
Neurocoder: General-Purpose Computation Using Stored Neural Programs

Hung Le 1 Svetha Venkatesh 1

Abstract

Artificial Neural Networks are functionally equiv-
alent to special-purpose computers. Their inter-
neuronal connection weights represent the learnt
Neural Program that instructs the networks on
how to compute the data. However, without stor-
ing Neural Programs, they are restricted to only
one, overwriting learnt programs when trained
on new data. Here we design Neurocoder, a
new class of general-purpose neural networks in
which the neural network “codes” itself in a data-
responsive way by composing relevant programs
from a set of shareable, modular programs stored
in external memory. This time, a Neural Program
is efficiently treated as data in memory. Integrat-
ing Neurocoder into current neural architectures,
we demonstrate new capacity to learn modular
programs, reuse simple programs to build com-
plex ones, handle pattern shifts and remember
old programs as new ones are learnt, and show
substantial performance improvement in solving
object recognition, playing video games and con-
tinual learning tasks.

1. Introduction
From its inception in 1943 until recently, the fundamental
architectures of Artificial Neural Networks remained largely
unchanged - a program is executed by passing data through
a network of artificial neurons whose inter-neuronal connec-
tion weights are learnt through training with data. These
inter-neuronal connection weights, or Neural Programs, cor-
respond to a program in modern computers (Schmidhuber,
1990). Memory Augmented Neural Networks (MANN) are
an innovative solution allowing networks to access exter-
nal memory for manipulating data (layer’s output vectors)
(Graves et al., 2014; 2016). But they were still unable to
store Neural Programs (weight matrices) in such external

1Applied AI Institute, Deakin University, Geelong, Australia.
Correspondence to: Hung Le <thai.le@deakin.edu.au>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

memory, and this severely limits machine learning. Stor-
ing inter-neuronal connection weights only in their network
does not permit modular separation of Neural programs and
is analogous to a computer with one fixed program. Recent
works introduce conditional computation via adjusting or
activating parts of a network in an input-dependent manner
(von der Malsburg, 1981; Schmidhuber, 1992; Bengio et al.,
2013; Ha et al., 2017; Perez et al., 2018), but networks re-
main monolithic. Current networks forget when retrained,
old inter-neuronal connection weights are merged with new
ones or erased.

The brain is modular, not a monolithic system, and is di-
vided into functional modules (Hubel, 1988). If the neural
program for each module is kept in separate networks, net-
works proliferate. Modular neural networks, another form
of conditional computation, combine the output of multi-
ple expert networks, but as the experts grow, the networks
grow drastically (Jacobs et al., 1991; Happel & Murre, 1994;
Shazeer et al., 2017; Rosenbaum et al., 2018). This requires
huge storage and introduces redundancy as these experts do
not share common basic programs.

A pathway out of this bind is to keep such basic programs in
memory and combine them as required. This brings neural
networks towards modern general-purpose computers that
use the stored-program principle (Turing, 1936; Von Neu-
mann, 1993) to efficiently access reusable programs in exter-
nal memory. Here we show how Neurocoder, a new neural
framework, introduces a new class of general-purpose con-
ditional computation machines in which a neural network
can be “coded” in an input-dependent manner. Efficient de-
composition of Neural Programs creates shareable modular
components that can reconstruct the whole program space.
These components change their “shapes” based on training
and are stored in an external Program Memory. Then, in a
data-responsive way, a Program Controller retrieves relevant
components to build the Neural Program.

Using adaptive modular components vastly increases the
learning capacity of the neural network by allowing
re-utilisation of parameters, effectively curbing network
growth as programs increase. More importantly, unlike
pre-defined sub-networks or modules (Jacobs et al., 1991;
Andreas et al., 2016) that combine at activation level, the
construction of our modular components is dynamic and

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Attention
Weight

Status
Update

Output

Working	
Program

Singular
Programs

Program
	Attention

Active
	Program

Input

Integration
Network

Reccurent
Access

(a)	MAIN	NETWORK (b)	PROGRAM	
CONTROLLER

(c)	PROGRAM	
MEMORY

Low-rank	
approximation

Program	
Integration

Program
Status

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Compostion
Network

Residual
Program

Final	Layer

Figure 1. Neurocoder (a) The Main Network uses a working program to compute the output for the input. (b) The Program Controller’s
composition network controls access to the Program Memory. (c) The Program Memory stores the representations (singular programs)
required to reconstruct the active program.

performed on the weight space. The Neural Program con-
struction is learnt through training via traditional backprop-
agation as the architecture is end-to-end differentiable.

To demonstrate the flexibility of Neurocoder framework,
we consider different learning paradigms: instance-based,
sequential, multi-task and continual learning. We do not
focus on breaking performance records by augmenting state-
of-the-art models with Neurocoder. Instead, our inquiry
is on re-coding feed-forward layers with the Neurocoder’s
programs and testing on varied data types to demonstrate
its intrinsic properties, showing consistent improvement
over standard backbones and methods. Our contributions
are: (i) we provide a novel and efficient way to store pro-
grams/weights of the neural networks in an external memory,
(ii) thanks to our general design of program memory, we
can equip current neural networks with a new capability of
conditional and modular computing, and (iii) we conduct ex-
periments on various tasks, confirming the general-purpose
property of our model.

2. Methods
2.1. System Overview

A Neurocoder is a neural network (Main Network) cou-
pled to an external Program Memory through a Program

Controller. The working program of the Main Network pro-
cesses the input data to produce the output. This working
program is “coded” by the Program Controller by creating
an input-dependent active program from the Program Mem-
ory (Fig. 1). The following gives a high-level description of
the Neurocoder framework and then the details.

Neurocoder stores Singular Value Decomposition (SVD)
of Neural Programs The Neural Program needs to be
stored efficiently in Program Memory. This is challeng-
ing as there may be millions of inter-neuronal connection
weights, thus storing a Neural Program as a matrix weight
directly (Le et al., 2020) is grossly inefficient. Instead, the
Neurocoder forms the basis of a subspace spanned by Neural
Programs and stores the singular values and vectors of this
subspace in memory slots of the Program Memory (here-
after referred to as singular programs). Based on the input,
relevant singular programs are retrieved, a new program
is reconstructed and then loaded in the Main Network to
process the input. This representational choice significantly
reduces the number of stored elements and allows each sin-
gular program to effectively represent a unitary function of
the active program.

For a neural network layer with din and dout input and
output units, respectively, the active program matrix P ∈

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Rdin×dout can be decomposed as

P = USVT =

rm∑
n

σnunv
>
n (1)

where U and V are matrices of the left and right singular
vectors, and S the matrix of singular values. rm is the total
number of components we want to retrieve. {σn}rmn=1 is
the attended singular values, {un}rmn=1 and {vn}rmn=1 the
attended singular vectors of S, U, and V, respectively.
The Program Memory is then crafted as three singular pro-
gram memories {MU ,MV ,MS}–each of their memory
slot stores a singular component or singular program. The
process “codes” the active program using singular pro-
grams from the program memories. The coding is condi-
tioned on input xt, yet here we drop index t for notation
simplification and leave the details until §2.2. The active
program P will be used to compose the working program
W that is loaded to a layer of neural networks (§2.3).

The Program Memory also maintains the status for each
singular program in terms of access and usage. To access a
singular program, program keys (k) are used. These keys are
low-dimensional vectors that represent the singular program
function and computed by a neural network that effectively
compresses the singular program. The program usage (m)
measures memory utilisation, recording how much a mem-
ory slot is used in constructing a program. Fig. 1 depicts an
overview of Neurocoder.

In this figure, the Main Network’s final layer1 is adaptively
loaded with the working program (1). Other layers use
traditional Neural Programs as connection weights (fixed-
after-training). The Program Controller’s composition net-
work emits queries and interpolating gate control signals in
response to the input (2). It then performs recurrent multi-
head program attention to the Program Status (3), triggering
attention weights to the Singular Programs (4). The attended
Singular Programs form an active program using low-rank
approximation (SVD) (5). Residual program produced by
the Program Controller’s integration network (6) plus the
active program derives the working program. The Program
Memory stores singular programs for constructing the active
program. Access to the memory is controlled through the
Program Status including keys (k), and slot usage (m) that
are updated during the training and computation (7).

Recurrent multi-head program attention mechanisms
for program storage and retrieval Neural networks use
the concept of differentiable attention to access memory
(Graves et al., 2014; Bahdanau et al., 2015). This defines
a weighting distribution over the memory slots essentially
weighting the degree to which each slot participates in a read
or write operation. This is unlike conventional computers
that use a unique address to access a single memory slot.

1For visualisation purpose only. Any or all layer can be used.

Here we use two kinds of attention. First is content-based
attention (Graves et al., 2014; 2016) to ensure that the sin-
gular program is selected based on its functionality and the
data input. This is achieved by producing a query vector
based on the input and comparing it to the program keys
(k) using cosine similarity. Higher cosine similarity scores
indicate higher attention weights to the singular programs
associated with those program keys. Second, to encour-
age better memory utilisation, higher attention weights are
assigned to slots with lower program usage (m) through
usage-based attention (Graves et al., 2016; Santoro et al.,
2016). The attention weights from the two schemas are then
combined using interpolating gates to compose the final
attention weights to the Program Memory.

We adapt multi-head attention (Graves et al., 2014; Vaswani
et al., 2017) that applies multiple attentions in parallel to
retrieve H singular components. Besides, we introduce a
recurrent attention mechanism, in which multi-head access
is performed recurrently in J steps. The j-th set of H
retrieved components is conditioned on the previous ones.
This recurrent, multi-head attention allows the composition
network to incrementally search for optimal components for
building relevant active programs.

Neurocoder learns to “code” a relevant working pro-
gram via training The structure of the Program Memory
and the role of the Program Controller facilitates automatic
construction of working programs via training. The Program
Controller controls memory access through its composition
network that creates the attention weight defining how to
weight the singular programs in the memories. A weighted
summation of the singular programs results in the attended
singular program. Applying the recurrent multi-head atten-
tion described earlier, multiple attended singular programs
are retrieved to construct an active program (Eq. 1). Then
the Program Controller generates a residual program us-
ing its integration network, adding to the active program to
produce the working program of the Main Network. This
addition enables creation of flexible higher-rank working
programs, which compensates for SVD low-rank coding
process. The Program Controller is illustrated in Fig. 1 (b).

The singular programs represent unitary functions neces-
sary for any computation whilst the composition and in-
tegration networks select the relevant programs for the
considering task. They are jointly trained end-to-end by
the task loss. To ensure unitary functionality, we enforce
orthogonality of stored singular vectors by minimising
Lo =

∥∥MUM
>
U − I+MVM

>
V − I

∥∥
2
. Hence, the total

loss becomes

L = Ltask + aLo (2)

where Ltask represents the supervised task loss and Lo rep-
resents the orthogonal loss weighted by a hyper-parameter

Neurocoder: General-Purpose Computation Using Stored Neural Programs

a to control the unitary constraint.

2.2. Attention Mechanisms for Program Memory

Here we describe program attention mechanisms used in
this paper. Given wuin, wvin, wσin (jointly denoted as wu,v,σin)–
the attention weight to the i-th slot of the singular program
memories MU , MV and MS , we retrieve the n-th singular
vectors as follows,

un =

Pu∑
i=1

wuinMU (i) vn =

Pv∑
i=1

wvinMV (i) (3)

For the singular values, we need to enforce σ1 > σ2 > ... >
σrm > 0, thus we retrieve using

σn =

softplus
(∑Ps

i=1 w
σ
inMS (i)

)
n = rm

σn+1 + softplus
(∑Ps

i=1 w
σ
inMS (i)

)
n < rm

(4)
Here, Pu, Pv and Ps are the number of memory slots of MU ,
MV and MS , respectively. In this paper, we set P = Pu =
Pv = Ps as the number of memory slots of the Program
Memory. Hence, MU ∈ RP×din , MV ∈ RP×dout and
MS ∈ RP×1. We note that u, v, σ, w notations are specified
for some data input xt and the index n later maps to an
attention head h, and an attention step j, hence the full
notation should be wu,v,σtijh . To simplify notations, we will
drop u, v, σ from now and describe the computation of a
representative wtijh for any of the three program memories
in the following.

Recurrent attention to the Program Memory via the
composition network To perform program attention, the
Program Controller employs a composition network (de-
noted as fθ), which takes the current input xt and produce
program composition control signals (ξpt). If fθ performs all
attentions concurrently via multi-head attention as in Graves
et al. (2014); Vaswani et al. (2017), it may lead to program
collapse (Le et al., 2020). Rolling out query heads rather
than generating them in parallel allows us to ensure that
each of the query heads is distinct from the rest and thereby
avoiding program collapse. To this end, we implement fθ as
a recurrent neural network (LSTM (Hochreiter & Schmid-
huber, 1997)) and let it access the program memory J times,
resulting in ξpt =

{
ξptj
}J
j=1

. At access step j, the recurrent
network updates its hidden states and generates ξptj using
recurrent dynamics as ξptj , hj = fθ (xt, hj−1) where h0 is
initialized as zeros and ξptj is the program composition con-
trol signal at step j that depends on both on the input data
xt and the the previous state hj−1. Particularly, the con-
trol signal contains the queries and the interpolation gates

for each head to compute the program attention weight:
ξptj = {qtjh, gtijh}Hh=1. Here, at each attention step, we
perform multi-head attention with H as the number of atten-
tion heads and thus, each ξptj consists of H pairs of queries
and gates. Hence, the total number of retrieved components
rm = J ×H and the index n = j ×H + h.

Attending to programs by “name” Inspired by the
content-based attention mechanism for data memory
(Graves et al., 2014), we use the query to look for the sin-
gular programs. In computer programming, to find the ap-
propriate program for some computation, we often refer to
the program description or at least the name of the program.
Here, we create the “name” for our neural programs by
compressing the program content to a low-dimensional key
vector. As such, we employ a neural network (fϕ) to com-
pute the program memory keys as ki = fϕ (M (i)) where
ki ∈ RK and i is the row index of the program memory (see
Appendix A for details). As the singular programs evolve,
their keys get updated. In this paper, we update the program
keys after each learning iteration during training.

Finally the content-based program memory attention ctijh is
computed using cosine distance between the program keys
ki and the queries qtjh as

ctijh = softmax(i)
(

qtjh · ki
||qtjh|| · ||ki||

)
(5)

Making every program count Similarly to Graves et al.
(2016); Santoro et al. (2016), in addition to the content-
based attention, we employ a least-used reading strategy
to encourage the Program Controller to assign different
singular programs to different components. In particular,
we calculate the memory usage for each program slot across
attentions as mtijh = max

j̃≤j

(
wtij̃h

)
. Since we want to

consider only lI amongst P memory slots that have smallest
usages, let m̂lI

tjh denote the value of the lI -th smallest usage,
then the least-used attention is computed as

ltijh =

{
max
i

(mtijh)−mtijh ;mtijh ≤ m̂lI
tjh

0 ;mtijh > m̂lI
tjh

(6)

The final program memory attention is computed aswtijh =
sigmoid (gtijh) ctijh + (1− sigmoid (gtijh)) ltijh. Since
the usage record are computed along the memory accesses,
the multi-step Neurocoder utilises this attention mechanism
better than the single-step Neurocoder, creating different
attention styles (see §3.2). The composition the active pro-
gram Pt is illustrated in Appendix’s Fig. 4.

Neurocoder: General-Purpose Computation Using Stored Neural Programs

(d)

(e)

Figure 2. (a) MNIST test set classification error vs the number of steps (J) in Neurocoder (blue), compared with a linear classifier (red).
(b) 1st column: Digit images; Middle column: Single-step attention weights for 30 slots in MU (vertical axis) for first 5 singular vectors
(horizontal axis) for each digit; Last column: Multi-step attention weights for 10 slots in MU (vertical axis) for first 5 singular vectors
(horizontal axis). Multi-step attention is able to produce far more diverse patterns with fewer slots - 10 slots compared to single-step 30
slots. (c) Two attention patterns of single-step Neurocoder. The binary decision tree derived from single-step Neurocoder’s attention
patterns. The two patterns across components represent the decisions going up and down across the binary tree. Visualisation for (d)
multi-step (J = 5, 20 memory slots) and (e) single-step (J = 1, 10 memory slots) cases showing while processing a sequence of the
polynomial auto-regression task.

2.3. Program Integration via The Integration Network

Since the working program Pt only contains top rm prin-
cipal components, it is low-rank and may be not flexible
enough for sophisticated computation. We propose to en-
hance Pt with a residual program R– a traditional connec-
tion weight trained as the integration network’s parameters,
which is constant after training w.r.t t. The residual program
represents the sum of the remaining less important compo-
nents. To this end, we suppress R with a multiplier that is
smaller than σtrm– the smallest singular value of the main
components - resulting in the integration formula

Wt = Pt + wrtσtrmR (7)

where wrt = sigmoid (fφ (xt)) is an adaptive gating value
that controls the contribution of the residual program. fφ is
the integration network in the Program Controller and hence,
in our implementation, the integration control signal sent by
the Program Controller is λpt = {wrt , σtrm} . We note that
in our experiments, the program integration can be disabled
(Wt is directly set to Pt) to prove the contribution of Pt
or reduce the number of parameters. The working program
Wt is then used by the Main Network to execute the input
data xt (see (Fig. 1 (a))). For example, with linear classifier
Main Network, the execution is yt = xtWt. If multiple
layers need to change program, we generate multiple Wt

accordingly. Appendix’s Table 3 summarises Neurocoder’s
important parameter notations.

3. Experimental Results
We compare the performance of diverse Main Networks
(MN) with and without Neurocoder. We also augment the
Main Networks with other recent conditional computing
methods, either modular (sparse Mixture of Experts, Neural
Stored-program Memory) or monolithic (HyperNets, FiLM)
to form stronger baselines. We always apply Neurocoder
to all layers of multi-layer perceptrons (MLP) or just the
final feed-forward layer of deep CNN networks (LeNet,
DenseNet, ResNet), RNNs (GRU, LSTM), MANN (NTM).
Other competitors such as MOE, NSM, HyperNet and FiLM
are applied to the Main Networks in the same manner.

3.1. Instance-based Learning - Object Recognition

We tested Neurocoder on instance-based learning through
classical image classification tasks using MNIST (LeCun
et al., 1998) and CIFAR (Krizhevsky et al., 2009) datasets.
The first experiment interpreted Neurocoder’s behaviour
in classifying digits into 10 classes (0 − 9) using linear
classifier Main Network. With less parameters (around 7.3K
vs 7.8K), Neurocoder using the recurrent attention surpasses

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Figure 3. Learning curves (mean and std. over 5 runs) on representative Atari 2600 games. All baselines are applied to the actor/critic
networks in the A3C agent.

linear classifier by up to 5% (Fig. 2 (a)). This simple
example showcases how a low-rank program is superior to
the traditional weight.

To differentiate the input, Neurocoder attends to different
components of the active program to guide the decision-
making process. Fig. 2 (b) shows single-step and multi-step
attention to the first 5 singular vectors for each digit across
memory slots. Multi-step attention produces richer patterns
compared to single-step Neurocoder that manages only 2
attention weight patterns.

Fig. 2 (c) illustrates how Neurocoder performs modular
learning by showing the attention assignment for top 5 sin-
gular vectors as a binary decision tree. Digits under the same
parental node share similar attention paths, and thereby sim-
ilar active programs. Some digits look unique (e.g. 7) result-
ing in active programs composed of unique attention paths,
discriminating themselves early in the decision tree. Some
digits (e.g. 0 and 9) share the same attention pattern for the
first 5 components and are thus unclassifiable. They can
only be distinguished by considering more singular vectors.

We integrated Neurocoder with deep networks - 5-layer
LeNet and 100-layer DenseNet - and tested on CIFAR
datasets. Neurocoder significantly outperformed the Main
Networks by 1− 5% accuracy. Compared with sparse Mix-
ture of Experts (MOE (Shazeer et al., 2017)) and Neural
Stored-program Memory (NSM (Le et al., 2020)), Neu-
rocoder required a tenth of the number of parameters and
performed better by up to 8− 10% (Appendix’s Table 4).

3.2. Sequential Learning - Sequence Adaption and
Game Playing in Reinforcement Learning

Recurrent neural networks (RNN) can learn from sequential
data by updating the hidden states of the networks. However,
this does not suffice when local patterns shift, as is often
the case. We now demonstrate that Neurocoder helps RNNs
overcome this limitation by composing diverse programs to

handle sequence changes.

Synthetic polynomial auto-regression We created a sim-
ple auto-regression task in which data points are sampled
from polynomial function chunks that change over time.
The Main Network is a strong RNN–Gated Recurrent Unit
(GRU (Cho et al., 2014)). We found that GRU integrated
with a single-step or multi-step Neurocoder converged much
faster than all other baselines. HyperNet (Ha et al., 2017)
and FiLM (Perez et al., 2018)) adapt by re-scaling weights
or activation of the GRU, which were shown inferior to our
modular approach (Appendix’s Fig. 5).

Figs. 2(d, e) visualise the first singular vector attention
weights in MU that form the first component of the active
program are shown over sequence timesteps (upper) with
Neurocoder’s yt prediction (orange) and ground truth (blue)
(lower). The vertical dash green lines separate polynomial
chunks. Each chuck represents a local pattern, and thus
ideally requires a specific active program to compute the
input xt. We find that the multi-step attention Neurocoder
changes its attention following polynomial changes - it at-
tends to the same singular program when processing data
from the same polynomial and alters attention for data from
a different polynomial (Fig. 2(d)). In contrast, the single-
step Neurocoder only changes its attention when there is a
remarkable change in y-coordinate values (Fig. 2(e)).

Single-step Neurocoder did not discover the underlying
structure of the data, and thus underperformed the multi-
step Neurocoder. We hypothesise that when recurrence is
employed, usage-based attention takes effect, stipulating bet-
ter memory utilisation and diverse attentions over timesteps.
We ran multi-step Neurocoder without usage-based atten-
tion. The results were worse than multi-step Neurocoder,
which confirms our hypothesis (Appendix’s Fig. 5).

Atari game reinforcement learning We used reinforce-
ment learning as a further testbed to show the ability to adapt

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Method MN (MLP (Hsu et al., 2018)) MN (MLP ours) NSM Neurocoder
Adam 55.16±1.38 53.55±1.27 54.85±2.81 58.46±0.46

Adagrad 58.08±1.06 57.83±2.74 58.42±1.87 62.28±4.03
L2 66.00±3.73 64.37±2.40 62.83±7.21 69.89±1.72
SI 64.76±3.09 64.41±3.36 64.36±2.99 67.96±3.22

EWC 58.85±2.59 58.41±2.37 58.12±3.24 65.66±1.25
O-EWC 57.33±1.44 57.78±1.84 58.55±3.40 73.97±1.50

Table 1. Incremental domain continual learning with Split MNIST. Final test accuracy (mean and std.) over 10 runs.

to environmental changes. We performed experiments on
several Atari 2600 games (Bellemare et al., 2013) wherein
the agent was implemented as the Asynchronous Advantage
Actor-Critic (A3C (Mnih et al., 2016)). In the Atari plat-
form, agents are allowed to observe the screen snapshot of
the games and act to earn the highest score. We augmented
the A3C by employing Neurocoder’s working programs for
feed-forward layers of the actor and critic networks, aiming
to decompose the policy and value function into singular
programs that were selected depending on the game state.

Frostbite and Montezuma’s Revenge. These games are
known to be challenging for A3C and other algorithms
(Mnih et al., 2016). We trained A3C and HyperNet-based
A3C for over 300 million steps, yet these models did not
show any sign of learning, performing equivalently to ran-
dom agents. For such complicated environments with sparse
rewards, both the monolithic neural networks and the Hyper-
Net’s unstored fast-weights fail to learn (almost zero scores).
In contrast, Neurocoder enabled A3C to achieve from 1, 500
to 3, 000 scores on these environments (Fig. 3), confirm-
ing the importance of decomposing a complex solution to
smaller, simple stored programs.

3.3. Multi-task learning - Solving Mutliple Algorithms

Here we explore the modular learning capability of Neu-
rocoder in multi-task setting. Inspired by algorithmic se-
quencing tasks (Le et al., 2020), we created a challenging
sequential multi-task benchmark wherein the input sequence
is a series of sub-sequences from 4 algorithms: Copy, Re-
peat Copy, Associative Recall and Priority Sort (Graves
et al., 2014). Each sub-sequence, following a task identifica-
tion vector, is the task input. In each input sequence, n tasks
were sampled from the set of 4 algorithms with replacement
and the output sequences were created correspondingly.

We trained a MANN–Neural Turing Machine (NTM (Graves
et al., 2014)) Main Network with FiLM, HyperNet and our
Neurocoder augmentation on sequences of n = 4 tasks, and
tested with sequences of n = 4 and n = 8 tasks. Appendix’s
Fig. 6 demonstrates that Neurocoder was performant in both
test settings, not only achieving lowest error on n = 4, but
also being the only one generalised well to n = 8 scenario,

which was unseen during training.

3.4. Continual learning - Learning Tasks Sequentially

In continual learning, standard neural networks often suffer
from “catastrophic forgetting” in which they cannot retain
knowledge acquired from old tasks upon learning new ones
(French, 1999). Our Neurocoder offers natural mitigation of
such catastrophic forgetting in neural networks by attending
to different singular programs whilst learning different tasks.

In this case, in addition to the Main Network, we examine
several continual learning algorithms. These algorithms,
including Elastic Weight Consolidation (EWC (Zenke et al.,
2017)) and Synaptic Intelligence (SI (Zenke et al., 2017)),
work by regularising the loss function and thus can be easily
combined with Neurocoder by modifying the loss Ltask.
To avoid catastrophic forgetting on Neurocoder through the
residual weight R, we excluded R in this experiment. We
demonstrate that Neurocoder can improve these continual
learning algorithms without requiring additional assump-
tions as in other approaches (Lopez-Paz & Ranzato, 2017;
Shin et al., 2017; Serra et al., 2018) that either utilise task
embedding or replay memory.

Split MNIST We first considered the split MNIST
dataset–a standard continual learning benchmark wherein
the original MNIST was split into a 5 2-way classification
tasks, consecutively presented to a Multi-layer Perceptron
Main Network (MLP). We followed the benchmarking as in
Hsu et al. (2018) in which various optimisers and continual
learning methods were examined under incremental task
and domain scenarios. We measured the performance of the
MLP versus Neurocoder and NSM. In both scenarios, Neu-
rocoder was compatible with all continual leaning methods,
demonstrating superior performance over MLP and NSM
with performance gain between 1 to 16% (see Table 6 and
Appendix’s Table 1).

Split CIFAR We verified the scalability of Neurocoder to
more challenging datasets. We split CIFAR datasets as in the
split MNIST, resulting in 5-task 2-way split CIFAR10 and
a 20-task 5-way split CIFAR100. We used Main Network
ResNet (He et al., 2016)–a very deep CNN architecture.

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Configuration
Without R With R

H = 1 H = 3 H = 1 H = 3

CIFAR-10 77.4 80.8 88.9 95.6
CIFAR-100 70.8 75.0 75.1 79.3

Table 2. CIFAR: accuracy of Neurocoder with different H and R.

When we stressed the orthogonal loss (a = 10) and used
bigger program memory (100 slots), Neurocoder improved
ResNet classification by 15% and 10% on CIFAR10 and
CIFAR100, respectively. When we integrated Neurocoder
with Synaptic Intelligence (SI (Zenke et al., 2017)), the
performance was further improved, maintaining a stable
performance above 80% accuracy for CIFAR10 and out-
performing using SI alone by 10% for CIFAR100. We
visualised the program attention over training time, and real-
ize clear shift in attention pattern as new tasks appear. The
details are given in Appendix B.4.

3.5. Ablation Study

Here we conduct more ablation studies considering the im-
pact of the number of program attention heads (H) and
residual weight (R) in computer vision tasks. In particu-
lar, under the same training as in §3.1 we ran Neurocoder
(DenseNet backbone) on CIFAR10 and CIFAR100 datasets
using different H and with/without R. The result in Table
2 confirms the necessity of having multiple attention heads
and residual weight, which may help Neurocoder capture
better fine-grained details of the images for classification.

However, the residual weight is not always beneficial, es-
pecially in continual learning. As normal, R suffers from
catastrophic forgetting. We verify that in the Split MNIST
experiment. Both settings of incremental task and domain
show a clear drop of performance, up to 2% and 8%, respec-
tively, when Neurocoder is equipped with R, as shown in
Appendix’s Tables 7 and 1.

We note that other studies regarding multi-step attention
(J), usage-based attention, the number of programs (P) and
the orthogonal coefficient (a), were already embedded in
the above experimental sections (§3.1, §3.2, and §3.4, re-
spectively). These studies collect evidences showing that
our proposed components are critical for improving Neu-
rocoder’s performance in a variety of tasks.

4. Related Works
Memory-augmented neural networks (MANN) treats neural
activations as data stored in an external memory, resembling
Turing Machines (Graves et al., 2014; 2016; Weston et al.,
2014; Sukhbaatar et al., 2015). Sophisticate models (An-
dreas et al., 2016; Le et al., 2020) step further by employing
a memory of weights, which is analogous to the program

memory concept in modern computers and thus, can per-
form adaptive computation by switching program during
processing. Sharing similar ideas, conditional computation
methods also use a bank of separate big programs, each
of which is a weight matrix containing numerous param-
eters (Jacobs et al., 1991; Shazeer et al., 2017; Le et al.,
2020). These attempts are not only inefficient in terms of
storage, but also introduce redundancy and program col-
lapse as the number of programs increases. Recent works
extend the concept to routing networks, trained with rein-
forcement learning (Rosenbaum et al., 2018). Unlike them,
in its program memory, Neurocoder maintains only share-
able, smaller components that can reconstruct the whole
program space, thereby heavily utilising the parameters and
preventing the model from proliferating. On the application
side, our solution offers a single framework that is scalable
and adaptable to various problems and learning paradigms,
which is not limited to single domain as in prior works.

Another way to achieve adaptive computation is via mod-
ifying the neural weight. HyperNet (Ha et al., 2017) and
FiLM (Perez et al., 2018) rescale the weight conditioned
on the input using multiplicative operations (similar to the
residual weight R in Neurocoder). However, our method
focuses more on modular representation of the weights, and
can compose new weight from stored singular programs.
Although less related, neural program synthesis (Reed &
De Freitas, 2015; Shu & Zhang, 2017) shares with Neu-
rocoder the goal to generate program from input-output
examples. However, Neurocoder’s program is not a real
program with proper programming syntax. Instead, it is a
metaphor for the weight matrix of neural networks and thus,
simple and easy to combine with other Main Networks. Our
model is also orthogonal to approaches employing tensor
decomposition to reduce the number of parameters or has-
ten the computation (Novikov et al., 2015; Lebedev et al.,
2015). Neurocoder composes rather than decompose the
neural weights. Our aim is not only to enable efficient pa-
rameter usage, but also achieve general-purpose computing
power that enables generalisation to various domains.

5. Discussion
Our experiments demonstrate that Neurocoder is capable of
re-coding Neural Programs in distinctive neural networks,
amplifying their capabilities in diverse learning scenarios:
instance-based, sequential, multi-task and continual learn-
ing. This consistently results in significant performance
increase, and further creates novel robustness to pattern
shift and catastrophic forgetting. This ability for each archi-
tecture to re-code itself is made possible without changing
the way it is trained, or majorly increasing the number of
parameters it needs to learn (see Appendix Table 9).

The MNIST problem illustrates the reasoning process of

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Neurocoder when classifying digit images wherein its sin-
gular program assignment resembles a binary tree decision-
making process - it shows how some singular programs are
shared, others are not. The sequential problems highlight the
importance of efficient memory utilisation in re-constructing
the working program enabling discovery of hidden struc-
tures in sequential data and allowing RL agents to solve
complex games wherein traditional methods fail or learn
slowly. Neurocoder also works well with multi-task setting,
as shown in the challenging multi-algorithm benchmark.
Finally, continual learning problems show that Neurocoder
mitigates catastrophic forgetting efficiently under different
learning settings/algorithms.

One limitation of this work is the number of additional
hyperparameters, which prevents us from fully tuning Neu-
rocoder. In future work, we will extend Neurocoder’s appli-
cation beyond feed-forward layers. It would be interesting
to efficiently replace all neural layers including CNN or
Transformer by Neurocoder’s programs.

Acknowledgements
This research was partially funded by the Australian Govern-
ment through the Australian Research Council (ARC). Prof
Venkatesh is the recipient of an ARC Australian Laureate
Fellowship (FL170100006).

References
Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural

module networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 39–48,
2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
In International Conference on Learning Representa-
tions, 2015. URL http://arxiv.org/abs/1409.
0473.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using RNN encoder–decoder
for statistical machine translation. In Conference

on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 1724–1734. Association for Com-
putational Linguistics, October 2014. doi: 10.3115/
v1/D14-1179. URL https://www.aclweb.org/
anthology/D14-1179.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3(4):128–135, 1999.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid
computing using a neural network with dynamic external
memory. Nature, 538(7626):471–476, 2016.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In
International Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=rkpACe1lx.

Happel, B. L. and Murre, J. M. Design and evolution of
modular neural network architectures. Neural networks,
7(6-7):985–1004, 1994.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hsu, Y.-C., Liu, Y.-C., Ramasamy, A., and Kira, Z. Re-
evaluating continual learning scenarios: A categorization
and case for strong baselines. In NeurIPS Continual learn-
ing Workshop, 2018. URL https://arxiv.org/
abs/1810.12488.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Hubel, D. Eye, Brain, and Vision. Scientific
American Library series. Scientific American Library,
1988. URL https://books.google.com.au/
books?id=HaHmtwEACAAJ.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. TR-2009, 2009.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://arxiv.org/abs/1810.12488
https://arxiv.org/abs/1810.12488
https://books.google.com.au/books?id=HaHmtwEACAAJ
https://books.google.com.au/books?id=HaHmtwEACAAJ

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Le, H., Tran, T., and Venkatesh, S. Neural stored-program
memory. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.
net/forum?id=rkxxA24FDr.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lem-
pitsky, V. Speeding-up convolutional neural networks
using fine-tuned cp-decomposition. In International Con-
ference on Learning Representations, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. In Advances in neural information
processing systems, pp. 6467–6476, 2017.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P.
Tensorizing neural networks. In Advances in neural in-
formation processing systems, pp. 442–450, 2015.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. FiLM: Visual Reasoning with a General
Conditioning Layer. In AAAI Conference on Artificial
Intelligence, New Orleans, United States, February 2018.
URL https://hal.inria.fr/hal-01648685.

Reed, S. and De Freitas, N. Neural programmer-interpreters.
arXiv preprint arXiv:1511.06279, 2015.

Rosenbaum, C., Klinger, T., and Riemer, M. Routing
networks: Adaptive selection of non-linear functions
for multi-task learning. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=ry8dvM-R-.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. Meta-learning with memory-augmented neu-
ral networks. In International conference on machine
learning, pp. 1842–1850, 2016.

Schmidhuber, J. Making the world differentiable: On us-
ing self-supervised fully recurrent neural networks for
dynamic reinforcement learning and planning in non-
stationary environm nts. TR FKI-126-90, 1990.

Schmidhuber, J. Learning to control fast-weight memories:
An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131–139, 1992.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In International Conference on Machine Learning,
pp. 4548–4557, 2018.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously large
neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Represen-
tations, 2017. URL https://openreview.net/
forum?id=B1ckMDqlg.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learn-
ing with deep generative replay. In Advances in Neural
Information Processing Systems, pp. 2990–2999, 2017.

Shu, C. and Zhang, H. Neural programming by example. In
Thirty-First AAAI Conference on Artificial Intelligence,
2017.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. End-to-
end memory networks. arXiv preprint arXiv:1503.08895,
2015.

Turing, A. On computable numbers, with an application to
the entscheidungsproblem. In Proceedings of the London
Mathematical Society, 1936.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

von der Malsburg, C. The correlation theory of brain func-
tion, 1981. URL http://cogprints.org/1380/.

Von Neumann, J. First draft of a report on the edvac. IEEE
Annals of the History of Computing, 15(4):27–75, 1993.

Weston, J., Chopra, S., and Bordes, A. Memory networks.
arXiv preprint arXiv:1410.3916, 2014.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. Proceedings of machine
learning research, 70:3987, 2017.

https://openreview.net/forum?id=rkxxA24FDr
https://openreview.net/forum?id=rkxxA24FDr
https://hal.inria.fr/hal-01648685
https://openreview.net/forum?id=ry8dvM-R-
https://openreview.net/forum?id=ry8dvM-R-
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
http://cogprints.org/1380/

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Appendix
A. Implementation details

In this section, we describe how we implement fϕ in prac-
tice. Assume that the size of memories MU ,MV and
MSare , P × d1 , P × d2 and P × 1, respectively; and
the key size is K. Then fϕ is a neural network with an input
size of d1 + d2 + 1 and output size of 3K (K � d1,2). fϕ
takes the concatenation (detached) [MU [i] ,MV [i], MS [i]
] as input where i is the row index, and outputs 3 key vectors.
We then perform attention to each of the 3 key vectors to
get the attention weight to each slot in the memories. The
weights are used to retrieve the components as in Eq. 3-4.

B. Details of experiments

B.1. INSTANCE-BASED LEARNING EXPERIMENTS

Image classification-linear Main Network We used the
standard training and testing set of MNIST dataset. To
train the models, we used the standard SGD with a batch
size of 32. Each MNIST image was flattened to a 768-
dimensional vector, which requires a linear classifier of
7, 680 parameters to categorise the inputs into 10 classes.
For Neurocoder, we used Program Memory with P = 6
and K = 2. The Program Controller’s composition network
was an LSTM with a hidden size of 8. We controlled the
number of parameters of Neurocoder, which included param-
eters for the Program Memory and the Program Controller
by reducing the input dimension using random projection
zt = xtU with U ∈ R768×200 initialised randomly and
fixed during the training. We also excluded the program
integration to eliminate the effect of the residual program R.
Given the flattened image input xt, Neurocoder generated
the active program Pt, predicting the class of the input as
yt = argmax (xtPt). The performance of the linear classi-
fier was imported from (LeCun et al., 1998) and confirmed
by our own implementation.

Image classification-deep Main Network We used the
standard training and testing sets of CIFAR datasets. For
most experiments, we use Adam optimiser with a batch size
of 128. The deep Main Networks were adopted from the
original papers, resulting in 3-layer MLP, 5-layer LeNet
(LeCun et al., 1998) and 100-layer DenseNet (Huang et al.,
2017)2. The other baselines for this task included a recent
sparse Mixture of Experts (MOE (Shazeer et al., 2017)) and
the Neural Stored-program Memory (NSM (Le et al., 2020)).
For this case, we employed the program integration with the
residual program R to flexibly fit to the data distribution.

2Only for experiments with DenseNet, to closely match the
reported results, we followed the original training with SGD opti-
mizer, scheduling learning rate and batch size of 32.

B.2. SEQUENTIAL LEARNING EXPERIMENTS

Synthetic polynomial auto-regression A sequence was
divided into npa chunks, each of which associated with a
randomly generated polynomial. The degree and coeffi-
cients of each polynomial were sampled from U ∼ [2, 10]
and U ∼ [−1, 1], respectively. Each sequence started from
x1 = −5 and ended with xT = 5, equally divided into npa
chunks. Each chunk contained several consecutive points
(xt, yt) from the corresponding polynomial, representing
a local transformation from the input to the output. Given
previous points (x<t, y<t) and the current x-coordinate xt,
the task was to predict the current y-coordinate yt. To be
specific, at each timestep, the Main Network GRU was fed
with (xt, yt−1) and trained to predict yt by minimizing the
mean square error 1/T

∑T
t=1 (ŷt − yt)

2 where y0 = 0, ŷt
is the prediction of the network and yt the ground truth.

We augmented GRU by applying Neurocoder and Hyper-
Net (Ha et al., 2017) to the output layer of the GRU. Here,
the HyperNet baseline (Ha et al., 2017) generated adaptive
scales for the output weight while the FiLM baseline (Perez
et al., 2018) modulates the activation of the output layer. We
trained the networks with Adam optimiser with a batch size
of 128. To balance the model size, we used GRU’s hidden
size of 32, 28, 32, 16 and 8 for the original Main Network,
HyperNet, FiLM, single-step and multi-step Neurocoder,
respectively. We also excluded program integration phase in
Neurocoders to keep the model size equivalent to or smaller
than that of the Main Network.

We compared three configurations of Neurocoder - single-
step, multi-head (J = 1, H = 15), multi-step, single-
head (J = 5, H = 1) and multi-step without usage-based
attention- against the original GRU with output layer made
by MLP, HyperNet and FILM. We found that MLP failed
to learn and converge within 10, 000 learning iterations. In
contrast, both Neurocoders learn and converge, in as little
as only 2, 000 iterations with the multi-step Neurocoder.
HyperNet and FiLM converged much slower than Neu-
rocoders and could not minimize the predictive error as
well as Neurocoders when Gaussian noise (mean 0, vari-
ance 0.3×max

t
yt) is added or the number of polynomials

(npa) is doubled (see Fig. 5).

Atari 2600 games We used OpenAI’s Gym environments
to simulate Atari games. We used the standard environ-
ment settings, employing no-frame-skip versions of the
games. The picture of the game snapshot was preprocessed
by CNNs and the A3C agent was adopted from the original
paper with default hyper-parameters as in Mnih et al. (2016).
The actor/critic network of A3C was LSTM whose output
layer’s working program was provided by Neurocoder or
HyperNet. The hidden size of the LSTM was 512 for all
baselines.

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Composition
Network

Outer
product

Program
Attention

Multiply Sum Program
Memory	

Program
Controller

Figure 4. Active program coding. The Program Controller uses the composition network (a recurrent neural network) to process the input
xt and generate composition signal ξp

t , which is composed of the queries (q) and the interpolating gates (g). The similarity of the query to
program memory keys (k) is then computed together with the memory usage (m) from which attention weights for the Program Memory
are derived. The active program Pt is then “coded” through low-rank approximation using the j-th component accessed by recurrent
attentions. For simplicity, one attention head is shown (H = 1).

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Notation Meaning
Location

Program Program
Controller Memory

Trainable parameters
θu,v,σ Composition network X
φ Integration network X

ϕu,v,σ Key generator network X
R Residual program (optional) X
MU Memory of left singular vectors X
MV Memory of right singular vectors X
MS Memory of singular values X

Control variables
ξpt Composition control signal X
λpt Integration control signal X

ku,v,σ Program keys X
mu,v,σ Program usages X

Hyper-parameters
P Number of memory slots X
K Key dimension X
lI Number of considered least-used slots X
J Number of recurrent attention steps X
H Number of attention heads X
a Orthogonal loss weight X

Table 3. Important parameters of Neurocoder.

Architecture Task Original MOE NSM Neurocoder

MLP CIFAR10 52.06 50.76 52.76 54.86
CIFAR100 23.31 22.79 25.65 26.24

LeNet CIFAR10 75.71 75.88 75.45 78.92
CIFAR100 42.73 42.47 43.14 47.21

DenseNet CIFAR10 93.61 80.61 94.24 95.61
CIFAR100 78.11 69.48 71.76 79.34

Table 4. Best test accuracy over 5 runs on image classification tasks comparing original architecture, Mixture of Experts (MOE), Neural
Stored-program Memory (NSM) and our architecture (Neurocoder). Three architectures of the Main Network of Neurocoder were
considered: 3-layer perceptron (MLP), 5-layer CNN (LeNet (LeCun et al., 1998)) and very deep Densely Connected Convolutional
Networks (DenseNet (Huang et al., 2017)). We employed two classical image classification datasets: CIFAR10 and CIFAR100.

Tasks Configuration Input→ Output
Copy Sequence length range: [1, 3] x1, ..., xT → x1, ..., xT

Repeat Copy Sequence length range: [1, 3]
n, x1, ..., xT → [x1, ..., xT]× n#Repeat range n: [1, 2]

Associative Recall #Item range: [2, 3]
[x1,1, x1,2] , ..., [xT,1, xT,2] , [xi,1, xi,2]→ [xi+1,1, xi+1,2]Item length: 2

Priority Sort #Item: 3
[x1, p1] , [x2, p2] , [x3, p3]→ xi1 , xi2 s.t. pi1 ≥ pi2 ≥ pi3#Sorted Item: 2

Table 5. Algorithmic tasks used in multi-task learning.

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Seaquest and MsPacman. The original A3C agent was able
to learn and obtain a moderate score of around 2, 500 af-
ter 32 million environment steps. We also equipped A3C
with HyperNet-based actors/critics, however, the perfor-
mance remained unchanged, with scores of about 2/3 of
Neurocoder-based agent’s.

B.3. MULTI-TASK LEARNING EXPERIMENTS

Table 5 lists the input-output structure and configura-
tion of the algorithmic tasks: Copy, Repeat Copy, As-
sociative Recall and Priority Sort. Basically, each
timestep of the input sequence presents a binary vec-
tor of 8 bits. In our multi-task setting, the input-output
structure is t1, x

1
1...I1

,t2, x
2
1...I2

,t3, x
3
1...I3

,t4, x
4
1...I4

→
y11...O1

,y21...O2
,y31...O3

,y41...O4
where

{
ti, x

i
1...Ii

, yi1...Oi

}4
i=1

is the task identification, input and output sequence of the
task, respectively. The multi-task learning problem was
challenging because the models must distinguish tasks by
remembering the task identifications and learn to solve dif-
ferent algorithms by generating different interface programs
in accordance with each task.

Following Le et al. (2020), we used the same NTM with 1
read and 1 write head, and applied Neurocoder and other
conditional computing methods to the interface network of
the NTM, which is a single-layer MLP with tanh activa-
tion. We used single-step attention Neurocoder for this task
to keep the number of parameters comparable with other
models. We trained the models with RMSProp optimiser
with learning rate of 10−4 and batch size of 64 to minimise
the cross-entropy loss of the ground truth output and the
predicted one. The evaluation metric was % bit error, which
was computed for a sequence as # wrong bits

total bits × 100.

B.4. CONTINUAL LEARNING EXPERIMENTS

We evaluate the models under incremental task and domain
setting. The former is easier as each task uses its own dedi-
cated prediction head (catastrophic forgetting only happens
at lower layers) while the latter shares the prediction head
across task.

Split MNIST We used the same 2-layer MLP and contin-
ual learning baselines as in Hsu et al. (2018). Here, we again
excluded program integration to avoid catastrophic forget-
ting happening on the residual program R. Remarkably, the
NSM with much more parameters could not improve MLP’s
performance, illustrating that simple modular conditional
computation is not enough for continual learning (see Table
6).

Split CIFAR The 18-layer ResNet implementation was
adopted from Pytorch’s official release whose weights was
pretrained with ImageNet dataset. When performing contin-

ual learning with CIFAR images, we froze all except for the
output layers of ResNet, which was a 3-layer MLP. We only
tuned the hyper-parameters of SI and Neurocoder for this
task.

In the CIFAR10 task, compared to the monolithic ResNet,
the Neurocoder-augmented ResNet could achieve much
higher accuracy when we finished the learning for all 5
tasks (55% versus 70%, respectively). Also, we realised
that stressing the orthogonal loss further improved the per-
formance. When we employed Synaptic Intelligence (SI
(Zenke et al., 2017)), the performance of ResNet improved,
yet it still dropped gradually to just above 70%. In contrast,
the Neurocoder-augmented ResNet with SI maintained a
stable performance above 80% accuracy (see Fig. 7 (left)).
To show the adaption of program attention, we visualised
the attention pattern over training time in Fig. 8. Overall,
Neurocoder can learn to find different programs as the task’s
data shift in distribution. Thus, knowledge of old tasks is
preserved.

In the CIFAR100 task, Neurocoder alone with a bigger
program memory slightly exceeded the performance of SI,
which was about 10% better than ResNet. Moreover, Neu-
rocoder plus SI outperformed using only SI by another 10%
of accuracy as the number of seen tasks grew to 20 (see Fig.
7 (right)).

C. Training procedure and hyper-parameter selections

For all experiments, Neurocoder was jointly trained with
Main Networks. We trained all the models using single GPU
NVIDIA V100-SXM2. Running time depends on task, the
longest task is multi-task learning with MN as NTM, which
took 1 day for 1 training run with Neurocoder. Adding
Neurocoder makes the training slower about 30%, yet still
faster than MOE or NSM. However, compared to HyperNet
or FILM, Neurocoder is still slower by 15%, which is the
limitation of Neurocoder.

The learning rate of optimisers was set to default value
unless stated otherwise. The Main Network’s hyper-
parameters were fixed and we only tuned the hyper-
parameters of Neurocoder and its competitors: MOE,
NSM, HyperNet and FILM. In particular, for Neurcocoder,
main hyper-parameters such as number of memory slots
(P), recurrent steps (J), and heads (H) were selected
from {10, 20, 30, 50, 80, 100} , {1, 5} and {1, 5, 15}, re-
spectively. Hyper-parameters such as number of least-used
slots (lI) key dimension (K), orthogonal loss weight (a)
was selected from {2, 5}, {3, 5} and {0.1, 10}, respectively.

For MOE, we tuned the total number of experts and top-k
chosen experts from range {10, 50, 80, 100} and {1, 5, 10},
respectively. For NSM, we tuned the number of program
memory slots {5, 10, 50}. Other hyper-parameters of MOE

Neurocoder: General-Purpose Computation Using Stored Neural Programs

and NSM were kept as in the original papers. For HyperNet
and FiLM, chosen as MLPs (ReLU activation), we tuned
the number of layers {1, 2} and hidden size {64, 128, 256}.

We report details of best hyper-parameters and model size
for each tasks in Table 8 and 9, respectively. Readers are
referred to Table 3 for the complete list of parameters in
Neurocoder.

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Figure 5. Polynomial auto-regression: mean square error (MSE) over training iterations with a batch size of 128 comparing FiLM,
HyperNet, Main Network (MLP), single-step, multi-step Neurocoders. - denotes the ablated Neurocoder without usage-based attention.
The learning curves are taken average over 5 runs.

Figure 6. Multi-algorithm learning task (mean and std. over 5 runs). Left: Bit error over training steps (8 tasks per sequences). Right:
Average bit error on different testing settings measured by best checkpoints. Lower is better.

Method MN (MLP (Hsu et al., 2018)) MN (MLP ours) NSM Neurocoder (R) Neurocoder (no R)
Adam 93.46±2.01 93.75±3.28 87.55± 4.38 94.91± 3.29 96.54±1.39

Adagrad 98.06±0.53 98.02±0.89 96.63±1.49 98.04±0.85 99.01±0.19
L2 98.18±0.96 98.14±0.43 91.44± 3.80 98.13± 0.81 98.35±0.74
SI 98.56±0.49 98.69±0.20 98.87±0.20 98.72±0.21 99.14±0.24

EWC 97.70±0.81 97.00±1.10 93.94±2.36 97.04±0.07 97.88±0.22
O-EWC 98.04±1.10 98.23±1.17 96.11±1.27 98.27±1.73 98.30±1.48

Table 6. Incremental task continual learning with Split MNIST. Final test accuracy (mean and std.) over 10 runs. We use 2 variants of
Neurocoder: with and without the residual weight R

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Method MN (MLP (Hsu et al., 2018)) MN (MLP ours) NSM Neurocoder (R) Neurocoder (no R)
Adam 55.16±1.38 53.55±1.27 54.85±2.81 54.72± 1.37 58.46±0.46

Adagrad 58.08±1.06 57.83±2.74 58.42±1.87 58.59±2.38 62.28±4.03
L2 66.00±3.73 64.37±2.40 62.83±7.21 64.18± 1.33 69.89±1.72
SI 64.76±3.09 64.41±3.36 64.36±2.99 65.98±4.74 67.96±3.22

EWC 58.85±2.59 58.41±2.37 58.12±3.24 60.82±2.63 65.66±1.25
O-EWC 57.33±1.44 57.78±1.84 58.55±3.40 65.17±2.45 73.97±1.50

Table 7. Incremental domain continual learning with Split MNIST. Final test accuracy (mean and std.) over 10 runs. We use 2 variants of
Neurocoder: with and without the residual weight R

Figure 7. Incremental task continual learning with Split CIFAR10 (left) and CIFAR100 (right). Average classification accuracy with error
bar over all learned tasks as a function of number of tasks.

Task Neurocoder Use R

MNIST P = 5, J = 5, H = 1
X

K = 2, lI = 2, a = 0.1

CIFARs P = 30, J = 5, H = 3
�

K = 5, lI = 5, a = 0.1
Polynomial P = 10, J = 1, H = 15 P = 20, J = 5, H = 1

�auto-regression K = 3, lI = 0, a = 0.1 K = 3, lI = 2, a = 0.1
Atari games P = 80, J = 1, H = 15,K = 3, lI = 5, a = 0.1 �

Multi-algorithm P = 30, J = 1, H = 5,K = 5, lI = 2, a = 10 �
Split MNIST P = 50, J = 1, H = 10,K = 5, lI = 5, a = 10 X

Split CIFARs P = 100, J = 1, H = 10,K = 5, lI = 5, a = 10 X

Table 8. Best hyper-parameters of Neurocoder in all experiments. For polynomial auto-regression task, two Neurocoder configurations are
included, corresponding to single-step and multi-step Neurocoder.

Neurocoder: General-Purpose Computation Using Stored Neural Programs

Task Main Network Original MOE NSM HyperNet FiLM Neurocoder
MNIST Linear classifier 7.8K – – – – 7.3K

CIFARs
3-layer MLP 1.7M 15.4M 21.2M – – 1.9M

LeNet 2.1M 12.3M 27.1M – – 2.3M
DenseNet 7.0M 20.5M 16.7M – – 7.3M

Polynomial
GRU 3.4K – – 3.5K 3.6K 3.6K 2.1K

auto-regression
Atari games LSTM 3.2M – – 3.6M – 3.3M

Multi-algorithm NTM 308K – 264K – 254K 255K
Split MNIST 2-layer MLP 328K 2.3M – 348K
Split CIFARs ResNet 12.6M – – – – 12.6M

Table 9. Number of parameters of machine learning models in all experiments. The parameter count includes the parameter of the Main
Network and the conditional computing model. – denotes not available. For tasks that contain different datasets, leading to slightly
different model size, the numbers of parameters are averaged. For polynomial auto-regression task, two Neurocoder configurations are
included, corresponding to single-step and multi-step Neurocoder.

0 100 200 300 400 500
Training progress

0

20

40

60

80

100

P

Figure 8. Split CIFAR10 attention during training. At any training
step, we can find the mostly attended program memory slot in
MU by measuring the attention weight w. A blue point represents
the index of the the top attended slot (over 100 slots). During
the training of each task, we sample the top attended slots at 100
training steps, resulting in a total of 500 points in the plot. Vertical
red lines separate 5 tasks.

