Decomposing Temporal High-Order Interactions via Latent ODEs

Shibo Li' Robert M. Kirby !> Shandian Zhe '

Abstract

High-order interactions between multiple objects
are common in real-world applications. Although
tensor decomposition is a popular framework for
high-order interaction analysis and prediction,
most methods cannot well exploit the valuable
timestamp information in data. The existent meth-
ods either discard the timestamps or convert them
into discrete steps or use over-simplistic decom-
position models. As a result, these methods might
not be capable enough of capturing complex, fine-
grained temporal dynamics or making accurate
predictions for long-term interaction results. To
overcome these limitations, we propose a novel
Temporal High-order Interaction decompoSition
model based on Ordinary Differential Equations
(THIS-ODE). We model the time-varying inter-
action result with a latent ODE. To capture the
complex temporal dynamics, we use a neural net-
work (NN) to learn the time derivative of the ODE
state. We use the representation of the interaction
objects to model the initial value of the ODE and
to constitute a part of the NN input to compute the
state. In this way, the temporal relationships of the
participant objects can be estimated and encoded
into their representations. For tractable and scal-
able inference, we use forward sensitivity analysis
to efficiently compute the gradient of ODE state,
based on which we use integral transform to de-
velop a stochastic mini-batch learning algorithm.
We demonstrate the advantage of our approach in
simulation and four real-world applications.

1. Introduction

Many applications involve interactions between multiple
objects. For example, customers purchase items at differ-
ent grocery stores, and people take outdoor exercises at

!School of Computing, University of Utah *Scientific Comput-
ing and Imaging (SCI) Institute, University of Utah. Correspon-
dence to: Shandian Zhe <zhe@cs.utah.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

various places. From the results of those interactions, e.g.,
purchase amount and heart rates, an important task is to
learn a representation of the participant objects, i.e., em-
beddings, from which we can discover hidden structures
of the objects, such as communities and outliers, and build
predictive tools or pipelines for downstream applications,
such as recommendation and health counseling.

In practice, interaction data often includes valuable time in-
formation, namely the timestamp at which each interaction
occurred. This information implies rich, complex temporal
dynamics within the observed interactions. While tensor
decomposition (Tucker, 1966; Harshman, 1970; Chu and
Ghahramani, 2009; Choi and Vishwanathan, 2014; Zhe et al.,
2016b) is a popular framework for representation learning
and prediction of high-order interactions, current methods
has yet fully exploited the fine-grained temporal information.
Most methods either simply drop the timestamps (Pan et al.,
2020b; Fang et al., 2021a) or truncate the timestamps to
coarse steps, e.g., weeks or months, and learn a representa-
tion of the time steps (Xiong et al., 2010; Rogers et al., 2013;
Zhe et al., 2016a; Du et al., 2018). The temporal dependen-
cies within each step are therefore ignored. While the most
recent work (Zhang et al., 2021) introduces time-varying
coefficients to support continuous time, the multilinear de-
composition structure and polynomial spline modeling of
the coefficients might be oversimplistic, and restrict the
approach from capturing highly-nonlinear temporal relation-
ships in data. As a result, the existent methods might not
be capable enough of learning complex, fine-grained tempo-
ral dynamics underlying the data and accurately predicting
long-term interaction results. Although recent works (Zhe
and Du, 2018; Pan et al., 2020a; Wang et al., 2020) also use
point processes to estimate the temporal dependencies be-
tween the interaction events (e.g., excitation and inhibition),
they focus on event modeling and ignore the interaction
results. These methods cannot make use of the observed or
predict future interaction results.

To address these issues, we propose THIS-ODE, a novel de-
composition model of temporal high-order interactions. Our
model can fully leverage continuous timestamps, flexibly
capture all kinds of complex temporal dynamics within the
interactions, and encode nonlinear temporal relationships
of the participant objects into their representations. Specifi-
cally, we model the result of each interaction with a latent

Decomposing Temporal High-Order Interactions via Latent ODEs

Ordinary Differential Equation (ODE). In order to capture
the complex temporal dynamics, we use a neural network
(NN) to model the time derivative of the ODE state. The
representations of the participant objects are then used to
model the initial value of the ODE and serve as a part of
the input to the NN to calculate the state. In this way, the
ODE is governed by the participants’ representations and
the nonlinear temporal relationship of the participants can
thereby be captured and absorbed into these representations.
For tractable inference, we use sensitivity analysis to solve
an augmented ODE system that simultaneously evolve each
state and its partial derivatives w.r.t. the initialization and
model parameters. In doing so, we can efficiently compute
the total derivative of the state at any time point. We then
embed this computation procedure into a scalable stochastic
optimization framework to maximize the log joint probabil-
ity of the model. To further improve the efficiency, we use
integral transform to align the ending time and jointly solve
all the ODE:s in the mini-batch at a single timestamp.

For evaluation, we examined THIS-ODE in both simulation
and real-world applications. The simulation experiments
show that THIS-ODE can accurately capture the underlying
complex dynamics, and the learned representations further
reflected the hidden structures of the objects. We then exam-
ined THIS-ODE in four real-world applications. In terms of
prediction accuracy, THIS-ODE nearly always outperforms
the competing methods by a large margin, in predicting
long-term interaction results where the test time frame do
not overlap with the training time frame.

2. Notations and Background

Suppose our data consists of interaction results between
K types of objects (e.g., customers, products, and stores).
For each type k, there are dj, objects. We use integers to
index these objects, and so a particular interaction is in-
dexed by a tuple i = (i1, - ,ix) where 1 < 45 < di
for each k. We denote the interaction result (e.g., pur-
chase amount) by m; € R. In practice, the timestamp
information is also associated with the observed interaction
results. Hence, we denote by m;(t) the result of interac-
tion i at time ¢. Assume we have observed IV interactions
results and their timestamps. We denote the dataset by
D = {(i1,t1,v1)---,(in,tn,yn)}, where each y,, is a
(noisy) observation of m;, (¢,). Note that the indices of
the interactions {ij,...ix} can have duplications. In other
words, a particular interaction might have a sequence of
results at different timestamps. For example, when one
is taking exercise (e.g., yoga or running), their heart rate
can vary along with time. Given the data D, we want to
learn a representation for each participant object, and use
the representations to reconstruct the observed and to pre-
dict future interaction results at different time points, i.e.,

decomposition. We denote by u? € R" the representation
of the j-th object of type k, where 7y, is the dimension of
the representation.

To decompose high-order interactions, a commonly used
approach is tensor decomposition. We can view each ob-
ject type k as one tensor mode and construct a K -mode
tensor M € R%*-Xdx where each entry corresponds to
a particular interaction. The classical Tucker decomposi-
tion (Tucker, 1966) models that M = W x; Ul x5... x g
UK where W € R" X+ X7 is parametric core tensor, each
U” consists of the representations of all the objects in mode
k (of size dj, x 7)), and X is the tensor-matrix multiplica-
tion at mode k (Kolda, 2006). If wesetr; = ... =rg =71
and W to be diagonal, Tucker decomposition is reduced
to the popular CANDECOMP/PARAFAC (CP) decomposi-
tion (Harshman, 1970),

M=% U, jlo... o UK j], (1)
j=1
where {\1, ..., A} correspond to the diagonal elements of

W, U*[:, §] is the j-the column of U*, and o is the vector
outer-product. The representations can be estimated by
minimizing a loss (e.g., square loss) on the observed entry
values. When the tensor is not fully observed (which is often
the case), we can use the element-wise decomposition form.
In spite of their popularity, CP and Tucker decomposition
only estimate a multilinear relationship between the objects
in terms of their representations. To flexibly estimate all
kinds of relationships, including highly nonlinear ones, (Xu
etal., 2012; Zhe et al., 2015; 2016a) model the value of each
entry m; as an unknown function of the representations of
corresponding objects in each mode and assign a Gaussian
process prior (Rasmussen and Williams, 2006),

my :g(u%l,...,uff() ~GP(0,k(,)))

where (-,) is a kernel function.

To incorporate temporal information, current methods usu-
ally bin the timestamps into L steps according to a speci-
fied interval, e.g., one day or one week, and then augment
the tensor with a time mode (Xiong et al., 2010; Rogers
et al., 2013; Zhe et al., 2015; 2016a; Du et al., 2018),
M e Réx.-xdxXL where a representation s; is intro-
duced for each time step 7 (1 < j < L). Then we can apply
an arbitrary tensor decomposition approach to estimate all
the representations. To better capture the temporal depen-
dencies, we can further model the dynamics between the
time-step representations, e.g., via a conditional prior over
consecutive steps, p(tj+1/t;) = N(tj41t;,vI) (Xiong
et al., 2010) and/or recurrent neural networks.

Decomposing Temporal High-Order Interactions via Latent ODEs

I

mi(O) = ﬁ

[[I J
Vi

dmi (0)
dzi

s(0) =

Joint Initial Conditions

/\/’ (]

7

f 0 (Viv t)
[| || I 1
:-::-::l:] /\/ m;(t) = ODESolve (83,1, fo)

T sy = T

Joint Dynamics

Joint Solutions

Figure 1. A graphical representation of THIS-ODE.

3. Model

Despite the success of existing methods, they are still not
capable enough of capturing complex, fine-grained tem-
poral dynamics and relationships from data. The discrete
time steps actually lose the accurate time point informa-
tion and ignore the temporal dynamics within each step,
which can hurt prediction accuracy of the interaction results
(especially for long-term results). Although the most re-
cent work (Zhang et al., 2021) introduces a continuous-time
coefficients in the CP framework (i.e., {\;} in (1)), its multi-
linear form and polynomial temporal/trend modeling might
be inadequate to estimate complex, highly nonlinear dynam-
ics and relationships between the interaction objects. To
address these issues, we propose THIS-ODE, a continuous-
time decomposition model based on ordinary differential
equations, presented as follows. A graphical illustration is
given by Fig. 1.

Specifically, for each particular interaction i, we model
the evolution of the interaction result m;(t) as the trajec-
tory of an unknown latent ODE system, which is gov-
erned by the representations of the participant objects

— {ul K
vi={u;,...,u; },

{chzft) = f (mi(t),vi,t) 3)

m;(0) = B(vi)

where f(-) is the time derivative of the state, and m;(0)
is the initial state. Here 3(-) is a function that can be the
element-wise form of any static decomposition model, e.g.,
the CP model in (1). Clearly, the ODE system deals with
continuous time information in a natural way. In order to
flexibly learn all kinds of complex dynamics within the ob-
served sequence, we model f(-) as a neural network (NN)

parameterized by 6. As we can see, the initial state and
the time derivative are both determined by v; — the repre-
sentations of the participant objects. For the latter, v; is a
part of the input to the derivative function f(-) and hence
influences the evolution of the state. In this way, both the
static and nonlinear temporal relationships can be captured
and encoded into the learned representations.

Given the system, the state at an arbitrary time point ¢ is
computed by m;(t) = mi(0) + [fa(mi(s), vi, s)ds. Al-
though in general this integration is analytically intractable
(note my is also an input to f), we can use numerical ODE
solvers to solve it. There are many general-purpose solvers,
such as those based on Runge-Kutta methods (Dormand and
Prince, 1980). Being developed for decades by the numeri-
cal computation community, these solvers are mature and
reliable, allowing a flexible trade-off between the efficiency
and numerical precision.

Given the dataset D = {(i1,¢1,v1),..., (in,tN,yn)}, we
use the Gaussian likelihood for each observed interaction
result y, (1 <n < N),

P(ynlmi, (t0)) = N (ynlmi, (t2),v7") @)

where v is the inverse variance of the Gaussian noise. We
further assign a Gamma prior distribution over v and a
standard Gaussian prior over the representations. The joint
probability of our model is then given by

K dk
v, D10) =], TI,_ V(uj10,1) - Gam(v]ao, bo)

T, Myalms, (1), v)

where U = {u§}1§k§K,1§j§dk is the collection of all the
representations, and ag and by are the shape and rate param-
eters of the Gamma prior. We can set ag and by to small

Decomposing Temporal High-Order Interactions via Latent ODEs

values to make the Gamma prior weakly informative or
uninformative (e.g., ag = by = 1073).

4. Algorithm

Now we present the model estimation algorithm. Given
the joint probability (5), we conduct maximum-a-posterior
(MAP) estimation to learn the representations I/, NN pa-
rameters @, and the other parameters (e.g., those for 5(+)).
However, a critical challenge here is to compute the gradient
of the log-likelihood for each data point y,,,

J(min (tn)) = 1Og p(yn|min (tn)) (6)

Since the state m;, (t,,) is obtained from an integration of
the nonlinear dynamics, its gradient w.r.t the related model
parameters, e.g., v; and 0, is analytically intractable. To
tackle this challenge, we use forward sensitivity analysis to
evolve an augmented ODE system that includes the partial
derivative of the state w.r.t to the model parameters and the
initialization, based on which, we can efficiently calculate
the total derivative of the state at any time point. We then
develop an efficient stochastic min-batch learning algorithm.

4.1. Forward Sensitivity Analysis

Specifically, let us denote by 7 all the model parameters
we want to estimate. For notation convenience, we drop
the subscript n in (6) and consider a general case — for
interaction i we observed y at time ¢ and have the likelihood,

— log N (ylmi(t), 1)

According to the chain rule, we have

J(mi(t),m) = log p(yi(t)|mi(t))

A7 _ 01 9] dmi(p)
dnp — on Oms(t) dnp

(7

The partial gradients o and am (7y are easy to compute

while the bottleneck is the state gradient, dm‘n(t) According

to (3), the state at any time ¢ is determined by both the
initial state and the parameters that control the dynamics,
i.e., mi(t) = mi(m?,m,t) where m{ 2 m;(0). Note that
only a part of parameters in 77, namely, v; and 6, actually
control the dynamics f. For presentation convenience, we
still draw the dependency to the entire 7. Since the initial
state is also computed from 7 (see (3)), the total derivative
of the state w.r.t. the model parameters is given by

dms(t) Oms(t) | Omy(t) dm]
dn On + om) dn’ ®

While dm = dﬁ can be computed analytically, the partial
am & . am (t)
om?Y

partial derivatives are called the sensitivity of the system,

derlvatlves [] do not have closed forms. These

which we denote by s;(t). Let us define z; = [m{; n], and
then s;(t) = 87};7;(1‘/)

. To compute the sensitivity, based on
(3), we observe that

iami(t) - idm,(t) - 3f 8mi(t) ﬁ
dt 0z - Oz; dt B om;(t) 0z 0z;
S—— ~——

$:(t) si(t)

Note that since 88 7 = = 0, we have gf

= [0; 2 5 1], Incorpo-
rating the initial condition, we can construct another ODE

system that characterizes how the sensitivity evolves,

ds;(t) _ of af
{ de 87r%i(t)si(t) + 0z (9)
dmy;
Si(O) = dzi‘ 5

dm?
where 5 = [1
z;

) dn
to obtain an augmented ODE system,

] Therefore, we can merge (9) and (3)

dh;(t) _
i = a(hy, ?)
fulo o a
where the state h;(t) = [mi(t);si(t)], a(h;,t) =
[5G and hy = [m; s;(0)].

To compute the log-likelihood J and its gradient, we just
solve (10) forward, read out h;(¢), and then apply (8) in (7).

4.2. Time Alignment for Efficient Stochastic
Mini-Batch Optimization

Next, to scale to a large number of observations, we
develop a stochastic mini-batch optimization algorithm
based on the sensitivity analysis. Each step, we ran-
domly sample a mini-batch of B observed interactions
B = {(in;stnysYni)s-- - (ing,tng,Yny) and update the
parameters with a stochastic gradient, namely the gradient of
an unbiased stochastic estimate of the log joint probability,

L = log (Prior) + %ZB J(ms, (to,)). (11

j=1 'j

To compute S—L, we need to solve B augmented ODE sys-
tems in the form of (10) to compute each state hinj at
the corresponding timestamp ¢,,,. While we can sequen-
tially solve these systems, it can be very inefficient be-
cause we cannot fully leverage highly-optimized numer-
ical linear algebra libraries, say for parallel computation
on GPUs. Therefore, we consider merging the B sys-
tems into one ODE system, where the state is h(t) =
(hi,, (¢);...;hi, (¢)]. Then we solve one ODE, which
is equivalent to jointly solving the original B systems.

However, this is still inefficient in that it involves too much
additional state computation. Specifically, for the original
B ODE systems, we are interested in their states at different

Decomposing Temporal High-Order Interactions via Latent ODEs

timestamps, namely {hinj (tn,)]1 < j < B} where t,,
varies across j. When we merge these the states into one
joint state h, we have to solve h at all the B timestamps, i.e.,
{h(t,,)|1 <j < B} and then read out the corresponding
sub-states at the designated timestamps. This is equiva-
lent to solving every original ODE at all the B timestamps,
which gives B? states in total, {h;, (t,,)|1 < k,j < B}.
However, we only need B states. "fherefore, it can waste
too much computational expense. For a concrete example,
consider a commonly used mini-batch size B = 100. With
this method, we have to solve 10* states although we only
need 1% of them.

To tackle this problem, we use an integral transform to align
the ending time for solving the ODEs in the mini-batch
so as to avoid computing unnecessary states. Specifically,
we specify a unified ending time .. For each interaction
i; in the mini-batch (I € {n1,...,ng}), we modify the
ODE system for h;, such that, the state of the new system,
denoted by hy,, satisfies hy, (t.) = hy, (#;) (note that ¢; is the
target timestamp and varies across). To do so, we observe
that, according to (10),

by, (1) = b, (0) + / " (hy, (), 7) dr

te
= h;,(0) —|—/ t—la (hil(tls)7 tls) ds, (12)
0

(& te te

where the second line is obtained via a transform of the

integration variable, s = %7'. Accordingly, we can define

i
h;, (s) = hy, (tt—is) and the ODE system for h;, is given by

13)

Obviously, we have h;, (t.) = hy (t;). We then merge
the modified ODE system (13) for every interaction in the
mini-batch into one ODE system, where the state h is the
concatenation of {flil [l € {ni1,...,np}}. In this way, we
only need to solve h for one timestamp t., which is equiv-
alent to solving B target states {h;, (¢;)} simultaneously.
We do not need to solve h for any additional timestamps.
Therefore, the cost can be largely reduced. While the choice
of the ending time ¢. can be arbitrary, for convenience we
simply set £, = 1 in our implementation.

During the model estimation, except the sensitivity, all the
other partial derivatives, such as % and aﬁf(7 can be con-
veniently and efficiently computed by automatic differential
libraries, such as PyTorch (Paszke et al., 2019). Moreover,
each data point only associates with a part of the model
parameters and so many elements of the partial derivatives
and sensitivities are zero. For example, the data point y;
is a noisy observation of the interaction i;’s result at times-

tamp ¢;, namely m;, (¢). This interaction result is calculated

Algorithm 1 THIS-ODE

Input: D = {(ilv ly, yl)v R (iNv N, yN)}
Initialize: I/, 6 and other parameters
repeat
Randomly sample a mini-batch 5 from D.
For each interaction i; € B, construct an augmented
ODE system (13) that includes both the state and sen-
sitivity.
Merge all the ODEs into one and solve the joint state
h to ending time ¢.. N
Read out the sub-states {hy, (¢;) = hy, (t.)|[i; € B}
from h(t.) and compute the stochastic gradient %
according to (11), (7), and (8).
nen+y- g
until the maximum number of epcohes has been finished
or other stopping criteria are met

C— [yl
based on vy, = {u;, ...,

the participant objects in i;, and is irrelevant to the represen-
tations of other objects, i.e., U \ vi,; see (3). For the latter,
the corresponding elements in the partial derivatives and
sensitivity related to m;, are therefore zero. To further save
the memory usage and computational cost, we use sparse
matrices during the ODE solving and optimization. The
model estimation is summarized in Algorithm 1.

uffK } — the representations of

4.3. Algorithm Complexity

Our algorithm conducts stochastic mini-batch optimization
to learn the representations of interaction objects U/, ODE
parameters 6, and the other parameters. To do so, at each
step, our algorithm samples a mini-batch of B observed
interactions, solve a joint ODE system to time t., with
which to compute the stochastic gradient and to update the
model parameters. The joint ODE is obtained by merging
B (augmented) ODE systems in the form of (13), each of
which is for a particular interaction in the mini-batch and
the dimension of state is p 4 1, where p is the number of
parameters. Hence, the state dimension of the joint system
is B(p+1). The time complexity is thereby O((p+1)BT),
where 7' is the number of integration steps in the ODE solver.
It is linear in the mini-batch size. The space complexity is
O(B(p + 1)), which is to store the state at each step when
solving the joint ODE.

5. Related Work

A variety of tensor decomposition methods have been pro-
posed, such as (Tucker, 1966; Harshman, 1970; Chu and
Ghahramani, 2009; Sutskever et al., 2009; Hoff, 2011;
Kang et al., 2012; Yang and Dunson, 2013; Choi and Vish-
wanathan, 2014; Du et al., 2018; Fang et al., 2021a). Most

Decomposing Temporal High-Order Interactions via Latent ODEs

of these methods are based on a multilinear decomposition
model, such as Tucker (Tucker, 1966) and CP (Harshman,
1970). To grasp complex, nonlinear relationships from data,
recent works have developed nonlinear decomposition mod-
els based on Gaussian processes (GPs) or neural networks,
such as (Xu et al., 2012; Zhe et al., 2016a;b; Liu et al., 2018;
Pan et al., 2020b; Liu et al., 2019; Tillinghast and Zhe, 2021;
Fang et al., 2021b; Tillinghast et al., 2022). To incorporate
time information, existent methods usually use discrete time
steps and augment the tensor with a time mode. e.g., (Xiong
etal., 2010; Rogers et al., 2013; Zhe et al., 2015; 2016b; Wu
etal., 2019; Ahn et al., 2021; Du et al., 2018). To better cap-
ture the temporal dependencies, a dynamic transition model
on the time step representations is often incorporated during
the tensor decomposition. For example, Xiong et al. (2010)
used a conditional Gaussian prior over the successive steps,
Wu et al. (2019) used recurrent neural networks, and Ahn
et al. (2021) used kernel smoothing and regularization. To
support continuous-time decomposition, Zhang et al. (2021)
modeled the coefficients in the CP decomposition ({\;}7_;
in (1)) as a time-trend function, which are parameterized by
polynomial splines.

Another line of research uses point processes to model inter-
action events (Schein et al., 2016; Zhe and Du, 2018; Pan
et al., 2020a; Wang et al., 2020). The temporal dependencies
are learned through the modeling of the event rate function.
For example, Zhe and Du (2018) used Hawkes processes
to estimate the local excitation effects between the events
and Wang et al. (2020) constructed a self-adaptable point
process to estimate both the excitation and inhibition effects.
While valuable, these methods only care about the events.
They do not leverage the observed interaction results nor
can predict their values.

Our method is related to the recent neural ODE work (Chen
et al., 2018), which also uses a neural network to model
the ODE state derivative. However, our work differs in sev-
eral aspects. First, about the motivation, our method aims
to learn from temporal interaction sequences, while neu-
ral ODE is motivated to construct continuous-depth neural
networks (to simplify NN architecture design, enhance the
expressivity, efc.). Second, our method models many ODE
systems altogether, where each ODE is for the sequence of
one interaction and governed by the representations of the in-
teraction objects. In this way, our method decomposes these
sequences while neural ODE usually uses one ODE sys-
tem to model the data and does not conduct decomposition.
Third, our method uses forward sensitivity analysis for gra-
dient computation, while neural ODE uses the adjoint state
method (Pontryagin, 1987), which needs to construct a back-
ward companion ODE and sequentially solve two systems —
first solving the original ODE forward and then solving the
adjoint ODE backward. Note that the adjoint method is effi-
cient for coupled, multi-dimensional states, where evolving

the sensitivity, i.e., state Jacobian, takes the time complexity
O(d?p) where d is the state dimension and p is the number
of parameters, while the adjoint method only takes O(dp) to
compute the gradient. However, since the ODE states in our
method are only scalar interaction results, i.e., d = 1, and
these states are non-coupled, the forward sensitivity enjoys
the same complexity as the adjoint method, yet is more con-
venient to implement. The actual computation is even more
efficient, because we do not need to sequentially solve two
systems. The recent work (Heinonen et al., 2018) uses GPs
and sensitivity analysis to learn ODEs from data; but it does
not perform decomposition or estimate representations.

6. Experiment
6.1. Ablation Study: Spiral Interactions

We first evaluated THIS-ODE on a synthetic task — decom-
posing interactions that form spiral curves. A spiral curve is
controlled by two dynamic parameters: the radius r(¢) and
angle 6(t), which were simulated via different interactions.
Specifically, we considered interactions among two types
of objects. Each type consists of 50 objects. We generated
a scalar representation for each object. For the first half of
the objects in type I, their representations {uj1 |1 <j <25}
were sampled from Unifrom(0.45, 0.65) and the second half
from Uniform(1.0, 1.2). The representations of the first half
of the objects in type II, {u?|1 < j < 25}, were sampled
from A(0.5,0.1) and the remaining from N(—0.5,0.1).
The trajectory for a specific interaction i = (i1, 42) is gener-
ated by

) = (ul expl—0.50) 7 42

)Il(ilJriQ mod 2=1) (14)

. (u?2 + 2mt
where 1(+) is the indicator function. When i1 + is is even,
the interaction simulates a radius r(¢), which is an exponen-
tial decaying function, while when i + i is odd, the inter-
action simulates the angle 6(¢), which is a linear function.
The radius and angle are determined by the corresponding
representations, u}l or ufz. We can combine any radius and
angle pair to form a spiral (z(t) = r(t) cos(6(t)),y(t) =
r(t) sin(6(t))), which are parameterized by different repre-
sentations. For each interaction i, we generated the interac-
tion result m;(¢) at 50 timestamps uniformly sampled from
[0, 5]. We obtained 125K data points in total.

We then examined THIS-ODE in two settings. One is in-
terpolation, where we used the first 1/3 and last 1/3 times-
tamps for training, and predicted on the 1/3 timestamps in
the middle. The other is extrapolation, where we only used
the first 1/2 timestamps for training, and predicted on the
remaining 1,/2 timestamps.

We compared with (1) GPTF-time (Zhe et al., 2016b), a
Gaussian process tensor factorization approach adjusted

Decomposing Temporal High-Order Interactions via Latent ODEs

...... ground-truth e training points

—— prediction

THIS-ODE GPTF-Time

0.6

—0.61

NTF-Time

Original data

Learned Representation

-0.6 0.6
X

-

(a) Recovered Spiral in the interpolation experiment. Radius: m s 2)(t); Angle: my 2)(t).

THIS-ODE GPTF-Time

NTF-Time

Original data

1 50

Learned Representation

-0.6 0.6 -0.6 0.6
X X

(c) Recovered Spiral in the extrapolation experiment. Radius: m 2 2)(t); Angle: m(y 2y (2).

-0.6 0.6
X

-
wu
o

(d) Structures in extrapolation.

Figure 2. Examples of recovered spirals (a, ¢) and the learned representations for type II objects (b, d) where colors indicate values.

to continuous time, where the time ¢ is plugged into the
kernel to sample the entry value as a function of both the
representations and time, i.e., m; = g(u%1 - ,uff{ ,t) and
g~ GP(0,k(-,-)). (2) NTF-time, a neural tensor factoriza-
tion model (Liu et al., 2019) with the time ¢ as an additional
input, and a neural network is used to model g. All these
methods were implemented with PyTorch (Paszke et al.,
2019). For our method THIS-ODE, we used the Torchdiffeq
library! to solve the ODEs, with the explicit Runge-Kutta
method of order 5 and a fixed step-size 104, For the initial
state, we simply used the CP form for /3 (see (3)). Follow-
ing (Zhe et al., 2016b), we used the Square-Exponential
(SE) kernel for GPTF-time and sparse variational GP ap-
proximation with 50 pseudo inputs for efficient inference.
For both NTF-time and THIS-ODE, we used one layer neu-
ral network with 50 neurons and tanh activation. We ran
all the methods with ADAM optimization (Kingma and Ba,
2014) with learning rate 10~3. We ran 500 epochs, which
is sufficient for convergence.

As shown in Table 1, the prediction error of THIS-ODE
is much smaller than GPTF-time? and NTF-time in both

'nttps://github.com/rtgichen/torchdiffeq

*We found that GPTF-time failed when jointly learning the
representations and function g. This might be due to the disrupt
changes of the interaction types across their indices; see (14). To
obtain a reasonable result, we fixed the representations as their
ground-truth values for GPTF-time (but not for the other methods).

Interpolation Extrapolation
GPTF-Time 0.5557 0.9032
NTF-Time 0.1004 0.3656
THIS-ODE 0.0148 0.0746

Table 1. Root Mean Square Error (RMSE) of predicting dynamic
interactions that form spiral curves. The time range is [0, 5].

State Sensitivity
RKS5(w/o TA) 1.24£0.07x107% 4.1403x107°
RK5-ADP(w/o TA) 1.04+0.1 x10™* 4.0+09x107°
RKS5(w/ TA) 1.14+0.06 x 107* 4.2+0.3x107°

RK5-ADP(w/TA) 1.1+0.1x10"* 43+0.6x107°

Table 2. Relative error of the state and sensitivity. “w/o TA” means
without time alighment and “w/ TA” means with time alignment.
The original time range is [0, 5], and the range after time alignment
is [0, 1]. The results were averaged over ten runs.

the interpolation and extrapolation settings, showing that
our method can much better capture the hidden dynamics
in data. To showcase the prediction result, we examined
the recovered spirals by each method, where the angle is
determined by interaction (1, 2) while the radius interaction
(2,2). As shown in Fig. 2 a and c, the predicted spiral by
THIS-ODE almost overlaps with the ground-truth, no matter
if the training points are absent in the middle (interpolation)
or in the inner long tail (extrapolation). In the interpolation

https://github.com/rtqichen/torchdiffeq

Decomposing Temporal High-Order Interactions via Latent ODEs

setting, the predictions of GPTF-time and NTF-time deviate
from the ground-truth spiral quite much, exhibiting inferior
accuracy. Although in the extrapolation setting, both GPTF-
time and NTF-time can well predict the spiral in the region
that covers the training points, their predictions do not ex-
tend to more distant regions to recover the inner long tail of
the ground-truth, showing a failure to extrapolate. To give
more details, we show the prediction of each interaction
separately (i.e., radius and angle) in the Appendix (Figure
3, 4). We then examined the representation learning results.
In Fig. 2 b and d, we show the learned representations by
THIS-ODE for the type II objects, i.e., {u?|1 < j <50},
and the original data. For a better contrast, both the learned
representations and the original data were normalized to
[0,1]. As we can see, these representations accurately re-
flect the hidden clusters of the objects in the original data:
object 1-25 are in the first cluster and 26-50 in the second
cluster. It demonstrates that our method can discover the
structural knowledge underlying the data and encode this
knowledge into the learned representations.

We then verified the accuracy of the proposed time align-
ment method (see Sec. 4.2). We randomly set all the model
parameters, and then used the explicit RK method of order
5 with a fixed step-size 10~* (RKS5), and with the adaptive
step-size (RK5-ADP). We ran each method with the time
alignment and without time alignment, to compute the state
and sensitivity (i.e., state gradient) at the end time. We then
used the explicit, adaptive step-size RK method of order
8, without the time alignment, to compute the result as the
ground-truth. We measured the relative error of the states
and sensitivity. We repeated the test for ten times, and re-
port the average error and standard deviation in Table 2. We
can see that for both solvers, applying the time alignment
method gives almost the same relative error as not applying
that method. This confirms our time alignment method al-
most has no effect on the accuracy of the solvers. But our
method saves much computation (see Sec. 4.2).

6.2. Real-World Applications

Datasets. Next, we examined THIS-ODE in four real-world
applications. (1) Fit Record®, workout logs of EndoMondo
users in outdoor exercises. We extracted three-way (user,
sport-type, altitude-level) interactions among 500 users, 20
sport types, and 50 attitudes. The interaction result is the
user’ heart rate during the exercise, which was measured
for 4000 to 6000 seconds. In total, we collected 50K heart
rates and their timestamps. (2) Beijing Air*, a two-way
interaction dataset that records the concentration of 6 pollu-

‘https://cseweb.ucsd.edu/~ jmcauley/
datasets.html#endomondo

*nttps://archive.ics.uci.edu/ml/datasets/
Beijing+Multi-Site+Air-Quality+Data

tants across 12 districts in Beijing between year 2013 and
2017. The concentration was measures hourly. The original
dataset includes 2.45M measurements. We randomly sam-
pled 15K continuous measurements and their timestamps
for training and testing. (3) Server Room>, temperature data
of Poznan Supercomputing and Networking Center, under
different air-conditional modes (24, 27, and 30 Celsius de-
grees), server power usage levels (50%, 75%, and 100%) at
34 locations. We thereby extracted three way interactions
(air conditional mode, power usage level, location), and
interaction result is the temperature along with time. We
collected 25K temperature records and their timestamps.
(4) Indoor Condition®, house conditions data monitored by
wireless sensor networks. We extracted two-way interac-
tions (room, ambient condition). There are 9 rooms, such
as living room and kitchen area, and 2 ambient conditions:
humidity and temperature. The sensors measured the value
of each interaction pair every 10 minutes. We collected 25K
interaction results and their timestamps.

Methods. We compared with following typical and/or
state-of-the-art temporal decomposition approaches. (1)
GPTF-Time and (2) NTF-time as mentioned in Sec. 6.1,
(3) CP-Time (Zhang et al., 2021) that uses polynomial
splines to estimate time-varying coefficients A in the CP
decomposition (see (1)), (4) GPTF-DTL, GPTF with dis-
crete time steps and linear dynamics between the time steps.
Specifically, the observed interaction results were organized
by a tensor plus one time mode. For decomposition, we
placed a conditional Gaussian prior over time-step represen-
tations, p(t;41/t;) = N (t;41]|At; +b,vI). This is similar
to (Xiong et al., 2010), but more general because their prior
corresponds to A = Iand b = 0. (5) GPTF-DTN, GPTF
with discrete time steps and nonlinear dynamics. It is simi-
lar to GPTF-DTL, except that conditional Gaussian prior is
p(tjt1lt;) = N(tj11|o(At;+b), vI) where o(-) is a non-
linear activation function. Hence it fulfills an RNN-like dy-
namic model. (6) NTF-DTL and (7) NTF-DTN, which are
similar to GPTF-DTL and GPTF-DTN, respectively, except
the decomposition model switches to DTN. (8) CP-DTL
and (9) CP-DTN, similar to GPTF-DTL and GPTF-DTN,
except the decomposition model is CP. (10) PTucker (Oh
et al., 2018), an efficient parallel Tucker decomposition on
the tensor augmented with a discrete time mode.

Settings. All the methods were implemented with PyTorch.
For GP based approaches, i.e., GPTF-{Time, DTL, DTN},
we again followed (Zhe et al., 2016b) to use SE kernel
and sparse variational approximations to address the com-
putation hurdle caused by large kernel matrices. For CP-
Time, the number of knots for the polynomial splines was

*https://zenodo.org/record/36100784%
.YeEHmI §MLAX

Shttps://archive.ics.uci.edu/ml/datasets/
Appliances+energy+prediction

https://cseweb.ucsd.edu/~jmcauley/datasets.html#endomondo
https://cseweb.ucsd.edu/~jmcauley/datasets.html#endomondo
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://zenodo.org/record/3610078#.YeEHmljMLAx
https://zenodo.org/record/3610078#.YeEHmljMLAx
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

Decomposing Temporal High-Order Interactions via Latent ODEs

Interpolation Beijing Air Indoor Condition Server Room Fit Record
CP-Time 0.897 + 0.012 0.780 4+ 0.012 0.998 + 0.006 1.021 £ 0.030
CP-DTL 0.898 + 0.015 0.842 + 0.003 0.754 £+ 0.003 0.721 £0.076
CP-DTN 0.833 + 0.003 0.889 + 0.005 0.685 £ 0.007 0.688 + 0.044
GPTF-Time 0.711 £ 0.011 0.849 + 0.005 0.505 £0.116 0.794 £ 0.013
GPTF-DTL 0.686 + 0.045 0.852 4+ 0.004 0.592 +£0.119 0.640 £+ 0.035
GPTF-DTN 0.670 £ 0.062 0.713 £ 0.104 0.373 £ 0.025 0.642 £+ 0.043
NTF-Time 0.745 + 0.095 0.800 + 0.009 0.739 £+ 0.007 0.705 £+ 0.014
NTF-DTL 0.757 £ 0.006 0.777 £ 0.018 0.733 £ 0.004 0.725 £ 0.048
NTF-DTN 0.686 = 0.011 0.665 + 0.004 0.346 + 0.049 0.685 + 0.037
PTucker 0.959 + 0.015 0.806 + 0.027 0.916 £ 0.008 0.727 £ 0.037
THIS-ODE 0.624 +0.008 0.618 £0.007 0.246 +=0.009 0.615 +0.024
Extrapolation

CP-Time 0.863 = 0.022 0.867 & 0.010 1.082 4 0.005 0.958 £ 0.061
CP-DTL 0.553 + 0.005 0.527 + 0.006 0.545 £+ 0.030 0.595 + 0.026
CP-DTN 0.557 + 0.004 0.584 + 0.009 0.340 £ 0.003 0.637 £ 0.050
GPTF-Time 0.527 +0.018 0.489 £+ 0.011 0.280 £ 0.007 0.634 £ 0.089
GPTF-DTL 0.577 +0.035 0.506 + 0.013 0.234 £ 0.010 0.576 + 0.024
GPTF-DTN 0.511 +0.002 0.489 4 0.003 0.218 £ 0.002 0.572 £ 0.025
NTF-Time 0.537 + 0.002 0.510 4+ 0.027 0.275 £+ 0.022 0.621 + 0.026
NTF-DTL 0.512 + 0.009 0.593 + 0.079 0.269 + 0.005 0.659 £+ 0.031
NTF-DTN 0.513 +0.003 0.484 +0.011 0.247 £ 0.010 0.573 £ 0.030
PTucker 0.522 + 0.022 0.749 £ 0.006 0.600 £ 0.002 0.722 £+ 0.030
THIS-ODE 0.498 £0.013 0.460+0.004 0.215+0.002 0.568 +0.029

Table 3. Root Mean Square error (RMSE) with » = 3. The results were averaged over five runs.

100. For nonlinear dynamic models ({GPTF, NTF, CP}-
DTN), we used tanh activation. For all the discrete time
methods, we partitioned the total time span into 50 (equal-
length) steps. Like in Sec. 6.1, we used one-layer NN
for THIS-ODE and NTF based methods, with 50 neurons
and tanh activation. We used ADAM to run stochastic
mini-batch optimization for all the methods, where the mini-
batch size was 100 and the learning rate was selected from
{1074,5 x 1074,1073,5 x 1073,1072}. For numerical
stability, we re-scaled the timestamps to [0, 10] for all the
datasets. We ran every method for 500 epochs, which guar-
antees the convergence. We varied the dimension of the
representations 7 from {1,2,3,5,7}. Similar to Sec. 6.1,
we evaluated all the methods in two settings, Interpolation
and Extrapolation. For interpolation, We randomly sampled
80% interactions and used their first 1/3 and last 1/3 inter-
action results for training, and then tested on the remaining
interaction results in the middle. For extrapolation, we used
the first 1/2 interaction results for training, and tested on
remaining half. We repeated the experiments for five times,
and computed the average root mean-square error (RMSE)
of each method.

Results. Due to the space limit, here we only list the predic-
tion accuracy of each method for » = 3, as in Table 3. We
list the other results in Appendix (see Table 4-7). In all the
cases, THIS-ODE always outperforms the competing ap-
proaches by a large margin (except when r = 2, GPTF-time
is slightly better than THIS-ODE: 0.521 vs. 0.524, for inter-

polation on Beijing Air dataset; see Table 5 in Appendix).
The improvements obtained by THIS-ODE are large and
significant (p < 0.05). The results together have demon-
strated the advantage of THIS-ODE in predicting long-term
interaction results, which can be important for temporal data
analysis and predictive tasks.

7. Conclusion

We have presented THIS-ODE, an ODE based approach
to decompose high-order interactions sequences. THIS-
ODE is robust and expressive to capture complex unknown
dynamics from data for better representation learning. Com-
pared with the existing methods, it shows significant im-
provement in predicting long-term interaction results, in
both interpolation and extrapolation cases.

Acknowledgments

This work has been supported by MURI AFOSR grant
FA9550-20-1-0358, NSF IIS-1910983 and NSF CAREER
Award IIS-2046295.

References

Ahn, D., Jang, J.-G., and Kang, U. (2021). Time-aware ten-
sor decomposition for sparse tensors. Machine Learning,
pages 1-22.

Decomposing Temporal High-Order Interactions via Latent ODEs

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. (2018). Neural ordinary differential equations. arXiv
preprint arXiv:1806.07366.

Choi, J. H. and Vishwanathan, S. (2014). Dfacto: Dis-
tributed factorization of tensors. In Advances in Neural
Information Processing Systems, pages 1296-1304.

Chu, W. and Ghahramani, Z. (2009). Probabilistic models
for incomplete multi-dimensional arrays. AISTATS.

Dormand, J. R. and Prince, P. J. (1980). A family of embed-
ded runge-kutta formulae. Journal of computational and
applied mathematics, 6(1):19-26.

Du, Y., Zheng, Y., Lee, K.-c., and Zhe, S. (2018). Proba-
bilistic streaming tensor decomposition. In 2018 IEEE
International Conference on Data Mining (ICDM), pages
99-108. IEEE.

Fang, S., Kirby, R. M., and Zhe, S. (2021a). Bayesian
streaming sparse tucker decomposition. In Uncertainty
in Artificial Intelligence, pages 558-567. PMLR.

Fang, S., Wang, Z., Pan, Z., Liu, J., and Zhe, S. (2021b).
Streaming Bayesian deep tensor factorization. In
International Conference on Machine Learning, pages
3133-3142. PMLR.

Harshman, R. A. (1970). Foundations of the PARAFAC pro-
cedure: Model and conditions for an”explanatory”multi-
mode factor analysis. = UCLA Working Papers in
Phonetics, 16:1-84.

Heinonen, M., Yildiz, C., Mannerstrom, H., Intosalmi,
J., and Ldhdesmiki, H. (2018). Learning unknown
ODE models with Gaussian processes. In International
Conference on Machine Learning, pages 1959-1968.
PMLR.

Hoff, P. (2011). Hierarchical multilinear models for mul-
tiway data. Computational Statistics & Data Analysis,
55:530-543.

Kang, U., Papalexakis, E., Harpale, A., and Faloutsos,
C. (2012). Gigatensor: scaling tensor analysis up by
100 times-algorithms and discoveries. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 316-324.
ACM.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kolda, T. G. (2006). Multilinear operators for higher-order
decompositions, volume 2. United States. Department of
Energy.

Liu, B., He, L., Li, Y., Zhe, S., and Xu, Z. (2018). Neuralcp:
Bayesian multiway data analysis with neural tensor de-
composition. Cognitive Computation, 10(6):1051-1061.

Liu, H., Li, Y., Tsang, M., and Liu, Y. (2019). CoSTCo:
A Neural Tensor Completion Model for Sparse Tensors,
page 324-334. Association for Computing Machinery,
New York, NY, USA.

Oh, S., Park, N, Lee, S., and Kang, U. (2018). Scalable
Tucker factorization for sparse tensors-algorithms and
discoveries. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE), pages 1120-1131. IEEE.

Pan, Z., Wang, Z., and Zhe, S. (2020a). Scalable nonpara-
metric factorization for high-order interaction events. In
International Conference on Artificial Intelligence and
Statistics, pages 4325-4335. PMLR.

Pan, Z., Wang, Z., and Zhe, S. (2020b). Streaming non-
linear bayesian tensor decomposition. In Conference
on Uncertainty in Artificial Intelligence, pages 490—499.
PMLR.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in neural
information processing systems, 32:8026—8037.

Pontryagin, L. S. (1987). Mathematical theory of optimal
processes. CRC press.

Rasmussen, C. E. and Williams, C. K. 1. (2006). Gaussian
Processes for Machine Learning. MIT Press.

Rogers, M., Li, L., and Russell, S. J. (2013). Multilinear
dynamical systems for tensor time series. Advances in
Neural Information Processing Systems, 26:2634-2642.

Schein, A., Zhou, M., Blei, D. M., and Wallach, H.
(2016). Bayesian poisson tucker decomposition for
learning the structure of international relations. In
Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume
48, ICML’ 16, pages 2810-2819. JIMLR.org.

Sutskever, 1., Tenenbaum, J. B., and Salakhutdinov, R. R.
(2009). Modelling relational data using bayesian clus-
tered tensor factorization. In Advances in neural
information processing systems, pages 1821-1828.

Tillinghast, C., Wang, Z., and Zhe, S. (2022). Non-
parametric sparse tensor factorization with hierarchi-
cal Gamma processes. In International Conference on
Machine Learning. PMLR.

Decomposing Temporal High-Order Interactions via Latent ODEs

Tillinghast, C. and Zhe, S. (2021). Nonparametric decom-
position of sparse tensors. In International Conference
on Machine Learning, pages 10301-10311. PMLR.

Tucker, L. (1966). Some mathematical notes on three-mode
factor analysis. Psychometrika, 31:279-311.

Wang, Z., Chu, X., and Zhe, S. (2020). Self-modulating
nonparametric event-tensor factorization. In International
Conference on Machine Learning, pages 9857-9867.
PMLR.

Wu, X., Shi, B., Dong, Y., Huang, C., and Chawla,
N. V. (2019). Neural tensor factorization for tempo-
ral interaction learning. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining, pages 537-545.

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and
Carbonell, J. G. (2010). Temporal collaborative filter-
ing with bayesian probabilistic tensor factorization. In
Proceedings of the 2010 STAM International Conference
on Data Mining, pages 211-222. STAM.

Xu, Z., Yan, F,, and Qi, Y. A. (2012). Infinite tucker decom-
position: Nonparametric bayesian models for multiway
data analysis. In ICML.

Yang, Y. and Dunson, D. (2013). Bayesian conditional
tensor factorizations for high-dimensional classifica-
tion. Journal of the Royal Statistical Society B, revision
submitted.

Zhang, Y., Bi, X., Tang, N., and Qu, A. (2021). Dynamic ten-
sor recommender systems. Journal of Machine Learning
Research, 22(65):1-35.

Zhe, S. and Du, Y. (2018). Stochastic nonparametric
event-tensor decomposition. In Advances in Neural
Information Processing Systems, pages 6856—6866.

Zhe, S., Qi, Y., Park, Y., Xu, Z., Molloy, 1., and Chari, S.
(2016a). Dintucker: Scaling up gaussian process models
on large multidimensional arrays. In Thirtieth AAAI
conference on artificial intelligence.

Zhe, S., Xu, Z., Chu, X., Qi, Y., and Park, Y. (2015).
Scalable nonparametric multiway data analysis. In
Proceedings of the Eighteenth International Conference

on Artificial Intelligence and Statistics, pages 1125-
1134.

Zhe, S., Zhang, K., Wang, P., Lee, K.-c., Xu, Z., Qi, Y., and
Ghahramani, Z. (2016b). Distributed flexible nonlinear
tensor factorization. In Advances in Neural Information
Processing Systems, pages 928-936.

Decomposing Temporal High-Order Interactions via Latent ODEs

A. More Plots for Ablation Study
B. Prediction Accuracy for Real-World Applications with »r = 1,2,5,7

Decomposing Temporal High-Order Interactions via Latent ODEs

------ ground-truth « training points —— prediction

THIS-ODE GPTF-Time NTF-Time

t t t
(a) Recovered Spiral in the interpolation experiment. Radius: m s 2)(t); Angle: m(; 2)(2).

1.2 1.2 1.2
1

0.6 0.6

0.2 0.2 0.2

Radius
o
o

0 5 0 5

o
w

Angle
=
w

t
30 30+
151
0 04

: T
t
1.04 1.01 :
0.54 0.54
x
—0.51 —0.51

(d) z(t) projected from the recovered spiral

1.0 1.0 & 1.01
i 3
0.5 051 1\ 5 051 1}
> H :: ..'. T :
-05 —o5| ii ¥ ~0.51

5 0 5 0 5
t t t
(e) y(t) projected from the recovered spiral

o

Figure 3. Examples of recovered spirals in the interpolation experiment.

Decomposing Temporal High-Order Interactions via Latent ODEs

------ ground-truth « training points —— prediction

THIS-ODE GPTF-Time NTF-Time

—06 06 —0.6 06 —06 0.6
t t t
(a) Recovered Spiral in the Extrapolation experiment. Radius: m s 2)(t); Angle: m(; 2)(%).
1.2 127 1.2
LY
w
=]
§ 0.6 0.6
o
0.2 024 Tl
0 5 0 5
t t
(b) Recovered Radius: m(2,2) (%)
301
151
0,
0 5

t
(c) Angle: mq) (t).

1.0

-
[
3

[

0.51

—0.51

0 5 0 5 0 5
t t t
(d) z(t) projected from the recovered spiral

1.0

0.51

—0.51

0 5 0 5 0 5
t t t
(e) y(t) projected from the recovered spiral

Figure 4. Examples of recovered spirals in the extrapolation experiment.

Decomposing Temporal High-Order Interactions via Latent ODEs

Interpolation Beijing Air Indoor Condition Server Room Fit Record
CP-Time 0.863 + 0.021 0.862 £ 0.008 1.082 4+ 0.005 0.958 + 0.062
CP-DTL 0.861 £+ 0.021 0.591 £ 0.001 0.775 + 0.005 0.655 +0.074
CP-DTN 0.847 +0.026 0.595 £+ 0.001 0.771 £ 0.002 0.655 + 0.069
GPTF-Time 0.620 + 0.006 0.806 £+ 0.012 0.623 +0.012 0.886 + 0.058
GPTF-DTL 0.616 = 0.001 0.815 £ 0.006 0.612 +0.012 0.610 +0.047
GPTF-DTN 0.571 £ 0.049 0.770 £ 0.019 0.306 + 0.005 0.601 +0.018
NTF-Time 0.615 4+ 0.013 0.659 £ 0.003 0.610 £ 0.011 0.583 +0.017
NTF-DTL 0.624 +0.012 0.662 £ 0.003 0.625 + 0.009 0.588 +0.018
NTF-DTN 0.610 +0.013 0.512 + 0.006 0.226 + 0.004 0.588 + 0.016
PTucker 0.656 + 0.008 0.643 £ 0.003 0.859 + 0.002 0.769 = 0.068
THIS-ODE 0.563 +0.005 0.487+0.004 0.2224+0.006 0.574+0.027
Extrapolation

CP-Time 0.896 + 0.012 0.890 £ 0.005 1.006 £ 0.004 1.021 £+ 0.030
CP-DTL 0.888 + 0.012 0.886 + 0.005 0.821 + 0.002 0.682 + 0.048
CP-DTN 0.887 +0.013 0.890 £ 0.004 0.795 + 0.003 0.682 + 0.049
GPTF-Time 0.894 + 0.011 0.890 £ 0.004 0.764 + 0.004 0.799 £+ 0.031
GPTF-DTL 0.888 +0.012 0.889 £ 0.003 0.765 £ 0.010 0.668 + 0.022
GPTF-DTN 0.872 + 0.004 0.757 £ 0.007 0.504 + 0.009 0.669 + 0.020
NTF-Time 0.770 4 0.013 0.723 £ 0.007 0.757 £+ 0.005 0.669 + 0.029
NTF-DTL 0.746 4+ 0.006 0.905 £ 0.016 0.722 £+ 0.083 0.663 £+ 0.021
NTF-DTN 0.737 4 0.005 0.694 + 0.002 0.542 + 0.003 0.695 £+ 0.021
PTucker 1.211 £ 0.023 0.889 + 0.005 0.862 + 0.001 0.747 £ 0.031
THIS-ODE 0.710 £0.017 0.655+0.021 0.407 +=0.029 0.644 +0.019

Table 4. Root Mean Square error (RMSE) with » = 1. The results were averaged over five runs.

Interpolation Beijing Air Indoor Condition Server Room Fit Record
CP-Time 0.860 4+ 0.018 0.867 £+ 0.010 1.082 £ 0.005 0.989 + 0.054
CP-DTL 0.739 4+ 0.005 0.527 £+ 0.005 0.357 + 0.002 0.618 + 0.037
CP-DTN 0.661 + 0.007 0.578 £ 0.015 0.352 + 0.006 0.688 + 0.020
GPTF-Time 0.597 +0.010 0.548 £ 0.009 0.300 £ 0.071 0.876 + 0.046
GPTF-DTL 0.572 +0.024 0.557 £ 0.016 0.288 + 0.005 0.577 +0.043
GPTF-DTN 0.521 +0.025 0.780 &+ 0.014 0.242 4+ 0.005 0.579 4+ 0.045
NTF-Time 0.569 4+ 0.008 0.481 £+ 0.009 0.266 + 0.007 0.632 + 0.018
NTF-DTL 0.540 4 0.008 0.486 + 0.005 0.256 + 0.005 0.655 + 0.011
NTF-DTN 0.531 +0.013 0.485 + 0.003 0.212 + 0.003 0.597 + 0.034
PTucker 0.566 + 0.018 0.658 + 0.005 0.586 + 0.012 0.691 + 0.041
THIS-ODE 0.524 4+ 0.006 0.467 £0.004 0.194+0.001 0.564 +0.036
Extrapolation

CP-Time 0.899 + 0.014 0.802 + 0.003 0.998 + 0.006 1.021 £ 0.030
CP-DTL 0.827 £ 0.011 0.872 £+ 0.007 0.726 + 0.005 0.680 + 0.017
CP-DTN 0.853 4+ 0.008 0.890 + 0.005 0.777 + 0.007 0.667 + 0.025
GPTF-Time 0.754 +0.019 0.888 + 0.004 0.497 +0.217 0.655 + 0.029
GPTF-DTL 0.795 4+ 0.055 0.889 + 0.016 0.666 + 0.065 0.653 + 0.034
GPTF-DTN 0.723 £ 0.041 0.778 £ 0.036 0.564 + 0.007 0.762 + 0.042
NTE-Time 0.904 + 0.016 0.696 + 0.030 0.607 £+ 0.011 0.648 + 0.036
NTF-DTL 0.880 = 0.011 0.727 £ 0.016 0.782 +0.014 0.707 + 0.032
NTE-DTN 0.697 4+ 0.003 0.684 + 0.004 0.567 + 0.025 0.688 + 0.060
PTucker 0.895 4+ 0.012 1.016 4 0.000 0.917 £+ 0.023 0.741 + 0.032
THIS-ODE 0.675+0.010 0.679+0.002 0.402+0.013 0.629 +0.003

Table 5. Root Mean Square error (RMSE) with » = 2. The results were averaged over five runs.

Decomposing Temporal High-Order Interactions via Latent ODEs

Interpolation Beijing Air Indoor Condition Server Room Fit Record
CP-Time 0.864 4+ 0.022 0.867 £+ 0.010 1.083 £+ 0.005 0.957 £ 0.061
CP-DTL 0.525 +0.014 0.489 £ 0.003 0.540 £+ 0.019 0.602 + 0.022
CP-DTN 0.559 4+ 0.004 0.638 £ 0.001 0.259 + 0.002 0.687 + 0.057
GPTF-Time 0.526 + 0.009 0.497 £ 0.005 0.279 + 0.004 0.726 + 0.099
GPTF-DTL 0.536 4+ 0.012 0.488 £ 0.003 0.245 £+ 0.011 0.587 + 0.023
GPTF-DTN 0.515 + 0.007 0.485 £+ 0.004 0.228 + 0.005 0.579 + 0.024
NTF-Time 0.514 +0.011 0.473 £ 0.007 0.264 + 0.043 0.631 +0.013
NTF-DTL 0.505 £ 0.011 0.506 £ 0.008 0.258 + 0.004 0.641 + 0.039
NTF-DTN 0.498 4+ 0.026 0.486 £ 0.003 0.214 + 0.006 0.576 + 0.013
PTucker 0.549 £ 0.001 0.654 £ 0.005 0.703 £ 0.004 0.838 + 0.062
THIS-ODE 0.497 £0.010 0.461+0.004 0.195+0.001 0.538 +0.021
Extrapolation

CP-Time 0.897 £0.011 0.679 £ 0.022 0.998 + 0.006 1.020 £ 0.030
CP-DTL 0.899 + 0.013 0.780 £+ 0.097 0.794 + 0.012 0.729 + 0.053
CP-DTN 0.800 £ 0.011 0.889 =+ 0.005 0.701 +0.148 0.807 = 0.030
GPTF-Time 0.729 4+ 0.052 0.820 £ 0.000 0.469 + 0.073 0.752 + 0.053
GPTF-DTL 0.696 + 0.026 0.732 £0.015 0.406 + 0.074 0.640 £ 0.031
GPTF-DTN 0.665 + 0.010 0.633 £ 0.007 0.393 £ 0.016 0.648 + 0.028
NTF-Time 0.765 £ 0.001 0.719 £ 0.068 0.805 + 0.012 0.678 +0.048
NTF-DTL 0.799 4+ 0.029 0.901 £ 0.004 0.746 + 0.022 0.700 + 0.036
NTF-DTN 0.666 4+ 0.013 0.642 £+ 0.005 0.399 + 0.040 0.693 + 0.013
PTucker 0.922 4+ 0.004 0.902 + 0.002 1.357 £ 0.021 0.812 + 0.099
THIS-ODE 0.644 +0.015 0.618 +£0.002 0.297+0.052 0.616 +0.032

Table 6. Root Mean Square error (RMSE) with » = 5. The results were averaged over five runs.

Interpolation Beijing Air Indoor Condition Server Room Fit Record
CP-Time 0.862 + 0.021 0.866 + 0.010 1.083 £ 0.005 0.959 + 0.062
CP-DTL 0.519 £ 0.012 0.528 + 0.009 0.566 + 0.110 0.598 + 0.021
CP-DTN 0.536 4+ 0.006 0.619 + 0.002 0.279 + 0.010 0.708 + 0.033
GPTF-Time 0.523 +0.001 0.508 £ 0.005 0.238 + 0.004 0.735 + 0.094
GPTF-DTL 0.524 +0.010 0.493 £+ 0.016 0.242 +0.013 0.577 +0.016
GPTF-DTN 0.519 £ 0.015 0.483 £+ 0.003 0.283 + 0.004 0.589 + 0.011
NTE-Time 0.512 + 0.009 0.479 £+ 0.003 0.274 + 0.015 0.608 + 0.034
NTF-DTL 0.504 +0.016 0.622 +£0.111 0.334 + 0.008 0.634 + 0.027
NTF-DTN 0.510 £+ 0.011 0.466 + 0.004 0.209 + 0.000 0.578 +0.019
PTucker 0.539 4+ 0.008 0.693 + 0.005 0.908 + 0.003 1.044 £0.118
THIS-ODE 0.496 £0.014 0.457+0.003 0.191 +£0.002 0.525+0.026
Extrapolation

CP-Time 0.896 + 0.011 0.799 + 0.000 0.998 + 0.006 1.021 £ 0.030
CP-DTL 0.898 +0.013 0.665 £ 0.037 0.774 £ 0.017 0.696 + 0.044
CP-DTN 0.770 + 0.049 0.890 + 0.005 0.399 + 0.027 0.805 + 0.006
GPTF-Time 0.730 + 0.034 0.812 £ 0.000 0.650 + 0.259 0.759 + 0.050
GPTF-DTL 0.739 4+ 0.005 0.703 £ 0.046 0.536 + 0.074 0.635 + 0.034
GPTF-DTN 0.656 +0.013 0.689 £+ 0.019 0.352 + 0.049 0.638 + 0.033
NTE-Time 0.743 + 0.055 0.848 +0.025 0.788 + 0.016 0.693 + 0.032
NTF-DTL 0.801 +0.013 0.765 £ 0.013 0.783 + 0.006 0.695 + 0.076
NTE-DTN 0.658 + 0.011 0.639 + 0.005 0.378 + 0.026 0.691 + 0.036
PTucker 1.192 £+ 0.020 1.008 £ 0.018 1.822 £0.014 1.053 £0.112
THIS-ODE 0.620 £0.011 0.609+0.015 0.240+0.008 0.605+0.039

Table 7. Root Mean Square error (RMSE) with » = 7. The results were averaged over five runs.

