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Abstract
The knowledge gradient (KG) algorithm is a pop-
ular and effective algorithm for the best arm iden-
tification (BAI) problem. Due to the complex
calculation of KG, theoretical analysis of this al-
gorithm is difficult, and existing results are mostly
about the asymptotic performance of it, e.g., con-
sistency, asymptotic sample allocation, etc. In this
research, we present new theoretical results about
the finite-time performance of the KG algorithm.
Under independent and normally distributed re-
wards, we derive bounds for the sample alloca-
tion of the algorithm. With these bounds, existing
asymptotic results become simple corollaries. Fur-
thermore, we derive upper and lower bounds for
the probability of error and simple regret of the
algorithm, and show the performance of the algo-
rithm for the multi-armed bandit (MAB) problem.
These developments not only extend the existing
analysis of the KG algorithm, but can also be used
to analyze other improvement-based algorithms.
Last, we use numerical experiments to compare
the bounds we derive and the performance of the
KG algorithm.

1. Introduction
In the best arm identification (BAI) problem, there is a finite
number of arms with unknown mean rewards. In each round,
an agent chooses an arm to pull and observes a noisy reward.
The reward is drawn from a fixed but unknown underlying
distribution corresponding to the pulled arm, and no infor-
mation about other arms is obtained. After learning the
mean rewards of the arms by pulling them, the agent iden-
tifies an arm that is expected to be the one with the largest
mean reward. BAI is also known as the pure exploration
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problem (Bubeck et al., 2009) and serves as a fundamental
and useful model for many practical problems such as the
inventory management (Mahajan & Ryzin, 2001), mobile
communication (Audibert et al., 2010), A/B testing (Scott,
2015), and clinic trials (Villar et al., 2015).

We consider the BAI problem under the fixed-budget set-
ting, where the agent tries to identify the best arm under a
fixed number of rounds. That is, the agent aims to make
the maximum use of the available resources (i.e., a lim-
ited number of pulls) to explore the set of arms and op-
timize the quality of the selected arm. The fixed-budget
BAI has been widely studied in the literature. Some well-
known methods for it include the knowledge gradient (KG,
Gupta & Miescke (1996); Frazier et al. (2008)), expected im-
provement (EI, Jones et al. (1998); Ryzhov (2016)), optimal
computing budget allocation (OCBA, Chen et al. (2000);
Gao & Shi (2015); Gao et al. (2017); Li & Gao (2022)),
Upper Confidence Bound Exploration (UCB-E, Audibert
et al. (2010)), successive rejects (SR, Audibert et al. (2010);
Bubeck et al. (2013a)), gap-based exploration (GapE, Gabil-
lon et al. (2011)), top-two Thompson sampling (TTTS,
Russo (2016)), etc.

In this research, we focus on the KG algorithm. It is a single-
step Bayesian look-ahead algorithm that was first introduced
in Gupta & Miescke (1996), and was intensively studied
later in Frazier et al. (2008). In each round of the KG algo-
rithm, the agent pulls the arm with the largest knowledge
gradient, i.e., the arm with the largest expected increment
in the posterior mean reward. Such a myopic heuristic is
optimal if only one round is left before the agent identifies
the best arm. For the general situation where more than
one rounds are available, the KG algorithm has also demon-
strated excellent empirical performance in various numerical
tests, e.g., in Frazier et al. (2008), Frazier (2009), Powell
(2011), and Wang & Powell (2018). Now, the KG algorithm
has been successfully applied to different real problems
such as the drug discovery (Negoescu et al., 2011), urban
delivery (Huang et al., 2019), risk quantification (Cakmak
et al., 2020), and the experimental design in material science
(Chen et al., 2015) and biotechnology (Li et al., 2018). The
KG algorithm was also extended to solve other types of BAI
problems such as the parallel BAI (Wu & Frazier, 2016) and
contextual bandits (Ding et al., 2021).
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Although the finite-time performance of many BAI algo-
rithms has been well understood (Audibert et al., 2010;
Gabillon et al., 2011), the KG algorithm remains largely
undeveloped in this regard. The main reason is that the
knowledge gradient function is typically nonlinear and non-
convex, which makes it difficult to analyze the algorithm
dynamics and thus its performance. Existing literature on
the theoretical development of the algorithm is basically
limited to its asymptotic performance. Frazier et al. (2008)
showed that the KG algorithm is consistent, i.e., it is guaran-
teed to identify the best arm as the number of rounds goes to
infinity. Ryzhov (2016) derived the sampling rates of each
arm (sample allocation) of the KG algorithm. However, in
practice, the sample size is finite and might not lead the
algorithm to show its large-sample characteristics. The only
paper that seeks to analyze the finite-time performance of
the KG algorithm, to the best of our knowledge, is Wang &
Powell (2018). However, their study was conducted based
on the submodular assumption on the value of information,
which cannot be verified in general, and there exist instances
of the BAI problem that violate this assumption. In addition,
their target is the worst-case performance of the KG algo-
rithm, and it is presented as a ratio compared to the optimal
performance of the algorithm. Nevertheless, this optimal
performance is unknown for real problems and can hardly
be estimated, so the worst-case performance bound cannot
be calculated.

In this paper, we study the finite-time performance of the
KG algorithm under very mild conditions. Assuming in-
dependent and normally distributed rewards with known
variances, we evaluate the performance of the KG algorithm
by two common objective measures for BAI: the probability
of error (PE, Audibert et al. (2010); Bubeck et al. (2013b);
Kaufmann et al. (2016)) and simple regret (SR, Bubeck
et al. (2009); Gabillon et al. (2011; 2012)). PE is the prob-
ability that the final recommended arm is not the best one.
SR is the difference in the mean reward between the final
recommended arm and the best one. We derive upper and
lower bounds of PE and SR, corresponding to the worst
and best possible performance of the algorithm under the
two measures. With the bounds, existing asymptotic results
of the algorithm become simple corollaries. Furthermore,
our analysis might be extended to other improvement-based
methods of BAI, such as the probability improvement (PI,
Kushner (1964)), expected improvement (EI, Jones et al.
(1998)), etc.

In addition to BAI, another common bandit model is the
multi-armed bandit (MAB). MAB is similar to BAI in that
the agent needs to pull an arm in each round and observes
a reward of it, but different from BAI, MAB concerns the
mean reward obtained in each round (Auer et al., 2002;
Bubeck & Cesa-Bianchi, 2012). A typical formulation of
MAB is minimizing the measure of cumulative regret (CR),

which is defined as the sum of the differences in the mean
reward between the best arm and each pulled one. For a
complete treatment to the KG algorithm, in this research,
we also study its finite-time performance under CR.

Last, we conduct numerical experiments to compare the
upper and lower bounds with the performance of the KG
algorithm.

Organization of the Paper

Section 2 introduces the BAI problem, the KG algorithm,
and the three measures we use to evaluate the performance
of the algorithm. Theoretical results and some discussion
are provided in Section 3; detailed proofs are included in
the supplementary material. Section 4 performs numerical
experiments to illustrate the bounds derived. Section 5 con-
cludes this paper and points out future research directions.

2. Preliminaries
In this section, we introduce the BAI problem, the KG
algorithm, and the measures for evaluating the performance
of the algorithm.

2.1. Problem Setup

Let {1, 2, . . . , k} be the set of k arms. In each round, the
agent chooses an arm to pull. If arm i is pulled in round t,
we observe a stochastic reward Xi,t that follows the normal
distribution N (µi, σ

2
i ), where the mean µi is unknown and

the variance σ2
i is assumed to be known, i = 1, 2, . . . , k.

We further assume that the reward observations Xi,t’s are
independent across different arms i and rounds t. Suppose
there are n rounds in total. Let It be the arm pulled by the
agent in round t, and Jn be the arm recommended by the
agent after n rounds. Arm Jn is expected to be the best arm
b ∈ arg maxi∈{1,...,k} µi. In this research, we assume that
the best arm is unique, i.e., µb > µi for ∀i 6= b.

Under a Bayesian framework, the unknown mean µi is
treated as a random variable µ̃i whose prior distribution
is given by N

(
θi,1, λ

2
i,1

)
, i = 1, . . . , k. We use the non-

informative prior to each µ̃i, i.e., θi,1 = 0 and λ2
i,1 = ∞

de Groot (1970). The posterior distribution of µ̃i in round t
is N

(
θi,t, λ

2
i,t

)
with

θi,t+1 =


λ−2
i,t θi,t + σ−2

i Xi,t

λ−2
i,t + σ−2

i

, if It = i,

θi,t, otherwise,

(1)

λ2
i,t+1 =

{(
λ−2
i,t + σ−2

i

)−1
, if It = i,

λ2
i,t, otherwise.

(2)

Denote by St =
{(
θi,t, λ

2
i,t

)∣∣ i = 1, . . . , k
}

the knowl-
edge in round t. A policy π = {I1, I2, . . . , In} for BAI
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corresponds to a sampling rule over the arm set, denoted
by Iπ. It maps the knowledge St in round t to an arm
Iπ (St) ∈ {1, . . . , k} that is pulled in round t, t ∈ N. De-
note by Π the set of policies. In BAI, the goal of the agent
is to find the optimal policy, which is the solution to

sup
π∈Π

Eπ
[

max
i=1,...,k

θi,n

]
, (3)

where Eπ denotes a conditional expectation given It =
Iπ (St) for t = 1, . . . , n.

2.2. Knowledge Gradient

The KG algorithm is simple in concept. Iteratively, it as-
sumes that we only have one sample left and pull the arm
that maximizes the expectation of the single-period increase
in maxi θi,t. In other words, the algorithm tries to maximize
the expectation of maxi θi,t+1 after round t, where θi,t+1

for each arm i is treated as a random variable before round
t+ 1 since the reward in round t+ 1 is unknown in round t,
t = 1, . . . , n− 1. To this end, we can provide the following
formula vKG

i,t to compute the expected increment of θi,t after
round t,

vKG
i,t = E

[
max
i′

θi′,t+1 −max
i′

θi′,t

∣∣∣ It = i,St
]
, (4)

and write the sampling rule of the KG algorithm IKG as

IKG (St) = arg max
i=1,...,k

vKG
i,t . (5)

The acquisition function (4) does not have an analytical ex-
pression. To handle the difficulty, Gupta & Miescke (1996)
and Frazier et al. (2008) provided reasonable approxima-
tions for developing computationally tractable algorithms.
In the approximations, vKG

i,t in (4) is replaced by the follow-
ing,

vKG
i,t =ζi,tf

(
−|θi,t −maxj 6=i θj,t|

ζi,t

)
, (6)

where ζ2
i,t = Var (θi,t+1| It = i,St) = λ2

i,t − λ2
i,t+1 can

be interpreted as the variance of the change in θi,t+1 − θi,t
resulting from the next pull since Var [θi,t+1| It = i,St] =
Var [θi,t+1 − θi,t| It = i,St]. Function f(x) = xΦ(x) +
φ(x) is a monotone increasing function with respect to x,
and Φ(x) and φ(x) are the cumulative density function
and the probability density function of the standard normal
distribution. We summarize the KG algorithm as follows.

Algorithm 1 Knowledge Gradient

Input: number of arms k, number of rounds n.
Initialize S1 =

{(
θi,1, λ

2
i,1

)∣∣ i = 1, . . . , k
}

and set
N1,1 = · · · = Nk,1 = 0.
for t = 1 to n− 1 do

Compute It = arg maxi v
KG
i,t based on (6).

Observe a reward XIt,t ∼ N
(
µIt , σ

2
It

)
.

Compute θi,t+1 and λ2
i,t+1 based on (1) and (2), and

update the knowledge set St+1.
NIt,t+1 = NIt,t + 1, Ni,t+1 = Ni,t for ∀i 6= It.
t← t+ 1.

end for
Output: Jn = arg maxi θi,n.

The asymptotic performance of the KG algorithm has been
studied in the literature. Frazier et al. (2008) showed that
with the algorithm, Jn converges to the best arm b as
n → ∞, i.e., the consistency. Ryzhov (2016) showed
that the sampling rate

{
αi,t =

Ni,t
t

∣∣∣ t ∈ N
}

of each arm
i ∈ {1, . . . , k} generated by the algorithm satisfies

lim
t→∞

αi1,t
αi2,t

a.s.
=

σi1 (µb − µi2)

σi2 (µb − µi1)
, ∀i1, i2 6= b,

lim
t→∞

αi,t
αb,t

a.s.
=

σi (µb −maxi 6=b µi)

σb (µb − µi)
, ∀i 6= b,

(7)

where Ni,t =
∑t
s=1 1 {Is = i} is the number of pulls al-

located to arm i after round t, the indicator function 1 {·}
equals one if its argument is true and is zero otherwise, and
“a.s.” means “almost surely”.

2.3. Performance Measures

In contrast to Wang & Powell (2018) which evaluates the
performance of the KG algorithm by a self-defined measure,
we conduct our analysis under three common measures in
BAI and MAB.

• Probability of error (PE). PE is an important perfor-
mance measure for BAI (Audibert et al., 2010; Bubeck
et al., 2013b; Kaufmann et al., 2016). It is the proba-
bility that the estimated best arm Jn is not the true best
one. PE is denoted by

en = P (Jn 6= b) .

It can also be treated as the expectaiton of the 0-1 loss
function 1 {Jn 6= b}.

• Simple regret (SR). SR is another important measure
for BAI (Bubeck et al., 2009; Audibert et al., 2010;
Gabillon et al., 2011; 2012). It is the expectation of the
differences in the mean reward between the true best
arm and the estimated best one, denoted by

rn = E [µb − µJn ] .

Sometimes SR is also called opportunity cost (Scott,
2015; Gao et al., 2017) or linear loss (Chick et al.,
2010).
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• Cumulative regret (CR). CR is mostly used for the
MAB problem (Auer et al., 2002; Bubeck & Cesa-
Bianchi, 2012). It is defined as the sum of the differ-
ences in the mean reward between the true best arm
and each pulled one. CR after n rounds is given by

Rn = nµb −
n∑
t=1

E [µIt ] .

3. Theoretical Results
Although the KG algorithm was initially proposed in a
Bayesian setting where we have an initial belief to the mean
µi of each arm i, when we adopt the non-informative prior,
parameters θi,t+1 and λ2

i,t+1 in (1) and (2) are updated in
the same manner as in the frequentist setting. In this section,
we will conduct our analysis under the frequentist setting
where µi of each arm i has a fixed but unknown value.

Let µ̂i,t = 1
Ni,t

∑t
s=1 1 {Is = i}Xi,s denote the estimated

mean reward of arm i after round t. Notice that for ∀t, ∀i,
with given rewards Xi,1, . . . , Xi,t, µ̂i,t = θi,t for θi,t in
(1). Under the frequentist setting, we treat µ̂i,t as a random
variable. For ∀t, ∀i, given that Ni,t = ni, µ̂i,t follows a

normal distribution with mean µi and variance σ2
i

ni
(Dekking

et al., 2005).

Below, we first provide some lemmas to facilitate our anal-
ysis. Lemma 3.1 gives a bound on the difference between
the estimated mean µ̂i,t and the true mean µi of each
arm i ∈ {1, . . . , k} under independent and normally dis-
tributed rewards. Lemma 3.2 shows a concentration in-
equality in the case of normal distribution. Lemma 3.3
provides an upper bound and a lower bound of the func-
tion f(x) = xΦ(x) + φ(x). Lemma 3.4 is a proposition of
Bernstein’s maximal inequality for martingales.

Lemma 3.1. (Lemma 5 of Qin et al. (2017)) Under any
sampling rule and the non-informative prior for each arm,
there exists a random variable W that depends on the sam-
pling rule and satisfies that E

[
eγW

]
<∞ for ∀γ > 0, and

it holds a.s. that for ∀i ∈ {1, . . . , k},

|µ̂i,t − µi| ≤ σiW

√
log (e+Ni,t)

1 +Ni,t
, ∀t ∈ N.

Lemma 3.2. Suppose stochastic rewards Y1, . . . , Ym ∼
N
(
µ, σ2

)
. Denote by Ŷm = 1

m

∑m
s=1 Ys. For ∀ε ≥ 0,

P
(∣∣∣Ŷm − µ∣∣∣ ≥ ε) ≤ 2σ√

mε
exp

{
−mε

2

2σ2

}
.

Lemma 3.3. For function f(x) = xΦ(x) + φ(x), if x ≥ 2,
then

φ(x)

x3
< f(−x) <

φ(x)

x2
,

where Φ(x) =
∫ x
−∞ φ(r)dr, φ(x) = 1√

2π
e−

x2

2 .

Lemma 3.4. (Lemma 1 of Cesa-Bianchi & Gentile (2008))
Denote by

{
Ls
∣∣0 ≤ Ls ≤ 1, s = 1, 2, . . .

}
a sequence of

random variables.

• Define the bounded martingale difference sequence
Ms = E

[
Ls
∣∣L1, . . . , Ls−1

]
− Ls and the associated

martingaleKt = M1 + · · ·+Mt with conditional vari-
ance Vt =

∑t
s=1 Var

[
Ls
∣∣L1, . . . , Ls−1

]
. For any

κ, ω ≥ 0,

P (Kt ≥ κ, Vt ≤ ω) ≤ exp

{
− κ2

2ω + 2κ
3

}
.

• Define another bounded martingale difference se-
quence M̃s = −Ms and the associated martingale
K̃t = M̃1 + · · · + M̃t with conditional variance
Vt =

∑t
s=1 Var

[
Ls
∣∣L1, . . . , Ls−1

]
. Then, for any

κ̃, ω̃ ≥ 0,

P
(
K̃t ≥ κ̃, Vt ≤ ω̃

)
≤ exp

{
− κ̃2

2ω̃ + 2κ̃
3

}
.

3.1. Analysis of the Sample Allocation

We first focus on the sample allocation of the KG algorithm.
It serves as a basis for more in-depth analysis of the three
performance measures PE, SR, and CR.

Based on Lemma 3.1, we show that each arm can be pulled
frequently under the KG algorithm.

Proposition 3.1. Under the KG algorithm, ∃T0, ∀t ≥ T0,
it holds a.s. for the number of pulls Ni,t of arm i that

Ni,t ≥
(
t

k

) 3
4

, ∀i ∈ {1, . . . , k} .

Proposition 3.1 establishes a lower bound
(
t
k

) 3
4 for the

number of pulls of each arm. Since this lower bound goes
to infinity as the number of rounds t goes to infinity, the
consistency of the KG algorithm immediately follows, i.e.,
θi,t will converge to µi as t → ∞, and the estimated best
arm will converge to the true best arm. To prove it, we can
show that if any arm i0 receives too few number of pulls,
the value of vKG

i0,t
in (6) is higher than that of the arms which

receive a sufficiently large number of pulls. Then, arm i0
will be pulled in the next round.

Based on Lemmas 3.2, 3.3, and Proposition 3.1, we show
an upper bound and a lower bound of Ni,t

Nb,t
, ∀i 6= b. The

bounds hold with a probability converging to one as t→∞.

Proposition 3.2. Under the KG algorithm, ∃T > T0, it
holds with a probability of at least

[
1− q

(
3
4 t
)]k

that for
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∀i 6= b, ∀t > T ,

ρ
i,b,t
≤ Ni,t
Nb,t

≤ ρi,b,t,

where q(s) = 4σmaxk
− 1

8 s−
1
8 exp

{
− k

1
4 s

1
4

8σ2
max

}
, σmax =

maxi∈{1,...,k} σi, σmin = mini∈{1,...,k} σi, δmax =

maxi1 6=i2 |µi1 − µi2 |, ρi,b,t = min
{
ρ

(1)
i,b,t, ρ

(2)
i,b,t

}
, ρi,b,t =

max
{
ρ

(1)
i,b,t, ρ

(2)
i,b,t

}
,

ρ(1)
i,b,t

=

µb −max
j 6=b

µj −
(

3
4 t
)− 1

4(
1 +

(
3t
4k

)− 3
4

)2

σb


(
µb − µi +

(
3
4 t
)− 1

4

)2

σ2
i

+
16k√

3t
+

8kmax
{

ln
(

27δ3max

8σ4
min

)
, 0
}

3t

−
1
2

,

ρ(2)
i,b,t

=
µb −maxj 6=b µj − t−

1
4(

1 +
(
t
k

)− 3
4

)
σb


(
µb − µi + t−

1
4

)2

σ2
i

+
8k√
t

+
2kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

t

−
1
2

,

ρ
(1)
i,b,t =

(
1 +

(
t
k

)− 3
4

)
σi

µb − µi − t−
1
4


(
µb −maxj 6=b µj + t−

1
4

)2

σ2
b

+
8k√
t

+
2kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

t


1
2

,

ρ
(2)
i,b,t =

(
1 +

(
3t
4k

)− 3
4

)2

σi

µb − µi −
(

3
4 t
)− 1

4


(
µb −max

j 6=b
µj +

(
3
4 t
)− 1

4

)2

σ2
b

+
16k√

3t
+

8kmax
{

ln
(

27δ3max

8σ4
min

)
, 0
}

3t


1
2

.

With Proposition 3.2, we can derive an upper bound and
a lower bound of the sampling rate αi,t, ∀i ∈ {1, . . . , k},
i.e., the proportion of pulls allocated to arm i until round t.
The sampling ratio Ni,t/Nb,t in Proposition 3.2 is closely
related to the sampling rate αi,t in Theorem 1 because
αi,t =

Ni,t/Nb,t∑k
j=1Nj,t/Nb,t

, ∀i. Proposition 3.2 provides analyti-

cal upper and lower bounds of the sampling ratio Ni,t/Nb,t.
With these bounds, we can replace Ni,t/Nb,t in the numera-
tor of αi,t =

Ni,t/Nb,t∑k
j=1Nj,t/Nb,t

by its upper bound and replace

Nj,t/Nb,t in the denominator of αi,t =
Ni,t/Nb,t∑k
j=1Nj,t/Nb,t

by

its lower bound. In this way, we can obtain the upper and
lower bounds of the sampling rates αi,t in Theorem 3.1,
i = 1, . . . , k. The bounds hold with a probability converg-
ing to one as t→∞.
Theorem 3.1. Under the KG algorithm, ∃T > T0, it holds
with a probability of at least

[
1− q

(
3
4 t
)]k

that for ∀t > T ,

1

1 +
∑
i 6=b ρi,b,t

≤αb,t ≤
1

1 +
∑
i 6=b ρi,b,t

,

ρ
i,b,t

1 +
∑
j 6=b ρj,b,t

≤αi,t ≤
ρi,b,t

1 +
∑
j 6=b ρj,b,t

, ∀i 6= b,

where q(·), ρ
i,b,t

, and ρi,b,t are from Proposition 3.2.

Note that the lower and upper bounds of αi,t in Theorem 3.1
converge to the same value which falls in (0, 1) as t goes
to infinity for i = 1, . . . , k. It is a more elaborate result
than Proposition 3.1 describing the number of pulls of each
arm. It implies that the number of pulls of each arm will
approximately show a linear increase during the sampling
process of the KG algorithm.
Corollary 3.1. Under the KG algorithm,

lim
t→∞

Ni,t
Nb,t

a.s.
=

σi
σb

µb −maxj 6=b µj
µb − µi

,∀i 6= b,

lim
t→∞

Ni1,t
Ni2,t

a.s.
=

σi1
σi2

µb − µi2
µb − µi1

,∀i1, i2 6= b.

Corollary 3.1 depicts the asymptotic sample allocation of the
KG algorithm. It is a simple corollary of Theorem 3.1, and
can be obtained by analyzing the lower and upper bounds
in Theorem 3.1 as t → ∞. Note that this corollary aligns
with (7) that was first shown in Ryzhov (2016).

3.2. Analysis of PE, SR and CR

We denote by Jt, et, and rt the estimated best arm, PE, and
SR after round t, t = 1, . . . , n. With Theorem 3.1, we can
characterize the worst-case performance of the PE and SR
for the KG algorithm.
Theorem 3.2. Under the KG algorithm, ∃T > T0, ∀t > T ,

• for PE,

et ≤
σb

√
2
(

1 +
∑
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• for SR,
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where q(·), ρ
i,b,t

, and ρi,b,t are from Proposition 3.2,
δmin = min {|µi1 − µi2 | > 0 |i1 6= i2 }.

We can also derive the lower bounds of PE and SR. They
show the best performance the KG algorithm can possibly
achieve.

Proposition 3.3. Under the KG algorithm, ∃T > T0, ∀t >
T ,

• for PE,

et ≥
[1−q( 3

4 t)]
2k

2π minj 6=b
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• for SR,
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where q(·), ρ
i,b,t

, and ρi,b,t are from Proposition 3.2.

In addition to the PE and SR, we characterize the perfor-
mance of the KG algorithm for the MAB problem, under
the measure of CR. We denote by Rt the CR after round t,
t = 1, . . . , n.

Theorem 3.3. Under the KG algorithm, the following state-
ments hold:

• ∃T > T0, after round t > T ,

Rt <

∑
i 6=b (µb − µi) ρi,b,t
1 +

∑
i 6=b ρi,b,t

t+ k
∑
i 6=b

(µb − µi) q
(

3

4
t

)
t.

• limt→∞
Rt
t =

∑
i6=b σi

σb
µb−maxj 6=b µj

+
∑
i6=b

σi
µb−µi

.

where q(·), ρ
i,b,t

, and ρi,b,t are from Proposition 3.2.

Theorem 3.2, Proposition 3.3, and Theorem 3.3 show that
the PE and SR of the KG algorithm converge exponentially
fast to zero while CR increases linearly with the number
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of rounds t. This result aligns with the theoretical find-
ings in Bubeck et al. (2009) that an algorithm with a linear
growth under CR will have PE and SR converging to zero
exponentially fast at best.
Remark 3.1. Theorem 3.3 shows that CR of the KG algo-
rithm approximately demonstrates a linear increase with
the round index t. It is suboptimal compared to the opti-
mal logarithmic increasing rate of CR (Burnetas & Kate-
hakis, 1997; Auer et al., 2002). This is reasonable, because
the KG algorithm seeks to identify the best arm after n
rounds, and was not designed to minimize the cumulative
cost incurred by sampling in each round. If we want to
modify the KG algorithm for CR to achieve the logarith-
mic increasing rate, a possible way is to change the ac-
quisition function vKG

i,t from ζi,tf
(
− |θi,t−maxj 6=i θj,t|

ζi,t

)
to

ζi,tf
(
− |θi,t−maxj θj,t|

ζi,t

)
. Subsequent theoretical develop-

ment can be made by following similar discussion as used
in the proof of Proposition 5 of Ryzhov (2016). Detailed
analysis of it is out of scope for this paper. �
Remark 3.2. The structure of the KG algorithm can accom-
modate other sub-Gaussian distributions such as Bernoulli
and uniform distributions. Although expressions of the
acquisition function vKG

i,t for these distributions could be
different, the general analysis framework in our paper can
be well applied to these cases. In this research, we have
assumed that the variances of the normal reward distribu-
tions are known. If we want to relax this setting to allow
unknown variances, the analysis will be very difficult. In
this case, the update of the posterior distribution in (1) and
(2) becomes different, and there lack effective techniques to
quantify the uncertainty brought by the unknown variances.
�

3.3. Alternative Analysis of PE and SR

PE and SR are two primary performance measures for the
KG algorithm. However, the upper and lower bounds of
them (Theorem 3.2 and Proposition 3.3) hold only when
t > T for some random quantity Twhich is not computable.
Therefore, it is not clear when the bounds become valid.
This is a drawback of those theoretical results.

To resolve it, a remedy is to avoid calculating T and im-
pose fixed lower bounds on the sampling rates of the arms,
i.e., αi,n ≥ α0 for all i = 1, 2, . . . , k, where α0 is a pre-
specified constant with 0 < α0 <

1
k . Note that this require-

ment can be easily achieved by adding an initial sampling
stage for the KG algorithm. By setting n0 = bα0nc, in the
initial sampling stage, kn0 rounds are separated from the
budget of n rounds, and each arm is pulled n0 times. Then,
the mean and variance of the prior distribution correspond-
ing to each arm can be computed by use of the rewards
observed in this initial sampling stage. In a similar setting,
Wu & Zhou (2018) analyzed the performance of the optimal

computing budget allocation algorithms on the PE and SR.
Under this setting, the PE and SR are guaranteed to expo-
nentially converge to zero as n→∞. Below, we formally
show the upper and lower bounds on the PE and SR of the
KG algorithm.

Theorem 3.4. Under the KG algorithm, the following state-
ments hold for ∀n ≥ kn0:

• for PE,

min
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• for SR,
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4. Experiments
In this section, we first numerically show the convergence
behavior of the KG algorithm and compare it with the
bounds we derive in Sections 3.1 and 3.2. The test is con-
ducted on the following two instances.

• Instance 1. We consider a set of ten arms
{1, 2, . . . , 10}. Set µi = 1 for i = 1, . . . , 9, µ10 = 2,
and σi = 1 for i = 1, . . . , 10. The best arm b = 10.

• Instance 2. We consider a set of ten arms
{1, 2, . . . , 10}. Set µi = 1 and σi = 1 for i =
1, . . . , 5, µi = 2 and σi = 2 for i = 6, . . . , 9, µ10 = 3
and σ10 = 3. The best arm b = 10.
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The numerical results are shown in Figures 1-4. At the
beginning, the algorithm pulls each arm for five times to
obtain the initial estimates of the mean rewards of the arms.
Figures 1 and 2 are about instance 1. Figure 1 shows the
sampling rates of three selected arms (arms 1, 5, 10) of the
KG algorithm (in blue) as the number of rounds t increases
and the bounds of them (in black) derived in Theorem 3.1.
Figure 2 shows the three performance measures PE, SR, and
CR of the algorithm (in blue), and the bounds of them (in
black) derived in Theorem 3.2, Proposition 3.3 and Theorem
3.3. Note that the three measures are shown on the scale
of − 1

t log (et), − 1
t log (rt) and Rt

t , and their bounds are
transformed in the same way. Figures 3 and 4 show the
same results for instance 2.

Figure 1. Sampling rates of the three selected arms and their upper
and lower bounds for instance 1.

It is observed that the sampling rates of the selected arms
and the three performance measures are well constrained
by their theoretical upper bounds and lower bounds. For
the sampling rates, the bounds are tighter on the best arm,
and are looser on the non-best arms. For the three measures,
− 1
t log (et) and − 1

t log (rt) and their bounds have very mi-
nor difference. Rt

t converges to a different value, but the
convergence patterns of it and its bounds are similar to those
of − 1

t log (et) and − 1
t log (rt).

Next, we evaluate the influence of the parameters of the
problem instances to the bounds of the sampling rates. The
numerical test is conducted on the following three instances.

• Instance 3. We consider a set of ten arms {1, . . . , 10}.
Set µi = 5 for i = 1, . . . , 9, µ10 = 10, and σi = 1 for
i = 1, . . . , 10. The best arm b = 10.

• Instance 4. We consider a set of ten arms {1, . . . , 10}.
Set µi = 1 for i = 1, . . . , 9, µ10 = 2, and σi = 2 for
i = 1, . . . , 10. The best arm b = 10.

• Instance 5. We consider a set of twenty arms
{1, . . . , 20}. Set µi = 1 for i = 1, . . . , 19, µ20 = 2,
and σi = 1 for i = 1, . . . , 20. The best arm b = 20.

Figure 2. PE, SR, CR, and their upper and lower bounds for in-
stance 1.

Figure 3. Sampling rates of the three selected arms and their upper
and lower bounds for instance 2.

Figure 4. PE, SR, CR, and their upper and lower bounds for in-
stance 2.

The numerical results are shown in Figures 5-7.

Comparing Figure 5 with Figure 1 (instances 3 and 1), we
can see that in Figure 5, the ranges of variations are nar-
rower, and the upper and lower bounds of the sampling rates
are tighter. Since instance 3 has a larger gap in means be-
tween the arms than instance 1, it suggests that increasing
this gap tends to tighten the bounds of the sampling rates.
Comparing Figure 6 with Figure 1 (instances 4 and 1), we
can see that in Figure 6, the ranges of variations are slightly
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Figure 5. Sampling rates of the three selected arms and their upper
and lower bounds for instance 3.

wider, and the upper and lower bounds of the sampling rates
are looser. Since in instance 4, variances of each arm are
larger than those in instance 1, it suggests that increasing
the variances tends to loosen the bounds of the sampling
rates. Comparing Figure 7 with Figure 1 (instances 5 and 1),
we can see that the upper and lower bounds of the sampling
rates are both smaller in Figure 7 than in Figure 1, and the
bounds are slightly tighter in Figure 7. Since instance 5 has
more arms than instance 1, it suggests that increasing the
number of arms tends to tighten the bounds of the sampling
rates.

Figure 6. Sampling rates of the three selected arms and their upper
and lower bounds for instance 4.

5. Conclusions and Discussion
The KG algorithm is a popular and effective algorithm for
the BAI problem, but existing theoretical treatment to it
is mostly limited to its asymptotic characteristics. In this
paper, we explore the finite-time performance of the KG
algorithm. We consider the measures of the probability of
error and simple regret in the BAI problem and the measure
of cumulative regret in the MAB problem, and derive bounds
of these measures. At last, these bounds are illustrated using
numerical examples.

Our analysis can serve as the ground for future research on

Figure 7. Sampling rates of the three selected arms and their upper
and lower bounds for instance 5.

the KG algorithm and BAI. In the literature, the KG algo-
rithm has been extended to solve other types of sequential de-
cision problems, such as the multi-objective MAB (Yahyaa
et al., 2014), parallel BAI (Wu & Frazier, 2016), and contex-
tual bandits (Ding et al., 2021). In addition, there are some
other BAI algorithms that share similar mechanisms and
structures as KG, e.g., the probability improvement (Kush-
ner, 1964), expected improvement (Jones et al., 1998), etc.
The analysis in this research might be extended to study
the performance of these KG-type and improvement-based
algorithms. In addition, the validity of the bounds of PE, SR
and CR in Section 3.2 highly depends on quantity T which
is difficult to compute. Therefore, it is an important future
research direction to study how to quantify T .
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A.1. Proof of Lemma 3.2

Notice that Ŷm ∼ N
(
µ, σ

2

m

)
. Let Z =

√
m(Ŷm−µ)

σ ∼ N (0, 1). For the probability density function φ(x) of the standard
normal distribution and ∀ε ≥ 0,

P
(
Z ≥

√
mε

σ

)
≤ σ√

mε

∫ +∞

√
mε
σ

zφ(z)dz = − σ√
mε

∫ +∞

√
mε
σ

φ′(z)dz =
σ√
mε

φ

(√
mε

σ

)
≤ σ√

mε
exp

{
−mε

2

2σ2

}
.

By symmetry, it holds that

P
(
|Z| ≥

√
mε

σ

)
≤ 2σ√

mε
exp

{
−mε

2

2σ2

}
,

i.e., P
(∣∣∣Ŷm − µ∣∣∣ ≥ ε) ≤ 2σ√

mε
exp

{
−mε

2

2σ2

}
. �

A.2. Proof of Lemma 3.3
Notice that f(−x) > φ(x)

x3 holds based on Lemma 4 of Qin et al. (2017). According to Small (2010),

1− Φ(x)

φ(x)
>

1

x
− 1

x3

for ∀x > 0. Then,

f(−x) < φ(x)− x
(

1

x
− 1

x3

)
φ(x) =

φ(x)

x2
.

�

A.3. Proof of Proposition 3.1

Denote by At,τ =
{
i
∣∣∣Ni,t < τ

7
8

}
, Bt,τ =

{
i
∣∣∣Ni,t < τ

3
4

}
, Āt,τ = {1, . . . , k} \At,τ , B̄t,τ = {1, . . . , k} \Bt,τ , ∀t ∈ N,

∀τ ∈ R+. Without loss of generality, we assume that b = 1 throughout the proof. Let ̂t denote the arm with the j-th largest
estimated mean in round t, j ∈ {1, . . . , k}, ∀t ∈ N.

We first consider the scenario of k ≥ 4. The proof is divided into three stages:

1. Prove that for τ1 = max

{(
2
√

2σmax(δmax+2σmaxW )
σminδmin

)8

,
(

4σmaxW
δmin

)8
}

, ∀τ ≥ τ1, ∀t ≤ kτ , if Bt,τ 6= ∅, then It ∈ At,τ .

Equivalently, we prove by contradiction that for ∀τ ≥ τ1, ∀t ≤ kτ , if It ∈ Āt,τ , then Bt,τ = ∅. To this end, we first
prove by contradiction that ̂t ∈ Bt,τ in an ascending order of j.

(1) Suppose that ∃τ0 > τ1, ∃t0 ≤ kτ0, 1̂t0 ∈ Bt0,τ0 .
(1.1) If It0 = 1̂t0 , then 1̂t0 ∈ Āt0,τ0 . It contradicts that 1̂t0 ∈ Bt0,τ0 . So 1̂t0 /∈ Bt0,τ0 in this case.
(1.2) If It0 6= 1̂t0 , for τ0 > τ1,

vKG
1̂t0 ,t0

>
σ1̂t0√

τ
3
4

0

(
τ

3
4

0 + 1
)f
(
θ2̂t0 ,t0

− θ1̂t0 ,t0

σ1̂t0

√
τ

3
4

0

(
τ

3
4

0 + 1
))

>
σ1̂t0√
2τ

3
4

0

f

(
θ2̂t0 ,t0

− θ1̂t0 ,t0

σ1̂t0

√
2τ

3
4

0

)
>
σIt0

τ
7
8

0

f

(
θIt0 ,t0 − θ1̂t0 ,t0

σIt0
τ

7
8

0

)

>
σIt0√

τ
7
8

0

(
τ

7
8

0 + 1
)f
(
θIt0 ,t0 − θ1̂t0 ,t0

σIt0

√
τ

7
8

0

(
τ

7
8

0 + 1
))
≥ vKG

It0 ,t0
.
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The first and second inequalities hold because f(x) is monotone increasing with respect to x andN1̂t0 ,t0
< τ

3
4

0 .

The third inequality holds because τ0 >
16σ8

max

σ8
min

and θ2̂t0 ,t0
≤ θIt0 ,t0 . The last inequality holds because

f(x) is monotone increasing with respect to x and NIt0 ,t0 ≥ τ0. Notice that vKG
1̂t0 ,t0

> vKG
It0 ,t0

contradicts the

definition of It0 . So 1̂t0 ∈ B̄t0,τ0 .
(2) Suppose that ∃τ0 > τ1, ∃t0 ≤ kτ0, 2̂t0 ∈ Bt0,τ0 .

(2.1) If It0 = 2̂t0 , then 2̂t0 ∈ Āt0,τ0 . It contradicts that 2̂t0 ∈ Bt0,τ0 . So 2̂t0 /∈ Bt0,τ0 in this case.
(2.2) If It0 = 1̂t0 , for τ0 > τ1,

vKG
2̂t0 ,t0

>
σ2̂t0√
2τ

3
4

0

f

(
θ2̂t0 ,t0

− θ1̂t0 ,t0

σ2̂t0

√
2τ

3
4

0

)
>
σ1̂t0

τ
7
8

0

f

(
θ2̂t0 ,t0

− θ1̂t0 ,t0

σ1̂t0

τ
7
8

0

)
> vKG

1̂t0 ,t0
.

It contradicts the definition of It0 = 1̂t0 . So 2̂t0 /∈ Bt0,τ0 in this case.
(2.3) If It0 6= 1̂t0 , 2̂t0 , for τ0 > τ1, following similar discussion as in Case (1.2),

vKG
2̂t0 ,t0

>
σ2̂t0√
2τ

3
4

0

f

(
θIt0 ,t0 − θ1̂t0 ,t0

σ2̂t0

√
2τ

3
4

0

)

>
σIt0√

τ
7
8

0

(
τ

7
8

0 + 1
)f
(
θIt0 ,t0 − θ1̂t0 ,t0

σIt0

√
τ

7
8

0

(
τ

7
8

0 + 1
))
≥ vKG

It0 ,t0
.

It contradicts the definition of It0 . So 2̂t0 ∈ B̄t0,τ0 .
(3) Suppose that ∃τ0 > τ1, ∃t0 ≤ kτ0, ̂t0 ∈ Bt0,τ0 where j ∈ {3, . . . , k − 1}.

(3.1) If It0 = ̂t0 , then ̂t0 ∈ Āt0,τ0 . It contradicts that ̂t0 ∈ Bt0,τ0 .
(3.2) If It0 = 1̂t0 , for τ0 > τ1,

vKG
̂t0 ,t0

>
σ̂t0√

τ
3
4

0

(
τ

3
4

0 + 1
)f
(
θ̂t0 ,t0 − θ1̂t0 ,t0

σ̂t0

√
τ

3
4

0

(
τ

3
4

0 + 1
))

>
σ̂t0√
2τ

3
4

0

f

(
2δmax + 4σmaxW

δmin

θ2̂t0 ,t0
− θ1̂t0 ,t0

σ̂t0

√
2τ

3
4

0

)

>
σ1̂t0

τ
7
8

0

f

(
θ2̂t0 ,t0

− θ1̂t0 ,t0

σ1̂t0

τ
7
8

0

)

>
σ1̂t0√

τ
7
8

0

(
τ

7
8

0 + 1
)f
(
θ2̂t0 ,t0

− θ1̂t0 ,t0

σ1̂t0

√
τ

7
8

0

(
τ

7
8

0 + 1
))
≥ vKG

1̂t0 ,t0
.

The second inequality holds because
∣∣∣θ̂t0 ,t0 − θ1̂t0 ,t0

∣∣∣ < δmax + 2σmaxW and
∣∣∣θ2̂t0 ,t0

− θ1̂t0 ,t0

∣∣∣ > δmin

2

when τ0 > max

{
16,
(

4σmaxW
δmin

)8
}

, which results from Lemma 3.1. The third inequality holds because f(x)

is monotone increasing with respect to x and τ0 >
(

2
√

2σmax(δmax+2σmaxW )
σminδmin

)8

. Notice that vKG
1̂t0 ,t0

> vKG
It0 ,t0

contradicts the definition of It0 . So ̂t0 /∈ Bt0,τ0 in this case.

(3.3) If It0 ∈
{
ĵ′t0

∣∣∣ j′ = 2, . . . , j − 1
}

, for τ0 > τ1, following similar discussion as in Case (3.2),

vKG
̂t0 ,t0

>
σ̂t0√
2τ

3
4

0

f

(
2δmax + 4σmaxW

δmin

θIt,t0 − θ1̂t0 ,t

σ2̂t0

√
2τ

3
4

0

)
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>
σIt0√

τ
7
8

0

(
τ

7
8

0 + 1
)f
(
θIt0 ,t0 − θ1̂t0 ,t0

σIt0

√
τ

7
8

0

(
τ

7
8

0 + 1
))
≥ vKG

It0 ,t0
.

It contradicts the definition of It0 . So ̂t0 /∈ Bt0,τ0 in this case.

(3.4) If It0 ∈
{
ĵ′t0

∣∣∣ j′ = j + 1, . . . , k
}

, for τ0 > τ1, following similar discussion as in Case (1.2),

vKG
k̂t0 ,t0

>
σk̂t0√
2τ

3
4

0

f

(
θIt0 ,t0 − θ1̂t0 ,t0

σk̂t0

√
2τ

3
4

0

)

>
σIt0√

τ
7
8

0

(
τ

7
8

0 + 1
)f
(
θIt0 ,t0 − θ1̂t0 ,t0

σIt0

√
τ

7
8

0

(
τ

7
8

0 + 1
))
≥ vKG

It0 ,t0
.

It contradicts the definition of It0 . So ̂t0 ∈ B̄t0,τ0 .
(4) Suppose that ∃τ0 > τ1, ∃t0 ≤ kτ0, k̂t0 ∈ Bt0,τ0 .

(4.1) If It0 = k̂t0 , then k̂t0 ∈ Āt0,τ0 . It contradicts that k̂t0 ∈ Bt0,τ0 .
(4.2) If It0 6= k̂t0 , following similar discussion as in Cases (3.2) and (3.3), we can prove that k̂t0 ∈ Bt0,τ0 leads to

contradiction to the definition of It0 . So k̂t0 ∈ B̄t0,τ0 .
Thus, ∀τ ≥ τ1, ∀t ≤ kτ , if It ∈ Āt,τ , then Bt,τ = ∅. That is, ∀τ ≥ τ1, ∀t ≤ kτ , if Bt,τ 6= ∅, then It ∈ At,τ . In
the scenario of k = 2, we can follow similar discussion as in Cases (1) and (2) to show that ∀τ ≥ τ1, ∀t ≤ kτ , if
Bt,τ 6= ∅, then It ∈ At,τ . In the scenario of k = 3, we can follow similar discussion as in Cases (1), (2) and (4) to
show that ∀τ ≥ τ1, ∀t ≤ kτ , if Bt,τ 6= ∅, then It ∈ At,τ .

2. Prove by contradiction that for τ2 = max
{

256k8, τ1
}

, ∀τ > τ2, Bbkτc,τ = ∅, where bxc denotes the largest integer
no greater than x. Suppose that ∃τ0 > τ2, Bbkτ0c,τ0 6= ∅. Then, At,τ0 6= ∅ and Bt,τ0 6= ∅ for t = 1, . . . , bkτ0c. Notice

that bτ0c − 1 ≥ kτ
7
8

0 for τ0 > τ2. It implies that at least one arm is pulled at least τ
7
8

0 times before round bτ0c. That is,∣∣Abτ0c,τ0∣∣ ≤ k − 1, where |S| for the set S denotes the number of elements in the set S. For ∀j ∈ {2, . . . , k}, ∀l ∈
{b(j − 1) τ0c , . . . , bjτ0c − 1}, Bl,τ0 6= ∅. Following similar discussion as in Stage 1, we can prove that It ∈ At,τ0 for

∀l ∈ {b(j − 1) τ0c , . . . , bjτ0c − 1}, τ0 > τ1, and thus
∑
i∈Ab(j−1)τ0c,τ0

(
Ni,bjτ0c −Ni,b(j−1)τ0c

)
≥ bτ0c−1 ≥ kτ

7
8

0 .

It indicates that at least one arm in Ab(j−1)τ0c,τ0 is pulled at least τ
7
8

0 times during rounds b(j − 1) τ0c , · · · , bjτ0c − 1,
j ∈ {2, . . . , k}. Then, Abkτ0c,τ0 = ∅. It contradicts that At,τ0 6= ∅ for t = bkτ0c, which implies that ∀τ > τ2,
Bbkτc,τ = ∅.

3. Let τ = t
k . We have Bt, tk =

{
i
∣∣∣Ni,t < ( tk) 3

4

}
. Following similar discussion as in Stage 2, we can prove that for

∀t > kτ2, Bt, tk = ∅, that is, Ni,t ≥
(
t
k

) 3
4 for ∀i ∈ {1, . . . , k}.

�

A.4. Proof of Proposition 3.2
Recall that for ∀t, ∀i, µ̂i,t = 1

Ni,t

∑t
s=1 1 {Is = i}Xi,s denotes the estimated mean reward of arm i after round t. Under

the frequentist setting, we treat µ̂i,t as a normal random variable. According to Lemma 3.2 and Proposition 3.1, for ∀t > T0,
∀i,

P

(
|µ̂i,s − µi| ≥

√
ks−

1
4

2

)
≤ 4σmaxk

− 1
8 s−

1
8 exp

{
− k

1
4 s

1
4

8σ2
max

}
, q(s).

Then, ∃T1 = max
{
T0,

16k2

δ4min

}
, for ∀t > T1, with a probability of at least 1 − q(t), |µ̂i,t − µi| < δmin

2 for ∀i, that is, the

true best arm b can be correctly selected under the KG algorithm. In addition, ∃T2 = max

{
T1, 16δ−4

min, k
(

4σmax

δmin

) 4
3

}
, for

∀i 6= b, ∀t > T2, with a probability of at least 1− q(t), |µ̂b,t − µ̂i,t| > δmin

2 , |µ̂b,t−µ̂i,t|σi

√
Ni,t (Ni,t + 1) > 2.
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In the analysis below, we replace θi,t in (6) by µ̂i,t, ∀i, ∀t. According to Lemma 3.3, ∃T3 = max

{
T2, k

(
4σ3

max

δ2min

) 4
9

}
, for

∀i 6= b, ∀t > T3, with a probability of at least [1− q(t)]k,

vKG
i,t >

σ4
i

(µ̂b,t − µ̂i,t)3N
−2
i,t (Ni,t + 1)

−2
φ

(
µ̂i,t − µ̂b,t

σi

√
Ni,t (Ni,t + 1)

)

>
1√
2π

exp

−
(
µb − µi + t−

1
4

)2

2σ2
i

(Ni,t + 1)
2

+ ln

 σ4
i(

µb − µi + t−
1
4

)3

(Ni,t + 1)
4




>
1√
2π

exp

−
(
µb − µi + t−

1
4

)2

2σ2
i

(Ni,t + 1)
2

+ ln

(
8σ4

min

27δ3
max (t+ 1)

4

)
>

1√
2π

exp

−

(
µb − µi + t−

1
4

)2

2σ2
i

+
4k√
t

+
kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

t

 (Ni,t + 1)
2

 , vKG
i,t , (A.1)

vKG
i,t <

σ3
i

(µ̂b,t − µ̂i,t)2N
− 3

2
i,t (Ni,t + 1)

− 3
2 φ

(
µ̂i,t − µ̂b,t

σi

√
Ni,t (Ni,t + 1)

)

<
1√
2π

exp

−
(
µb − µi − t−

1
4

)2

2σ2
i

N2
i,t + ln

 σ3
iN
−3
i,t(

µb − µi − t−
1
4

)2




<
1√
2π

exp

−
(
µb − µi − t−

1
4

)2

2σ2
i

N2
i,t

 , vKG
i,t . (A.2)

Similarly, for ∀i 6= b, ∀t > T3, with a probability of at least [1− q(t)]k,

vKG
b,t >

1√
2π

exp

−

(
µb −maxj 6=b µj + t−

1
4

)2

2σ2
b

+
4k√
t

+
kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

t

 (Nb,t + 1)
2

 , vKG
b,t , (A.3)

vKG
b,t <

1√
2π

exp

−
(
µb −maxj 6=b µj − t−

1
4

)2

2σ2
b

N2
b,t

 , vKG
b,t . (A.4)

For ∀i, denote ti = min {s ≥ t |Is = i} and t̃i = max {s ≤ t |Is = i}. For ∀i1, i2, i1 6= i2, there exist two cases shown as
follows:

• When t ≤ ti1 < ti2 ,

Ni1,t̃i2
Ni2,t̃i2

+ 1
≤ Ni1,t
Ni2,t

≤
Ni1,ti1
Ni2,ti1

. (A.5)

• When t ≤ ti2 < ti1 ,

Ni1,ti2
Ni2,ti2

≤ Ni1,t
Ni2,t

≤
Ni1,t̃i1

+ 1

Ni2,t̃i1
. (A.6)
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We first focus on (A.5). In round ti, i 6= b, vKG
i,ti

> vKG
b,ti

, and thus vKG
i,ti > vKG

b,ti
. Based on (A.2) and (A.3), for ∀i 6= b,

∀ti > T3, with a probability of at least [1− q (ti)]
k,(

µb − µi − t
− 1

4
i

)2

2σ2
i

N2
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4
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)
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2
,

that is,
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<
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)
σi
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− 1

4
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
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4
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
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(
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4
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σi

µb − µi − t
− 1

4
i


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(
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
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, ρ(1)
i,b,t, (A.7)

The second inequality holds because Nb,ti ≥
(
ti
k

) 3
4 for ∀i. The last inequality holds because ti ≥ t for ∀i. Based on (A.5),

for ∀i 6= b, ∀t > T3, with a probability of at least [1− q(t)]k, Ni,tNb,t
< ρi,b,t.

In round t̃b, vKG
b,t̃b

> vKG
i,t̃b

, and thus vKG
b,t̃b

> vKG
i,t̃b

. Based on (A.1) and (A.4), for ∀i 6= b, ∀t̃b > T3, with a probability of at

least
[
1− q

(
t̃b
)]k

,(
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− 1
4

b
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
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. (A.8)

Notice that for ∀i 6= b,

ηt̃b =
8 + 8

√
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t̃
3
4

b +
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max

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

t̃
1
4

b +
8kσ2

max max
{

ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

+ 2

+

(
8

δmin
+

8
√

2kσmax

δmin

)
t̃
− 1

4

b +

16 + 32
√

2σmax + 32kσ2
max

δ2
min

+

4σmax

√
2kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δmin

 t̃
− 1

2

b

+

(
16σmax

√
2k + 32kσ2

max

)√
max

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

t̃
− 3

4

b +
8kσ2

max max
{

ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

t̃−1
b ,
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it holds that(
µb − µi − t̃

− 1
4

b

)2

2σ2
i

(
Ni,t̃b + ηt̃b

)2
>


(
µb −maxj 6=b µj + t̃

− 1
4

b

)2

2σ2
b

+
4k√
t̃b

+
kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

t̃b

(Nb,t̃b + 1
)2
.

Then, for t′ = min
{
s ≥ t̃b

∣∣Ni,s ≥ Ni,t̃b + ηt̃b ,∀i 6= b
}

, vKG
b,t̃b+1

> vKG
i,t′ for ∀i 6= b. It indicates that

t̃b + (k − 1)ηt ≥ t, (A.9)

where ηt > ηt̃b ,

ηt =
8 + 8

√
2kσmax

δmin
t
3
4 +

16 + 32
√

2σmax + 32kσ2
max

δ2
min

+

4σmax

√
2kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δmin

 t
1
2

+

(
16σmax

√
2k + 32kσ2

max

)√
max

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

t
1
4 +

8kσ2
max max

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

+ 2

+
8 + 8

√
2kσmax

δmin
+

16 + 32
√

2σmax + 32kσ2
max

δ2
min

+

4σmax

√
2kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δmin

+

(
16σmax

√
2k + 32kσ2

max

)√
max

{
ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

+
8kσ2

max max
{

ln
(

27δ3max

8σ4
min

)
, 0
}

δ2
min

.

Notice that ∃T4 > T3, ∀t > T4, t− (k − 1) ηt ≥ 3
4 t. Based on (A.8) and (A.9), for ∀i 6= b, ∀t > T4, with a probability of

at least
[
1− q

(
3
4 t
)]k

,

Ni,t̃b
Nb,t̃b + 1

>
µb −maxj 6=b µj −

(
3
4 t
)− 1

4(
1 +

(
3t
4k

)− 3
4

)2

σb


(
µb − µi +

(
3
4 t
)− 1

4

)2

σ2
i

+
16k√

3t
+

8kmax
{

ln
(

27δ3max

8σ4
min

)
, 0
}

3t


− 1

2

, ρ(1)
i,b,t

, (A.10)

In view of (A.5), (A.7), and (A.10), for ∀i 6= b, ∀t̃b > T4, with a probability of at least
[
1− q

(
3
4 t
)]k

,

ρ(1)
i,b,t

<
Ni,t
Nb,t

< ρ
(1)
i,b,t.

Next, we consider the case of (A.6). Following similar discussion as in the case of (A.5), we can derive that for ∀i 6= b,
∀t > T4, with a probability of at least

[
1− q

(
3
4 t
)]k

,

ρ(2)
i,b,t

<
Ni,t
Nb,t

< ρ
(2)
i,b,t,

where

ρ(2)
i,b,t

=
µb −maxj 6=b µj − t−

1
4(

1 +
(
t
k

)− 3
4

)
σb


(
µb − µi + t−

1
4

)2

σ2
i

+
8k√
t

+
2kmax

{
ln
(

27δ3max

8σ4
min

)
, 0
}

t


− 1

2

,
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ρ
(2)
i,b,t =

(
1 +

(
3t
4k

)− 3
4

)2

σi

µb − µi −
(

3
4 t
)− 1

4


(
µb −maxj 6=b µj +

(
3
4 t
)− 1

4

)2

σ2
b

+
16k√

3t
+

8kmax
{

ln
(

27δ3max

8σ4
min

)
, 0
}

3t


1
2

.

Denote by ρ
i,b,t

= min
{
ρ

(1)
i,b,t, ρ

(2)
i,b,t

}
, ρi,b,t = max

{
ρ

(1)
i,b,t, ρ

(2)
i,b,t

}
. For ∀i 6= b, ∀t > T4, with a probability of at least[

1− q
(

3
4 t
)]k

,

ρ
i,b,t

<
Ni,t
Nb,t

< ρi,b,t.

�

A.5. Proof of Theorem 3.1
Based on Proposition 3.2, for ∀t > T , with a probability of at least

[
1− q

(
3
4 t
)]k

,1 +
∑
j 6=b

ρ
i,b,t

Nb,t ≤
k∑
i=1

Ni,t ≤

1 +
∑
j 6=b

ρi,b,t

Nb,t.

Notice that αi,t =
Nb,t∑k
j=1Nj,t

Ni,t
Nb,t

for ∀i ∈ {1, . . . , k}. Then,

1

1 +
∑
i 6=b ρi,b,t

≤ αb,t ≤
1

1 +
∑
i 6=b ρi,b,t

,
ρ
i,b,t

1 +
∑
j 6=b ρj,b,t

≤ αi,t ≤
ρi,b,t

1 +
∑
j 6=b ρj,b,t

, ∀i 6= b.

�

A.6. Proof of Corollary 3.1
For ∀i, denote by Li,s = 1 {Is = i}, Mi,s = E [Li,s |Li,1, . . . , Li,s−1 ] − Li,s, Ki,t =

∑t
s=1Mi,s = E [Ni,t] − Ni,t,

Vt =
∑t
s=1 Var [Ls |L1, . . . , Ls−1 ], M̃i,s = −Mi,s, K̃i,t =

∑t
s=1 M̃i,s = Ni,t − E [Ni,t]. Notice that Vt ≤∑t

s=1 P (Ls |L1, . . . , Ls−1 ) = E [Ni,t]. According to Lemma 3.4, P
(
Ni,t ≤

(
1− t− 1

8

)
E [Ni,t]

)
≤ exp

{
− E[Ni,t]

2t
1
4 + 2

3 t
1
8

}
,

P
(
Ni,t ≥

(
1 + t−

1
8

)
E [Ni,t]

)
≤ exp

{
− E[Ni,t]

2t
1
4 + 2

3 t
1
8

}
. Then, it holds almost surely that ∀i,

(
1− exp

{
− 1

3
√
k
t
1
4

})(
1− t− 1

8

)
E [Ni,t] + exp

{
−1

2
t
3
4

}
(A.11)

<

[
1− exp

{
− E [Ni,t]

2t
1
4 + 2

3 t
1
8

}](
1− t− 1

8

)
E [Ni,t] + exp

{
− E [Ni,t]

2t
1
4 + 2

3 t
1
8

}

≤Ni,t ≤

[
1− exp

{
− E [Ni,t]

2t
1
4 + 2

3 t
1
8

}](
1 + t−

1
8

)
E [Ni,t] + t exp

{
− E [Ni,t]

2t
1
4 + 2

3 t
1
8

}

<

(
1− exp

{
−1

2
t
3
4

})(
1 + t−

1
8

)
E [Ni,t] + t exp

{
− 1

3
√
k
t
1
4

}
. (A.12)

According to Proposition 3.2, for arm b,[
1− q

(
3
4 t
)]k

1 +
∑
i6=b ρi,b,t

t (A.13)

<

[
1− q

(
3

4
t

)]k
E

[
Nb,t

∣∣∣∣∣Nb,t ≥ t

1 +
∑
j 6=b ρj,b,t

]
+

[
q

(
3

4
t

)]k
E

[
Nb,t

∣∣∣∣∣Nb,t < t

1 +
∑
j 6=b ρj,b,t

]
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≤E [Nb,t]

≤E

[
Nb,t

∣∣∣∣∣Nb,t ≤ t

1 +
∑
j 6=b ρj,b,t

]
+ kq

(
3

4
t

)
E

[
Nb,t

∣∣∣∣∣Nb,t > t

1 +
∑
j 6=b ρj,b,t

]

<
t

1 +
∑
j 6=b ρj,b,t

+ kq

(
3

4
t

)
t. (A.14)

Meanwhile, for ∀i 6= b,[
1− q

(
3
4 t
)]k

ρ
i,b,t

1 +
∑
j 6=b ρj,b,t

t (A.15)

<

[
1− q

(
3

4
t

)]k
E

[
Ni,t

∣∣∣∣∣Ni,t ≥ ρ
i,b,t

t

1 +
∑
j 6=b ρj,b,t

]
+

[
q

(
3

4
t

)]k
E

[
Ni,t

∣∣∣∣∣Ni,t < ρ
i,b,t

t

1 +
∑
j 6=b ρj,b,t

]

≤E [Ni,t] ≤ E

[
Ni,t

∣∣∣∣∣Ni,t ≤ ρi,b,tt

1 +
∑
j 6=b ρj,b,t

]
+ kq

(
3

4
t

)
E

[
Ni,t

∣∣∣∣∣Ni,t > ρi,b,tt

1 +
∑
j 6=b ρj,b,t

]

<
ρi,b,tt

1 +
∑
j 6=b ρj,b,t

+ kq

(
3

4
t

)
t. (A.16)

Thus, for ∀i 6= b, P
(

limt→∞
Ni,t
Nb,t

= σi
σb

µb−maxj 6=b µj
µb−µi

)
= 1 can be obtained by combining (A.11), (A.12) with (A.13),

(A.14). Similarly, for ∀i1, i2 6= b, P
(

limt→∞
Ni1,t
Ni2,t

=
σi1
σi2

µb−µi2
µb−µi1

)
= 1 can be obtained by combining (A.11), (A.12) with

(A.15), (A.16). �

A.7. Proof of Theorem 3.2
Suppose that all the random variables are defined on a probability space (Ω,F ,P). Denote by ω any sample path in Ω.
According to the Strong Law of Large Numbers, there exists a measurable set Ω1 ⊆ Ω such that P (ω ∈ Ω1) = 1, µ̂i,t → µi

as t→∞, µ̂i1,t1 6= µ̂i2,t2 for all i1 6= i2 and t1, t2 ≥ 1, and Ni,t ≥
(
t
k

) 3
4 for ∀ω ∈ Ω1, ∀i.

Note that Jt , Jt (ω), µ̂i,t , µ̂i,t (ω), Ni,t , Ni,t (ω) for ∀ω ∈ Ω, ∀i, ∀t. We use Jt, µ̂i,t and Ni,t in the proof below.

et =P (Jt 6= b|ω ∈ Ω1)P (ω ∈ Ω1) + P (Jt 6= b|ω ∈ Ω \ Ω1)P (ω ∈ Ω \ Ω1)

=P (Jt 6= b|ω ∈ Ω1) . (A.17)

According to Theorem 3.1, ∃T > T0, for ∀t > T , there exists a measurable set Ω2,t ⊆ Ω1 such that P (ω ∈ Ω2,t) ≥[
1− q

(
3
4 t
)]k

, and for ∀ω ∈ Ω2,t,

t

1 +
∑
i 6=b ρi,b,t

≤ Nb,t ≤
t

1 +
∑
i 6=b ρi,b,t

,

ρ
i,b,t

t

1 +
∑
j 6=b ρj,b,t

≤ Ni,t ≤
ρi,b,tt

1 +
∑
j 6=b ρj,b,t

,∀i 6= b.

(A.18)

Inspired by Wu & Zhou (2018), under the KG algorithm, for ∀ω ∈ Ω1, ∀t, if the event

Et =

{
µ̂b,t > µb −

δmin

2

}⋂⋂
i 6=b

{
µ̂i,t ≤ µb −

δmin

2

}
occurs in round t, then the correct selection occurs in round t regardless of the exact values of Ni,t’s. For ∀t, denote by Ect
the complementary event of Et. Based on (A.17),

et ≤P (Ect |ω ∈ Ω1) ≤ P
(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω1

)
+
∑
i 6=b

P
(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω1

)
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=P
(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω2,t

)
P (ω ∈ Ω2,t) + P

(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω1 \ Ω2,t

)
P (ω ∈ Ω1 \ Ω2,t)

+
∑
i6=b

[
P
(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω2,t

)
P (ω ∈ Ω2,t) + P

(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω1 \ Ω2,t

)
P (ω ∈ Ω1 \ Ω2,t)

]
(A.19)

≤P
(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω2,t

)
+ P

(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω1 \ Ω2,t

)
P (ω ∈ Ω1 \ Ω2,t)

+
∑
i6=b

[
P
(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω2,t

)
+ P

(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω1 \ Ω2,t

)
P (ω ∈ Ω1 \ Ω2,t)

]
, (A.20)

where the second inequality holds based on the Bonferroni inequality (Galambos, 1977), (A.19) holds based on the law of
total probability, (A.20) holds because P (ω ∈ Ω2,t) ≤ 1 for ∀t.

For ∀ω ∈ Ω1, ∀t, if given the normal rewards XI1,1, . . . , XIt,t and Ni,t = ni for ∀i, µ̂i,t follows a normal distribution with

mean µi and variance σ2
i

ni
(Dekking et al., 2005). Then,

P
(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω1

)
=Φ

(
δmin

2σb

√
nb

)
≤

√
2σb√

πnbδmin
exp

{
−δ

2
min

8σ2
b

ni

}
, (A.21)

P
(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω1

)
=Φ

(
µb − µi − δmin

2

σi

√
ni

)

≤ σi√
2πni

(
µb − µi − δmin

2

) exp

{
−
(
µb − µi − δmin

2

)2
2σ2

i

ni

}
, (A.22)

where Φ(·) is the cumulative density function of standard normal distribution, the inequalities in (A.21) and (A.22) hold
because according to Gordon (1941), ∀x > 0,

x√
2π (1 + x2)

exp

{
−x

2

2

}
≤ Φ(x) ≤ 1√

2πx
exp

{
−x

2

2

}
. (A.23)

By combining (A.18) with (A.21), (A.22), for ∀t > T ,

P
(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω2,t

)
≤
σb

√
2
(

1 +
∑
i 6=b ρi,b,t

)
δmin

√
πt

exp

− δ2
min

8σ2
b

(
1 +

∑
i 6=b ρi,b,t

) t
 , (A.24)

P
(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω2,t

)
≤

σi
√

1 +
∑
i 6=b ρi,b,t(

µb − µi − δmin

2

)√
2πρ

i,b,t
t

exp

−
(
µb − µi − δmin

2

)2
ρ
i,b,t

2σ2
i

(
1 +

∑
i 6=b ρi,b,t

) t
 . (A.25)

For ∀t, ∀ω ∈ Ω1 \ Ω2,t, it holds that Ni,t ≥
(
t
k

) 3
4 , ∀i. By combining it with (A.21), (A.22),

P
(
µ̂b,t ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω1 \ Ω2,t

)
≤
√

2k
3
8σb√

πδmint
3
8

exp

{
− δ2

min

8σ2
bk

3
4

t
3
4

}
, (A.26)

P
(
µ̂i,t > µb −

δmin

2

∣∣∣∣ω ∈ Ω1 \ Ω2,t

)
≤ k

3
8σi√

2πδmin

(
µb − µi − δmin

2

)
t
3
8

exp

{
−
(
µb − µi − δmin

2

)2
2σ2

i k
3
4

t
3
4

}
. (A.27)

In addition, for ∀t > T ,

P (ω ∈ Ω1 \ Ω2,t) = 1− P (ω ∈ Ω2,t) ≤ 1−
[
1− q

(
3

4
t

)]k
. (A.28)
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By combining (A.20), (A.24), (A.26), (A.25), (A.27) and (A.28), we can obtain the upper bound of et.

et ≤
σb

√
2
(

1 +
∑
i6=b ρi,b,t

)
δmin

√
πt

exp

− δ2
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(
1 +
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) t


+

√
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3
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3
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[
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[
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(
3

4
t
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3
4

t
3
4

}

+
∑
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∑
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(
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2πρ
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t
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(
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1 +
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

+
k

3
8σi

[
1−

[
1− q

(
3
4 t
)]k]

√
2πδmin

(
µb − µi − δmin

2

)
t
3
8

exp

{
−
(
µb − µi − δmin

2

)2
2σ2

i k
3
4

t
3
4

} .

(A.29)

Furthermore, following similar discussion as used in (A.17),

rt = E [µb − µJt |ω ∈ Ω1] . (A.30)

Based on similar discussion in Audibert et al. (2010), for ∀t,

δminP (Jt 6= b|ω ∈ Ω1)

≤E [µb − µJt |ω ∈ Ω1] =
∑
i 6=b

(µb − µi)P (Jt = i|ω ∈ Ω1) (A.31)

≤δmaxP (Jt 6= b|ω ∈ Ω1) .

By combining (A.17), (A.29) and (A.31), we can obtain the upper bound of rt.

rt ≤
δmaxσb

√
2
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i 6=b ρi,b,t
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
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}

+
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A.8. Proof of Proposition 3.3
Similar to the discussion in Section A.7, there exists a measurable set Ω1 ⊆ Ω such that P (ω ∈ Ω1) = 1, µ̂i,t → µi as

t→∞, µ̂i1,t1 6= µ̂i2,t2 for all i1 6= i2 and t1, t2 ≥ 1, and Ni,t ≥
(
t
k

) 3
4 for ∀ω ∈ Ω1, ∀i. In addition, ∃T > T0, for ∀t > T ,
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there exists a measurable set Ω2,t ⊆ Ω1 such that P (ω ∈ Ω2,t) ≥
[
1− q

(
3
4 t
)]k

, and for ∀ω ∈ Ω2,t, (A.18) holds. Notice
that under the KG algorithm, for ∀ω ∈ Ω1, ∀t, if there exists some j 6= b and the event

Ẽj,t =

{
µ̂j,t > µj +

δmin

2

}⋂{
µ̂b,t ≤ µj +

δmin

2

}
occurs in round t, then the false selection occurs in round t regardless of the exact values of Ni,t’s. Based on (A.17), ∃j 6= b,

et ≥P
(
Ẽj,t
∣∣∣ω ∈ Ω1

)
≥ P
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2
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)
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)
P (ω ∈ Ω2,t) + P

(
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(A.32)

≥P
(
µ̂j,t > µj +
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2

∣∣∣∣ω ∈ Ω2,t

)
P
(
µ̂b,t ≤ µj +

δmin

2

∣∣∣∣ω ∈ Ω2,t

)
[P (ω ∈ Ω2,t)]

2
, (A.33)

where (A.32) holds based on the law of total probability, (A.33) holds because P
(
µ̂j,t > µj + δmin

2

∣∣ω ∈ Ω1 \ Ω2,t

)
≥ 0,

P
(
µ̂b,t ≤ µj + δmin

2

∣∣ω ∈ Ω1 \ Ω2,t

)
≥ 0, P (ω ∈ Ω1 \ Ω2,t) ≥ 0. Similar to (A.24) and (A.25), we can derive that for

j 6= b, ∀t > T ,
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 , (A.34)
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∑
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 . (A.35)

By combining (A.33), (A.34) and (A.35), we can obtain the lower bound of et.
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[
1− q

(
3
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(A.36)

Furthermore, based on (A.31), E [µb − µJt |ω ∈ Ω1] ≥ δminP (Jt 6= b|ω ∈ Ω1). By combining it with (A.17) and (A.36),
we can obtain the lower bound of rt.
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A.9. Proof of Theorem 3.3
According to Bubeck & Cesa-Bianchi (2012), Page 9,

Rt =
∑
i 6=b

(µb − µi)E [Ni,t] . (A.37)

Combining (A.16) and (A.37),

Rt <
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1 +
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i 6=b ρi,b,t

t+ k
∑
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(

3

4
t

)
t.

According to Lebesgue’s dominated convergence theorem, for ∀i,
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t→∞

E
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t

]
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]
.

Based on Corollary 3.1, it holds that P
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A.10. Proof of Theorem 3.4
Similar to the discussion in Section A.7, there exists a measurable set Ω3 ⊆ Ω such that P (ω ∈ Ω3) = 1, µ̂i,t → µi as
t→∞, and µ̂i1,t1 6= µ̂i2,t2 for all i1 6= i2 and t1, t2 ≥ 1. Following similar discussion as used in (A.17), for ∀t,

et = P (Jt 6= b|ω ∈ Ω3) .

Under the KG algorithm, if the event En introduced in Section A.7 occurs in round n, then the correct selection occurs in
round n regardless of the exact values of Ni,n’s. Following similar discussion in Section A.7,

en ≤ P (Ecn|ω ∈ Ω3) ≤ P
(
µ̂b,n ≤ µb −

δmin

2

∣∣∣∣ω ∈ Ω3

)
+
∑
i 6=b

P
(
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2

∣∣∣∣ω ∈ Ω3

)
. (A.38)

Similar to the discussion in Section A.7, we can derive that if given Ni,n = ni, i = 1, . . . , k,

P
(
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. (A.40)

Notice that Ni,n ≥ n0 for ∀i, ∀n > kn0. By combining it with (A.38), (A.39), (A.40), and n0 = bα0nc,

en ≤
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In addition, if the event Ẽn introduced in Section A.8 occurs in round n, then the false selection occurs in round n regardless
of the exact values of Ni,n’s. Following similar discussion in Section A.8, ∃j 6= b,

en ≥ P
(
Ẽj,n
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)
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. (A.41)

Similar to the discussion in Section A.7, we can derive that if given Ni,n = ni, i = 1, . . . , k,
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By combining bα0nc ≤ Ni,n ≤ n with (A.41), (A.42) and (A.43),
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By following similar discussion in Sections A.7 and A.8, we can derive that
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