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Abstract

Recently, neural architectures with all Multi-layer
Perceptrons (MLPs) have attracted great research
interest from the computer vision community.
However, the inefficient mixing of spatial-channel
information causes MLP-like Vision Models to
demand tremendous pre-training on large-scale
datasets. This work solves the problem from a
novel knowledge distillation perspective. We pro-
pose a novel Spatial-channel Token Distillation
(STD) method, which improves the information
mixing in the two dimensions by introducing dis-
tillation tokens to each of them. A mutual in-
formation regularization is further introduced to
let distillation tokens focus on their specific di-
mensions and maximize the performance gain.
Extensive experiments on ImageNet for several
MLP-like architectures demonstrate that the pro-
posed token distillation mechanism can efficiently
improve the accuracy. For example, the proposed
STD boosts the top-1 accuracy of Mixer-S16
on ImageNet from 73.8% to 75.7% without any
costly pre-training on JFT-300M. When applied
to stronger architectures, e.g. CycleMLP-B1 and
CycleMLP-B2, STD can still harvest about 1.1%
and 0.5% accuracy gains, respectively.

1. Introduction

In the past few decades, convolutional neural networks
(CNNs; LeCun et al., 1989; Krizhevsky et al., 2012; He et al.,
2016) have in fact dominated computer vision (CV) tasks.
However, the recent advances of Transformers (Vaswani
et al., 2017; Devlin et al., 2018; Brown et al., 2020) in natu-
ral language processing (NLP) also impact CV researchers
to design pixel-level Transformers for vision tasks (Parmar
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Figure 1. Top-1 accuracy and FLOPs on ImageNet-1K of MLP-
like Vision Models distilled by STD (solid lines) compared to
state-of-the-art results (dotted lines).

et al., 2018; Hu et al., 2019; Ramachandran et al., 2019;
Zhao et al., 2020) and finally lead to patch-based Vision
Transformer (ViT; Dosovitskiy et al., 2021). ViT splits
an image into small patches and feeds them into several
stacked transformer blocks to obtain the final image classifi-
cation results. ViT and its variants have shown impressive
performance on ImageNet (Russakovsky et al., 2015) clas-
sification as well as downstream tasks like object detection
and segmentation.

Following this line, MLP-Mixer (Tolstikhin et al., 2021)
reconsiders the possibility of using pure multi-layer per-
ceptrons (MLPs) for vision tasks and builds the pure MLP
architecture by applying MLPs to both the spatial and chan-
nel dimensions of image patches, which are known as token
mixing and channel mixing, respectively. Despite the sim-
plicity of its architecture, MLP-Mixer is hard to obtain supe-
rior performance without costly pre-training on large-scale
datasets, such as ImageNet-21K and JFT-300M (Hinton
et al., 2015). For example, Mixer-S16 only obtains a 72.9%
top-1 accuracy when trained on ImageNet- 1k, which is still
slightly lower than that of current state-of-the-art architec-
tures. Therefore, there are many attempts to design novel
mixing methods (Hou et al., 2021; Touvron et al., 2021a;
Chen et al., 2021; Guo et al., 2022). However, they could
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introduce additional complexity to the models. For example,
Hou et al. (2021) permutates 3D matrices along different
axes and then flattens them into 2D; and Chen et al. (2021)
uses a stair-like operation implemented by deformable con-
volution, which is much more complex than pure MLPs.
Moreover, the mixing of spatial and channel information
has not been fully exploited, preventing current MLP-like
Vision Models from achieving higher performance.

In this work, we propose to improve the spatial and channel
mixing from a novel knowledge distillation (KD) perspec-
tive. To be specific, we design a special KD mechanism for
MLP-like Vision Models called Spatial-channel Token Dis-
tillation (STD), which improves the information mixing in
both the spatial and channel dimensions of MLP blocks. In-
stead of modifying the mixing operations themselves, STD
adds spatial and channel tokens to image patches. After
forward propagation, the tokens are concatenated for distil-
lation with the teachers’ responses as targets. Each token
works as an aggregator of its dimension. The objective of
them is to encourage each mixing operation to extract maxi-
mal task-related information from their specific dimension.
Besides, this manner also allows STD to be very flexible
and to be applied to different KD settings. It supports not
only single-teacher distillation and distillation of the last
layer but also multi-teacher distillation and distillation of
intermediate layers. A remaining obstacle is that the spatial
information and channel information are highly entangled
with each other in the image patches, which is contrary to
the goal of our distillation. To force the tokens to focus
on their specific dimensions, we further introduce a mutual
information (MI) regularization.

We perform extensive experiments for various MLP-like
architectures to demonstrate that STD can efficiently dis-
till MLP-Mixers and reach better performances than the
costly pre-training. For example, Mixer-S16 with STD ob-
tains 75.7% top-1 accuracy on ImageNet-1K compared to
72.9% by training from scratch and 73.8% by pre-training on
JFT-300M. Besides, Mixer-B16 with STD can reach 80.0%
top-1 accuracy, which is very close to the performance of
ResMLP-B24 and CycleMLP-B2. When applied to stronger
architectures, e.g. CycleMLP-B1 and CycleMLP-B2, STD
can still harvest about 1.1% and 0.5% accuracy gains, re-
spectively. Figure 1 further compares top-1 accuracy and
FLOPs on ImageNet-1K of MLP-like Vision Models dis-
tilled by STD with state-of-the-art results. Our method
reaches superior results with marginal FLOPs raising.

2. Related Work
2.1. Transformer-based Vision Models.

Transformers are a family of models utilizing multi-head
self-attention (MSA; Vaswani et al., 2017), which are ini-

tially designed for NLP tasks. Transformer (Vaswani et al.,
2017) first introduce MSA. BERT (Devlin et al., 2018) in-
troduces a classification token, and pre-training. The GPT
series of works (Radford et al., 2018; 2019; Brown et al.,
2020) highly focus on pre-training tasks.

Inspired by those language models, there are several early
successes to explore Transformer-based architectures for
CV tasks. Image Transformer (Parmar et al., 2018) applies
Transformer for a sequence modeling formulation of image
generation tasks. Hu et al. (2019) and Zhao et al. (2020) use
local multi-head dot-product self-attention blocks for image
classification. Ramachandran et al. (2019) further expands
self-attention for both classification and object detection.

Recently, ViT (Dosovitskiy et al., 2021) demonstrates that
applying a pure Transformer to sequences of image patches
can reach state-of-the-art performance on ImageNet with-
out any convolution. However, ViT demands costly pre-
training on large-scale datasets, such as ImageNet-21K and
JFT-300M. To avoid the pre-training, DeiT (Touvron et al.,
2021b) replaces it with distillation. A distillation token in-
spired by the classification token in BERT (Devlin et al.,
2018) is introduced to improve its performance.

2.2. MLP-like Vision Models.

The success of using image patches as inputs for Transform-
ers has encouraged researchers to rethink and revive MLPs
as vision models. MLP-Mixer (Tolstikhin et al., 2021) ap-
plies pure MLPs to both the spatial and channel dimensions
of image patches, which are referred as token mixing and
channel mixing, respectively. However, those mixing opera-
tions are inefficient. Just like its ancestor, ViT (Dosovitskiy
et al., 2021), MLP-Mixer also demands costly pre-training
on those large-scale datasets.

There are several attempts to improve the efficiency of MLP-
like vision models from an architecture view. ViP (Hou et al.,
2021) uses various permutation of patches in parallel to im-
prove the mixing. ResMLP (Touvron et al., 2021a) designs
a residual MLP layer. CycleMLP (Chen et al., 2021) intro-
duces a Cycle Fully-Connected layer to enlarge the receptive
field. Hire-MLP (Guo et al., 2022) proposes a hierarchical
rearrangement mechanism to aggregate the local and global
spatial information. Wave-MLP (Tang et al., 2022) propose
to represent each token as a wave function consisting of an
amplitude part and a phase part for dynamical aggregation.

2.3. Knowledge Distillation.

KD is initially inspired by model compression (Bucilua
et al., 2006) and introduced by Hinton et al. (2015) to trans-
fer knowledge from a large ensemble of models into a single
small model. The main idea is to let the small student net-
work mimic the behavior of its large teachers. There are
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Figure 2. The overall pipeline of STD.

several explanations of why KD works. Yuan et al. (2019)
explains it from a label smoothing perspective. Wei et al.
(2020) argues KD is equivalent to a data augmentation.

As for multi-teacher distillation, Hinton et al. (2015) simply
uses an averaged response from all teachers. In this way,
every teacher has the same importance. You et al. (2017)
not only uses the responses, but also consider features from
the intermediate layers. Chen et al. (2019) uses different
teachers for different purposes. They use one teacher for
response-based distillation and one teacher for feature-based
distillation. Guo et al. (2019) designs distillation objectives
regarding prediction scores and gradients of examples to en-
hance the robustness of student networks. Chen et al. (2020)
introduces a locality preserving loss to encourage student
networks to generate low-dimensional features inheriting
intrinsic properties from corresponding high-dimensional
teacher’s features. Park & Kwak (2020) and Asif et al.
(2019) add additional teacher branches to the student net-
work to mimic the intermediate features of teachers.

3. Methodology

The proposed STD includes two major components, the
spatial-channel tokens and a mutual information regulariza-
tion on those tokens. We first introduce how the spatial-
channel tokens are combined with MLP-like vision models
and how they participate in the distillation. Then, we de-
scribe a method estimating the mutual information between
the spatial and channel tokens, which is to regularize them
to focus on their specific dimensions. Finally, the overall
pipeline of STD is described, including multi-teacher token
distillation, the token distillation of both the intermediate
layer and last layer, and the overall distillation objective.
The overall pipeline of STD is illustrated in Figure 2.

3.1. Spatial-channel Token Distillation

MLP-like vision models typically split an image into small
patches and mix features along two dimensions: 1) the

spatial MLP layers mix feature across different spatial
locations and share weights among channels, and 2) the
channel MLP layers mix features across channels at a given
spatial location and share weights among locations. Given
the feature Z(~Y € RPXN of P patches with IV channels,
a MLP-like block can be represented by

U® =MLPY(IN(ZV) + 207D ()
z®O =MmLPY Nw®)) +U®, )

where [ = 1,..., L are L blocks, LN(+) is the layer nor-

malization, and MLP(SE) and MLPg) are the spatial and

channel MLP layers in block [, respectively. Note, MLPg)

and MLPg) are flexible and are not limited to be the token-
mixing and channel-mixing MLPs in MLP-Mixer, but can
also be other complex MLP layers.

The spatial-channel mixing is a common paradigm widely
existing in various MLP-like vision models (Tolstikhin et al.,
2021; Hou et al., 2021; Touvron et al., 2021a; Chen et al.,
2021; Guo et al., 2022). Based on this fundamental char-
acteristic, we design the spatial-channel tokens for distil-
lation of MLP-like vision models. In a previous work of
Transformer-based vision models, DeiT (Touvron et al.,
2021b) introduces a distillation token by adding an extra
patch after all the image patches. It separates the distillation
objective from the classification objective and improves the
network performance, but it has limitation to be applied to
MLP-like vision models.

MLP-like vision models uses spatial and channel MLP
layers instead of self-attention. If we add a new patch
Te e R1*N a5a spatial token, it interacts with other patches
in the spatial MLP layers:

MLPY (). = Wao (Wil ), 3)

where o is an non-linear activation function, ' € RET1xN

j=1,...,N,and £p41 . = Ts. Equation (3) only allows
Ts to capture cross-location features per channel, but cross-
channel features per location are ignored. To capture the



Spatial-Channel Token Distillation for Vision MLPs

cross-channel features, we propose a new channel token
Te € RPX Tt interacts with other channels in the channel
MLP layers:

MLPY ("), = Wao (Wsz!,), )

where @/ € RP*N*L 4 = 1,... P,and &)\, = To.
Using both Equations (3) and (4) allows us to capture per-
channel and per-location features at the same time.

As aforementioned, the classification and distillation ob-
jective are independent. Therefore, we design the spatial-
channel tokens as information aggregator and do not want
them copy information back to the features. This target
can be achieved by slightly modifying weights in Equa-
tions (3) and (4). Let W, € RIs*xP+L W, ¢ RIxds
Wi € RicxXN+1 W, ¢ R1X4¢ where dg and d is the
hidden dimension of MLP layers. We can add K MLP
blocks for distillation in parallel with Equations (1) and (2):

7 = MLPY (LN([z VT8¢ V) + 18D (5)
1) = MLPE (UN((Z2DTE ) + TED ©)

where Z() is the output of a MLP layer [ from the original
network, and [-||-] represents concatenation. Finally, the
spatial and channel tokens are concatenated as the final out-
put [TéK) \ |TéK)} for distillation. The right part of Figure 2
demonstrates how the spatial-channel token works.

There are several differences between our token distillation
for MLPs and the existing token distillation methods for
Transformers, e.g. DeiT (Touvron et al., 2021b). First of all,
Transformers use self-attention and do not consider spatial
and channel differently. Therefore, DeiT uses only spatial
tokens for distillation. However, MLP-like vision models
utilize independent operations for spatial and channel mix-
ing, so we add tokens to both dimensions. Secondly, the
objective of using spatial-channel tokens is to improve the
two kinds of mixing operations. To reach this goal, we fur-
ther design a mutual information regularization to disentan-
gle the spatial and channel information, which encourages
the spatial and channel tokens to extract more informative
features. Finally, DeiT updates the image patches, classi-
fication token, and distillation token together. We update
the patches and distillation tokens separately. The distilla-
tion tokens aggregate information from patches, but do not
copy the information back to them. Patches are passed to
tokens by residual connections and won’t be updated. This
characteristic allows us to insert tokens flexibly and makes
multi-teacher distillation and distillation of intermediate
layers possible.

3.2. Mutual Information Regularization

Although the spatial and channel tokens are separate, they
can share joint information from the features. To make them

focus on their own dimension, we design a MI regulariza-
tion term to disentangle the spatial and channel information.
The MI is a measure of dependence between random vari-
ables based on the Shannon entropy. It is equivalent to the
Kullback-Leibler (KL-) divergence between the joint distri-
bution and the product of the marginal distribution of the
random variables. Given two random variable X and Y, the
MI can be calculated by

I(X;Y) := Drr(Pxy||Px ®Py), (N

where Dk, (P||Q) := Ep {log %} is the KL-divergence.
The direct calculation of Equation (7) is costly. To efficiently

measure the MI, we use a estimation called mutual informa-
tion neural estimation (MINE) (Belghazi et al., 2018).

Algorithm 1 describes how MINE is used to regularize our
spatial-channel token. MINE uses a statistics network g :
X x Y — R parameterized by 6 € O to estimate a neural
information measure as

Io(X;Y) = sup Epy, [tho] — log (Epyop, [€7°]). (8)
€

Equation (8) is a supremum of expectation, and it can be

empirically calculated by maximizing

b b

1 DG 1 2@ 5®

32 Yoz y) —log(3 3 e @) ()
i=1 =1

with gradient ascent on § € ©, where (z(V,y¥)) ~
Pxy,i = 1,...,b are samples from a joint distribution
of X and Y, and g ~ Py ,i = 1,...,b are samples from
a marginal distribution of Y. In practice, we use paired
spatial and channel tokens (T(SZ), T((;)) from the image x;
as the joint distribution and use unpaired tokens (Tg), Tg))
from random images x; and x; as the marginal distribu-
tion. Then, we can minimize Equation (9) by optimizing
the spatial-channel token for minimal mutual information.

3.3. The Overall Pipeline of STD

Multi-teacher Distillation with Tokens. Distillation with
multiple teachers has turned out to be effective to improve
the performance of student than using a single teacher (Hin-
ton et al., 2015; Sau & Balasubramanian, 2016; You et al.,
2017), because different teacher networks can provide their
unique information. We also consider multi-teacher distil-
lation with our spatial-channel tokens. To achieve multi-
teacher distillation, we only need to add extra tokens into
Equations (5) and (6). This allows each teacher to cor-
respond to a specific latent representation in the student
network. An intuitive way to utilize those teachers is us-
ing the averaged response from them (Hinton et al., 2015).
However, we argue that different teachers have various im-
portance. Therefore, we further introduce an entropy-based
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Algorithm 1 The mutual information regularization on spatial-channel tokens.

Input: the vision model f and parameters w, the MINE network 1) and parameters 6, input images x, the number of

samples b, the number of epochs T'
fort =1toT do
: Get the vision model outputs: (§,Ts,T¢c) + fu(x);

Draw random pairs (Tgl), Tg))7 ey (ngb)7 Tgf)) from (T's, T¢) as the joint distribution;

Draw random samples T, ..

- TY from T as the marginal distribution;

Calculate gy = VgV (0) and update 0 by gradient ascent: 0 < 6 + gg;
Calculate g, = V,V(0) and update w by gradient descent: w < w — g,,;

end for

1:
2
3
4
5. Calculate Equation (9): V(8) < 1 0 4hg(TW, ) —1og(L 3!_, evo (TS .TE));
6:
7
8:

confidence re-weighting term. The losses regarding different
teachers are re-weighted by their confidence about a sam-
ple. We use the negative entropy (Wan, 1990; Zaragoza &
d’Alché Buc, 1998) of the softmax distribution of a teacher
network to measure its confidence score:

K
S(gi) = — ZP lg:(z)|z] - log P [g;()|x],  (10)

where K is the number of class, and g; is the i-th teacher net-
work. Finally, the multi-teacher distillation loss re-weighted
by 10 is calculated. The confidence score for each teacher
is normalized by softmax to ensure the range of the final
loss is proper. The overall multi-teacher distillation loss,
therefore, is

M

i=1

(1)
where M is the number of teachers, o is the softmax func-
tion, and /cg is the cross-entropy loss.

The Spatial-channel Token Distillation Network. An
image is first split into patches and embedded to the tar-
get dimension. The patches are then passed through MLP
blocks. As aforementioned, the proposed method can be
used for both last layer distillation and intermediate layer
distillation. To distill intermediate layers, the nature of STD
allows us to directly add tokens to the target layers. Because
STD only back-propagates gradients to the previous layers
and does not propagate outputs to the following layers, we
can safely use it in the middle of a network without wor-
rying it conflicts with tokens for the distillation of the last
layer. In our practice, we find distilling shallow layers with
a small teacher, e.g. ResNet-50 (He et al., 2016), and deep
layers with a large teacher, e.g. ResNet-101, can outperform
distilling the whole network with the same two networks.
For the classification head, we use a global average pooling
(GAP) before the fully-connected classification head. To
get the final prediction, we follow DeiT (Touvron et al.,

2021b) and use the average of the distillation head(s) and
classification head for the final prediction.

The Overall Distillation Objective. Finally, the concate-
nated distillation tokens are fed to fully connected classifi-
cation heads. The predictions are used for hard-label distil-
lation, where the hard decisions of teachers are the targets
of the student. Letting the teacher g;(-) in Equations (10)
and (11) outputs the argmax of its classification head, we
can have its hard decisions. The objective associated with
this hard label distillation is:

L= (1 - Q)Eclass + a‘cdista (12)
where Lass = Lor(f(x),y) is the classification loss re-

garding the ground truth labels, and Lg;s is the distillation
loss calculated by Equation (11).

4. Experiments

In this section, we demonstrate the performance of STD with
several popular architectures for MLP-like vision models.
We first compare models distilled by STD and trained with
the origin schema. Then, we discuss the distillation settings
in STD. Finally, we perform extensive ablation studies to
evaluate each component in STD.

Table 1. The throughput of various MLP-like architectures tested
on ImageNet-1K with 8 X NVIDIA V100 GPUs. We use the largest
possible batch size to evaluate the maximal speed.

Architecture  Variant Pa.tch Ovc?r- Throughput
Size  lapping  (images/s)
Mixer S16 16 962.45
ResMLP S24 16 733.59
CycleMLP Bl 7 822.39
Mixer Bl16 16 562.80
ResMLP B24 16 346.09
CycleMLP B2 7 664.14
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Table 2. Comparison between STD and SOTA methods. We compare models distilled by STD with models trained from scratch on
ImageNet-1K and models pre-trained on large-scale datasets and then fine-tuned on ImageNet-1K.

Model Params (M) FLOPs (G) Top-1 Acc. (%)
CNN

ResNet-18 (He et al., 2016) 12.5 1.8 69.8
ResNet-50 (He et al., 2016) 22.0 4.1 78.9
RSB-ResNet-18 (Wightman et al., 2021) 12.5 1.8 71.5
RSB-ResNet-50 (Wightman et al., 2021) 22.0 4.1 80.4
Transformer-based

ViT-B/16/384 (Dosovitskiy et al., 2021) 86.0 - 77.9
ViT-L/16/384 (Dosovitskiy et al., 2021) 307.0 - 76.5
DeiT-Ti (Touvron et al., 2021b) 6.0 - 74.5
DeiT-S (Touvron et al., 2021b) 22.0 - 81.2
DeiT-B (Touvron et al., 2021b) 87.0 - 83.4
MLP-like

Mixer-S16 (Tolstikhin et al., 2021) 18.5 3.8 72.9

+ JFT-300M 18.5 3.8 73.8 (+0.9)
+ DeiT Distillation (Touvron et al., 2021b)  20.0 3.8 74.2 (+1.3)
+ STD (ours) 222 4.3 75.7 (+2.8)
Mixer-B16 (Tolstikhin et al., 2021) 59.9 12.7 76.4

+ JFT-300M 59.9 12.7 80.0 (+3.6)
+ ImageNet-21K 59.9 12.7 80.6 (+4.2)
+ STD (ours) 66.7 13.7 80.0 (+3.6)
ResMLP-S24 (Touvron et al., 2021a) 30.0 6.0 794

+ STD (ours) 32.5 6.2 80.0 (+0.6)
ResMLP-B24 (Touvron et al., 2021a) 115.7 23.0 81.0

+ STD (ours) 122.6 24.1 82.4 (+1.4)
CycleMLP-B1 (Chen et al., 2021) 152 2.1 78.9

+ STD (ours) 18.4 2.2 80.0 (+1.1)
CycleMLP-B2 (Chen et al., 2021) 26.8 39 81.6

+ DeiT Distillation (Touvron et al., 2021b)  28.6 3.9 81.9 (+0.3)
+ STD (ours) 30.1 4.0 82.1 (+0.5)

4.1. Setup

Datasets. We use the ImageNet-1K (Russakovsky et al.,
2015) dataset for both distillation and evaluation. It has 1.3
million images covering 1,000 classes. One of our baselines,
MLP-Mixer, uses additional datasets, including ImageNet-
21K and JFT-300M (Sun et al., 2017), for pre-training.
ImageNet-21K is a superset of ImageNet-1K, which con-
tains 14 million images covering 21,000 classes. JFT-300M
is a private dataset, which contains 300 million images cov-
ering 18,000 classes. We do not use any extra images or
labels from them.

Student Networks. We evaluate STD with various MLP-
like architectures, including MLP-Mixer (Tolstikhin et al.,
2021), ResMLP (Touvron et al., 2021a) and CycleMLP
(Chen et al., 2021). Each architecture has multiple vari-
ants, we compare the variants with a similar throughput.
The throughput is tested on ImageNet-1K with 8 X NVIDIA
V100 GPUs and is listed in Table 1. The first group in-
cludes Mixer-S16, ResMLP-S24, and CycleMLP-B1, and

the second group includes Mixer-B16, ResMLP-B24, and
CycleMLP-B2.

Teacher Networks. We mainly use CNNs as the teacher
networks. We consider two variants of ResNet (He et al.,
2016), including ResNet-50 and ResNet-101. They have
79.6% and 80.7% top-1 accuracy on ImageNet-1K, respec-
tively. We also perform an ablation study by distilling with
a Transformer-based vision model, Swin-Transformer (Liu
et al., 2021), as a teacher. We use Swin-B pre-trained on
ImageNet-22K with the identical 224 x 224 resolution to
ResNets. It has 85.2% top-1 accuracy on ImageNet-1K.

4.2. Comparison with State-of-the-Art Methods

We compare with three kinds of SOTA MLP-like vision
models, including models trained from scratch on ImageNet-
1K, models pre-trained with large-scale datasets (e.g., JFT-
300M and ImageNet-21K) and fine-tuned on ImageNet-1K,
and models distilled with prior methods, such as DeiT. We
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Table 3. The top-1 accuracy on ImageNet-1K of CycleMLP-B2
distilled with various selections of teachers.

Teachers | Student
Archtecture | ResNet-50  ResNet-101  Swin-B/224 | Top-1
Params (M) 25.58 44.57 87.77 Acc. (%)
FLOPs (G) 4.36 8.09 15.14
81.47
Selection 81.91
81.96

also compare to Transformer-based vision models both with
and without distillation. The results are reported in Table 2.

Compared to MLP-Mixers, models distilled with our STD
without additional datasets obtain consistently better perfor-
mance. With the proposed STD, Mixer-S16 can reach 75.7%
top-1 accuracy, which is 1.0% higher than the model pre-
trained on JFT-300M. As for Mixer-B16 with STD, it can
reach 80.0%, which is higher than the models pre-trained
on ImageNet-1K and JFT-300M and is competitive to the
model pre-trained on ImageNet-21K. Besides, we find that
if there is no pre-training, even though Mixer-S16 is 3 times
smaller than Mixer-B16 in terms of FLOPs and parameters,
Mixer-S16+STD can still reach a competitive performance
to Mixer-B16 trained from scratch. It demonstrates the
difficulty of optimizing MLP-Mixers from scratch and the
effectiveness of our STD.

As for stronger architectures, e.g. ResMLP and CycleMLP,
if Mixer-B16 is pre-trained on ImageNet-1K instead of
the two large datasets, JFT-300M and ImageNet-21K, the
performance of it is consistently lower than ResMLP and
CycleMLP regardless of the model size. By distilling
Mixer-B16 with STD, it can outperform ResMLP-S24 nad
CycleMLP-B1 and reach very close to ResMLP-B24 and
CycleMLP-B2. When applying to ResMLP and CycleMLP,
STD can further improve their performance. Among
them, STD reaches the maximal accuracy gain of 1.1%
on CycleMLP-BI1.

Compared with DeiT, it can improve the accuracy of Mixer-
S16 to 74.2%, which is still lower than DeiT-Ti. In contrast,
STD can improve Mixer-S16 to be better than DeiT-Ti by
1.2%. The larger MLP-Mixer, Mixer-B 16, performs lower
than both ViTs. When applying STD to it, it can reach
2.1% and 3.5% higher accuracy than ViT-B/16/384 and
ViT-L/16/384, respectively.

4.3. Distillation Settings

In this subsection, we discuss our distillation setting, in-
cluding the selection of teachers, the spatial-channel tokens,
the distillation of the intermediate layer, and the manner of
prediction. We use the CycleMLP-B2 as the student, whose

Table 4. The top-1 accuracy on ImageNet-1K of CycleMLP-B2
distilled with and without the propsoed spatial-channel tokens.

Teachers | | Student

S+C
‘ Tokens

Top-1
Acc. (%)

81.40
81.47
81.89
81.96

ResNet-50  ResNet-101

accuracy is the best among our models in Table 2.

Different Teachers. We first consider the selection of
teachers for STD. There are three different options in Ta-
ble 3, including a small teacher (i.e. ResNet-50), a large
teacher (i.e. Swin-B/224), and the combination of two small
teachers (i.e. ResNet-50 and ResNet-101). Even though it
is no surprise that the large Swin-B/224 can distill a better
student than the small ResNet-50, we find the combination
of two small teachers can reach competitive performance
to one large teacher. The Swin-B/224 has 87.77M parame-
ters and 15.14G FLOPs, yet the combination of ResNet-50
and ResNet-101 only has 70.15M parameters and 12.45G
FLOPs. Besides, both of the two ResNets have lower accu-
racy than Swin-B/224 (79.6% and 80.7% vs. 85.2%). Nev-
ertheless, distilling with the two ResNets reaches 81.96%
top-1 accuracy on ImageNet-1K, which is slightly higher
than the accuracy by distilling with Swin-B/224.

Besides, we find the student network can outperform its
teachers by distilling with ResNet-50 or the combination of
two ResNets. Although Swin-B/224 has higher accuracy
than both of the ResNets, its student has much lower per-
formance than it. This advantage does not maximize the
benefit of its student. We argue this could be caused by the
huge gap between the model sizes of CycleMLP-B2 and
Swin-B/224. The student only has 30.1M parameters and
4.0G FLOPs, which is about three times smaller than the
teacher.

Spatial-channel Tokens. Then, we study the impacts of
our spatial-channel token, under both single teacher distilla-
tion and multi-teacher distillation. ResNet-50 is used for the
single teacher distillation, and the combination of ResNet-
50 and ResNet-101 is used for the multi-teacher distillation.
As can be seen in Table 4, the spatial-channel tokens can
obtain consistent performance gains.

Intermediate Layer Distillation. We evaluate the inter-
mediate layer distillation. Instead of distilling different
layers with the same teacher, we consider the multi-teacher
setting, whose performance is the best in Table 3. We use the
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Table 5. The top-1 accuracy on ImageNet-1K of CycleMLP-B2
distilled at the last layer and at multiple positions.

Teachers | Student
Architecture | ResNet-50 ResNet-101 Top-1
Acc. (%)
Position Last Last 81.96
Inter Last 82.09

Table 6. Ablation study on using different prediction methods, in-
cluding using the averaged response, using the classification head,
and using distillation heads.

Model No Dist Mean Class Head Dist Head
Mixer-S16 72.9 7574 75.40 75.70
Mixer-B16 76.4 80.05 78.78 80.05
CycleMLP-B1 78.9 79.96  79.59 79.92
CycleMLP-B2 81.6 82.11 82.01 81.97

ResNet-50 to distill the intermediate layer and the ResNet-
101 to distill the last layer. The intermediate distillation
tokens are inserted into the 2/3 position of the network.
Table 5 demonstrates distilling both the intermediate layer
and last layer can improve the accuracy by 0.13%.

Prediction Heads. As aforementioned, we follow DeiT
(Touvron et al., 2021b) and use the averaged response from
the classification head and distillation heads. We also per-
form an ablation study to evaluate this prediction manner
with both MLP-Mixer and CycleMLP. The results are re-
ported in Table 6. As can be seen, the accuracy always
drops whether the classification head or distillation heads
are used alone. Although the distillation heads perform
better than the classification head in most cases, neither of
them is necessarily better. A possible explanation of this
phenomenon is that the classification head learns ground-
truth labels, and distillation heads learn teachers’ outputs.
They can learn different hypothesis. Using them together
is similar to ensemble learning, which can improve the pre-
dictive performance. It is also worth noting that both of
the heads in networks distilled by STD can reach a better
performance than the networks without distillation, which
demonstrates the effectiveness of STD.

4.4. Spatial-channel Token Distillation

We perform ablation studies on different components in
STD, including the teachers’ confidence, spatial-channel to-
kens, and mutual information regularization. Models trained
from scratch and pre-trained on JFT-300M are considered
as baselines. The results are reported in Table 7. In this ex-
periment, we use Mixer-S16 as the student and distill it with

the two default CNN teachers in our work, i.e. ResNet-50
and ResNet-101.

Teachers’ Confidence Weights. We first consider the
teachers’ confidence weights, which can always be applied
to multi-teacher distillation regardless of the use of tokens.
Whether distilling without any token, with spatial tokens,
or with spatial-channel tokens, the confidence weights can
always increase the accuracy by around 0.12% to 0.14%.

Distillation Tokens. As for the distillation tokens, we
consider three different settings: distilling without any to-
ken, distilling with spatial tokens only, and distilling with
our spatial-channel tokens. Firstly, we find even vanilla
distillation can indeed improve the performance of MLP-
Mixer. By distilling without any token, the accuracy is
increased by 1.11% compared to pre-training on JFT-300M
and 2.07% compared to training from scratch. However, dis-
tilling with spatial tokens only reduces the performance gain.
By adding spatial tokens, the accuracy drops 0.26%. Our
spatial-channel token can improve the accuracy by 0.72%
and reach 75.66%. This is an increase of 1.83% compared
to JFT-300M and 2.79% compared to from scratch.

Besides, we also find the classification token can harm the
performance of MLP-like vision models, even though it
works well in DeiT. Distilling with spatial tokens in this
experiment is similar to DeiT, but we use a GAP before the
classification head instead of a classification token like them.
Comparing with the accuracy of Mixer-S16 distilled with the
DeiT’s distillation method reported in Table 2, Mixer-S16
can reach 75.56% top-1 accuracy with spatial distillation
token and GAP classification head, which is about 0.4%
higher than the former.

Mutual Information Regularization. Because the mu-
tual information regularization is between the spatial and
channel tokens, it does not apply to distillation without any
token or with the spatial tokens only. Therefore, we mainly
study its impacts on STD. As can be seen, the accuracy of
STD can further increase to 75.74%, which is 1.91% higher
than the pre-training on JFT-300M. The computational cost
of MINE is also marginal. We use a three-layer MLP with
512 dimensions as the MINE network. It has only 0.003G
FLOPs and 0.84M parameters, which is much smaller than
the models.

5. Conclusion

In this work, we propose a distillation mechanism designed
for MLP-like vision models, namely Spatial-channel Token
Distillation (STD). STD adds distillation tokens into both
the spatial and channel dimension of MLP blocks. Those
tokens are designed to improve the spatial and channel mix-
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Table 7. Ablation studies on components in STD with Mixer-S16 as the student network.

.. T Teachers’ Top-1

Method Pre-training  Distillation  Token Confidence MIR Acc. (%)
None | - - - | 7287
Pre-training | JFT-300M - - - | 7383
- 74.80
Other - 74.94
Distillation S - 74.56
S - 74.68
S+C 75.52
STD (ours) S+C 75.66
S+C 75.74

ings. We also introduce a mutual information regularization
to disentangle the spatial and channel information. The
proposed spatial-channel tokens are not only suitable for
last layer distillation but also applicable for the distilla-
tion of intermediate layers. By inserting additional pairs
of tokens, STD also supports multi-teacher distillation. Ex-
tensive experiments demonstrate that STD can improve the
performance of MLP-like vision models. Ablation studies
show that distilling with the spatial-channel tokens can out-
perform vanilla distillation without any token and DeiT’s
distillation with spatial tokens only.
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