

ηK
+ 2ρB2,

and

∥∇f(ŷ)∥ ≤∥∇h(ŷ)∥+ ∥∇f(ŷ)−∇h(ŷ)∥

≤∥∇h(ŷ)∥+ ρ

2
∥ŷ − x0∥2

≤6
√
3B

ηK2
+

6θB

ηK
+ 4ρB2 ≤ 267ϵ.

D. Efficient Implementation of the Average
Given x0,x1, · · · ,xK and y0,y1, · · · ,yK sequentially,
we want to find ŷ = 1

K0+1

∑K0

k=0 y
k efficiently, where

K0 = argmin⌊K
2 ⌋≤k≤K−1 ∥xk+1 − xk∥. We present the

implementation in Algorithm 6.

Algorithm 6 Implementation of the Average
Initialize S1 = S2 = 0, K0 = 0
for k = 0, 1, · · · ,K − 1 do

if k ≤ ⌊K2 ⌋ then
S1 = S1 + yk, K0 = k

else
if ∥xK0+1 − xK0∥ < ∥xk+1 − xk∥ then
S2 = S2 + yk

else
S1 = S1 + S2 + yk, S2 = 0, K0 = k

end if
end if

end for
Output S1

K0+1

Similarly, we can also implement the average in Algorithm
4 efficiently.

E. Additional Experiments
We consider the one bit matrix completion (Davenport et al.,
2014) in this section, where the sign of a random subset of
entries is observed, rather than observing the actual entries.
Given a probability density function, for example, the logis-
tic function f(x) = ex

1+ex , we observe the sign of entry Xi,j

as Yi,j = 1 with probability f(Xi,j), and observe the sign
as −1 with probability 1− f(Xi,j). The training model is
to minimize the following negative log-likelihood:

min
X∈Rm×n

− 1

N

∑
(i,j)∈O

{
1Yi,j=1log(f(Xi,j))

+1Yi,j=−1log(1− f(Xi,j))
}
,

s.t. rank(X) ≤ r,

where 1Yi,j=1 =

{
1, if Yi,j = 1,
0, otherwise. We solve the fol-

lowing reformulated matrix factorization model:

min
U,V
− 1

N

∑
(i,j)∈O

{
1Yi,j=1log(f((UVT )i,j))

+1Yi,j=−1log(1− f((UVT )i,j))
}

+
1

2N
∥UTU−VTV∥2F ,
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Figure 2. Comparisons of function value and gradient norm on the 1 bit matrix completion problem.

where U ∈ Rm×r and V ∈ Rn×r. We compare restarted
AGD (Algorithm 2) with Jin’s AGD (Jin et al., 2018), the
‘convex until guilty’ method (Carmon et al., 2017), and
gradient descent (GD). The best stepsize is tuned for each
method on each data set. We use the same initialization
and set the same parameters as those in Section 4, and also
run each method for 1000 iterations. Figure 2 plots results.
We see that acceleration also takes effect in nonconvex opti-
mization and our restarted AGD performs the best.


