Neuron Dependency Graphs: A Causal Abstraction of Neural Networks

Yaojie Hu' Jin Tian'!

Abstract

We discover that neural networks exhibit approx-
imate logical dependencies among neurons, and
we introduce Neuron Dependency Graphs (NDG)
that extract and present them as directed graphs.
In an NDG, each node corresponds to the boolean
activation value of a neuron, and each edge mod-
els an approximate logical implication from one
node to another. We show that the logical de-
pendencies extracted from the training dataset
generalize well to the test set. In addition to pro-
viding symbolic explanations to the neural net-
work’s internal structure, NDGs can represent a
Structural Causal Model. We empirically show
that an NDG is a causal abstraction of the corre-
sponding neural network that “unfolds” the same
way under causal interventions using the theory
by Geiger et al. (2021a). Code is available at
https://github.com/phimachine/ndg.

1. Introduction

Neural networks are “black-box” statistical models that do
not provide explanations (Benitez et al., 1997; Samek et al.,
2017) despite ability to accurately model ambiguous pat-
terns (LeCun et al., 2015; Alom et al., 2019). Deep learning
is a different Al paradigm compared to the traditional sym-
bolic Al (Haugeland, 1989), which may be the fundamental
cause to its “black-box” nature. Neural networks can consist
of billions of low-level parameters that are interdependent as
an entangled system, while meaningful concepts are usually
high-level, disentangled, causal factors (Bengio, 2017). Tra-
ditional symbolic Al may not have exact equations to define
ambiguous patterns such as “dog” or computations such as
“annotate an image”, but they do enjoy better explainability
due to recursive computation of well-understood rules on in-
terpretable states of information. Unfortunately, traditional
symbolic tools such as first order logic are not central to

"Department of Computer Science, Towa State University,
United States. Correspondence to: Yaojie Hu <jhu@iastate.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

the analysis and explanation of neural networks, because
neural networks are considered not intrinsically symbolic or
logical by default (Rudin, 2019).

We introduce Neuron Dependency Graphs (NDGs), a tool
to extract and present approximate logical dependencies
between pairs of neurons in a selected layer of a neural
network. Once extracted, an NDG represents an internal
logical structure of the neural network. By inspecting the
logical structure, we discover a new general phenomenon
that, for trained models, approximate logical dependencies
exist commonly for a wide family of neural network archi-
tectures, datasets, and selected layers, even between two
independently trained models. As a post-hoc explanation
method (Das & Rad, 2020; Marcinkevics & Vogt, 2020),
NDGs do not require any architectural changes to the neural
network explained. The graph is discovered from data and
requires no a priori expert modeling.

Although an NDG is extracted from a neural network, it per-
forms computation based on logical deduction, as opposed
to tensor algebra of neural networks. To confirm that the
extracted NDG is an accurate explanation of the internal
structure of the neural network, we turn to the counterfactual
theories of causation (Pearl, 2009; 2001; Morgan & Win-
ship, 2015) and the theories of causal abstraction (Geiger
et al., 2021a; Beckers & Halpern, 2019). The key of causal
abstraction is to identify a function mapping between the
two causal processes that ties the two together in terms of
variables’ values and intervention results. We show that
an NDG can represent a causal abstraction of the neural
network, which assures the faithfulness of the explanation
even when counterfactual interventions are encountered.

To summarize, the main contributions of the paper are:

1. We introduce Neuron Dependency Graph as a new
post-hoc explainable Al (XAI) method that provides
logic-based, faithful explanations about the internal
logical structure of a neural network.

2. We use NDGs to reveal a new general phenomenon
that approximate logical dependency exists among neu-
rons and can generalize to unseen data as a meaningful
statistical model. The existence of neuron dependency
occurs commonly for different datasets and architec-
tures, even between independently trained models.

https://github.com/phimachine/ndg

Neuron Dependency Graphs

3. We show an NDG is a causal abstraction of the neural
network. Specifically, we prove theoretically that an
NDG defines a Structural Causal Model (SCM) that
represents a causal abstraction of the neural network
under an alignment condition (Thm. 3.11). Experimen-
tal results empirically support the alignment condition.

2. Related Work

Explainable artificial intelligence (XAI) Explainable
artificial intelligence aims to make artificial intelligence
models understandable to human beings (Adadi & Berrada,
2018; Das & Rad, 2020). Methods to extract explanations
include gradients (Simonyan et al., 2014; Sundararajan et al.,
2017; Selvaraju et al., 2017) and perturbations (Ribeiro et al.,
2016; Lundberg & Lee, 2017; Shrikumar et al., 2017). Ex-
planations may be in the form of feature importance values
(Lundberg & Lee, 2017), heatmap (Simonyan et al., 2014;
Selvaraju et al., 2017), cropped images (Ribeiro et al., 2016),
or prototype examples (Ming et al., 2019). In terms of lim-
itations, the correctness of these explanations still require
human judgments as there is no objective metric such as ac-
curacy for explanations, and the explanations are for human
interpretation, not downstream computation.

NDGs extract explanations from contingency tables and
present them in the form of logical formula. Accuracy is de-
fined and measures the correctness of neuron dependencies
as a statistical model, an objective metric to assess model
qualities as opposed to, for example, potentially misleading
visual assessments (Adebayo et al., 2018). Neuron depen-
dencies can be used for downstream deductive reasoning.
Related to our work as logic-based XAI methods, local
explanations via necessity and sufficiency (Watson et al.,
2021) produce sets of explanatory factors based on neces-
sity and sufficiency. Logic explained networks (Ciravegna
et al., 2021) produce first order logic explanations based on
human understandable predicates provided as inputs. Com-
positional logical concepts (Mu & Andreas, 2020) may be
approximated given overlapping pixels. ExplaiNN (Fischer
et al., 2021) finds rules about subsets of binarized activa-
tions between hidden layers using the Minimum Description
Lenght (MDL) principle.

Neural-symbolic reasoning NS reasoning aims to inte-
grate deep learning and symbolic reasoning (d’ Avila Garcez
et al., 2019). It can be carried through many-valued logic
(Serafini & d’Avila Garcez, 2016) or real-valued logic
(Riegel et al., 2020). First-order or propositional logic for-
mula can be learned to combine symbolic reasoning and
fuzzy pattern cognition (Dong et al., 2019; Shi et al., 2019).

Causal Abstractions Causal abstraction methods often
require human expert knowledge to establish the high-level

causal model used for explanation (Geiger et al., 2021a;b).
Related, counterfactuals can be used for data augmentation
(Liu et al., 2021) and causal structures can be extracted from
language models (Friedman et al., 2021).

3. Methods

For notations, an uppercase letter such as A denotes a vari-
able (node). A lower case letter such as a denotes a value,
e.g. A = a. A bold letter such as A or a denotes a vector
of variables or values.

3.1. Neuron Dependency Graphs

We aim to investigate logical dependencies between neurons
in a neural network given a dataset of input-label (x, y) sam-
pled from a k-class classification task distribution P(x, y),
withy € N, and § = f(x) € Ng, N; = {1,2,...i}. Input
x is a vector value. We use n = N(x) = fn(x) to denote
the value of neurons N computed by the neural network f
given input x before the activation function.

Definition 3.1 (Strict Neuron Dependency). Let D be the
support of P(x,y). Let p be an activation function with
Boolean values for two neurons N, M with real values. We
say there exists a strict neuron dependency p(N) —5 p(M)
if¥(x,y) € D : p(N(x)) = p(M(x)).

We also consider strict neuron dependency on the negation
of activation function p denoted as p, where p(N(x)) =

-p(N(x)). For example, we say p(N) —, p(M) if
V(x,y) € D : =p(N(x)) = p(M(x)). Note that
p=p-

Any neuron NN can represent an attribute of input x, and
we can select {x | (x,y) € D, p(N(x)) = True} to be
a natural cluster of all inputs that share the same attribute.
This is related to the derivation operator of formal concept
analysis, and we can further define a formal context lattice
(Ganter & Wille, 2012; Birkhoff, 1940) based on strict neu-
ron dependency, although we will not explore this line of
theory further in this paper.

Note that strict neuron dependency may not hold in practice.
The definition is strict for two reasons. 1) Typical activa-
tion functions such as ReL U and sigmoid have ranged real
outputs instead of binary outputs. 2) Due to sampling error
and inaccuracy, the neurons may not model strict logical
dependency perfectly.

We relax the definition to use it in practice.

Definition 3.2 (Neuron Dependency). Let binarized neuron
N’ = 1(¢(N)), where 1(c) is a binarization function 1 :
R — {True, False}, and ¢ is an activation function ¢ : R —
R. For binarized neurons N’, M’ corresponding to neurons
N, M, we say there is a neuron dependency N’ — M’

Neuron Dependency Graphs

given a threshold parameter o with o > 1 if

P(N' A =M")

(VM= v

< (D

1
a

Conceptually, N’ —, M’ when N’ A =M’ is False for
the entire support. We relax the strictness by requiring
P(N' A =M’) to be close to zero in comparison with
P(N")P(—M"), which is the probability of N’ A =M’ if
the events N’ and =M’ are probabilistically independent.

Similar to strict neuron dependency, we will consider neuron
dependency on negated binarized neurons denoted as N,
For example, we say N' — M if [(—=N';~M’) < 1/a by
Eq. (1). For common activation functions ¢, the binarization
function 1 may be chosen based on their natural thresholds.
For sigmoid : 1(c) = True if ¢ > 0.5; False otherwise. For
ReLU, 1(c) = True if ¢ > 0; False otherwise.

Neuron dependency has some desirable properties, making
it a good relaxation for logical implication. First of all,
neuron dependency approximates strict neuron dependency
and therefore can be considered as a logical rule as shown
in the following.

Proposition 3.3 (Neuron dependency is a generalization
of strict neuron dependency). Let function 1 o ¢ be the
binary activation function used in Def. 3.1. Strict neuron
dependency is logically equivalent to neuron dependency
when o = 0.

Proof. When a = oo, we have N’ — M’ < P(N' A
-M')=0 < N —, M. O

Given the proposition, we set 1 < a < oo to be a large
enough value in practice and neuron dependency N’ — M’
will become an approximation of the strict neuron depen-
dency N —4 M'.

Notably, by Eq. (1), we have N — M’ if and only if
M- N , which satisfies the contraposition rule in logic.
Therefore, neuron dependencies always occur in contrapo-
sition pairs. In addition, Eq. (1) makes sure that if two
binarized neurons N’, M’ are independent variables proba-
bilistically, then there is no neuron dependency N’ — M’.
We also note that N’ — M’ does not imply or rule out the
converse M’ — N’ given the definition in Eq. (1), which
is consistent with logic. Lastly, neuron dependency — is
reflexive. However, unlike strict neuron dependency, neuron
dependency is not transitive: any method to approximate
logical implication is likely not transitive when recursively
applied due to a loss of information.

We can see every neuron dependency as a small distributed
statistical model. We will show empirically that neuron de-
pendency relationships commonly exist between neurons in

a well-trained neural network. We represent these relation-
ships with a directed graph over binarized neurons defined
as follows.

Definition 3.4 (Neuron Dependency Graph (NDG)). Let N
be a selected hidden layer of neurons N = {N; | i € Np}.
We define a Neuron Dependency Graph NDG = (V, E) to
be a directed graph over nodes in V = B U O and edges E,
where

B ={N] | N; e N}U{N; | N; e N})
OZ{Oi|i€Nk}U{5i|iEN}C} 3)
E={(U,V)|U—=V,(U)V)eEV XV} “4)

where nodes in B represent binarized neurons N J’ =
1(¢(N;)) and their negation, and nodes in O represent
binarized output neurons and their negation with values
0; = True if f(x) = i and o; = False otherwise.

Construction of an NDG from a dataset. To construct an
NDG from a dataset T' with input-label tuples (x,y) € T,
we use the sample proportion P as an estimate of P for
every (U, V) € V x V. To address the situation when there
are not enough samples to reliably estimate P to establish or
reject an edge, we add condition ‘T‘P(ng(ﬁv) > 1 to the
construction of edges (see Appendix B for an explanation):

A PUA=V) < 17 TIPU)PEV) 1,
PU)P(-V) ~ « o
(U,V) eV xV} (3)

The complexity of neuron dependency graph construction
is O(|T||N|?). When iterating over the dataset to construct
the graph, the graph will converge after a large number (e.g.
10°) of randomly sampled data points and early stopping
can be applied, making the complexity effectively O(|N|?).

Our experimental results (see Sec. 4) show that neuron de-
pendencies commonly exist for various types of datasets,
model architectures, and selected layers. In addition to pro-
viding descriptions, neuron dependencies can be treated as
strict logical rules to perform deductive reasoning. If we
intervene on the neural network based on the deductions, the
neural network will have aligned predictions, demonstrating
that neuron dependency graphs are accurate representations
of the internal logical structure of neural networks. For-
mally, we show a NDG can represent a causal abstraction
of the neural network under an alignment condition (Thm.
3.11), as discussed next.

3.2. Causal Abstractions

Neural networks can be interpreted as a causal model (Chat-
topadhyay et al., 2019; Geiger et al., 2021a). To further
show NDGs provide a symbolic representation of the inter-
nal structure of neural networks, we will first provide an

Neuron Dependency Graphs

interpretation of NDGs as a structural causal model, then
establish a condition under which a NDG is a causal ab-
straction of its corresponding neural network which will be
empirically validated.

Definition 3.5 (Structural Causal Model (SCM) (Pearl,
2009)). A Structural Causal Model (SCM) is a 4-tuple
(V,U,F,P), where V = {V; | i € N,,} are endogenous
variables and U = {U; | i € N,,, } are exogenous variables.
Structural equations F = {f; | ¢ € N,,} are functions that
determine V with v; = f;(pa;, u;), where Pa;, C V and
U, C U. P(u) is a distribution over u.

An intervention V* < v* results in a new causal model
with changed structural equations, where V* C V. For
every variable V; € V*, V; = f;, and for every variable
Vj € V7, the structural equation is changed to V; = v} for
corresponding v; € v*.

Causal abstraction (7-abstraction) is an ordered relationship
that maps (SCM7p, I1,), a low-level causal model SCM],
and allowed interventions I, to a high-level (SCMpy, Iy).
Causal abstraction occurs when the two causal processes
“unfold” the same way (Geiger et al., 2021a). Every assign-
ment to the low-level SCM, variables has a correspond-
ing assignment to the high-level SCM variables given
7. Every low-level intervention iy has a corresponding
high-level intervention iy given igy = w,(iy). After ap-
plying the interventions i;, and w,(iy) respectively, the
counterfactuals (consequences of the interventions) also
need to be “aligned” given correspondence 7, formally
T(ZL(SCML)) = wT(zL)(SCMH)

Definition 3.6 (7-abstraction (Beckers & Halpern, 2019;
Geiger et al., 2021a)). Let I, to be a set of interventions
UL < uy on the low-level SCM = <VL7 U, Fr, PL>
Similarly, let Iy be interventions on high-level SCMy =
(Vy, Uy, Fy,Pg). Let 7 be a partial function 7
D(Vy5) — D(Vy) where D maps a variable to its pos-
sible values. Let w, : I, — Iy be

wr (V] < vi) =V < 1(v]) (6)

where Vi C Vi, Vi C Vg, vi € D(V3}). We say
(SCMp, Iy) is a T-abstraction of (SCMy, I1,) if 7 and
w, are surjective and

Vig € Iy, : T(’LL(SCML)) = OJT(ZL)(SCMH) 7

The surjective conditions ensure that SCM}, is more de-
tailed than SCMy (Beckers & Halpern, 2019).

Following (Chattopadhyay et al., 2019; Geiger et al., 2021a),
we define an SCM given a neural network.

Definition 3.7 (The Structural Causal Model representing a
neural network). Given a neural network f with a layer of
neurons IN and input X, let O be the set of binarized output

neurons and their negation defined in Def. 3.4. We define an
SCM SCMyn = (NUX U O, 0, F,) as follows. Every
neuron variable N € N has parents Pay = X. Every
output variable O € O has parents Pap = N. Input X is a
root variable. For neurons N, the structural equation Fy; is
given by n = fn(x), that is the value of neurons N com-
puted by the neural network f given input x. For outputs O,
the structural equation Fq is given by o = fo(n), that is
the network output values computed by the neural network
given the neurons’ values n. Exogenous variables and their
probability distributions are omitted because all variables
are deterministic given any input.

We note that SCM v in Def. 3.7 is a faithful representation
of the underlying neural network f except that SCM ny
selects one layer of neurons in f for analysis, and the layer
has the original real-valued outputs n.

Definition 3.8 (The Structural Causal Model representing a
neuron dependency graph). Given a Neuron Dependency
Graph NDG = (V,E) = (B U O, E) for neural network
f with input X, we define a SCM SCMpype = (BUO U
X, 0, F,0) with X being a root variable as follows. For
U eBU{O; | j € Ni}, the structural equation F is

u =Fy (paNDG(U) Ux U {u}, @)
= \/ pV (fi(x) A) 3

pEpanpc(U)

For O; € {O; | j € Ny}, the structural equation Fo, is

0; :foi (paNDG(Oi) Uuxu {5j |] € Nk},@)

=V »v(ion=o) V(A a) ©

pEpanpe(0i) J#1,JENE

panpa(V) C b U o is value of the parent nodes of V' on
NDG, and fi,(x) is value of V' computed by 1 o ¢ o f or its
negation given input X = x. Exogenous variables and their
probability distributions are omitted due to determinism.

Every clause in the structural causal equations of SCM ypa
applies logical deduction by treating neuron dependencies
as strict neuron dependencies (logical implication rules).
The clause. \/p€ paype(U) applies modgs ponens such that
a node U is true if any NDG parent is true. The clause
fi;(x) A =7 allows a node U to be true when none of its
parents are, if U is predicted true by the neural network.
Without the term A—7 in f{;(x) A =, variable U will be
true if f7;(x) is, which does not allow causal effect to propa-
gate and change the value of U, so we incorporate it. Lastly,
the clause A i jeNy 05 derives from the property that all
classification classes are mutually exclusive, such that if all
other classes j are ruled out, class ¢ can be deduced true.
Structural equations F make use of the internal logical struc-
tures presented by NDG, and as we shall show in Thm. 3.11,

Neuron Dependency Graphs

together they can prove that corresponding interventions on
SCMnpg and SCM ny cause corresponding counterfactual
effects.

We note that SCM npg using binarized neurons does not
disqualify it being a causal abstraction of neural networks
that have continuous activations. In fact, an abstraction must
lose information and a higher-level representation often has
a smaller domain. Also note that SCM np is a cyclic SCM.

We define the correspondence 7 from SCM nyto SCMypa
based on how the binarized neuron nodes in the NDG are
constructed from neuron outputs with n’ = 1(¢(n)).

Definition 3.9 (7-mapping from SCMyy to SCMype)-
Given a SCMyy = (NU X U 0,0, F,0) with value
(n,x,0), define 7 that maps SCMyy to SCMype =
(BUXUO,Q,F,0)

(B,Xnpa; Onpe) = 7(1n, X NN, ONN)

= ((1(¢(n)), ~1(¢(n))), X xN; ONN)
(10)

We want to design sets of interventions Iy and Inpg
such that (SCMpn, Inn) is a causal abstraction of
(SCMnpe, INpc), and there exists an intervention i yn. €
Iny for every counterfactual class ¢ € Ny, such that iy
causes the original neural network’s prediction to change to
c. In order for the intervention ¢y, on the neural network
to emulate the activation pattern of an in-distribution input
of class ¢, we want to set all descendant nodes of O, on
the NDG to be True, as they represent the necessary con-
ditions of class ¢. Moreover, we want to set the ancestors
of O, on the NDG to be True, as they represent the suf-
ficient conditions and result in a stronger intervention. If
such an intervention iy exists and maps to w, (i ny), the
descendants of the intervention w; (iyn) on the SCM ype
will be True in the counterfactual given the structural equa-
tions. However, their corresponding neurons do not change
value on SCM yy;, because no neuron is a parent of another
neuron in the structural equation, causing node values to not
correspond given Eq. (7). The binarized neurons directly
intervened on by i ypg must be the only binarized neurons
in B that will change values as a result of the intervention.

On the NDG, define desc(W) as the union of W and their
descendant variables for any W C V. Define ance(W)
as the union of W and their ancestors. Define Q(W) =
B N (desc(ance(W))).

Definition 3.10 (Allowed interventions for NDGs and cor-
responding neural networks). We select the set of allowed
interventions Inypg on SCMypa

Inpe = {inpc,c | ¢ € Ni} (11)
inDG.e ={Q True,Q + False|Q € Q({O.})} (12)

where O, is an output node.

Define the set Iy of allowed interventions on SCM nn

Inv ={inne|c € Ni} (13)
inve ={N;j Ty |N; € Q{O:})}U
{N; < Fy|N; € Q{O})} (14)

where N J’ and N; are binarized neuron nodes for neuron
N; € N. Ty and F, are two numbers such that 1(¢(T)) =
True and 1(¢(F,)) = False.

We check if after intervention with ¢y and w. (inn), the
counterfactual values of SCM nyand SCM npg correspond
by Eq. (7). We know that the intervened nodes in both
SCMs correspond by the construction of the intervention.
Assume that every neuron dependency is satisfied as strict
neuron dependency before the intervention, we prove that on
SCM npg, only output variables O change values besides
those directly intervened due to closure property of desc
operation. On SCMypy, only the neural network output
changes besides those directly intervened. The unchanged
nodes satisfy mapping 7 given how binarized neuron nodes
are constructed. The input variables are equal. Therefore,
the only condition needed for Eq. (7) to be true is that the
output nodes of both SCMs to correspond by 7.

Theorem 3.11 (The alignment condition for a Neuron De-
pendency Graph to be T-abstraction of its Neural Network).
Assume that all neuron dependencies — are strict —.
(SCMnpe, Inpc) is a T-abstraction of (SCMyn, Inn) if
the following alignment condition holds:

Vx € D,c € Ny : ¢ = fi™Ne(x), 0, = oé{%’g’c(x) (15)

where D is the support of the distribution P(x), fi~Ve(x)
is the neural network output after intervention inn,c,
O%VBE’C(X) is the value of SCMypg nodes Onpcg af-
ter intervention iNpG,., and o, = {0, = True,ac =
False} U {0, = False,Og4 = True | d # c,d € Ni.}.

The alignment condition states that, given our prior defini-
tions, if neuron dependencies are strict and if the values of
output nodes of SCM ny and SCM np always correspond
by 7 after interventions iy, and inpg,c, then the values
of the rest of the nodes will always correspond as well, and
causal abstraction can be proven theoretically. A proof is in
Appendix A.

Alternative formulations of causal abstraction may be de-
rived based on the alignment condition, but they may not
hold up in practice (see examples in Appendix H). The chal-
lenge is: Will the interventions on neural networks cause the
expected outputs in practice? That is, will ¢ = fi¥V.e(x)?
Even if NDGs are accurate representations of neural net-
works’ internal logic, they may fail to model the causal

Neuron Dependency Graphs

effect in practice due to noise in the dataset, inaccuracies
of the neural network, and the threshold-based fuzziness of
neuron dependency condition Eq. (1).

To address the situation, we use interchange intervention
(Geiger et al., 2021a) to measure if there is a high percentage
of dataset where ¢ = fi¥.¢(x) holds. For an input-label
tuple (x, y) such that the model predicts correctly f(x) = y,
we select a counterfactual class ¢ # y, find the interven-
tion iy, in Eq. (14), apply the intervention ¢y, to the
original neuron activation n, and see if the neural network
changes prediction from y to c. The interchange interven-
tion procedure is given in Algorithm 1, where we define
¢~ (True) = Ty, ¢~ (False) = F,. As a preview of the
results in Section 4.5, we find that a high percentage of data
points are aligned, which empirically validates NDGs as a
causal abstraction of neural networks.

Algorithm 1 Interchange intervention with a NDG

Input: A neural network f. An input-output tuple (x,y)
where f(z) = y, from the dataset D. The NDG for f
and D representing SCMpypg-.
Output: Whether ¢ = £ (x) holds
Compute n = N(z),letm =n
Uniformly sample an alternative class ¢ # y
Find inpg,. given Eq. (12)
for Q) < q € inpa,c do

if Q is N/ then

Setm; = ¢~ 1(q)

end if
end for
return ¢ == fN<™(z)

4. Experiments and Results

We extract neuron dependency graphs on a diverse set of
datasets and architectures to demonstrate the generality of
our method. Table 1 lists the datasets and architectures
(LeCun et al., 1998; Socher et al., 2013; Conneau et al.,
2017; Reimers & Gurevych, 2019; Welinder et al., 2010; Lu
et al., 2021; Sanh et al., 2019; Dosovitskiy et al., 2021; He
etal., 2021; Zhou et al., 2019; Feng et al., 2020; Liu et al.,
2019; Devlin et al., 2018). For the datasets with only the
training set and the test set, we leave 10% of the training set
for validation.

Because last layers in the neural network tend to capture
high-level abstract concepts (Zeiler et al., 2011; Bengio
et al., 2013), and because we want the model to change pre-
diction if interchange intervention is applied to the layer’s
output, we choose the neurons from one of the last fully
connected feedforward layers (closer to the output) that is
a graph cut of the neural network data flow. If not for in-
terchange intervention, the choice of layer is not restrictive

Table 1. Experiment settings for each dataset and architecture. The
training set size is reported. Threshold parameter « is used in
Eq. (1) to extract the neuron dependency graphs. (NL: natural
language. PL: programming language.)

dataset size task classes input architecture e!
MNIST 54000 image classif. 10 image CNN 100
MNIST even 54000 image classif. 2 image CNN 100

SST2 6920 sentiment classif. 2 NL DistilBERT 100
AIINLI 847863 NL inference 3 NL DistilRoBERTa 20
CUB200 5395 image classif. 200 image TransFG (ViT) 3
Devign 21854 defect detection 2 PL CodeBERT 20

because neuron dependencies exist commonly, as shown in
experiments. Threshold « is manually selected to improve
interchange intervention accuracy.

4.1. Empirical qualities of Neuron Dependency Graphs

Before confirming the correctness of NDGs as a distributed
statistical model, we first gain intuitions about the empirical
qualities of the graph. We extract NDGs on all datasets.
We present a plot of the NDG extracted on MNIST dataset
in Figure 1. NDG plots for other datasets are included in
Appendix J. Graph statistics of NDGs are listed in Table 2.

Neuron dependencies exist commonly. We observe that
neuron dependencies exist commonly. No nodes are isolated
for three of the datasets. When isolated nodes exist, they
are at most 5% of the total nodes (Devign). Neurons may
have multiple neuron dependencies with one another, as the
average degree ranges from 6.2 (MNIST) to 307.2 (Devign).
For all datasets, most neurons have some undirected path
with one another when binarized as NDG nodes, suggesting
that most of the nodes are semantically related. In Appendix
C, we extract NDGs from other layers such as a feedforward
layer in an attention block, and neuron dependencies exist
commonly, too.

Most Neurons are (approximately) necessary conditions
of some predicted class for many-class classifications.
For many-class classifications, we observe that most neurons
(negation or not) are necessary conditions of some predicted
class (not negated). Precisely, for most neurons N, there
exists a predicted class T such that T — N’ or T — N.In
Figure 1, nodes of the predicted classes are in red and are
labeled with corresponding MNIST digits.

When there are many target classes to be predicted and
neurons are approximately logically related to the classes,
we observe that the neuron dependency graphs will be short
and wide. This is because a neuron tends to have probability
1/2 in order to maximize the expected entropy, and for
many-class classification, a target class has probability lower
than 1/2 and, therefore, a neuron can only be a necessary
condition of the target class if it is logically related to it.

Neuron Dependency Graphs

Table 2. Statistics for neuron dependency graphs extracted on each dataset. Mutual neuron dependencies are removed for all plots and
tables in this paper. An “equivalent” node has a mutual neuron dependency with another node. A “constant” node has a sample proportion
greater than 99.99% or less than 0.01%. A “contradiction” occurs when both a node and its negation appear as descendants of another
node. After removing mutual neuron dependencies, no NDG has cycles.

neurons nodes edges isolated equivalent constants degree height contradictions components
MNIST 32 84 524 0 0 0 6.2 4 0 1
MNIST even 32 68 686 2 4 1 10.1 8 0 4
SST2 768 1540 29132 48 1448 11 18.9 6 0 50
AIINLI 768 1542 202250 0 124 0 1312 87 1 1
CUB200 768 1936 195998 0 0 0 1012 3 1 1
Devign 768 1540 473058 74 1452 34 3072 121 1 75

uopodoud ajdiues

Figure 1. A plot of a neuron dependency graph extracted from the MNIST dataset with a convolutional neural network. For all NDG
plots in this paper: Node border color indicates sample proportion; An output node O; is filled in red and labeled ¢ — 1 (MNIST digits
equal to labels); A binarized neuron N7 is labeled i 4+ k — 1; Letter “n” marks negation (e.g. n0 is Oy, nl1 is WIQ); Edges point upwards;
Transitive reduction is performed; Isolated nodes and mutual neuron dependencies are removed.

D

9

uopiodoud ajdues

Figure 2. A plot of a Neuron Dependency Graph for MNIST
dataset when the label is the parity of the digit for binary clas-
sification (MNIST even). The two disconnected components in the
figure are contrapositive.

Neurons evenly spread out for every class and cause the
graph to be wide, and for dataset such as CUB200 with
many targets, the graph can be very wide (Table 2).

To further examine the relationship between the shape of
the graph and the number of classes, we train a model to
predict the parity of digits on the MNIST dataset with the
same input images. The graph statistics are listed in Table 2
and the plot is included in Figure 2. We do see that the
shape of the graph changes as the number of classes change,
despite the same input images. Specifically, the height of
the graph increases and the nodes for the predicated class
move to the middle of the graph in terms of depth. This
result corroborates with our previous analysis.

0.9999 -

0.9990 -
dataset

accuracy

AIINLI
0.9900 - CUB200
—o— Devign
—o— MNIST
MNIST even

SST2

500 5000
200 1000
alpha

50 100
80

20
30

1e+05

Figure 3. Average training and test accuracy for non-mutual-
dependency edges versus various alpha thresholds. The x-axis
is log transformed and the y-axis is logistically transformed.

Neuron dependencies exist between different layers in
the same model. We may select multiple layers in the
same model to construct a neuron dependency graph. We see
that neuron dependencies exist between neurons in different
layers, and the edges generalize well to unseen data. Details
of this experiment are provided in Appendix C.

4.2. A neuron dependency is a meaningful statistical
model that generalizes to unseen data

A neuron dependency graph can be seen as a collection
of small, distributed statistical models represented by neu-

Neuron Dependency Graphs

Table 3. The number of edges, average training and test accuracy
for graph extracted from random models with real inputs and
trained model with random inputs.

original random model random input

edges train test edges train test edges train test
MNIST 524 99.90 99.85 0 - - 22 99.94 99.89
MNIST even 686 99.83 99.82 0 - - 316 99.95 99.95

SST2 29132 100.0 97.35 0 - - 464024 99.92 99.92
AIINLI 202250 99.58 99.58 2686 99.82 48.04 149116 99.68 99.55
CUB200 195998 97.87 97.15 237286 96.43 50.15 748 9576 91.80
Devign 473058 99.97 99.96 4200 99.64 53.01 26786 99.75 99.99

ron dependency edges of the graph. For every neuron de-
pendency edge A — B, we report if it holds true for the
training set and the test set, hence we define accuracy to be
P(A A B)/P(A). The average training and test accuracy
versus alpha thresholds is plotted in Figure 3.

Figure 3 shows that training and test accuracy generally
increases as « increases, suggesting that higher « extracts
better edges in terms of accuracy. We see that the test
accuracy closely tracks the training accuracy for all datasets
except SST2. For SST2, the training set reaches 99.99%
accuracy and the test accuracy reaches 95% for a subset
of a values. We conclude that neuron dependency is a
meaningful statistical model that can generalize to unseen
data. In Appendix D, we plot the number of edges versus a.
In Appendix E, we plot the outliers in terms of accuracy.

4.3. Neuron dependencies emerge from trained models

We investigate possible underlying cause for neuron depen-
dencies to emerge from a pair of model and dataset. We
extract NDGs by feeding random inputs to every model
presented in Table 2. We also extract NDGs by feeding real
inputs to untrained models with the same architectures. The
number of edges and accuracy are reported in Table 3.

From Table 3, we see that random models that are not trained
have neuron dependency edges extracted from the training
set. However, the edges do not generalize to the test set, with
accuracy around 50%. Trained models with random inputs
have neuron dependency edges that generalize to unseen
random inputs. We believe that neurons in trained models
are structured internally to have related computations which
cause them to be logically related even when the inputs are
random. However, the graphs extracted from random inputs
are different. Further investigations about the relationship
between the graphs extracted from random datasets and real
datasets are in Appendix F.

Table 4. The number of inter-model neuron dependency edges and
the average accuracy when two models independently trained on
the same dataset are given the same inputs, and when the same
model is given two different inputs.

different models same input same model different inputs

edges trainacc testacc edges trainacc testacc
MNIST 0 - - 0 -
MNIST even 27 99.71 99.75 0 -
SST2 35354 100.00 92.29 0 -
AIINLI 138406 99.48 99.43 0 -
CUB200 0 - - 0 -
Devign 75597 99.90 99.92 0 -

4.4. Neuron dependencies exist between models
independently trained on the same dataset

We are interested in inter-model neuron dependencies be-
cause models learning from the same distribution may learn
similar latent concepts, which may serve as a basis for sim-
ple languages to emerge between models. We train two
models with the same architecture and different seeds on the
same dataset. Let U, V be two binarized neurons from dif-
ferent networks, and let X be the input variable. We check
if inter-model neuron dependency exists as U (X) — V(X).
The number of inter-model edges with accuracies are pre-
sented in Table 4, column “different models same input”.

From Table 4 , we see that inter-model neuron dependencies
exist for some datasets, and when they do exist, they can
generalize to unseen data. This suggests that the two mod-
els, although independently trained, could learn to capture
logically related latent concepts, and the respective neurons
activate at similar times.

As an additional sanity check experiment, we extract neuron
dependency between two copies of the same model with
different inputs from the same underlying distribution. For-
mally, let U, V be two binarized neurons from the same
network, and let X;, X» be two input variables created by
splitting the dataset into two disjoint halves. We check if
inter-mdoel neuron dependency exists as U(X;) — V(X5).
We report the number of edges with accuracies in Table 4
column “same model different inputs”.

We see from Table 4 “same model different inputs” that
inter-model edges do not exist, although two models are the
same. This is expected: assuming infinite samples, neuron
dependency U(X;) — V(X3) does not exist because X
and X, are i.i.d variables, and functions of i.i.d variables
are i.i.d. Given finite samples, neuron dependencies may be
falsely extracted as a result of sampling error, but the sanity
check experiment results show this did not occur for our
experiment settings.

Neuron Dependency Graphs

Table 5. After interchange intervention on the neural network, the
percentage of aligned predictions f*™¥.¢(x) = ¢, unchanged pre-
dictions f*~Ne(x) = y, and unaligned predictions f"Me(x) ¢
{y, ¢}. Contradiction is when N < Ty, N « Fj4 € inn,c for
some neuron N, and NN is not intervened when it occurs. The
average contradictions per input is reported. Interchange interven-
tion empirically validates NDGs as a causal abstraction of neural
networks.

aligned unchanged unaligned model accuracy contradictions

train test train test train test train test train test
MNIST 9341 9521 553 378 105 1.01 9948 9893 0.00 0.00
MNIST even 100.00 100.00 0.00 0.00 0.00 0.00 99.28 99.17 0.00 0.00
SST2 100.00 100.00 0.00 0.00 0.00 0.00 100.00 90.00 0.00 0.00
AIINLI 100.00 100.00 0.00 0.00 0.00 000 7628 7205 1402 14.12
CUB200 89.38 8839 226 177 836 9.84 9263 87.79 0.01 0.02
Devign 100.00 100.00 0.00 0.00 0.00 0.00 7878 60.86 102.12 102.04

4.5. Interchange intervention empirically validates
NDGs as a causal abstraction of neural networks

Neuron dependency graphs reason with logical deduction by
treating the neuron’s activation values as boolean predicates,
as defined by the structural equations Eq. (8). We want to
show when logical deduction is performed on a NDG given
a counterfactual label, the consequence of the deduction is
meaningful to the original neural network as activations, and
the network would predict the same counterfactual label in
agreement. Formally, we conduct interchange intervention
(Geiger et al., 2021a) experiments to measure the percent-
age of data points for which ¢ = f*~.<(x) in alignment
condition (15) holds true for a selected counterfactual la-
bel c (the alignment percentage). We follow Algorithm 1
for interchange intervention with the additional step to re-
move any contradiction from the intervention, because we
cannot assume that all neuron dependencies are satisfied
strictly. For ReLU, we select Ty, = 1, Fyy = 0. For sig-
moid, Ty = oo, Iy = —oo. The results of interchange
intervention are presented in Table 5.

From Table 5, we observe that the model predicts the coun-
terfactual class c after intervention f?¥.c(x) = c for at least
88% of data points on all datasets for both the training set
and the test set, with MNIST even, SST2, AlINLI, and De-
vign reaching 100% alignment percentage. We do observe
from Table 5 that contradictions occur when reasoning with
neuron dependency graphs, because neuron dependency is
an approximation of logical implication. Moreover, con-
verting binary values to the activation output incurs noise,
because, for example, sigmoid activation never reaches 0
or 1. However, the two factors do not prevent successful
interchange intervention results.

We conclude that the high alignment percentage empirically
supports the alignment condition and our theory that a neu-
ron dependency graph is a causal abstraction of its neural
network. In addition, neuron dependency can approximate
logical implication. Logical deductions using neuron de-

pendencies are successful, despite contradictions caused by
approximation errors. Conversion from binary deduction
results back to neuron activations with ¢! is meaningful as
the neural network predicts the counterfactual label selected
in alignment. We have performed interchange intervention
experiments with alternative definitions of allowed interven-
tions and results are presented in Appendix H.

5. Conclusion and Discussions

Despite outstanding performance and prevalent use of neu-
ral networks, we are still learning its fundamental properties.
Neuron dependency graphs reveal one such fundamental
property that there exist many approximate logical impli-
cation relations among neurons. In addition to providing
explanation about the internal structure of the neural net-
work, a neuron dependency graph is a computational model
that can perform downstream reasoning such as causal inter-
vention.

Combining neural networks and neuron dependency graphs,
we have a method to automatically discover symbolic rules
from datasets, with deep learning as a medium. The ability
to discover symbolic rules from datasets may be necessary
to produce artificial general intelligence with human-like
knowledge and languages.

Acknowledgements

We thank the reviewers for their valuable feedback. Jin Tian
was partially supported by ONR grant N000141712140.
This work was done in part while Jin Tian was visiting the
Simons Institute for the Theory of Computing.

References

Adadi, A. and Berrada, M. Peeking inside the black-box: a
survey on explainable artificial intelligence (XAI). IEEE
access, 6:52138-52160, 2018.

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, 1., Hardt,
M., and Kim, B. Sanity checks for saliency maps. Ad-

vances in neural information processing systems, 31,
2018.

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S.,
Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C.,
Awwal, A. A., and Asari, V. K. A state-of-the-art survey

on deep learning theory and architectures. Electronics, 8
(3):292, 2019.

Beckers, S. and Halpern, J. Y. Abstracting causal mod-
els. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 2678-2685, 2019.

Neuron Dependency Graphs

Bengio, Y. The consciousness prior.
arXiv:1709.08568, 2017.

arXiv preprint

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):

1798-1828, 2013.

Benitez, J. M., Castro, J. L., and Requena, I. Are artificial
neural networks black boxes? I[EEE Transactions on
neural networks, 8(5):1156-1164, 1997.

Birkhoff, G. Lattice theory, volume 25. American Mathe-
matical Soc., 1940.

Chattopadhyay, A., Manupriya, P., Sarkar, A., and Balasub-
ramanian, V. N. Neural network attributions: A causal

perspective. In International Conference on Machine
Learning, pp. 981-990. PMLR, 2019.

Ciravegna, G., Barbiero, P., Giannini, F., Gori, M., Lié, P.,
Maggini, M., and Melacci, S. Logic explained networks.
arXiv preprint arXiv:2108.05149, 2021.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and
Bordes, A. Supervised learning of universal sentence
representations from natural language inference data. In
Palmer, M., Hwa, R., and Riedel, S. (eds.), Proceed-
ings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017, pp. 670-680.
Association for Computational Linguistics, 2017. doi:
10.18653/v1/d17-1070. URL https://doi.org/
10.18653/v1/d17-1070.

Das, A. and Rad, P. Opportunities and challenges in explain-
able artificial intelligence (xai): A survey. arXiv preprint
arXiv:2006.11371, 2020.

d’Avila Garcez, A. S., Gori, M., Lamb, L. C., Serafini, L.,
Spranger, M., and Tran, S. N. Neural-symbolic comput-
ing: An effective methodology for principled integration
of machine learning and reasoning. FLAP, 6(4):611-632,
2019.
co.uk/ifcolog/?200033.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou,
D. Neural logic machines. In 7th International Con-
ference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?
id=BlxY-hRctX.

URL https://collegepublications.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?
1d=YicbFdNTTy.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou,
M. Codebert: A pre-trained model for programming
and natural languages. In Cohn, T., He, Y., and Liu,
Y. (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, Online Event, 16-
20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pp. 1536-1547. Association for Com-
putational Linguistics, 2020. doi: 10.18653/v1/2020.
findings-emnlp.139. URL https://doi.org/10.
18653/v1/2020.findings—emnlp.139.

Fischer, J., Olah, A., and Vreeken, J. What’s in the box?
exploring the inner life of neural networks with robust
rules. In Meila, M. and Zhang, T. (eds.), Proceedings of
the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pp. 3352—
3362. PMLR, 2021. URL http://proceedings.
mlr.press/v139/fischer2lb.html.

Friedman, S. E., Magnusson, 1. H., and Schmer-Galunder,
S. M. Extracting qualitative causal structure with
transformer-based nlp. arXiv preprint arXiv:2108.13304,
2021.

Ganter, B. and Wille, R. Formal concept analysis: mathe-
matical foundations. Springer Science & Business Media,
2012.

Geiger, A., Lu, H,, Icard, T. F,, and Potts, C. Causal abstrac-
tions of neural networks. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021a. URL https:
//openreview.net/forum?id=RmuXDt jDhG.

Geiger, A., Wu, Z., Lu, H., Rozner, J., Kreiss, E., Icard, T.,
Goodman, N. D., and Potts, C. Inducing causal struc-
ture for interpretable neural networks. arXiv preprint
arXiv:2112.00826, 2021b.

Haugeland, J. Artificial intelligence: The very idea. MIT
press, 1989.

He, J., Chen, J.-N, Liu, S., Kortylewski, A., Yang, C., Bai,
Y., Wang, C., and Yuille, A. Transfg: A transformer
architecture for fine-grained recognition. arXiv preprint
arXiv:2103.07976, 2021.

https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
https://collegepublications.co.uk/ifcolog/?00033
https://collegepublications.co.uk/ifcolog/?00033
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://proceedings.mlr.press/v139/fischer21b.html
http://proceedings.mlr.press/v139/fischer21b.html
https://openreview.net/forum?id=RmuXDtjDhG
https://openreview.net/forum?id=RmuXDtjDhG

Neuron Dependency Graphs

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436-444, 2015.

Liu, Q., Kusner, M., and Blunsom, P. Counterfactual data
augmentation for neural machine translation. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 187-197, 2021.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A.,
Blanco, A., Clement, C., Drain, D., Jiang, D., Tang, D.,
Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M., GONG,
M., Zhou, M., Duan, N., Sundaresan, N., Deng, S. K.,
Fu, S., and LIU, S. CodeXGLUE: A machine learning
benchmark dataset for code understanding and generation.
In Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 1),
2021. URL https://openreview.net/forum?
1d=61E4dQXaUcb.

Lundberg, S. M. and Lee, S.-I. A unified approach to in-
terpreting model predictions. In Proceedings of the 31st
international conference on neural information process-
ing systems, pp. 47684777, 2017.

Marcinkevics, R. and Vogt, J. E. Interpretability and ex-
plainability: A machine learning zoo mini-tour. arXiv
preprint arXiv:2012.01805, 2020.

Ming, Y., Xu, P, Qu, H., and Ren, L. Interpretable and
steerable sequence learning via prototypes. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 903-913,
2019.

Morgan, S. L. and Winship, C. Counterfactuals and causal
inference. Cambridge University Press, 2015.

Mu, J. and Andreas, J. Compositional explanations of
neurons. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurlPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/

Pearl, J. Direct and indirect effects. In Breese, J. S.
and Koller, D. (eds.), UAI ’01: Proceedings of the
17th Conference in Uncertainty in Artificial Intelli-
gence, University of Washington, Seattle, Washington,
USA, August 2-5, 2001, pp. 411-420. Morgan Kauf-
mann, 2001. URL https://dslpitt.org/
uai/displayArticleDetails. jsp?mmnu=1&
smnu=2&article_id=126&proceeding_id=
17.

Pearl, J. Causality. Cambridge university press, 2009.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational
Linguistics, 11 2019. URL https://arxiv.org/
abs/1908.10084.

Ribeiro, M. T., Singh, S., and Guestrin, C. “Why should I
trust you?”: Explaining the predictions of any classifier.
In Krishnapuram, B., Shah, M., Smola, A. J., Aggarwal,
C. C, Shen, D., and Rastogi, R. (eds.), Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pp. 1135-1144. ACM,
2016. doi: 10.1145/2939672.2939778. URL https:
//doi.org/10.1145/2939672.2939778.

Riegel, R., Gray, A., Luus, F., Khan, N., Makondo, N.,
Akhalwaya, 1. Y., Qian, H., Fagin, R., Barahona, F.,
Sharma, U., et al. Logical neural networks. arXiv preprint
arXiv:2006.13155, 2020.

Rudin, C. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1(5):206—
215, 2019.

Samek, W., Wiegand, T., and Miiller, K.-R. Explain-
able artificial intelligence: Understanding, visualizing
and interpreting deep learning models. arXiv preprint
arXiv:1708.08296, 2017.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of BERT: smaller, faster, cheaper and
lighter. In The 5th Workshop on Energy Efficient Machine
Learning and Cognitive Computing, 2019.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference on
computer vision, pp. 618-626, 2017.

c74956ffb38bad8edbce977af6727275-AbstractSerafini, L. and d’Avila Garcez, A. S. Logic tensor net-

html.

works: Deep learning and logical reasoning from data

https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://proceedings.neurips.cc/paper/2020/hash/c74956ffb38ba48ed6ce977af6727275-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c74956ffb38ba48ed6ce977af6727275-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c74956ffb38ba48ed6ce977af6727275-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c74956ffb38ba48ed6ce977af6727275-Abstract.html
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=126&proceeding_id=17
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=126&proceeding_id=17
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=126&proceeding_id=17
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=126&proceeding_id=17
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778

Neuron Dependency Graphs

and knowledge. In Besold, T. R., Lamb, L. C., Ser-
afini, L., and Tabor, W. (eds.), Proceedings of the 11th
International Workshop on Neural-Symbolic Learning
and Reasoning (NeSy’16) co-located with the Joint Multi-
Conference on Human-Level Artificial Intelligence (HLAI
2016), New York City, NY, USA, July 16-17, 2016, volume
1768 of CEUR Workshop Proceedings. CEUR-WS.org,
2016. URL http://ceur-ws.org/Vol-1768/
NESY16_paper3.pdf.

Shi, S., Chen, H., Zhang, M., and Zhang, Y. Neural logic
networks. arXiv preprint arXiv:1910.08629, 2019.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation differ-
ences. In International Conference on Machine Learning,
pp- 3145-3153. PMLR, 2017.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image classifi-
cation models and saliency maps. In Bengio, Y. and Le-
Cun, Y. (eds.), 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Workshop Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6034.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C.D.,Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631-1642, 2013.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In International Conference on
Machine Learning, pp. 3319-3328. PMLR, 2017.

Watson, D. S., Gultchin, L., Taly, A., and Floridi, L.
Local explanations via necessity and sufficiency: uni-
fying theory and practice. In de Campos, C. P,
Maathuis, M. H., and Quaeghebeur, E. (eds.), Pro-
ceedings of the Thirty-Seventh Conference on Uncer-
tainty in Artificial Intelligence, UAI 2021, Virtual Event,
27-30 July 2021, volume 161 of Proceedings of Ma-
chine Learning Research, pp. 1382—-1392. AUAI Press,
2021. URL https://proceedings.mlr.press/
vl6l/watson2la.html.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F.,,
Belongie, S., and Perona, P. Caltech-UCSD Birds 200.
Technical Report CNS-TR-2010-001, California Institute
of Technology, 2010.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P, Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Zeiler, M. D., Taylor, G. W., and Fergus, R. Adaptive
deconvolutional networks for mid and high level feature
learning. In 2011 International Conference on Computer
Vision, pp. 2018-2025. IEEE, 2011.

Zhou, Y., Liu, S., Siow, J. K., Du, X., and Liu, Y. Devign:
Effective vulnerability identification by learning compre-
hensive program semantics via graph neural networks. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’ Alché-
Buc, F, Fox, E. B., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019,
NeurlPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 10197-10207, 2019.

http://ceur-ws.org/Vol-1768/NESY16_paper3.pdf
http://ceur-ws.org/Vol-1768/NESY16_paper3.pdf
http://arxiv.org/abs/1312.6034
https://proceedings.mlr.press/v161/watson21a.html
https://proceedings.mlr.press/v161/watson21a.html

Neuron Dependency Graphs

A. Proof for Theorem 3.11

Recall that desc(W') denotes the union of W and the de-
scendant nodes of W for some W C V on NDG =
(V,E), where V. = B U O, with binarized neurons
B = {N! | N; e N}U{N) | N; € N} and outputs
0.

Definition A.1 (Interventions closed under desc on B).
Let i ypg be an intervention on SCM ype where inpg =
{C « True,C « False) | C € C}, C C B, and there
does not exist ¢ where N/ € C and N; € C. We say tnpa
is closed under desc operator if desc(C) N B C C.

Note that every i ypg,. in allowed interventions set Iypa
in Eq. (12) is closed under desc operator on B because
Q({O.}) = BN (desc(ance({O.}))). We now prove The-
orem 3.11.

Proof. We prove that 7 is a surjective function. Let
(u,¥,x) be any element in the codomain (u,x,0) €
D(U UX U O) for SCMnpa = <UUXUO,®,.F,®>.
Let (u,x,0) = ((n’,-n’),x,0). Consider an element
(¢~ 1(n’),x,0) € D(N UX U O) for SCMyy. Given
7 defined in Eq. (10), we see that 7(¢~*(n’),x,0) =
(1606). ~L(6(6 ! (w)).xe0) = (wxc0)
because 1(¢(¢~1(n'))) =

We prove that w; is a surjective function. Let iypg,. be
any element in the codomain i nypg,. € Inpg defined in Eq.
(12). Consider i nn,. defined in Eq. (14), and iyn,. € Inw
Given w, defined in Eq. (6), we see

wr (inNe) :{(N]{,N;) —
{(NJ’,N;) < (False, True) | N; € Q{0)}
={Q < True,Q «+ Fualse | Q € Q({0.})}

=iINDG,c (16)

We want to prove that Viyn.. € Inn: 7(inn,c(SCMnn)) =
wr(inn,e) (SCMnpe). Recall in the alignment condition
Def 3.11, we assume that all neuron dependencies are satis-
fied as strict neuron dependencies before the intervention,
and (15) holds, shown below

Vx €D,c €Ny ic= f"™e(x),0, = 0Rhe " (x)

Before intervention, let ((n’,n’),x,0) be the value of
SCMnpc and (n,x,0) be the value of SCM . Let i nnc
be any intervention iy, € Inn for some class c.

For 7(innc(SCMny)) on the left-hand-side, we find the
counterfactual results of the intervention, i ny . (SCMnn) =

(True, False) | N; € Q({O.})}U

(N,X,0) = (n™e, x, fo(n'<)), where
N =T, N eQ(o) am
me = Fy N, €QUO}) 18
™ = (x)=mn NN, €QUO}) (19)

Apply mapping 7, we have T((niNN,c7 X, fo(niNNc))) _
(LB(ne)), =L (<)), x, fo (nie)).

For w;(inne)(SCMypg) on the right-hand-side,
we first note w,(inve) = inDG,c as shown above.
Apply intervention inpg,. and find the counter-
factual iNDG,c(SCMNDG) = ((N/,W),X, O) =

((n/ZNDG,c , ﬁ/ZNDG‘c)’ X, Oc)’

n;iNDG’C = True N € Q{O.}) (20)
NG _ Flse N;eQ({o.y) @D
niNPe — False N € Q({0:}) @2)
ﬁZNDG’C = False 7Nk Q({0c}) 23)
n;iNDG’C =7 , N[, N Nl Q({0.}) (24)
wwos_w NUN¢QUON) @9
Our goal is to prove that nj = n)"*”%* and n = n;ZNDG ‘

unchanged, i.e. 7} = 1(¢(fn,(x))) = L(¢(ny)) and 7} =
—rj]. Assume for the sake of contradiction that there exists
U e {N{,N;}, U,U ¢ Q({O.}) and U changes value
from u to u'NPG.e g £ yINDG.e

Case 1 Assume that v = True, then © = False and
= False. Because U € B, we know u =
VPEWNDG(U) pV (f{;(x) A —) given structural equation
in Eq. (8). We know f{;(x) does not change, and if u =
TNDG.e = Fylse, then u'NPGe = f{](x)/\ﬁHiNDGv” = True.
We reach a contradiction if w does not change from False to
True, so this case reduces to Case 2.

uiNDc,c

Case 2 Assume that v = False, then w = True and
uNrGe = True. Inu =\ pep,)PV (fir(x) A =),
we have f{;(x) = f{;,(x) A =t = False. Therefore, some
parent p = False changed to p'NPG.c = True.

Case 2.1 Assume P € Q({O.}), then by closure of
Q({O,}) under desc on B, we know U € Q({O.}) and
reach a contradiction.

Case 2.2 Assume that every ancestor A of U is in BU{O; |
j €N\ QH{O.}), thena = \/qEPaNDG(A) qVv (fg(x) A
ﬂa) =\ depanpe(A) Due to finiteness of the graph, there
must exist some ancestor E of U changing from e = False
to e!NPG.c = True, with no ancestor of E changing from
False to True. We know e = vapaNDG(E) pV (fp(x) A
ﬂé) = False and cannot change to €' PS¢ = True, so a
contradiction is reached.

Neuron Dependency Graphs

Case 2.3 Assume that some ancestor A of U isin A €
{0; | i € N}, a = False, a’~NvGc = True. Due to
finiteness of the graph, there must exist some £ = O;
that fits this condition and no ancestor of F fits this
condition. Because of Case 2.1 and 2.2, we know FE
has no ancestor in B U {O; | j € N} that changes
from False to True. Therefore, although E changes from
False to True, it has no ancestor that changes from False
to True. Given the structural equation of o;, we know
0j = \/pEPaNDG(Oj) PV (/\l;éj,lENk 5[) v (f/O] (X) A _‘6j> =
FalseV (N\;4; 1w, 01)VFalse, s0)\; 4 cn, O1 changes from
False to True. Given the alignment condition, o, = 0*~NPG.c,
it must be that j = ¢. Because F = O, is an ancestor of U,
we have U € Q({O.}) in contradiction.

_1i .
We have proven that n] = n, and nj = m,"""%

are unchanged after the intervention. We con-
clude that ViNMc c Inn T(iNMc(SCMNN)) =
wr (inn,e) (SCMnpe). We conclude that
(SCMNpg, INpg) is a T-abstraction of (SCMNN, INN)~

O

7«NDG c

B. Explanations for the reliability criterion in
the construction of NDGs

When constructing NDGs from dataset, we use Eq. (5)
presented below:

PUN-V I P(U)P(-V
PU)P(-V) ~ o
(U,V)eV x V}
P(UA-Y) 1
Condition PO P < = is an estimate of the neuron
dependency Definition 3.2 based on the sample proportion.

The reliability criterion ‘T‘P(Uw > 1 is to address

the situation when there are not enough samples to reliably
estimate P to establish or reject an edge, so that events
U N =V needed to falsify U — V are expected to occur
more than once.

We consider the scenario where neuron dependency does
not exist but may be estimated to be true by the sample
proportion without the reliability criterion. Let U,V be
two binarized neurons where neuron dependency does not
exist U /4 V where % > é The expected fre-
quency E[U A =V] of events U A =V is E[U A =V] =
|T|P(UA=V) > |T|P(U)P(=V)/a. If we do not have the
reliability criterion, then E[U A —V] may be arbitrarily close
to zero. If due to small sample size, the frequency of U A—V

.. PUA-V) PUA-V) 1

is indeed zero, then BUPEY) — 0, BU)PEY) < -,even
P(UA=Y) 1 .

though & PANPEV) = a» S0 an edge from U to V will be

constructed. Neuron dependency is estimated to exist given

data, even though it does not exist. With the reliability crite-
rion, we have E[U A =V] > 1. Events U A =V needed to
falsify U — V are expected to occur more than once, not
arbitrarily close to zero.

C. Inter-layer neuron dependency experiment
details

We select multiple layers in the same model and observe
that inter-layer neuron dependencies exist. For this exper-
iment, we also choose layers from the attention block of
a Transformer, which does not cut off the data flow of the
neural network architecture. Notably, the neuron activation
are selected from the first time step of a time series, follow-
ing the convention of doing classification with Transformer
encoder. The PyTorch program using Huggingface library
(Wolf et al., 2019) to select layers is in Figure 4. We report
the number of edges as well as the training and test accuracy
in Table 6.

def inter_layer_selection(model, dataset):
if "MNIST" == dataset:
return [model.seqgl.fcl,
model.seqg2.fc2]
elif "MNIST even" == dataset:
return [model.seqgl.fcl,
model.seqg2.fc2]

elif "SST2" == dataset:

return [model.pre_classifier,
model.distilbert.
transformer.layer([5].
ffn.linl]
elif "AIINLI" == dataset:
return [model.classifier.dense,
model.roberta.encoder.
layer[5] .intermediate.
dense]
elif "CUBR200" == dataset:
return [model.part_head[0],

model.transformer.encoder.
part_layer.ffn.fcl]
elif "Devign" == dataset:
return [model.classifier.dense,
model.roberta.encoder.
layer[11l].intermediate.
dense]

Figure 4. The PyTorch function used to select the two layers in
the architecture for inter-layer experiments. Huggingface models
are used. For MNIST, the seql function is a convolutional neural
network, and the seq2 function is a feedforward neural network.
The other architectures are given in Table 1. The first layer selected
for every dataset is used for all non-inter-layer experiments. The
second layer selected for Transformer is located in the attention
block, and, when applicable, we select the first timestep of the time
series output for binarized neuron activations in the NDG following
the common practice for classification with Transformers.

Neuron Dependency Graphs

Table 6. The number of edges, average training and test accuracy
when neurons are selected from two layers in the same model.

layer 1 layer 2 inter-layer

edges train test edges train test edges train test
MNIST 4172 99.93 99.90 10648 99.95 99.92 4986 99.92 99.89
MNIST even 790 99.94 99.95 7002 99.99 99.99 1088 99.88 99.90
SST2 529394 100.00 99.62 1877060 99.98 99.63 997980 100.00 99.74
AIINLI 747115 99.52 99.50 2186033 99.58 99.55 1087438 99.58 99.56
CUB200 900258 97.89 97.16 902210 97.89 97.16 900402 97.89 97.16
Devign 2191519 99.94 99.94 7952771 99.91 9991 3430234 99.94 99.93

From Table 6, we see that there are edges within each of
the two layers selected, and there are edges between the
two layers. All training and test accuracies are high. We
conclude that inter-layer edges in a trained model exist
commonly and generalize to unseen data.

D. Relationship between the number of NDG
edges and alpha thresholds

The plot for the number of edges versus different « thresh-
olds is presented in Figure 5.

We see that the number of edges, including mutual neuron
dependencies between a pair of nodes, decreases as the «
threshold increases, which is implied by how NDGs are
constructed from data in Eq. (5). For lower «, there tend to
be more mutual neuron dependencies.

E. Neuron dependency outliers in terms of
accuracy

For neuron dependency graphs with settings in Table 1, we
plot the quantiles and outliers of training and test accuracy
in the box plots in Figure 6.

From Figure 6, we see that the edges extracted from training
data generalize well to unseen data from the test set given
the accuracy quantiles. Notably, for all datasets, 75% of the
edges have test accuracy higher than 99.5%, and 50% of the
edges have test accuracy higher than 99.8%. The box plot
shows that there may be many outliers with low training
and test accuracy. To improve the accuracy of edges, the
outliers may be removed with cross validation, which we do
not remove for our experiments.

F. Explorations about the relationship between
graphs extracted from real and random
data given a trained model

As a further investigation of Section 4.3, we raise questions
about the relationship between the original graph G gener-
ated from real data and the graph generated from random
inputs G, for a trained model. Intuitively speaking, is one
graph contained in the other one? Given the inconsistencies

1e+06- O
S
pot
!
1e+04 -
(7] L]
[0] 5
g ;
5 -
1e+02-
101 35 20 50 100 500 5000
2 4 10 30 80 200 1000 1e+05
alpha
AIINLI —o— Devign MNIST even
dataset
CUB200 —e- MNIST SST2
mutual neuron dependency — excluded ---- included

Figure 5. The number of edges in the neuron dependency graph for
different alpha thresholds including and excluding mutual neuron
dependencies. The x-axis is log transformed.

of the « threshold in different contexts, we cannot directly
check if the set of edges of one graph is a subgraph of the
other one. To address the problem, we alternatively present
the average accuracy for the neuron dependency edges from
G on random inputs and that of G’ on real inputs in Table 7.

Table 7 shows no row with all accuracy numbers greater
than 95%, suggesting that the NDG extracted is conditioned
on the input distribution. For the same trained model, a
different input distribution leads to a different NDG. We
note that for every dataset, one of the graphs tend to perform
relatively well on both real and random input data. We
manually label them with G > G’ if we expect edges from
random data to hold true on real data, and G < G’ if we
expect edges from real data to hold true on random data,
which is similar to graph containment. We hypothesize
that, compared to uniform noise, real dataset introduces
patterns that can add edges, remove edges, or both. The
exact condition that determines the relation between G and
G’ requires further research.

Neuron Dependency Graphs

1.00- TT T-'— = U ot
0.75-
-]
> o
[}
I
5 050- o
Q
(5]
©
8

0.25-
0.00- o

AINLI CUB200 Devign MNIST MNISTeven SST2

dataset

split El test $ train

(a) The entire box plot.

1.0000 - — —— ——— D

0.9975 -

0.9950 -

accuracy
co®

@O WD WDODAD oo(nm)ml

@ oo

0.9925 -

O @O GID OO0 @AWW
0 @wooo

0.9900 - 2

AINLI CUB200 Devign MNIST MNISTeven SST2
dataset

split E test E train

(b) Cropped box plot with accuracy range 0.99 to 1.

Figure 6. Box plot for training and test accuracy for every neuron
dependency edge in the neuron dependency graph.

Table 7. The average accuracy for NDG G extracted from real data
and G’ from random input data given a trained model, and the
accuracy when the datasets are exchanged. The relation inferred is
for hypothetical reference.

G G’ relation

real random real random
MNIST 99.90 91.40 63.16 9994 G <G
MNIST even 99.83 94.82 98.19 9995 G>G'
SST2 100.00 88.55 99.71 99.92 G>G
AIINLI 99.58 97.19 94.69 99.68 G <G’
CUB200 97.87 99.51 49.80 9576 G <G’

Devign 99.97 98.54 94.42 99.75 G< G

Neuron Dependency Graphs

G. Precision-recall plot of neuron dependency
graph edges

For an neuron dependency edge A — B, we define the
precision to be P(A A B)/P(A), and we define the recall to
be P(A A B)/P(B). We present the training set precision-
recall plot from Figure 7 to Figure 12.

We see from the precision-recall plots that the precision of
neuron dependency edges is high across all datasets. This
is expected given our definition of neuron dependency in
Eq. (1). Recall of neuron dependency edges may spread
out between range 0 and 1. For CUB200 dataset in Figure
11, there is a cluster of points at the bottom of the plot with
low recall, and this cluster do not exist in other plots. This
is likely because there are 200 target classes in CUB200
dataset, far more than other datasets, and a binary neuron
N’ with P(N') = 0.5 will have a recall around 0.01 for
edge T — N’ for some target T'. We draw the line for recall
equal to 0.01 and see that the cluster overlap with the line.

1.00 -

0.75-

recall
Fo;

0.50 -

0.25-

§ 4§

Fe. g,y
o f

0.994 0.996 0.998 1.000
precision

Figure 7. The precision-recall plot for MNIST dataset.

recall

1.00 - -
£ 2,

0.75-

0.50-

0.25-

0.00- t t t

0.995 0.997 0.999
precision

o Sadlred % °

Figure 8. The precision-recall plot for MNIST even dataset.

recall

1.00 -
4
0.75-
0.50 -
0.25-
0.994 0.996 0.998
precision

Figure 9. The precision-recall plot for SST2 dataset.

@ @ CeWESE e

1.000

Neuron Dependency Graphs

1.00-
0.75-
3
o 0.50 -
0.25-
1.00-
0.00-, 1 1 [1 '
0.95 0.96 0.97 0.98 0.99 1.00
precision
0.75-
Figure 10. The precision-recall plot for AIINLI dataset. _
8 0.50 -
o
0.8 . 0.25-
°
s
[}
0.6- 0.00-
0.95 0.96 0.97 0.98 0.99 1.00
precision
3
5] 0.4-
Figure 12. The precision-recall plot for Devign dataset.
[]
s
L
0.2- -
0.01 .
QO-—esaesteseagadstass e, ot |
L) L))) 1 1
0.75 0.80 0.85 0.90 0.95 1.00
precision

Figure 11. The precision-recall plot for CUB200 dataset. Line
y=0.01 marks the expected recall if a binary neuron with 1/2 prob-
ability is logically related to one of the 200 classes. Note that there
are a few edge data points around the center of the plot.

Neuron Dependency Graphs

H. Experiments with alternative definitions of
allowed interventions

We provide alternative definitions of interventions as op-
posed to Eq. (12) and demonstrate the results if they are
used in interchange intervention.

Definition H.1 (The first alternative definition of allowed
interventions). Given the original output class y and an alter-
native class ¢, with ¢,y € Ny, for k-class classification, we
define the set of allowed interventions Iypg on SCMnpa

INDG: {iNDG,C | C:O,l,...kf].} (26)
iNDG,c = {Q — True,@ < False |

Q € BN (desc({O:}) Uance({Oy}))} (27)

Define the set Iy of allowed interventions on SCM nn

INN: {iNMc | CZO,L...k—l} (28)
inNe = {N; < Ty | Nj € desc({O.}) U ance({O,})}U

{N; « F, | N; € desc({O.}) Uance({O,})}
(29)

Especially for many-class classifications with a wide graph,
we believe that there are nodes implied by the original tar-
get O, but are not descendants of the counterfactual target
O,.. Setting these nodes to False helps improve the align-
ment percentage for many-class classification datasets. We
present the interchange intervention experiment results in
Table 8.

Table 8. The percentage of aligned predictions fi*e(x) = ¢,
unchanged predictions f*™¥.¢(x) = ¥, and unaligned changed
predictions f*MN.c(x) ¢ {y, c} for interchange intervention with
the set of interventions replaced with Eq. (26) and Eq. (28).
Contradiction occurs when a node and its negation both appear
in the descendants. The contradiction column shows the average
number of contradictions per interchange intervention. Although
the percentage of aligned predictions is high, causal abstraction
does not follow from the alignment condition given the alternative
definitions of allowed interventions.

aligned unchanged unaligned model accuracy contradictions

train test train test train test train test train test
MNIST 99.99 100.00 0.00 0.00 0.01 0.00 99.57 9893 1723 1725
MNIST even 100.00 100.00 0.00 0.00 0.00 0.00 9927 99.17 0.00 0.00
SST2 100.00 100.00 0.00 0.00 0.00 0.00 100.00 90.00 0.00 0.00
AIINLI 9426 9421 000 000 574 579 7584 7205 9897 98.63
CUB200 89.24 9048 0.00 0.00 1076 953 92.63 87.79 360.17 360.45
Devign 100.00 100.00 0.00 0.00 0.00 0.00 7878 60.86 0.00 0.00

From Table 8, we see that the alignment percentage is im-
proved for MNIST and CUB200 compared to Table 5, but
the alignment percentage reduces for AIINLI dataset.

We do not use this alternative definition because the coun-
terfactual of this intervention may cause binarized neuron

nodes that are not directly intervened to change values. As a
result, the alignment condition cannot derive causal abstrac-
tion given the alternative definition of interventions. If the
theory of causal abstraction is not vital to the experiments,
one may consider any set of meaningful reasoning rules
using NDG for practical purposes.

‘We have another alternative definition of interventions.

Definition H.2 (The second alternative definition of allowed
interventions). Given the original output class y and an alter-
native class ¢, with ¢,y € Ny, for k-class classification, we
define the set of allowed interventions Iypg on SCMypa

InpG = {inpc,c | ¢ € Ny} (30)
inDG,e = {Q < True,Q < Fulse |
Q € BNdesc({O.})} 31
Define the set I of valid interventions on SCM yn
Iny = {iNMc | CGNk} (32)
inne = {Nj < Ty | Nj € desc({O.})}U
{N; + Fy | Nj € desc({0.})} (33)

Compared to the original definition in Eq. (12) and the first
alternative definition above, the second alternative definition
only intervene the descendants of O... Logically, we are only
setting the necessary conditions to be true. Note that the
proof of causal abstraction can be modified and apply to this
definition. The interchange intervention experiment results
are presented in Table 9.

Table 9. The percentage of aligned predictions fi¥N.e(x) = ¢,
unchanged predictions f*M-<(x) = y, and unaligned changed
predictions f*¥N.e(x) ¢ {y, c} for interchange intervention with
the set of interventions replaced with Eq. (30) and Eq. (32).
Contradiction occurs when a node and its negation both appear
in the descendants. The contradiction column shows the average
number of contradictions per interchange intervention. Although
causal abstraction follows from the alignment condition given the
alternative definitions of allowed interventions, the percentage of
aligned predictions is sometimes low.

aligned unchanged unaligned model accuracy contradictions

train test train test train test train test train test

MNIST 9553 9533 343 365 105 1.02 99.57 9893 0.00 0.00
MNIST even 1.60 155 9840 9845 0.00 0.00 9927 99.17 0.00 0.00
SST2 100.00 100.00 0.00 0.00 0.00 0.00 100.00 90.00 0.00 0.00
AIINLI 43.85 43.76 40.82 40.17 1533 16.07 7584 72.05 0.00 0.00
CUB200 89.24 89.14 210 171 866 9.5 9263 87.79 0.2 0.02
Devign 56.14 5844 4386 4156 000 0.00 7878 60.86 0.00 0.00

From Table 9, we see alignment percentage reduces sig-
nificantly for MNIST even, AIINLI and Devign datasets
compared to results obtained in Table 5. This is because
for a neuron dependency graph for few-class classifications,
there are often sufficient conditions for O,. that are True for

Neuron Dependency Graphs

in-distribution data. However, if we do not set such suffi-
cient conditions to be True, the constraints implied by the
intervention are weak and the neural network will likely not
change predictions to class ¢, and causal abstraction may
not be empirically validated. For this reason, we do not use
the second alternative definition in the main paper.

I. A training trick to reduce approximation
error due to binarization for the sigmoid
activation function

When converting the logical deduction performed on neu-
ron dependency graph back to neuron activations values, an
approximation error will occur, because activation functions
such as sigmoid or ReLU almost never output boolean val-
ues 0 and 1. For sigmoid activation function, we share a
trick that modifies the sigmoid activation function slightly
during training, so that the sigmoid function outputs are
close to 0 or 1. The PyTorch program for the training trick
is presented in Figure 13.

class TrickFun (torch.autograd.Function):
@staticmethod
def forward(ctx, input):
return input * e

@staticmethod
def backward(ctx, grad_output) :
return grad_output

Figure 13. The PyTorch program for a training trick that causes
the sigmoid function to output close to O or 1. The variable e is a
hyperparameter set to be greater than 1 (e.g. e = 10).

For any neuron with sigmoid activation o(n), we first pass
the neuron logits to the trick function ¢ before passing it to
sigmoid function, i.e. o(¢(n)). The trick function multiplies
the neuron output with a constant (e = 10 for example)
during the forward pass but does not change its gradients
during back-propagation. After the model is trained, the
sigmoid function o (¢(n)) output will be close to 0 or 1, with
no discernible sacrifice of model performance.

J. Additional plots of neuron dependency
graphs

We present plots of neuron dependency graphs for AIINLI
and Devign datasets in addition to MNIST in Figure 1 and
MNIST even in Figure 2. Neuron dependency graphs for
SST2 and CUB200 datasets are extremely wide (see Table
2) and cannot be recognized when plotted. Please refer
to our open-sourced code base to extract and explore the
graphs.

Neuron Dependency Graphs

Figure 14. A neuron dependency graph for AIINLI dataset.

i

AL S
77
’«‘:‘g
A 3
~
/r’/’
v

Figure 15. A neuron dependency graph for Devign dataset.

aidures

uoiodosd

aidires

uoruodesd

