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Abstract

Linear contextual bandits and their variants are
usually solved using algorithms guided by pa-
rameter estimation. Cauchy-Schwartz inequality
established that estimation errors dominate algo-
rithm regrets, and thus, accurate estimators suf-
fice to guarantee algorithms with low regrets. In
this paper, we complete the reverse direction by
establishing the necessity. In particular, we pro-
vide a generic transformation from algorithms for
linear contextual bandits to estimators for linear
models, and show that algorithm regrets dominate
estimation errors of their induced estimators, i.e.,
low-regret algorithms must imply accurate esti-
mators. Moreover, our analysis reduces the regret
lower bound to an estimation error, bridging the
lower bound analysis in linear contextual bandit
problems and linear regression.

1. Introduction
Contextual bandit is an extension of the multi-armed ban-
dit problems that incorporates individual information, i.e.,
context. In most effective algorithms for linear contextual
bandits and their variants developed in the literature, e.g.,
(Auer, 2002; Li et al., 2010; Goldenshluger & Zeevi, 2013;
Kim & Paik, 2019; Han et al., 2021), actions are guided by
one or a set of estimators (e.g., OLS or LASSO) for the pa-
rameters in the linear reward function. Cauchy-Schwartz in-
equality establishes that estimation errors dominate regrets.
Thus, estimators with small errors suffice to guarantee al-
gorithms with low regrets. However, one naturally suspects
their necessity: as the action space is much smaller than
the parameter space, is learning the entire reward function
indeed necessary for learning the optimal action?
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In this paper, we provide an affirmative answer to this ques-
tion. That is, developing low-regret algorithms is essentially
a procedure of finding accurate estimations. Along with
Cauchy-Schwartz inequality, we complete the equivalence
between stochastic contextual bandit algorithms and the es-
timation of the reward function. We construct an algorithm-
based estimator for any given algorithm of a stochastic
linear contextual bandit problem (or its variants), opposite
to developing estimator-based algorithms in the literature.
We show that the regret of the given algorithm dominates the
estimation error of the constructed estimator. Our construc-
tion and analysis remain valid under additional constraints
(e.g., privacy, batch) or structures (e.g., sparsity).

As a byproduct, our work provides a principled approach
to establishing a regret lower bound (characterizing the dif-
ficulty) of linear contextual bandit problems by reducing
the regret to an estimation error. In the literature, lower
bounds for linear contextual bandit problems are usually
established via specific constructions of hard problem in-
stances. With our reduction, we can effortlessly obtain a
regret lower bound by applying existing minimax bounds
and constructions in estimation theory, which has been well
studied in the literature, e.g., (Duchi & Wainwright, 2013;
Duchi, 2016; Duchi et al., 2018; Wang & Xu, 2019; Acharya
et al., 2021). Under this principle, we revisit some estab-
lished lower bounds in the literature and derive some new
lower bounds for various stochastic linear contextual bandit
problems.

1.1. Related Work

In the literature, contexts can be generated either from an
i.i.d. distribution (stochastic contexts) or any arbitrary pro-
cedure (adversarial contexts). Since a lower (upper) bound
under stochastic (adversarial) contexts is also a lower (up-
per) bound under adversarial (stochastic) contexts, here we
review literature with both types of contexts. Let T be the
total number of periods, K be the total number of arms, and
d be dimension of context vector.

The reward functions can be identical for all arms (single
parameter setting), or arm-dependent (multiple parameter
setting). Kannan et al. (2018) emphasized that a problem
under the multiple parameter setting with dimension d is
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equivalent to that under the single parameter setting with
dimension Kd.

The Basic Model. Under adversarial contexts and sin-
gle parameter setting, Auer (2002), Chu et al. (2011),
and Li et al. (2010) provide upper bounds of order
O
(√

dT log3/2(KT/δ)
)

1, O
(√

Td log3/2(KT ln(T )/δ)
)

,

O
(√

dT log (T ) log (K) (log (log(dT )))γ
)

, respectively, for
various variants of UCB-type algorithms. The latter
two also provide lower bounds of order Ω

(√
dT
)

and

Ω
(√

dT log (T/d) log (K)
)

, respectively.

For stochastic contexts, with multiple parameters, Golden-
shluger & Zeevi (2013) provided an O

(
d3 log(T )

)
upper

bound for an OLS-based algorithm in 2-armed problems.
They also provided an Ω (log(T )) lower bound, which can
be further improved to Ω (d log(T )) according to (Bastani
& Bayati, 2020). With an additional assumption on the di-
versity of the random context, Bastani et al. (2021) showed
that even a greedy algorithm can guarantee an upper bound
of the order O

(
d3 log3/2(d) log(T )

)
. Kannan et al. (2018)

demonstrated that all the order optimality of greedy algo-
rithms resulting from the merit of stochastic contexts can
be extended to adversarial contexts perturbed by Gaussian
noise.

Sparsity. When d is much larger than T , the aforemen-
tioned bounds are linear in T and not informative. In the
sparse setting, only s0 number of elements in the parameter
vector are non-zero. With multiple parameters, Bastani &
Bayati (2020) developed a LASSO-based algorithm and pro-
vided an O

(
s20K (log(T ) + log(d))

2
)

regret upper bound
under several technical assumptions including the existence
of a probabilistic constant gap between the rewards of the op-
timal and suboptimal arms. They also outlined a proof that
implies a regret lower bound of Ω (s0 log(T )) when K = 2.
With a single parameter, Kim & Paik (2019) proposed an
algorithm based on doubly-robust technique that guarantees
an O

(
s0 log(dT )

√
T
)

upper bound without the probabilis-
tic gap assumption when K = 2. Oh et al. (2021) proposed
an algorithm that does not require prior knowledge of s0 and
guarantees an O

(
s0
√
T log(dT )

)
upper bound for K = 2.

Wang & Xu (2019) also studied sub-Gaussian contexts and
developed an algorithm with an Õ

(√
s0T

)
regret upper

bound under the assumption that all coordinates of the con-
text are independent. Li et al. (2021) proposed several gen-
eral notions of sparsity in high-dimensional stochastic linear

1For non-negative functions f, g, f(x) = O(g(x)) ⇐⇒
g(x) = Ω(f(x)) ⇐⇒ ∀x, f(x) ≤ cg(x) for some constant
c > 0 independent of x. Õ(·) and Ω̃(·) denote the respective
meanings within multiplicative logarithmic factors.

contextual bandit problems, including low rank structures
and group sparsity when the contexts are treated as matrices.
They also provided a unified algorithm and framework to
establish regret upper bounds for these problems.

With Privacy Constraints. Differential privacy is a well-
recognized constraint of privacy preservation in data analy-
sis. However, Shariff & Sheffet (2018) showed enforcing the
constraint leads to Ω(T ) regret and thus introduced a relaxed
notion of (ε, δ)-joint differential privacy and developed a
privacy-preserving algorithm that achieves a regret upper
bound of Õ

(
d3/4

√
T/ε

)
, for the single parameter setting

with adversarial contexts. Alternatively, Zheng et al. (2020)
introduced the notion of locally differentially privacy and de-
veloped an algorithm that achieves a regret upper bound of
Õ
(
(dT )3/4/ε

)
under adversarial contexts. Han et al. (2021)

provided an SGD-based algorithm with a regret upper bound
of Õ

(√
dT/ε

)
and a lower bound of Ω

(√
dT/ε

)
under

locally differential privacy and stochastic contexts. Their al-
gorithm can also be extended to problems with generalized
linear rewards.

With Batch Constraints. Collecting information about
an actual reward or updating an estimator is often
costly. As such, some studies have considered the
case in which reward information is collected in batches.
Given a fixed number of M batches, Han et al.
(2020) developed algorithms that achieve a regret up-
per bound of Õ

(√
dT + dT/M

)
and a lower bound of

Ω
(√

dT +min
{

T
√
d

M
, T√

M

})
under adversarial contexts,

and a regret upper bound of Õ
(√

dT
(

T
d2

) 1
2M+1−2

)
and

a lower bound of Ω
(√

dT
(

T
d2

) 1
2M+1−2

)
under stochas-

tic contexts when K = 2. Ren & Zhou (2020) stud-
ied problems with high dimensional stochastic contexts
and a sparse parameter vector in the reward function.
By allowing the dynamic adjustment of batch sizes, they
developed an algorithm with a regret upper bound of

Õ

(√
s0T

(
T
s0

) 1
2M+1−2

)
and established a lower bound of

Ω

(
max

{
√

s0T
M2

(
T
s0

) 1
2M+1−2 ,

√
s0T

})
when K = 2. Note

that these problems reduce to the basic model when M = T
and all the bounds apply to the basic model under this case.

1.2. Comparison

Note that our lower bounds are established for problems
with stochastic contexts, which are naturally lower bounds
for problems with adversarial contexts. In Table 1, we
compare lower bounds derived using our proposed technique
with existing upper and lower bounds. Empty cells in the
table indicate absence in the literature
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Model
Upper Bound
from Literature

Lower Bound
from Literature Our Lower Bound

Without a margin condition Õ(
√
Td) Ω(dT ) Ω(

√
dT logK)

With a margin condition O(d3 log T ) Ω(d log T ) Ω(d log(T logK
d ))

With a batch constraint
(stochastic context) O

(√
dT
(
T
d2

) 1

2(2M−1)

)
Ω
(√

dT
(
T
d2

) 1

2(2M−1)

)
Ω
(√

dT
(
T
d2

) 1

2(2M−1)

)

Sparse O(
√

s0T log(dT )) Ω(
√
s0T ) Ω(

√
s0T logK log(d/s0))

Jointly differentially private

O(d3/4
√
T/

√
ε)

for adversarial context
Õ(

√
dT + d log(1/δ)

ε )
can be achieved (absent from literature)

Ω(
√
dT logK + d

ε+δ )

Locally differentially private with sparsity
√
dT log d

ε

Table 1. Comparison

2. A Generic Formulation
Consider K-armed linear contextual bandit problems rep-
resented by (ΘΘΘ∗,FK) where ΘΘΘ∗ ⊆ Rd and FK is a set
of d × K dimensional distributions. A problem instance
is described by (θθθ∗, F ) ∈ (ΘΘΘ∗,FK) where θθθ∗ is the un-
known parameter predicative of the rewards. At the begin-
ning of period t, the decision maker observes the context
XXXt = (xxxt1, . . . ,xxxtK) independently drawn from the distri-
bution F ∈ FK over the time, wherexxxta ∈ Rd is the context
related to arm a ∈ {1, . . . ,K}. An algorithm π ∈ Π se-
lects an arm aπt ∈ {1, . . . ,K} based on the current context
XXXt and the historical information up to the end of period
t− 1, denoted as Ht. Once the arm aπt is pulled, the deci-
sion maker obtains the linear reward ytaπ

t
= xxx⊤

taπ
t
θθθ∗ + ξtaπ

t
,

where ξta, 1 ≤ a ≤ K and t = 1, 2, . . ., are independent
standard normal random noises.

The effectiveness of algorithm π for a single incidence
(θθθ∗, F ) is measured by the accumulative expected regret of

π over T periods: Rπ
[T ](θθθ

∗, F ) =
T∑

t=1
E [Rπ

t (θθθ
∗, F )], where

Rπ
t (θθθ

∗, F ) = max
1≤a≤K

{
xxx⊤
taθθθ

∗}− xxx⊤
t,aπ

t
θθθ∗

is the regret of π in period t. The effectiveness of algo-
rithm π for the set of problems (ΘΘΘ∗,FK) is measured by its
expected worst-case regret

Rπ
[T ](ΘΘΘ

∗,FK) = sup
(θθθ∗,F )∈(ΘΘΘ∗,FK)

Rπ
[T ] (θθθ

∗, F ) .

The minimum attainable worst-case regret

R[T ](ΘΘΘ
∗,FK) = inf

π∈Π
Rπ

[T ](ΘΘΘ
∗,FK)

is the regret of the ‘best’ algorithm and measures the diffi-
culty of the set of the problems (ΘΘΘ∗,FK).

A deep understanding of R[T ](ΘΘΘ
∗,FK) can help identify

the obstacle in developing effective algorithms and provide a
benchmark for developed algorithms. There have been abun-
dant studies in the literature to develop various algorithms

and provide upper bounds of Rπ
[T ](ΘΘΘ

∗,FK) to establish the
effectiveness of an developed algorithm π ∈ Π. Note that
any upper bound for an algorithm π ∈ Π naturally serve
as an upper bound of R[T ](ΘΘΘ

∗,FK). Our focus is to find
a tight lower bound of R[T ](ΘΘΘ

∗,FK), which shall take the
set Π into consideration, rather than considering a single
algorithm.

Our methods and result can accommodate several variants
of linear contextual bandit problems in the literature by
specifying ΘΘΘ∗,FK ,Ht, or Π as follows.

Sparsity. Sparsity can be described by specific choice of
ΘΘΘ∗. For instance, ΘΘΘ∗ = {θθθ∗ : ∥θθθ∗∥0 = s0, ∥θθθ∗∥2 ≤ 1} for
some s0 ≪ d describes sparse bandits, i.e., vectors in ΘΘΘ∗

have exactly s0 number of non-zero coordinates. In low-
rank bandits where d = d1 × d2, as introduced in (Li et al.,
2021), ΘΘΘ∗ consists of all θθθ∗ ∈ Rd = Rd1×d2 such that,
when treated as a d1 × d2 matrix, rank(θθθ∗) ≤ d0 for some
d0 ≪ min{d1, d2}.

Batch Constraint. Batch constraint can be described by
specific Ht. Let 1 ≤ t1 < t2 < · · · < tM = T . If
rewards are revealed in batches at the end of period tj ,
j = 1, . . . ,M , then for t ∈ [tj + 1, tj+1] the history Ht =
{
(
XXXs,xxxs,aπ

s
, ys,aπ

s

)
: 1 ≤ s ≤ tj}. If rewards are revealed

in each period, i.e., the number of batches is the same as T ,
then Ht =

{(
XXXs,xxxs,aπ

s
, ys,aπ

s

)
: 1 ≤ s ≤ t− 1

}
.

Privacy Constraint. Privacy constraints can be described
by specific Π. Here we provide two common notions of
privacy.

1. (ε, δ)-jointly differentially private algorithms. Let
Ht = {(XXXs,xxxs,aπ

s
, ys,aπ

s
) : s = 1, . . . , t} and H′

t

be its adjacent history, i.e., Ht and H′
t are same for

all s ∈ {1, . . . , t − 1} except one. We can define Π
to be the set of all algorithms satisfying that for any
sequence of future actions a[t:T ] := (at+1, . . . , aT ),

P (aπ[t:T ] = a[t:T ]|Ht) ≤ eεP (aπ[t:T ] = a[t:T ]|H′
t) + δ.
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2. ε-locally differentially private algorithms under aπt
only depends on XXXt and (www1, . . . ,wwwt), where wwwt is
a private view of data

(
XXXt, yt,aπ

t

)
satisfying (a) wwwt is

independent of {(XXXs, ys,aπ
s
,wwws) : 1 ≤ s < t}, condi-

tioned on the current observations {(XXXt, yt,aπ
t
)} and

past private samples {wwws : 1 ≤ s < t}; (b) for any
measurable set W ,

sup
uuu,vvv∈RdK+1

P
(
wwwt ∈ W

∣∣(XXXt, yt,aπ
t
) = uuu

)

P
(
wwwt ∈ W

∣∣(XXXt, yt,aπ
t
) = vvv

) ≤ eε.

In the literature, FK is usually the set of d×K dimensional
sub-Gaussian distributions or distributions with bounded
supports. Combinations of the above specifications of
(ΘΘΘ∗,Ht,Π) describe various problems, e.g., sparse ban-
dits under batch constraints, private bandits under batch
constraints, sparse bandits under privacy constraints.

3. A Generic Lower Bound
A lower bound of R[T ](ΘΘΘ

∗,FK) is usually established by
analyzing an instance (θθθ∗, F ) such that (a) R[T ](θθθ

∗, F ) is
likely to be large, (b) a tight and tractable lower bound of
Rπ

[T ](θθθ
∗, F ) is available for any algorithm π ∈ Π. We start

with the 2-armed problems in Section 3.1 and then extend
to the K-armed problems in Section 3.2. In Section 3.3, we
demonstrate the tightness of the derived bounds by compar-
ing them with a regret upper bound for a greedy algorithm.

3.1. The 2-Armed Problems

With two arms, an algorithm in each period basically classi-
fies the contexts into two classes, each consisting of contexts
under which the algorithm will select the same arm. Note
that the optimal classification which leads to 0 regret is a
linear one: one should choose arm 1 if and only if zzz⊤t θθθ

∗ > 0.
Thus, for an algorithm π to be effective, its classification
should be close to this linear one. To quantify the perfor-
mance of π and compare it with the optimal classifier, we
first define π-induced estimator in period t, θθθπt , to be the
maximizer of

P
(
aπt = 1, zzz⊤t θθθ > 0

∣∣Ht

)
+ P

(
aπt = 2, zzz⊤t θθθ ≤ 0

∣∣Ht

)
,
(1)

i.e., the best linear approximation of π as a classifier. We
will show that the regret of π can be bounded from below
by the estimation error of θθθπt as an estimator of θθθ∗. The
following lemma provides a lower bound for Rπ

t (θθθ∗, F ),
and hence sup

θθθ∗∈ΘΘΘ∗
Rπ

t (θθθ∗, F ).

Lemma 3.1. For any (θθθ∗, F ) ∈ (ΘΘΘ∗,F2), h ≥ 0, Ht and
maximizer θθθπt ,

Rπ
t (θθθ

∗, F ) ≥h

2
P
((

zzz⊤t θθθ
∗
)(

zzz⊤t θθθ
π
t

)
< 0
)

− hP
(∣∣∣zzz⊤t θθθ∗∣∣∣ < h, sgn

(
zzz⊤t θθθ

∗
)
̸= sgn

(
zzz⊤t θθθ

π
t

))
,

where sgn(·) is the sign of a real number with sgn(0) = 0.

We will apply Lemma 3.1 to obtain insightful lower bounds
under various choices of F in Sections 3.1.1 and 3.1.2. Since
any vector of the same direction as θθθπt would also be a max-
imizer of 1, we will only care about how well the direction
of θθθπt estimates that of θθθ∗ and primarily discuss estimation
error of the form

LΣΣΣ(θθθ
∗, θθθπt ) := E

[∥∥∥∥
θθθ∗

∥θθθ∗∥ΣΣΣ
− θθθπt

∥θθθπt ∥ΣΣΣ

∥∥∥∥
2

ΣΣΣ

]
,

where ΣΣΣ is positive definite and ∥θθθ∥ΣΣΣ =
√
θθθ⊤ΣΣΣθθθ. We

will drop the subscript of L when ΣΣΣ is an identity matrix.
Let N (000,ΣΣΣ) denote a centered normal distribution with
covariance matrix ΣΣΣ and IIIn represent the n-dimensional
identity matrix. We next derive detailed bounds for any F
such that zzzt is (a) a normal or truncated normal random
vector in Section 3.1.1, and (b) a mixture of normal or
truncated normal random vectors in Section 3.1.2.

3.1.1. WHEN zzzt IS (TRUNCATED) NORMAL

Theorem 3.2. Suppose that zzzt ∼ N (000,ΣΣΣ) where ΣΣΣ is
positive-definite. E[Rπ

t (θθθ
∗, F )] dominates the estimation

error as

E[Rπ
t (θθθ

∗, F )] = Ω (∥θθθ∗∥ΣΣΣ · LΣΣΣ(θθθ
∗, θθθπt )) .

Endowing ΘΘΘ∗ with any prior ν, we have

Rπ
[T ] (ΘΘΘ

∗, {F}) = Ω(

T∑
t=1

inf
θθθt∈Θ̂̂Θ̂Θt

Eν

[
∥θθθ∗∥ΣΣΣ · LΣΣΣ(θθθ

∗, θθθt)
]
),

for any set of estimators Θ̂̂Θ̂Θt that includes {θθθπt : π ∈ Π} and
distribution ν on ΘΘΘ∗.

The requirement of zzzt ∼ N (000,ΣΣΣ) can be easily satisfied by
many joint distributions of (xxxt1,xxxt2), which may require
neither xxxt1 nor xxxt2 to be normal. The positive-definiteness
of ΣΣΣ on ΘΘΘ∗ guarantees the denominators in the theorem are
non-zero. When ΣΣΣ is positive-semidefinite, we may apply
Theorem 3.2 with ΣΣΣ+ εIIId, which is positive-definite, and
let ε → 0.

Theorem 3.2 establishes a lower bound for the single-
period regret for a given (θθθ∗, F ) and algorithm π. Indeed,
LΣΣΣ(θθθ

∗, θθθπt ) captures whether the direction of θθθ∗ is correctly
identified, which suffices to indicate the optimal arm, while
the magnitude of ∥θθθ∗∥ΣΣΣ scales up the magnitude of regret
if the sub-optimal arm is selected. A trade-off sets in here
as with a larger ∥θθθ∗∥ΣΣΣ, the direction of θθθ∗ can be learnt to
a higher level of accuracy (i.e., smaller LΣΣΣ(θθθ

∗, θθθπt )), but
choosing the sub-optimal arm would also incur a higher
regret.

We allow Θ̂̂Θ̂Θt to be any superset of {θθθπt : π ∈ Π} to facilitate
the evaluation of the bound, and the smaller the Θ̂̂Θ̂Θt is, the
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tighter the lower bound will be. For example, θθθπt is a func-
tion of Ht, but we may allow estimators in Θ̂̂Θ̂Θt to make use
of a larger information set, e.g., information on the realized
rewards from unchosen arms as well, i.e., functions that map
{(xxxsa, ysa) : 1 ≤ s ≤ t− 1, a = 1, 2} ⊇ Ht to a vector in
Rd.

A special case. For the special case where ΣΣΣ = 1
dIIId

and the support of ν is on a sphere with a radius
r > 0, we can simplify the bound in Theorem 3.2 as

Ω

(
1

r
√
d
·

T∑
t=1

inf
θθθt∈Θ̂̂Θ̂Θt

Eν

[
∥θθθ∗ − θθθt∥22

])
. The Bayesian 2-

norm risk Eν

[
∥θθθ∗ − θθθt∥22

]
is well understood for vari-

ous classes of estimation problems such as linear and
sparse linear regressions. Thus, it allows us to apply
estimation theory directly to calculate lower bounds for
stochastic linear bandit problems. For instance, Exam-
ple 13.1 in (Duchi, 2016) establishes that, for any r > 0,
there exists a distribution ν supported on a sphere of ra-
dius r such that, for d ≫ 1, inf

θθθt∈Θ̂̂Θ̂Θt

Eν

[
∥θθθ∗ − θθθt∥22

]
is of

order Ω

(
r2
{

1
2 − 16r2

d E

[
λmax

(
t∑

s=1

2∑
a=1

xxxsaxxx
⊤
sa

)]})
,

where Θ̂̂Θ̂Θt is the set of all functions that map
{(xxxsa, ysa) : 1 ≤ s < t, a = 1, 2} ⊇ Ht to a vector in Rd

and λmax(·) denotes the largest eigenvalue of a matrix. For
(xxxt1,xxxt2) ∼ N

(
000, 1

2dIII2d
)
,

E

[
λmax

(
T∑

s=1

2∑

a=1

xxxsaxxx
⊤
sa

)]
≤ 2t

d
,

and our bound becomes

R[T ] (ΘΘΘ
∗, {F}) = Ω

(
r√
d

T∑

t=1

(
1

2
− 32r2t

d2

))
,

which is Ω
(
max

{√
dT , d3/2

})
at r = min

{
d

16
√
T
, 1
}

.

Truncated Normal. Note that under any F such that zzzt ∼
N (000,ΣΣΣ), zzzt must have an unbounded support, while in most
literature, F2 is assumed to only include distributions such
that xxxta are bounded. Proposition 3.3 establishes that the
bounds in Theorem 3.2 still apply when zzzt is a truncated
normal random vector so that F can have a bounded support.
Indeed, a normal distribution behaves very much like a
bounded one due to its thin tails.

Proposition 3.3. Suppose that zzzt is a N (000,ΣΣΣ) random
vector truncated in an ℓp-ball of radius M > 0 centered at
000, where ΣΣΣ is positive-definite and E (∥xxx∥2) ≤ M

2 , then the
bounds in Theorem 3.2 apply.

3.1.2. WHEN zzzt IS A MIXTURE OF (TRUNCATED)
NORMAL

The bounds derived in the previous section is easy to
evaluate and thus useful when ν is supported on a high-
dimensional sphere, i.e., when ∥θθθ∗∥ΣΣΣ is a constant. An even
simpler form of the lower bound where we can still have
2-norm error terms is to let zzzt be a mixture of 2-dimensional
normal distributions and ν supported on products of circles.

We partition the elements in θθθ into ⌊d/2⌋ number of 2-
dimensional vectors as θθθ =

(
θθθ1, θθθ2, . . . , θθθ⌈d/2⌉

)
, where

θθθi = (θ2i−1, θ2i), 1 ≤ i ≤
⌊
d
2

⌋
, and θθθ⌈d/2⌉ = θd if

d is an odd number. Similarly, we can partition zzzt =(
zzz1t , zzz

2
t , . . . , zzz

⌈d/2⌉
t

)
. Suppose that zt,d = 0 if d is an

odd number and zzzt can only take values of the form(
000,000, · · · , zzzit, · · · ,000

)
, 1 ≤ i ≤ ⌊d/2⌋, i.e., only one of

the θθθ∗1, . . . , θθθ∗⌊d/2⌋ can be learnt in each period. Indeed,
the problem can be regarded as a collection of d/2 number
of 2-dimensional ones, each being played for a probabilistic
number of times.

Theorem 3.4. Suppose that zzzt =
(
000,000, · · · , zzzit, · · · ,000

)
,

1 ≤ i ≤
⌊
d
2

⌋
, with equal probability and zzzit ∼ N

(
000, σ2III2

)
.

E[Rπ
t (θθθ

∗, F )] dominates the estimation error as

E[Rπ
t (θθθ

∗, F )] = Ω


σ

d

⌊d/2⌋∑

i=1

∥∥θθθ∗i
∥∥
2
· L(θθθ∗i, (θθθπt )i)


 .

Endowing ΘΘΘ∗ with any prior ν, we have

Rπ
[T ] (ΘΘΘ

∗, {F})

= Ω

σ

d

T∑
t=1

inf
θθθt∈Θ̂̂Θ̂Θt

⌊d/2⌋∑
i=1

Eν

[∥∥∥θθθ∗i∥∥∥
2
· L(θθθ∗i, (θθθt)i)

] ,

for any set of estimators Θ̂̂Θ̂Θt that includes {θθθπt : π ∈ Π} and
distribution ν on ΘΘΘ∗.

For the special case where the support of ν is in a product
of circles




θθθ∗ :

∥∥θθθ∗i
∥∥
2
= r, 1 ≤ i ≤

⌊
d

2

⌋
,

θd = 0 if d is an odd number





for some r > 0, we have that

Rπ
[T ] (ΘΘΘ

∗, {F}) = Ω

(
σ

rd
·

T∑

t=1

inf
θθθ∈Θ̂̂Θ̂Θt

{
Eν

[
∥θθθ∗ − θθθ∥22

]})
,

which also takes the form of an ℓ2-risk.

We also have a truncated version.

Proposition 3.5. If zzzt =
(
000,000, · · · , zzzit, · · · ,000

)
, 1 ≤ i ≤⌊

d
2

⌋
, with equal probability and zzzit is a N (000, σ2III2) random
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vector truncated in an ℓp-ball centered at 000 with radius M
such that E

(∥∥zzzit
∥∥
2

)
< M

2 , then the bounds in Theorem 3.4
apply.

3.2. The K-Armed Problems

We first note that all the lower bounds derived in the previ-
ous section apply directly to their corresponding K-armed
problems if we can select F ∈ FK such that the arms can
be divided into two groups of arms, where each group has
the same expected reward.

To characterize how much harder a general K-armed prob-
lem is than a 2-armed problem, we first describe how
we can encode a collection of N number of 2-armed
problems into a single 2N -armed problem following (Li
et al., 2019). Note that there are 2N distinct combina-
tions of actions in the N problems. Suppose that the
nth 2-armed problem has a true parameter θθθ∗(n) and the
context is (xxxt1(n),xxxt2(n)) in period t. Consider a 2N -
armed problem with θθθ∗ = (θθθ∗(n), . . . , θθθ∗(N)) and xxxta =(
xxxtb1(a)(1), . . . ,xxxtbN (a)(N)

)
, where bn(a) ∈ {1, 2}, n ≥

1, is uniquely determined by the binary representation

a = 1+
∞∑
i=1

(bi(a)−1) ·2i−1, 1 ≤ a ≤ 2N . Then the regret

of selecting arm a in the 2N -armed problem is the same as
the sum of the regrets of the collection of 2-armed problems
if bn(a) is selected from the nth problem, 1 ≤ n ≤ N .
Figure 1 demonstrates an example with N = 3.

In general, as K is not necessarily a power of 2, let N =
⌊log2(K)⌋,

θθθ∗ = (θθθ∗(1), · · · , θθθ∗(N),000) , (2)

xxxta =
(
xxxtb1(a)(1), · · · ,xxxtbN (a)(N),000

)
, (3)

where xxxtbn(a)(n) and θθθ∗(n) ∈ R⌊d/N⌋ and 000 is of dimen-
sion d−N · ⌊d/N⌋. Then,

Rπ(θθθ∗, F ) =

⌊log2(K)⌋∑

n=1

max
{
xxxt1(n)

⊤θθθ∗(n),xxxt2(n)
⊤θθθ∗(n)

}

− xxx⊤
tbn(aπ

t )
(n)θθθ∗(n).

Let zzzt(n) = xxxt1(n)−xxxt2(n) and θθθ(n) = θθθπt (n) be a maxi-
mizer of

2∑

a=1

P
(
bn(a

π
t ) = a, (−1)azzzt(n)

⊤θθθ(n) > 0
)
,

for each 1 ≤ n ≤ N . Theorem 3.6 generalizes Theorem 3.2.

Theorem 3.6. Suppose that zzzt(n) ∼ N (000,ΣΣΣ) where ΣΣΣ is
positive-definite and (2)–(3) holds.

E[Rπ
t (θθθ

∗, F )] = Ω

(
N∑

n=1

∥θθθ∗(n)∥ΣΣΣ · LΣΣΣ(θθθ
∗(n), θθθπt (n))

)
.

Problem #1:




xxxt1(1)
⊤θθθ∗(1)

xxxt2(1)
⊤θθθ∗(1)


 =




xxxt1(1)
⊤

xxxt2(1)
⊤







θθθ∗(1)




Problem #2:




xxxt1(2)
⊤θθθ∗(2)

xxxt2(2)
⊤θθθ∗(2)


 =




xxxt1(2)
⊤

xxxt2(2)
⊤







θθθ∗(2)




Problem #3:




xxxt1(3)
⊤θθθ∗(3)

xxxt2(3)
⊤θθθ∗(3)


 =




xxxt1(3)
⊤

xxxt2(3)
⊤







θθθ∗(3)




(a) A collection of 2-armed problems



xxx⊤
t1θθθ

∗

xxx⊤
t2θθθ

∗

xxx⊤
t3θθθ

∗

xxx⊤
t4θθθ

∗

xxx⊤
t5θθθ

∗

xxx⊤
t6θθθ

∗

xxx⊤
t7θθθ

∗

xxx⊤
t8θθθ

∗




=




xxxt1(1)
⊤ xxxt1(2)

⊤ xxxt1(3)
⊤

xxxt2(1)
⊤ xxxt1(2)

⊤ xxxt1(3)
⊤

xxx⊤
txxxt1(1)

⊤ xxxt2(2)
⊤ xxxt1(3)

⊤

xxxt2(1)
⊤ xxxt2(2)

⊤ xxxt1(3)
⊤

xxxt1(1)
⊤ xxxt2(2)

⊤ xxxt2(3)
⊤

xxxt2(1)
⊤ xxxt1(2)

⊤ xxxt2(3)
⊤

xxxt1(1)
⊤ xxxt2(2)

⊤ xxxt2(3)
⊤

xxxt2(1)
⊤ xxxt2(2)

⊤ xxxt2(3)
⊤







θθθ∗(1)

θθθ∗(2)

θθθ∗(3)




(b) An 8-armed problem

Figure 1. Selecting arms (a1t, a2t, a3t) = (1, 2, 1) in (a) yields
the same regret as selecting arm 3 in (b). Arm selection combina-
tions in (a) are in one-to-one correspondence with the arms in (b).

Endowing ΘΘΘ∗ with any prior ν,

R[T ](ΘΘΘ
∗, {F})

= Ω

(
T∑

t=1

N∑
n=1

inf
θθθt(n)∈Θ̂̂Θ̂Θt(n)

Eν

[
∥θθθ∗(n)∥ΣΣΣ · LΣΣΣ(θθθ

∗(n), θθθt(n))
])

,

for any set of estimators Θ̂̂Θ̂Θt(n) that includes {θθθπt (n) : π ∈
Π}, 1 ≤ i ≤ N .

When zzznt follows the distribution in Proposition 3.3, The-
orem 3.4, or Proposition 3.5, similar generalizations can
be obtained. We omit their statements and only present
Proposition 3.7 below as a representative, which is a gener-
alization of the special case discussed in Section 3.1.1. As
one can see, there is an extra factor of

√
log2(K).

Proposition 3.7. When F satisfies conditions in Theo-
rem 3.6 at ΣΣΣ = 1

dIII⌊d/ log2(K)⌋ and d ≫ 1,

R[T ](ΘΘΘ
∗, {F}) = Ω

(
max

{√
dT log2(K), d3/2

})
.

3.3. Comparing With an Upper Bound

Suppose that F satisfies the conditions in Theorem 3.6.
Consider a generic greedy algorithm that based on a single
estimator θ̂̂θ̂θt = (θ̂̂θ̂θt(1), . . . , θ̂̂θ̂θt(N),000) in period t, i.e., one
selects an arm with the highest expected reward pretend-
ing the true parameter is θ̂̂θ̂θt, i.e., at = arg max

1≤a≤K

{
xxx⊤
taθ̂̂θ̂θt

}
.
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Then, the expected regret in period t under this greedy algo-
rithm can be calculated as

E[Rπ
t (θθθ

∗, F )]

=

N∑

n=1

E
[
|zzzt(n)⊤θθθ∗(n)|1{(zzzt(n)⊤θθθ∗(n))(zzzt(n)⊤θθθ∗(n))<0}

]

=O

(
N∑

n=1

∥θθθ∗(n)∥ΣΣΣ · LΣΣΣ(θθθ
∗(n), θ̂̂θ̂θt(n))

)
,

and hence,

Rπ
[T ] (ΘΘΘ

∗, {F})

=O

(
T∑

t=1

sup
θθθ∗∈ΘΘΘ∗

N∑

n=1

∥θθθ∗(n)∥ΣΣΣ · LΣΣΣ(θθθ
∗(n), θ̂̂θ̂θt(n))

)
.

Note that the upper bounds share the same form as the lower
bounds in Theorem 3.6. Thus, if the worst-case risk of the
θ̂̂θ̂θt is of the same order as the Bayesian risk of the Bayesian
estimator, our lower bound is tight.

4. Applications of the Generic Bound
4.1. The Basic Model

4.1.1. WHEN K = 2

For 2-armed problems, we specify our choice of (F, ν, Θ̂̂Θ̂Θt)
as follows.

• F ∈ F2: Draw zzzt from the mixture of truncated normal
random vectors as described in Proposition 3.5 at p = 2
and assign (xxxt1,xxxt2) = (000,−zzzt) or (zzzt,000) with equal
probability.

• ν: A uniform distribution on a product of circles ΘΘΘ∗
r =

{θθθ∗ =
(
θθθ∗1, . . . , θθθ∗⌈d/2⌉

)
: θθθ∗i ∈ R2,

∥∥θθθ∗i∥∥
2
= r, 1 ≤

i ≤
⌊
d
2

⌋
, θd = 0 if d is an odd number} for some r ≥ 0

specified later.

• Θ̂̂Θ̂Θt: The set of all functions that map

Ht = {(xxxsa, ysa) : a = 1, 2, 1 ≤ s ≤ t− 1} ⊇ Ht

to a vector in Rd. It is easy to verify that that Θ̂̂Θ̂Θt meets
the requirements in Theorem 3.4.

Proposition 4.1. R[T ] (ΘΘΘ
∗, {F}) =

T∑
t=1

Ω
(
σmin

{
r, d

rt

})

Indeed, Proposition 4.1 follows a simple procedure of calcu-
lation under our framework. This recovers some well-known
bounds in the literature.

• Auer (2002) and Chu et al. (2011) studied adversarial
contexts with ∥xxxt∥2 ≤ 1 and thus includes stochas-
tic contexts and our choice of F at σ = 1√

2
and

M = 1, and ΘΘΘ∗ = {θθθ∗ : ∥θθθ∗∥2 ≤ 1} so the sup-
port of our ν is indeed a subset of ΘΘΘ∗ for any r ≤ 1√

d
.

At r =
√

d
T (assuming d <

√
T ), our lower bound

T∑
t=1

Ω
(
min

{
r, d

rt

})
= Ω

(√
dT
)

which coincides

with theirs.

• Goldenshluger & Zeevi (2013) further imposes a
margin condition P

(∣∣∣(xxxt1 − xxxt2)
⊤
θθθ∗
∣∣∣ ≤ ρ

)
≤ Lρ

for some constant L independent of (T, d) and any
ρ > 0 on the set of distributions. At r = 1, our
choice of (F, ν, Θ̂̂Θ̂Θt) satisfies the requirements and
our lower bound Ω (d+ d log(T/d)) is slightly tighter
than theirs Ω(log(T )) and the same as Ω(d log(T )) as
suggested in Oh et al. (2021).

4.1.2. WHEN K ≥ 2

Our choice of (F, ν, Θ̂̂Θ̂Θt) is as follows.

• F : Draw zzzt(n) = (zzz1t (n), . . . , zzz
⌈d/2⌉
t (n)), 1 ≤ n ≤

N = ⌊log2(K)⌋, from the distribution described in
Proposition 3.3 with p = 2, assign (xxxt1(n),xxxt2(n)) =
(000,−zzzt(n)) or (zzzt(n),000) with equal probability, and
generate xxxt1, . . . ,xxxtK , following (2)–(3).

• ν: A uniform distribution on ΘΘΘ∗
r(1) × · · · ×

ΘΘΘ∗
r(N) × {000} where ΘΘΘ∗

r(n) is a product of circles
{θθθ∗(n) =

(
θθθ∗1(n), . . . , θθθ∗⌈d0/2⌉(n)

)
: θθθ∗i(n) ∈

R2,
∥∥θθθ∗i(n)

∥∥
2

= r, 1 ≤ i ≤
⌊
d0

2

⌋
, θd0

=
0 if d0 is an odd number}, with d0 = ⌊d/N⌋.

• Θ̂̂Θ̂Θt(n): The set of all functions that map Ht∪{θθθ∗(n′) :
1 ≤ i′ ̸= i ≤ N} to a vector in Rd0 .

Following a similar argument as that for the 2-
armed case and letting θ̂̂θ̂θt(n) be the minimizer of

inf
θθθt(n)∈Θ̂̂Θ̂Θt(n)

⌊d0/2⌋∑
i=1

Eν

[∥∥θθθ∗i(n)− θθθit(n)
∥∥
2

]
, we have

E
[∥∥θθθi∗(n)− θθθi(n)

∥∥2
2

]
= Ω

(
min

{
r2,

⌊d/ log2(K)⌋
t

})
.

Hence,

R[T ] (ΘΘΘ
∗, {F}) =

T∑

t=1

Ω

(
min

{
r log2(K),

d

rt

})
,

which is Ω
(√

dT log(K)
)

at r =
√

d
T log2(K) and is

Ω
(
d log

(
T log2(K)

d

))
at r = 1.
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4.1.3. WITH A BATCH CONSTRAINT

Here we revisit the setting in (Han et al., 2020) where
feedbacks can be received in M batches and the deci-
sion maker needs to decide the grids, i.e., the M periods,
t1 < t2 < · · · < tM = T , in which feedbacks are revealed,
before pulling any arm.
Proposition 4.2.

R[T ](ΘΘΘ
∗, {F}) = max

m=1,...,M
Ω

(
tm min

{
r,

d

rtm−1

})

The proof of the proposition is almost identical to Propo-
sition 4.1 and hence omitted. Maximizing over r we can
recover the lower bound for stochastic linear contextual
bandit in their work.

4.2. The Sparse Linear Bandit Problem

Abundant work on sparse linear bandit problems have fo-
cused on constructing an algorithm and establishing its effec-
tiveness by providing a regret upper bound for it. To name a
few, Oh et al. (2021), Wang et al. (2020), and Li et al. (2021)
achieve the best upper bounds of order Õ(

√
s0T ), where

s0 = ∥θθθ∗∥0, ∀θθθ∗ ∈ ΘΘΘ∗, is the sparse parameter. Since the
conditions on (F, ν,ΘΘΘ∗) in Wang et al. (2020) are easy to
meet and compare, we will compare our lower bound with
their upper bound. When K = 2, we choose (F, ν, Θ̂̂Θ̂Θt) as
follows.

• F : (xxxt1,xxxt2) ∼ N (000, III2d).

• ν: A uniform distribution on

ΘΘΘ∗
r = {θθθ∗ : θ∗i ∈ {−r, 0, r} , ∥θθθ∗∥0 = s0},

where s0 is a sparse parameter and r > 0 will be
specified later.

• Θ̂̂Θ̂Θt: The same as in Section 4.1.

The lower bound in Theorem 3.2 can be simplified as

Ω

(
1

r
√
s0

T∑
t=1

inf
θθθt∈Θ̂̂Θ̂Θt

{
Eν

[
∥θθθ∗ − θθθt∥22

]})
.

Corollary 4 in (Duchi & Wainwright, 2013) establishes that,
there exists a constant c independent of (T, d, s0) such that

inf
θθθt∈Θ̂̂Θ̂Θt

Eν

[
∥θθθ∗ − θθθt∥22

]

= Ω


s0r

2


1−

s0r
2

d E

[
T∑

s=1

2∑
a=1

∥xxxsa∥22
]
+ log 2

cs0 log(
d
s0
)





 .

Letting r =

√
c log

(
d
s0

)
8T

, we have R[T ] (ΘΘΘ
∗, {F}) =

Ω

(√
s0T log

(
d
s0

))
, which only differs from the upper

bound in (Wang et al., 2020) by a factor of log3(T ). For a
general K ≥ 2, a similar procedure yields

R[T ](ΘΘΘ
∗, {F}) = Ω


rT

√
s0 log(K)


1− r2T

c log
(

d
s0

)




 ,

which is Ω
(√

s0T log(K) log(d/s0)
)

at r =
√

c log(d/s0)
8T

.

4.3. Jointly Differentially Private Linear Bandit
Problem

Consider a set of jointly differentially private linear bandit
problems where FK is the set of sub-Gaussian distributions
with parameter 1, ΘΘΘ∗ = {θθθ∗ : ∥θθθ∗∥2 ≤ 1}, and Π is the set
of (ε, δ)-jointly differentially private algorithms defined in
Section 2. To calculate a lower bound for K = 2, we will
choose the same F and ν as in Section 4.1 and Θ̂̂Θ̂Θt to be
the set of all (ε, δ)-differentially private functions that map
Ht = {(xxxsa, ysa) : a = 1, 2, 1 ≤ s ≤ t− 1} ⊇ Ht to a
vector in Rd.

Proposition 4.3. R[T ] (ΘΘΘ
∗, {F}) = Ω(

T∑
t=1

min{r, d2

rt2(ε+δ)2
}).

Letting r = d
T (ε+δ) , we obtain that R[T ] (ΘΘΘ

∗, {F}) =

Ω
(

d
ε+δ

)
. Since the choice of (F, ν, Θ̂̂Θ̂Θt) differs from that

in Section 4.1 only in that Θ̂̂Θ̂Θt is restricted to a subset, a
lower bound of Ω(

√
dT ) also applies. Thus, we obtain

a lower bound of Ω
(√

dT + d
ε+δ

)
. An upper bound of

Õ
(√

dT + d log(1/δ)
ε

)
can be obtained from combining

the estimator developed in (Cai et al., 2020) and the data
batching scheme in (Han et al., 2020), which differs with
our lower bounds only by factors of log(T ) and log(δ).
For a general K, following a similar analysis as above
and as in the previous sections, we have R[T ] (θθθ

∗, F ) =

Ω
(√

dT log2(K) + d
ε+δ

)
.

4.4. Non-interactive Locally Differentially Private
Sparse Linear Bandits

Consider a set of problems where FK is the set of sub-
Gaussian distributions with parameter 1,

ΘΘΘ∗ = {θθθ∗ : ∥θθθ∗∥2 ≤ 1, ∥θθθ∗∥0 = 1} ,

a set of sparse vectors, and Π is the set of non-interactive
ε-locally differentially private algorithms.

When K = 2, to apply Theorem 3.2, we let XXXt =
(xxxt1,xxxt2) ∼ N (000, III2d), ν be a uniform distribution on a
2d-point set

ΘΘΘ∗
r := {θθθ∗ : ∥θθθ∗∥2 = r, ∥θθθ∗∥0 = 1}

={reee1,−reee1, . . . , reeed,−reeed} ⊆ΘΘΘ∗
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for some 0 < r ≤ 1, where eeei is the vector with a 1 in
the ith coordinate and 0’s elsewhere, and Θ̂̂Θ̂Θt be the set
of functions that map a non-interactive ε-LDP view of
{(XXXs, ys1, ys2) : 1 ≤ s ≤ t− 1} to a vector in Rd. The
construction for a general K is similar.
Proposition 4.4. R[T ] (ΘΘΘ

∗, {F}) =
Ω
(
r log(K)

[
1− T log(K)r2ε2

d(1−2r2) log(d/ log(K)) −
log(2)

log(d/ log(K))

])
.

The bound reduces to Ω

(
min{

√
d log(d/ log(K)) log(K)T

ε
, T}

)
at r = min

{√
d log(d/ log(K)

2ε
√

T log(K)
, 1

}
. From Sections 4.1 and

4.2, sparsity in ΘΘΘ∗ reduces regrets in linear bandit problems
from an order of

√
d to an order of log(d). We show in this

section that, in the presence of the ε-locally differentially
privacy requirement, the regret is at least in the order of√

d log(d)T

ε , indicating that sparsity of ΘΘΘ∗ may not reduce
regrets in high-dimensional problems.

5. Conclusion
In this work, we establish the necessity of an accurate estima-
tor in a low-regret algorithm for stochastic linear contextual
bandit problems and demonstrate how our analysis leads to
a reduction in studying lower bounds for bandit problems.
Moreover, we have identified hard instances where contexts
follow normal distributions (or their mixture) in various
linear contextual bandit problems, suggesting developing al-
gorithms against normal distributions might be a promising
approach. Although our current instances are constructed
with context following (truncated) normal distribution, all
the methods can be readily applied to context with an ellip-
soidal contoured context that does not highly concentrated
around 000. In general, the gap between learning an optimal
action and learning the entire reward function is interesting
and deserves further investigation, and our work may serve
as a first attempt on a systematic approach.
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A. Appendix
Lemma A.1. Let U and V be two standard normal random variables and β = arccos (Cov(U, V )) > 0. Then, for any
h > 0 and k ≥ 1,

P (U > 0,−h < V < 0) <
β

2π

(
1− k − 1

k
e
− h2

2 sin2( 1
k (β∧π

2 ))

)
.

Before a formal proof of the above lemma, we first provide some geometric intuition on it. The gray area in Figure 2 below
describes the LHS of the inequality and is covered by the shaded cone plus the shaded circular sector, whose probabilities
can be explicitly evaluated due to symmetric properties of 2-dimensional normal random vectors.

−h

V U

(k−1)β
k

w

v

Figure 2.

Proof. Let W = U−V cos(β)
sin(β) . Then it is easy to show that W ∼ N (0, 1) and is independent of V . Furthermore, arctan

(
V
W

)

is uniform on
[
−π

2 ,
π
2

]
, P
(√

V 2 +W 2 < r
)
= 1− e−

r2

2 , and arctan
(
V
W

)
is independent of

√
V 2 +W 2. For β ≤ π

2 ,

P (U > 0,−h < V < 0)

= P (max{−W tan (β) ,−h} < V < 0)

≤ P

(
max{−W tan (β) ,−h} < V < −W tan

(
β

k

)
< 0

)
+ P

(
−W tan

(
β

k

)
< V < 0

)
< P

(
−W tan (β) < V < −W tan

(
β

k

)
,−h < V < 0, 0 < W <

h

tan
(
β
k

))+ P

(
−W tan

(
β

k

)
< V < 0

)

< P

(
−β < arctan

(
V

W

)
< −β

k
,
√

V 2 +W 2 <
h

sin
(
β
k

) , V < 0

)
+ P

(
arctan

(
V

W

)
> −β

k
, V < 0

)

=
β

2π

(
1− k − 1

k
e
− h2

2 sin2( β
k )

)
.

Note that, at β = π
2 , U and V are independent, and we obtain that the marginal distribution satisfies P (−h < V < 0) <

1
2

(
1− k−1

k e
− h2

2 sin2( π
2k )

)
. For β > π

2 ,

P (U > 0,−h < V < 0) = P (−h < V < min{−W tan(β), 0})

< P

(
W >

h

tan (β)

)
P (−h < V < 0)

= P

(
W >

h

tan (β)

)
P (V < −h)

P (−h < V < 0)

1− P (−h < V < 0)

< P

(
V

W
< − tan(β), V < 0

)
P (−h < V < 0)

1− P (−h < V < 0)

<
β

2π

(
1− k − 1

k
e
− h2

2 sin2( π
2k )

)
.
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The proof of Lemma 3.1 is basically exploiting the optimality of θθθπt . In particular, θθθπt approximates π better than θθθ∗ does.
As a consequence, when the difference of contexts, zzzt, falls in the cone

{
zzz :
(
zzz⊤θθθπt

) (
zzz⊤θθθ∗

)
< 0
}

where θθθπt makes the
wrong classification, π agrees with θθθπt more than θθθ∗. In other words, π makes more wrong classifications than correct ones
in this cone and we can provide a regret lower bound based on this fact and the size of the cone. See a formal proof below.

Proof of Lemma 3.1. Note that

−zzz⊤t θθθ∗1{aπ
t =1}1{zzz⊤

t θθθ∗≤0} ≥ −zzz⊤t θθθ∗1{aπ
t =1}1{zzz⊤

t θθθπ
t >0, zzz⊤

t θθθ∗≤0}
≥ h1{aπ

t =1}1{zzz⊤
t θθθπ

t >0, zzz⊤
t θθθ∗≤−h}

= h1{aπ
t =1}1{zzz⊤

t θθθπ
t >0, zzz⊤

t θθθ∗≤0} − h1{aπ
t =1}1{zzz⊤

t θθθπ
t >0, −h<zzz⊤

t θθθ∗≤0}
≥ h1{aπ

t =1}1{zzz⊤
t θθθπ

t >0, zzz⊤
t θθθ∗≤0} − h1{zzz⊤

t θθθπ
t >0, −h<zzz⊤

t θθθ∗≤0}

=
h

2

(
1 + 1{aπ

t =1} − 1{aπ
t =2}

)
1{zzz⊤

t θθθπ
t >0, zzz⊤

t θθθ∗≤0} − h1{zzz⊤
t θθθπ

t >0, −h<zzz⊤
t θθθ∗≤0}.

Similarly, we have

zzz⊤t θθθ
∗1{aπ

t =2}1{zzz⊤
t θθθ∗>0} ≥ h

2

(
1 + 1{aπ

t =2} − 1{aπ
t =1}

)
1{zzz⊤

t θθθπ
t ≤0, zzz⊤

t θθθ∗>0} − h1{zzz⊤
t θθθπ

t ≤0, 0<zzz⊤
t θθθ∗<h}.

Thus,

Rπ
t (θθθ

∗, F ) = −zzz⊤t θθθ
∗1{aπ

t =1}1{zzz⊤t θθθ∗≤0} + zzz⊤t θθθ
∗1{aπ

t =2}1{zzz⊤t θθθ∗>0}

≥ h

2

[
P
(
zzz⊤t θθθ

π
t > 0, zzz⊤t θθθ

∗ ≤ 0
)
+ P

(
zzz⊤t θθθ

π
t ≤ 0, zzz⊤t θθθ

∗ > 0
)]

−h
[
P
(
zzz⊤t θθθ

π
t > 0,−h < zzz⊤t θθθ

∗ ≤ 0
)
+ P

(
zzz⊤t θθθ

π
t ≤ 0, 0 < zzz⊤t θθθ

∗ < h
)]

+
h

2
E
[(

1{aπ
t =1} − 1{aπ

t =2}
)(

1{zzz⊤t θθθπt >0, zzz⊤t θθθ∗≤0} − 1{zzz⊤t θθθπt ≤0, zzz⊤t θθθ∗>0}
)]

≥ h

2
P
((

zzz⊤t θθθ
∗
)(

zzz⊤t θθθ
π
t

)
< 0
)
− hP

(∣∣∣zzz⊤t θθθ∗∣∣∣ < h, sgn
(
zzz⊤t θθθ

π
t

)
̸= sgn

(
zzz⊤t θθθ

∗
))

+
h

2
E
[(

1{aπ
t =1} − 1{aπ

t =2}
)(

1{zzz⊤t θθθπt >0} − 1{zzz⊤t θθθ∗>0}
)]

and the lemma follows as the last term is equal to
h
2

[
P
(
aπt = 1, zzz⊤t θθθ

π
t > 0

)
+ P

(
aπt = 2, zzz⊤t θθθ

π
t ≤ 0

)
− P

(
aπt = 1, zzz⊤t θθθ

∗ > 0
)
− P

(
aπt = 2, zzz⊤t θθθ

∗ ≤ 0
)]

, which is
non-negative due to the optimality of θθθπt .

Theorem 3.2 is established by evaluating the lower bound in Lemma 3.1. Lemma A.1 is applied to establish a concise lower
bound.

Proof of Theorem 3.2. By Lemma 3.1 and the symmetry of the normal distribution, we have

E [Rπ
t (θθθ

∗, F )|Ht] ≥ h

[
1

2
P
((

zzz⊤t θθθ
∗
)(

zzz⊤t θθθ
π
t

)
< 0
∣∣∣Ht

)
− P

(∣∣∣zzz⊤t θθθ∗∣∣∣ ≤ h, sgn(zzz⊤t θθθ
∗) ̸= sgn(zzz⊤t θθθ

π
t )
∣∣∣Ht

)]
= h

[
P
(
zzz⊤t θθθ

π
t < 0 < zzz⊤t θθθ

∗
∣∣∣Ht

)
− 2P

(
0 < zzz⊤t θθθ

∗ < h, sgn(zzz⊤t θθθ
∗) = − sgn(zzz⊤t θθθ

π
t ) = 1

∣∣∣Ht

)]
= h

[
P
(
zzz⊤t θθθ

π
t < 0 < zzz⊤t θθθ

∗
∣∣∣Ht

)
− 2P

(
zzz⊤t θθθ

π
t < 0 < zzz⊤t θθθ

∗ < h
∣∣∣Ht

)]
≥ h

[
βπ
t

2π
− βπ

t

π

(
1− k − 1

k
e
− h2

2∥θθθ∗∥2
ΣΣΣ

sin2( 1
k (β∧π

2 ))

)]

≥ hβπ
t

π

[
k − 1

k
e
− h2

2∥θθθ∗∥2
ΣΣΣ

sin2( 1
k (β∧π

2 )) − 1

2

]
,
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for k > 1 and h > 0, where βπ
t = arccos

(
(θθθπ

t )
⊤ΣΣΣθθθ∗

∥θθθ∗∥ΣΣΣ

)
and the last inequality follows from Lemma A.1 in the Appendix at

U =
zzz⊤
t θθθπ

t

V ar[zzz⊤
t θθθπ

t ]
=

zzz⊤
t θθθπ

t

∥θθθπ
t ∥ΣΣΣ

and V =
zzz⊤
t θθθ∗

V ar[zzz⊤
t θθθ∗]

=
zzz⊤
t θθθ∗

∥θθθ∗∥ΣΣΣ
. At h = ∥θθθ∗∥ΣΣΣ

√
2 log

(
4(k−1)

3k

)
sin
(
1
k

(
βπ
t ∧ π

2

))
,

E [Rπ
t (θθθ

∗, F )|Ht] ≥ βπ
t

4π
∥θθθ∗∥ΣΣΣ

√
2 log

(
4(k − 1)

3k

)
sin

(
1

k

(
βπ
t ∧ π

2

))

= Ω

(
∥θθθ∗∥ΣΣΣ sin2

(
βπ
t

2

))

= Ω

(
∥θθθ∗∥ΣΣΣ·

∥∥∥∥
θθθ∗

∥θθθ∗∥ΣΣΣ
− θθθπt

∥θθθπt ∥ΣΣΣ

∥∥∥∥
2

ΣΣΣ

)
,

for k > 4, where the first equality follows as
βπ
t sin

(
βπ
t
k

)
sin2

(
βπ
t
2

) > 0 is bounded from below by a positive constant as βπ
t ∈ [0, π].

Taking expectation with respect to Ht yields the result.

Proof of Proposition 3.3. Suppose that z̄̄z̄zt ∼ N (000,ΣΣΣ) and zzzt = z̄̄z̄zt|∥z̄̄z̄zt∥2 ≤ M . Since E (∥z̄̄z̄zt∥2) ≤ M
2 , we have

P (∥z̄̄z̄zt∥2 > M) ≤ 1
2 by Markov’s inequality. By Lemma 3.1 and the symmetry of the normal distribution, we have

E [Rπ
t (θθθ

∗, F )|Ht] ≥ h

2
P
((
z̄̄z̄z⊤t θθθ

∗) (z̄̄z̄z⊤t θθθπt
)
< 0
∣∣∥z̄̄z̄zt∥2 ≤ M,Ht

)

−hP
(∣∣z̄̄z̄z⊤t θθθ∗

∣∣ ≤ h, sgn(z̄̄z̄z⊤t θθθ
∗) ̸= sgn(z̄̄z̄z⊤t θθθ

π
t )
∣∣∥z̄̄z̄zt∥2 ≤ M,Ht

)

= hP
(
z̄̄z̄z⊤t θθθ

π
t < 0 < z̄̄z̄z⊤t θθθ

∗∣∣∥z̄̄z̄zt∥2 ≤ M,Ht

)
− 2hP

(
z̄̄z̄z⊤t θθθ

π
t < 0 < z̄̄z̄z⊤t θθθ

∗ < h
∣∣∥z̄̄z̄zt∥2 ≤ M,Ht

)

≥ h

[
βπ
t

2π
− 2P

(
z̄̄z̄z⊤t θθθ

π
t < 0 < z̄̄z̄z⊤t θθθ

∗ < h
∣∣Ht

)

P (∥z̄̄z̄zt∥2 ≤ M)

]

≥ h

[
βπ
t

2π
− 2βπ

t

π

(
1− k − 1

k
e
− h2

2∥θθθ∗∥2
ΣΣΣ

sin2( 1
k (β∧π

2 ))

)]

=
2hβπ

t

π

[
k − 1

k
e
− h2

2∥θθθ∗∥2
ΣΣΣ

sin2( 1
k (β∧π

2 )) − 3

4

]
,

for k > 1 and h > 0, where βπ
t = arccos

(
(θθθπ

t )
⊤ΣΣΣθθθ∗

∥θθθ∗∥ΣΣΣ

)
and the last inequality follows from Lemma A.1. At h =

∥θθθ∗∥ΣΣΣ
√

2 log
(

8(k−1)
7k

)
sin
(
1
k

(
βπ
t ∧ π

2

))
,

E [Rπ
t (θθθ

∗, F )|Ht] ≥ βπ
t

4π
∥θθθ∗∥ΣΣΣ

√
2 log

(
8(k − 1)

7k

)
sin

(
1

k

(
βπ
t ∧ π

2

))

= Ω

(
∥θθθ∗∥ΣΣΣ sin2

(
βπ
t

2

))
= Ω

(
∥θθθ∗∥ΣΣΣ·

∥∥∥∥
θθθ∗

∥θθθ∗∥ΣΣΣ
− θθθπt

∥θθθπt ∥ΣΣΣ

∥∥∥∥
2

ΣΣΣ

)
,

for k > 8, where the first equality follows as
βπ
t sin

(
βπ
t
k

)
sin2

(
βπ
t
2

) > 0 is bounded from below by a positive constant as βπ
t ∈ [0, π].

Taking expectation with respect to Ht yields the result.

The rest of the proofs are essentially evaluating the lower bound in the previous theorems, with the aid of existing literature
in estimation theory or simply following the routine therein.

Proof of Theorem 3.4. Given that zzzit is non-zero, which happens with probability 1
⌊d/2⌋ , the problem in period t is essentially

equivalent to a two-dimensional one with F = N
(
000, σ2III2

)
and true parameter θθθ∗i. Thus, by Theorem 3.2, the conditional
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expected regret in period t

E
[
Rπ

t (θθθ
∗, F )

∣∣Ht, zzz
i
t ̸= 0

]
= Ω

(
σ
∥∥θθθ∗i

∥∥
2
·E
[∥∥∥∥

θθθ∗i

∥θθθ∗i∥2
− (θθθπt )

i

∥(θθθπt )i∥2

∥∥∥∥
2

2

])
.

Taking expectation with respect to the conditions yield the results.

Proof of Proposition 3.5. Given that zzzit ̸= 0 occurs with probability 1
⌊d/2⌋ , the problem in period t is essentially a two-

dimensional one with a truncated N
(
000, σ2III2

)
random vector zzzit and θθθ∗i. Then, we can apply Proposition 3.3 to obtain

that

E
[
Rπ

t (θθθ
∗, F )

∣∣Ht, zzz
i
t ̸= 0

]
= Ω

(
σ
∥∥θθθ∗i

∥∥
2
·E
[∥∥∥∥

θθθ∗i

∥θθθ∗i∥2
− (θθθπt )

i

∥(θθθπt )i∥2

∥∥∥∥
2

2

])
.

Proof of Proposition 3.7. By Theorem 3.6, it suffices to find a lower bound of

inf
θθθt(n)∈Θ̂̂Θ̂Θt(n)

{
Eν

[
∥θθθ∗(n)∥ΣΣΣ ·

∥∥∥ θθθ∗(n)
∥θθθ∗(n)∥ΣΣΣ

− θθθt(n)
∥θθθt(n)∥ΣΣΣ

∥∥∥
2

ΣΣΣ

]}
. For that purpose, we may assume that all the elements

in θθθ∗ except those in θθθ∗i are known as it only reduces the estimation error. In addition to Ht, the estimators in
Θ̂̂Θ̂Θt(n) are also allowed access to the reward in period s from the unique unpulled arm a′s whose binary representation
is different from that of the selected arm only in the nth digit, i.e., bn(a

′
s) ̸= bn(a

π
s ) while bn′(a′s) = bn′(aπs )

for all n′ ̸= n, for 1 ≤ s < t. Then, we can obtain xxx⊤
sa(n)θθθ

∗(n) + ξsa = ysa − ∑
n′ ̸=n

xxx⊤
ta(n

′)θθθ∗(n′) for

a = aπs , a
′
s, 1 ≤ s < t, and {xxxs,aπ

s
(n),xxxs,a′

s
(n)} =

{
xxxs,1(n),xxxs,2⌊log2(K)⌋(n)

}
is independent of all the contexts

and rewards in periods prior to s by (2)–(3). Thus, we can apply a similar argument as for the special case in
Section 3.1.1 to obtain that, for any r > 0, there exists a distribution ν such that Pν (∥θθθ∗(n)∥2 = r) = 1 and

inf
θθθt(n)∈Θ̂̂Θ̂Θt(n)

{
Eν

[
∥θθθ∗(n)∥ΣΣΣ ·

∥∥∥ θθθ∗(n)
∥θθθ∗(n)∥ΣΣΣ

− θθθt(i)
∥θθθt(i)∥ΣΣΣ

∥∥∥2
ΣΣΣ

]}
= Ω

(
r√
d

(
1
2
− 32r2t log2(K)

d2

))
when d ≫ 1. Therefore,

inf
π∈Π

{
sup

θθθ∗∈ΘΘΘ∗
{Rπ (θθθ∗, FK)}

}
= Ω

(
r log2(K)√

d

T∑

t=1

(
1

2
− 32r2t log2(K)

d2

))
,

which is Ω
(
max

{√
dT log2(K), d3/2

})
at r = min

{
d

4
√

T log2(K)
, 1√

log2(K)

}
.

Proof of Proposition 4.1. Let θ̂̂θ̂θt be the minimizer of inf
θθθt∈Θ̂̂Θ̂Θt

{
⌊d/2⌋∑
i=1

Eν

[∥∥θθθ∗i − rθθθit
∥∥2
2

]}
and N i

t =
t−1∑
s=1

1{zzzi
s ̸=000} be the

number of periods up to t− 1 that θθθ∗i, 1 ≤ i ≤
⌊
d
2

⌋
, can be learnt. For any θθθ, θθθ′ ∈ Rd, by Theorem 1 in (Devroye et al.,

2018), the total variation distance between the distribution of Ht conditioned on θθθ∗i = θθθi and that conditioned on θθθ∗i = θθθ
′i

is bounded from above by
∥∥∥θθθi − θθθ

′i
∥∥∥
2

√
N i

t . Thus,

P

(∥∥∥θθθ∗i − rθ̂̂θ̂θit

∥∥∥2
2
≥ 1

4

∥∥∥θθθi − θθθ
′i
∥∥∥2
2

∣∣∣∣θθθ∗ = θθθ,N i
t

)
≥ P

(∥∥∥θθθi − rθ̂̂θ̂θit

∥∥∥
2
≥
∥∥∥θθθ′i − rθ̂̂θ̂θit

∥∥∥
2

∣∣∣θθθ∗ = θθθ,N i
t

)
≥ 1

2

[
P
(∥∥∥θθθi − rθ̂̂θ̂θit

∥∥∥
2
≥
∥∥∥θθθ′i − rθ̂̂θ̂θit

∥∥∥
2

∣∣∣θθθ∗ = θθθ,N i
t

)
+ 1− P

(∥∥∥θθθi − rθ̂̂θ̂θit

∥∥∥
2
≤
∥∥∥θθθ′i − rθ̂̂θ̂θit

∥∥∥
2

∣∣∣θθθ∗ = θθθ,N i
t

)]
=

1

2

[
1 + P

(∥∥∥θθθi − rθ̂̂θ̂θit

∥∥∥
2
≥
∥∥∥θθθ′i − rθ̂̂θ̂θit

∥∥∥
2

∣∣∣θθθ∗ = θθθ,N i
t

)
− P

(∥∥∥θθθi − rθ̂̂θ̂θit

∥∥∥
2
≥
∥∥∥θθθ′i − rθ̂̂θ̂θit

∥∥∥
2

∣∣∣θθθ∗ = θθθ′, N i
t

)]
≥ 1

2

(
1−

∥∥∥θθθi − θθθ
′i
∥∥∥
2

√
N i

t

)
,
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where the equality follows from the symmetry of the distribution of Ht and ν. Since, for given θθθ ∈ ΘΘΘ∗
t and q ∈

[
0, r2

]
,

there exists θθθ′ ∈ΘΘΘ∗ such that
∥∥θθθi − θθθ′i

∥∥
2
= 2

√
q, we can evaluate E

[∥∥∥θθθ∗i − rθ̂̂θ̂θit

∥∥∥
2

2

]
as

E

[
E

(∥∥∥θθθ∗i − rθθθit

∥∥∥2
2

∣∣∣∣θθθ∗ = θθθ,N i
t

)]
≥ E

[∫ r2

0

P

(∥∥∥θθθit − θθθ∗i
∥∥∥2
2
≥ q

∣∣∣∣θθθ∗ = θθθ,N i
t

)
dq

]

≥ 1

2
E

[∫ r2

0

(
1− 2

√
qN i

t

)+

dq

]

≥ 1

2

∫ r2

0

E

[(
1

2
− 2qN i

t

)+
]
dq

≥ 1

2

∫ r2

0

(
1

2
− 2qE

[
N i

t

])+

dq = Ω

(
min

{
r2,

d

t

})
.

By Proposition 3.4, inf
π∈Π

{
sup

θθθ∗∈ΘΘΘ∗
{Rπ (θθθ∗, F )}

}
= σ

dr

T∑
t=1

⌊d/2⌋∑
i=1

Ω
(
min

{
r2, d

t

})
=

T∑
t=1

Ω
(
σmin

{
r, d

rt

})
.

Proof of Proposition 4.3. We now calculate the bound in Theorem 3.5. Letting θ̂̂θ̂θt be the minimizer of

inf
θθθt∈Θ̂̂Θ̂Θt

Eν

[
∥θθθ∗ − rθθθt∥22

]
and N i

t =
t−1∑
s=1

1{zzzi
s ̸=000}, by Lemma 6.1 in (Karwa & Vadhan, 2017), we have that, for any θθθ,θθθ′ ∈ Rd,

P
(∥∥∥θ̂̂θ̂θit − θθθi

∥∥∥
2
≥
∥∥∥θθθi − θθθ

′i
∥∥∥
2

∣∣∣θθθ∗ = θθθ,N i
t ,Ht

)

≥ e
−6Nt

i ε
∥∥∥θθθi−θθθ

′i
∥∥∥
2P
(∥∥∥θ̂̂θ̂θit − θθθi

∥∥∥
2
≥
∥∥∥θθθi − θθθ

′i
∥∥∥
2

∣∣∣θθθ∗ = θθθ′, N i
t ,Ht

)
− δ

∥∥∥θθθi − θθθ
′i
∥∥∥
2
N t

i

≥ e
−6Nt

i ε
∥∥∥θθθi−θθθ

′i
∥∥∥
2

[
1− P

(∥∥∥θ̂̂θ̂θit − θθθi
∥∥∥
2
≥
∥∥∥θθθi − θθθ

′i
∥∥∥
2

∣∣∣θθθ∗ = θθθ,N i
t ,Ht

)]
− δ

∥∥∥θθθi − θθθ
′i
∥∥∥
2
N t

i ,

where the last inequality follows from symmetry, implying that

P
(∥∥∥θ̂̂θ̂θit − θθθi

∥∥∥
2
≥
∥∥∥θθθi − θθθ

′i
∥∥∥
2

∣∣∣θθθ∗ = θθθ,N i
t ,Ht

)
≥ 1

2

(
e
−6Nt

i ε
∥∥∥θθθi−θθθ

′i
∥∥∥
2 − δ

∥∥∥θθθi − θθθ
′i
∥∥∥
2
N t

i

)
.

Since, for given θθθ ∈ ΘΘΘ∗
r and q ∈

[
0, r2

]
, there exists θθθ′ ∈ΘΘΘ∗ such that

∥∥∥θθθi − θθθ
′i
∥∥∥
2
= 2

√
q, we have

E
[
∥θθθt − θθθ∗∥22

]
=

⌊d/2⌋∑

i=1

E
[
E
(∥∥θθθit − θθθ∗i

∥∥2
2

∣∣∣θθθ∗ = θθθ,N i
t ,Ht

)]

≥
d/2∑

i=1

E

[∫ r2

0

P
(∥∥θθθit − θθθ∗i

∥∥2
2
≥ q
∣∣∣θθθ∗ = θθθ,N i

t

)
dq

]

≥ 1

2

d/2∑

i=1

E

[∫ r2

0

(
e−12Nt

i ε
√
q − 2δN t

i

√
q
)+

dq

]

≥ 1

2

d/2∑

i=1

∫ r2

0

(
e−12E[Nt

i ]ε
√
q − 2δE

[
N t

i

]√
q
)+

dq

= Ω

(
dmin

{
r2,

d2

t2(ε+ δ)2

})
.

The Proposition follow from Theorem 3.4
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Proof of Proposition 4.4. Under the given choice of (F, ν, Θ̂̂Θ̂Θt), the lower bound in Theorem 3.2,

inf
π∈Π

{
sup

θθθ∗∈ΘΘΘ∗
{Rπ (θθθ∗, F )}

}
= Ω

(
T∑

t=1

inf
θθθt∈Θ̂̂Θ̂Θt

{
Eν

[
∥θθθ∗ − ∥θθθ∗∥2 · θθθt∥

2
2

∥θθθ∗∥2

]})

= Ω

(
1

r

T∑

t=1

inf
θθθt∈Θ̂̂Θ̂Θt

{
Eν

[
∥θθθ∗ − rθθθt∥22

]})

= Ω

(
1

r

T∑

t=1

inf
θθθt∈Θ̂̂Θ̂Θt

{
Eν

[
∥θθθ∗ − θθθt∥22

]})
.

It remains to find a lower bound for Eν

[
∥θθθ∗ − θθθt∥22

]
. (Wang & Xu, 2019) showed that the squared ℓ2-risk for sparse linear

regressions under an ε-LDP constraint has a lower bound of order Ω
(

d log d
tε2

)
when (xxxta, yta) can only take discrete values

on the hamming cube {1,−1}d+1. Since our (xxxta, yta) take continuous values, we will provide a continuous version of
their proof to reach the same lower bound as follows.

Denote by L∞ (Rn) the space of essentially bounded measurable functions on Rn. By Proposition 2 in (Duchi et al., 2018),

inf
θθθt∈Θ̂̂Θ̂Θt

{
Eν

[
∥θθθ∗ − θθθt∥22

]}
= Ω


r2



1− tε2

log (d)


 1

2d
sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

Ψ2
θθθ(γ)






− log(2)

log (d)






 ,

where B∞ =
{
γ ∈ L∞ (R2d+2

)
: ∥γ∥∞ ≤ 1

}
is the centered unit ball in L∞(R2d+2) and

Ψθθθ(γ) = E [γ (xxxt1,xxxt2, yt1, yt2)|θθθ∗ = θθθ]− Eν [E [γ (xxxt1,xxxt2, yt1, yt2)|θθθ∗]] .

In Lemma A.2 below, we provide an upper bound for sup
γ∈B∞

{
∑

θθθ∈ΘΘΘ∗
r

Ψ2
θθθ(γ)

}
. Thus, inf

π∈Π

{
sup

θθθ∗∈ΘΘΘ∗
{Rπ (θθθ∗, F )}

}
=

Ω
(
r
[
1− Tr2ε2

d(1−2r2) log(d) −
log(2)
log(d)

])
. For a general K, following a similar argument as above, we have

inf
π∈Π

{
sup

θθθ∗∈ΘΘΘ∗
{Rπ (θθθ∗, F )}

}
= Ω

(
r log2(K)

[
1− T log2(K)r2ε2

d(1−2r2) log(d/ log2(K)) −
log(2)

log(d/ log2(K))

])
.

Lemma A.2. sup
γ∈B∞

{
∑

θθθ∈ΘΘΘ∗
r

Ψ2
θθθ(γ)

}
≤ 2r2

1−2r2 .

Proof of Lemma A.2. Let ϕ(y|µ) = 1√
2π

e−
(y−µ)2

2 denote the density of a N (µ, 1) random variable. For (xxx,xxx′, y, y′) ∈
Rd × Rd × R× R, define

Gθθθ(xxx,xxx
′, y, y′) := ϕ

(
y|xxx⊤θθθ

)
ϕ
(
y′|xxx′⊤θθθ

)
− 1

2d

∑

θθθ′∈ΘΘΘ∗
r

ϕ
(
y|xxx⊤θθθ′

)
ϕ
(
y′|xxx′⊤θθθ′

)
,

and let GGG(xxx,xxx′, y, y′) be the 2d-dimensional column vector defined by

GGG(xxx,xxx′, y, y′) := (Greee1(xxx,xxx
′, y, y′), G−reee1(xxx,xxx

′, y, y′), . . . , Greeed(xxx,xxx
′, y, y′), G−reeed(xxx,xxx

′, y, y′))
⊤
.
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By the Cauchy-Schwartz inequality,

sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

Ψ2
θθθ(γ)





= sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

(∫

y,y′
E [γ(xxxt1,xxxt2, y, y

′)Gθθθ(xxxt1,xxxt2, y, y
′)] dydy′

)2




= sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

(∫

y,y′

E [γ(xxxt1,xxxt2, y, y
′)Gθθθ(xxxt1,xxxt2, y, y

′)]√
ϕ(y|0)ϕ(y′|0)

√
ϕ(y|0)ϕ(y′|0)dydy′

)2




≤ sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

∫

y,y′

(
E [γ(xxxt1,xxxt2, y, y

′)Gθθθ(xxxt1,xxxt2, y, y
′)]√

ϕ(y|0)ϕ(y′|0)

)2

dydy′
∫

y,y′
ϕ(y|0)ϕ(y′|0)dydy′





= sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

∫

y,y′
E2 [γ(xxxt1,xxxt2, y, y

′)Gθθθ(xxxt1,xxxt2, y, y
′)]

dydy′

ϕ(y|0)ϕ(y′|0)





≤
∫

y,y′
sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

E2 [γ(xxxt1,xxxt2, y, y
′)Gθθθ(xxxt1,xxxt2, y, y

′)]





dydy′

ϕ(y|0)ϕ(y′|0)

=

∫

y,y′
sup
γ∈B∞

{
∥E [γ(xxxt1,xxxt2, y, y

′)GGG(xxxt1,xxxt2, y, y
′)]∥22

} dydy′

ϕ(y|0)ϕ(y′|0)

=

∫

y,y′
sup

γ∈B∞,

uuu∈R2d,∥uuu∥2≤1

{
E2
[
γ(xxxt1,xxxt2, y, y

′)uuu⊤GGG(xxxt1,xxxt2, y, y
′)
]} dydy′

ϕ(y|0)ϕ(y′|0)

≤
∫

y,y′
sup

γ∈B∞,

uuu∈R2d,∥uuu∥2≤1

{
E
[
γ2(xxxt1,xxxt2, y, y

′)
]
E
[(
uuu⊤GGG(xxxt1,xxxt2, y, y

′)
)2]} dydy′

ϕ(y|0)ϕ(y′|0)

≤
∫

y,y′
sup

uuu∈R2d,∥uuu∥2≤1

{
uuu⊤E

[
GGG(xxxt1,xxxt2, y, y

′)GGG(xxxt1,xxxt2, y, y
′)⊤
]
uuu
} dydy′

ϕ(y|0)ϕ(y′|0) .

Note that sup
uuu∈R2d,∥uuu∥2≤1

{
uuu⊤E

[
GGG(xxxt1,xxxt2, y, y

′)GGG(xxxt1,xxxt2, y, y
′)⊤
]
uuu
}

is equal to the largest eigenvalue of

E
[
GGG(xxxt1,xxxt2, y, y

′)GGG(xxxt1,xxxt2, y, y
′)⊤
]
. For given θθθ,θθθ′ ∈ΘΘΘ∗

r = {reee1,−reee1, . . . , reeed,−reeed},

E
[
Gθθθ(xxxt1,xxxt2, y, y

′)Gθθθ′(xxxt1,xxxt2, y, y
′)
]

= E
[
ϕ(y|xxx⊤

t1θθθ)ϕ(y|xxx⊤
t1θθθ

′)ϕ(y′|xxx⊤
t2θθθ)ϕ(y

′|xxx⊤
t2θθθ

′)
]
+

1

4d2

∑
βββ,βββ′∈ΘΘΘ∗

r

E
[
ϕ(y|xxx⊤

t1βββ)ϕ(y|xxx⊤
t1βββ

′)ϕ(y′|xxx⊤
t2βββ)ϕ(y

′|xxx⊤
t2βββ

′)
]

− 1

2d

∑
βββ∈ΘΘΘ∗

r

E
[
ϕ(y|xxx⊤

t1βββ)ϕ(y
′|xxx⊤

t2βββ)
(
ϕ(y|xxx⊤

t1θθθ)ϕ(y
′|xxx⊤

t2θθθ) + ϕ(y|xxx⊤
t1θθθ

′)ϕ(y′|xxx⊤
t2θθθ

′)
)]

= E
[
ϕ(y|xxx⊤

t1θθθ)ϕ(y|xxx⊤
t1θθθ

′)ϕ(y′|xxx⊤
t2θθθ)ϕ(y

′|xxx⊤
t2θθθ

′)
]
− 1

2d

e
− y2+y′2

1+2r2

1 + 2r2
−
(
1− 1

d

)
e
− y2+y′2

1+r2

1 + r2
− 1

2d

e−(y2+y′2)

1 + 2r2

=



(
1− 1

2d

)
e
− y2+y′2

1+2r2

1+2r2
−
(
1− 1

d

)
e
− y2+y′2

1+r2

1+r2
− 1

2d
e−(y2+y′2)

1+2r2
≜ H+, if θθθ = θθθ′,

− 1
2d

e
− y2+y′2

1+2r2

1+2r2
−
(
1− 1

d

)
e
− y2+y′2

1+r2

1+r2
+
(
1− 1

2d

)
e−(y2+y′2)

1+2r2
≜ H−, if θθθ = −θθθ′,

− 1
2d

e
− y2+y′2

1+2r2

1+2r2
−
(
1− 1

d

)
e
− y2+y′2

1+r2

1+r2
+
(
1− 1

2d

)
e−(y2+y′2)

1+2r2
= −H++H−

2d−2
, if θθθ ̸= ±θθθ′.
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Therefore,

E
[
GGG(xxxt1,xxxt2, y, y

′)GGG(xxxt1,xxxt2, y, y
′)⊤
]
=




AAA BBB · · · BBB
BBB AAA · · · BBB
...

...
. . .

...
BBB BBB · · · AAA


 ,

where

AAA =

(
H+ H−
H− H+

)
and BBB = −H+ +H−

2d− 2

(
1 1
1 1

)
.

It can then be easily verified that E
[
GGG(xxxt1,xxxt2, y, y

′)GGG(xxxt1,xxxt2, y, y
′)⊤
]

has the following three eigenvalues:

1. H+ − H−, with a d-dimensional eigenspace spanned by (1,−1, 0, . . . , 0), (0, 0, 1,−1, 0, . . . , 0), · · · ,
(0, 0, . . . , 0, 1,−1).

2. 2d(H++H−)
2d−2 , with a d-dimensional eigenspace spanned by (1, 1,−1,−1, 0, . . . , 0),

(0, 0, 1, 1,−1,−1, 0, . . . , 0), · · · , (0, . . . , 0, 1, 1,−1,−1).

3. 0, with a 1-dimensional eigenspace spanned by (1, 1, . . . , 1).

Since the eigenspaces of the three eigenvalues listed above span the whole space R2d, they are the only eigenvalues with the

largest being H+ −H− = e
− y2+y′2

1+2r2 −e−(y2+y′2)

1+2r2 . Thus,

sup
γ∈B∞




∑

θθθ∈ΘΘΘ∗
r

Ψ2
θθθ(γ)



 ≤

∫

y,y′

e
− y2+y′2

1+2r2 − e−(y2+y′2)

1 + 2r2
dydy′

ϕ(y|0)ϕ(y′|0) ≤ 2r2

1− 2r2
.


